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A B S T R A C T

Securing an adequate supply of dispatchable resources is critical for keeping a power system reliable under high
penetrations of variable generation. Strategic reserves have been used by a range of jurisdictions to procure
investment in additional generation reserves given the missing money problem in energy only market designs.
Given the growing flexibility and heterogeneity of load enabled by advancements in distributed resource and
control technology, strategic reserve procurement needs to be able to reflect the different preferences of energy
consumers. To address this challenge this paper develops an insurance risk mechanism for the procurement of
strategic reserves that is adapted to a future with variable generation and flexible demand. The proposed design
introduces a central insurance scheme with prudential requirements that align diverse consumer reliability
preferences with the financial objectives of an insurer-of-last-resort. We illustrate the benefits of the scheme in
(i) differentiating load by usage to enable better management of the system during times of extreme scarcity,
(ii) incentivizing incremental investment in generation infrastructure that is aligned with consumer reliability
preferences and (iii) improving overall reliability outcomes for consumers.
1. Introduction

This paper addresses the question: Can we adapt the procurement
of strategic reserves in electricity markets to efficiently meet the het-
erogeneous reliability preferences of consumers? Resource adequacy is
particularly relevant today as the de-carbonization of the electricity
sector requires the deployment of large amounts of variable renew-
able energy (VRE), which is expected to supply 70%–90% of global
electricity demand by 2050 [1]. An electricity system with large pen-
etrations of VRE will require an adequate capacity of dispatchable
resources to balance periods of intermittent or low renewable resource
availability [2].

In most liberalized markets, electricity is dispatched in economic
merit-order and cleared on the basis of a marginal price [2]. In theory,
the marginal price is capable of stimulating generation investment to
ensure long-term generation capacity adequacy with consumers able
to indicate preferences via bidding into markets either directly or
indirectly (via aggregation) [3]. However, in practice a range of factors,
including system operator interventions and administrative caps on
market prices, restrict power prices from reaching the theoretical value
of lost load (VOLL) [3]. This leads to the well-studied missing money
problem where generators face a chronic shortage of revenue, while
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retailers avoid the full financial impact of lost load, resulting in under-
hedging of load and underinvestment in resource capacity [4]. This
becomes increasingly challenging as markets become dominated by
variable resources with zero or negligible short-run marginal costs [4],
leading to a view among some that additional investment frameworks
are required given incomplete energy markets [5,6].

While some markets have moved to market-wide capacity mech-
anisms, others have sought to implement a strategic reserve as an
overlay on the spot market. A strategic reserve for power system
reliability seeks to procure additional generation capacity in excess
of that delivered by the spot market [7]. Resources contracted un-
der strategic reserves do not participate in the spot market, and are
only dispatched when market sources are exhausted [8]. Hence this
reserve is intended to apply to resources that may not be viable in
the spot market, but may nevertheless be valuable in mitigating the
reliability externality associated with administrative mechanisms [9].
This delineation preserves the option to retain strong scarcity price
signals [8], relevant for jurisdictions seeking to retain a design close
to an energy-only model [7]. Strategic reserves have been adopted in
markets such as Germany, Sweden, Finland and Belgium to manage
reliability given a trajectory of lumpy fossil generation retirement [7,8,
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10]. The National Electricity Market (NEM) of Australia complements
forward contracting obligations on retailers with a strategic reserve.
The Australian Energy Market Operator (AEMO) has a last-resort role as
a reliability and emergency reserve trader (RERT), allowing it to enter
into reserve contracts with generation (and other resources) for up to
12 months to meet a uniform reliability standard [11]. These reserves
are only called into action where market responses are insufficient. For
some strategic reserve designs, decisions on the quantities of reserve
procured can be relatively ad-hoc and subject to high-level capacity or
budgetary limits [7]. The most common approach to the procurement
of strategic reserves involves quantifying the amount of additional gen-
eration required to meet a centrally determined reliability metric, such
as unserved energy (USE) or loss of load probability (LOLP) [10,12–
14]. In the context of variable generation an expected value of the
metric (e.g. expected USE) is typically used, underpinned by stochastic
modeling [13].

The advent of distributed energy and storage technology, and en-
hanced load controllability has enabled greater differentiation in con-
sumer preferences for electricity service [15]. VOLL studies that un-
derpin strategic reserve procurement are becoming increasingly gran-
ular to reflect the heterogeneous value of load across different con-
sumers [16] and forms of demand response are eligible for strategic
reserve procurement [17]. However, given the potential for differenti-
ated preferences for reliability itself, a key question that arises is how to
value such preferences in strategic reserve decision making. While the
indirect elicitation of VOLL through surveys and other methodologies
provide an estimate of the differentiated value of load, the question
arises as to whether consumer preferences for reliability can be more
directly revealed. We take a fresh look at the design of strategic
reserves through the introduction of an insurance mechanism which
allows for differentiated reliability preferences to be directly elected by
consumers, and the procurement of strategic reserves to reflect those
preferences.

The microeconomic model of an insurer is as a manager of tail
risk [18]. Tail risk relates to financial loss exposures from extreme
or low-probability outcomes (i.e. the so-called tail of a probability
distribution). This suggests a natural applicability to assessment of
resource adequacy in power systems. The theory of reliability insur-
ance was originally proposed in [19] as a contractual mechanism for
priority service. Reliability insurance offers consumers compensation
for electricity interruptions in return for an upfront premium [20]. This
in turn creates an incentive for the insurance counterparty to mitigate
interruption risk through portfolio diversification and investment in or
contracting with generators [21]. In [11,22,23] insurance is consid-
ered as a logical pricing mechanism for systems with higher levels of
variability and uncertainty in generation and demand.

Our proposal develops an insurance mechanism to monetize the
heterogeneous value of lost load when existing demand schemes are
capped out by administrative interventions. The novelty of the pro-
posed design is the application of insurance risk management and
loss reserving techniques to a strategic reserve, which to the best of
author’s knowledge has not been proposed to date in the literature.
An insurance mechanism enables (i) the monetization of the value
of lost load based on revealed consumer preference; (ii) a risk-based
decision-making framework for the strategic reserve procurer to make
incremental generation investment. Further by linking this to a scheme
for curtailment differentiation we enable more granular curtailment to
improve the preservation of essential services during extreme scarcity
(which ordinarily would be subject to rotating outages). The scope of
the paper is as follows: (i) the design of a strategic reserve mechanism
and the interaction with an operational scheme for priority curtailment
of load; (ii) the development of decision problems for key agents in
the design, including a comprehensive insurance model for the party
responsible for strategic reserve procurement; and (iii) a comparison of
equilibrium outcomes of the insurance-based design against an energy-
2

only market design. We are focused in this paper on generation capacity
expansion only and do not consider network investment at this stage
(i.e. a copper plate network is assumed).

The rest of this paper is organized as follows. In Section 2 we begin
with a high-level architecture of our proposed energy plus insurance
market design. In Section 3 we enunciate key principles of insurance
risk and loss reserving and use them to develop a reliability insurance
risk provisioning metric. Using this metric, in Section 4, we formalize
in mathematical terms the risk-averse decision making problems of key
agents in the design, including generators, the insurer (i.e. the procurer
of strategic reserves) and consumers. In Section 5 we apply the design
to a case study and present the results. Section 6 concludes with policy
implications and extensions.

2. An ‘‘Energy plus Insurance’’ market design

In this section we describe the architecture of the proposed en-
rgy plus insurance market design. A high level block diagram of the
roposed market architecture is provided in Fig. 1. We segment the
arket design into two layers. A wholesale electricity market (WEM)

ayer which represents capacity investment decisions given outcomes
rom the wholesale spot market, and a strategic reserve procurement
SRP) layer which models the decisions made in respect of the strategic
eserve (using a novel insurance mechanism). A strategic reserve by
efinition is intended to operate as an overlay on and with minimal
nterference in the spot market, and only when market resources are
xhausted. Thus the decision making in each layer can essentially be
reated separately, except for information flows from the WEM to the
RP.

With regards to nomenclature we call generators that are built
ased on spot market profits as market generators, and generators
upported by strategic reserve tolling payments as strategic generators.
here is also a distinction between electricity consumers drawn in the
rchitecture. Certain consumers are able to participate, via bidding in
he spot market (we term these market consumers). As these consumers
re able to voluntarily indicate curtailment and value preferences via
he market, the insurance scheme is of less relevance to them. However
onsumers that are not suited for direct engagement in spot markets
nd/or have a VOLL above the market price cap would be eligible for
o hedge their interruption risks via insurance (we term these retail
onsumers).

We begin with the WEM layer and the electricity spot market.
enerators offer their available capacity into a gross pool at the short-

un marginal cost. Consumers bid at their VOLL, limited by the market
rice cap (MPC). Generators are dispatched in economic merit order
y the transmission system operator (TSO), and settled at marginal
rices with an administrative market price cap (MPC) limiting the
rice. Complementary administrative mechanisms include generator
ffer caps and market power mitigation processes [3]. In the absence of
ny other sources of revenue for generators, this market design is the
nergy only market referred to above.

The SRP layer models how decisions are made with respect to the
rocurement of strategic reserves. As highlighted above, in traditional
ettings quantities are determined unilaterally by a central authority
ith reference to standardized reliability preferences. In this design the
rocurement of strategic reserves takes place via the offering of relia-
ility insurance contracts to retail consumers. The insurance scheme
s managed by the transmission system operator (TSO), though we
se the term Insurer-of-last-resort (IOLR) to specify the role of TSO
n managing the strategic reserve as distinguished from its operational
ole in optimal dispatch and market clearing. Key elements of this layer
re as follows:

1. The IOLR offers reliability insurance to consumers. In exchange
for an upfront insurance premium, reliability insurance provides
consumers with financial compensation in the event that load is
interrupted, in the form of payment (in $ per MWh) linked to

the VOLL of the particular source of consumption.
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Fig. 1. Schematic of the market architecture incorporating a wholesale electricity market (WEM) layer incorporating a centrally dispatched spot market settled on marginal prices
(managed by the system operator); and a strategic reserve procurement (SRP) layer incorporating a reserve procurement based on an reliability insurance scheme with priority
curtailment.
2. Consumers can elect whether to purchase insurance based on
their risk preferences and the price of insurance (i.e. the pre-
mium) offered to them by the IOLR.

3. As the IOLR is financially responsible for paying compensation,
it is incentivized to take action to reduce its risk of making such
payouts. As such it can procure strategic reserves in the form of
tolling contracts with additional generation capacity to mitigate
the risk of interruptions. We note that this framework also allows
the IOLR to actively contract with demand-side resources as an
alternative to generation, though we only model generators in
this paper to minimize the formulation complexity.

4. Under the tolling contract, the IOLR pays for all variable and
fixed costs of the generator. Importantly, given the nature of a
strategic reserve, these generation resources are excluded from
participating in the spot market. The dispatch of such generation
reserves takes place only when all available market generators
have been dispatched.

5. In the event that consumers are still required to be curtailed,
consumers are curtailed in priority based on the VOLL indicated
in their reliability insurance contracts (from lowest VOLL to
highest VOLL). Ordinarily at this stage many markets resort to
rotating/random load shedding (see [5,24,25]).

6. With this priority curtailment scheme, under scarcity or emer-
gency conditions, load is able to be triaged with low value or
non-essential load curtailed first, with the aim of preserving
more essential load. This would be actuated through real-time
communications infrastructure such as an energy
router connected to the home [26].

The design could be implemented in phases to allow early benefits
to accrue, but also to allow time to integrate with the rollout of load me-
tering, control and communications technology. Initially compensation
could be based on average unserved energy at the feeder level and the
market price cap, as proposed in [22], which would provide an initial
valuation of lost load and incentivize investment in strategic reserves.
As the penetration of digital metering and load technology grows this
would enable consumers to differentiate between different loads in the
home or business.
3

There are two information flows from the WEM layer to the SRP
layer. First, as generators that are not viable in the WEM layer are avail-
able for investment as strategic reserves, this information is transferred
from the WEM to the SRP. The second information flow is demand
shortages forecasted in the spot market. This information represents
the maximum demand curtailments that can occur, is used by the
IOLR to assess whether a reliability insurance contract should be signed
with such load, and whether such curtailment can be reduced via the
contracting of additional strategic generation.

3. Insurance principles and loss reserving

In this section we describe the principles governing the viability and
solvency of an insurer, and use these principles to formalize prudential
metrics that guide the proposed IOLR’s decision-making framework.
The operations of the IOLR are managed in accordance with insurance
risk management techniques where tail risks, characterized by rare
but severe losses, are managed by setting premiums appropriately, by
reserving capital against severe losses and by risk transfer [27–29].

A premium is the payment that a policyholder makes for complete
or partial insurance cover against a risk. An actuarial premium principle
is a method for assigning an appropriate price for an insurance pre-
mium [18]. The most fundamental and widely used premium principle,
is the expected value premium principle where the premium is measured
as multiple of the expected value of the insurer’s compensation claims.

Another key principle of the insurance business model relates to the
reserving of capital. In order to maintain solvency the insurer must
also provision for potential financial losses from tail risk outcomes,
known as a solvency constraint [27]. This means the insurer must
carry cash reserves against the possibility that the aggregate value
of loss claims will exceed its premium income [28]. These are often
termed technical or insurance reserves and held in cash or equivalently
secure and liquid investments, and provide a buffer against extreme
outcomes. As such in rare but extreme scenarios where the insurer
suffers significant losses from paying out large sums of compensation,
those cash buffers are drawn down to maintain solvency. The quantity
of reserves required to be held by the insurer are sized by applying
a risk measure to the insurer’s profits for a particular tail probability,
and are typically guided by best-practice prudential risk standards
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and industry regulation [30]. We apply the principle of reserving to
this market design, where the IOLR is similarly required to maintain
reserves that are sufficient to remain solvent given a portfolio of relia-
bility insurance contracts with electricity consumers. In this paper the
conditional value-at-risk (CVAR) is used as the tail risk measure given
its coherency properties [18] and its prevalence in insurance solvency
regulation [31]. A solvency constraint is formulated in Section 4 which
requires the IOLR to maintain technical (cash) reserves in excess of the
(negative) CVAR of its profits. This can be interpreted as requiring the
IOLR to have reserves that cover average worst-case outcomes beyond
the tail probability. Tail probabilities for insurers are generally set
very high to account for tail risk outcomes. For example, the European
Solvency II insurer financial risk framework requires insurers to assess
risks at 99.5% tail probability [31]. Prudent insurance risk management
requires this metric must be met by IOLR.

4. Problem formulation

This section proposes mathematical formulations for the decision-
making model of the IOLR, of consumers and that of generators in the
market. Consequently it proposes algorithms to find equilibria (i) in the
WEM layer between market generators in the spot market, and (ii) in
SRP layer between the IOLR, consumers and strategic generators. The
decision problems of all relevant agents are framed as risk-averse utility
maximization problems, where utility is defined as a risk measure of
the agent’s surplus. The risk measure chosen is a convex combination
of the agent’s expected profits and the CVAR of profits [32], where
the parameter 𝛽 ranging between 0 and 1 weights expected returns
against CVAR based on the agent’s preferences. As described above,
there are two layers of decision making in the architecture — the WEM
and SRP layers. We superscript relevant variables and parameters by
𝑖 to distinguish between the CVAR of the IOLR and that of genera-
tors and consumers (calculated using the same approach), which are
superscripted by 𝐺 and 𝑐 respectively.

4.1. WEM: Decision-making framework for generators

The WEM layer models the investment decisions of generators in
the electricity spot market. Market generators are those that choose
to build generation capacity based on spot market revenue alone.
Hence this section develops the decision-making framework for such
a generator. The proposed approach captures the interaction between
the generator and the electricity spot market. In particular we seek
to model how a generator’s strategic investment decision is impacted
by spot prices that are the result of the economic merit-order dis-
patch. A bilevel modeling structure is especially suited and widely
used for this application [33–36], where a utility-maximizing upper-
level optimization problem for the generator’s investment decisions is
constrained by lower-level optimization problems that represent market
equilibriums. We assume a hierarchical structure of the bi-level model
of a generator (as illustrated in Fig. 2); the upper-level problem is
subject to the solution of primal and dual variables of the lower-level
problems. Our modeling framework builds upon the approach of [33],
which describes a bi-level model for generation capacity expansion but
we extend the model from a deterministic model to a stochastic model
that incorporates generator risk-aversion. This modification are made
with the objective of incorporating a more realistic risk framework for
market participants.

The set of all available generators in represented by 𝑔 ∈ . In
upper level problem (𝐺𝑀𝑃𝑔) the generator seeks to maximize utility
𝑈𝐺
𝑔 ) as a mean-CVAR measure of profits (𝛹𝐺

𝑔,𝜔) minus capital costs,
which are constrained by spot market clearing outcomes across the
set of scenarios 𝜔 ∈ 𝛺 modeled at the lower level (for avoidance of
4

doubt these are the same scenarios observed by the IOLR). The CVAR
of profits is notated as 𝑐𝐺𝑔 with the relevant superscripts (A description
f all relevant nomenclature is set out at the end of the paper).

max
𝑉𝜔 ,𝑃𝐺

𝑔 }
𝑈𝐺
𝑔 = (1 − 𝛽𝑔)

∑

𝜔∈𝛺
𝜋𝜔𝛹

𝐺
𝑔,𝜔 + 𝛽𝑔𝑐

𝐺
𝑔 − 𝐶𝐼

𝑔 𝑃𝐺
𝑔 (1)

subject to:

𝛹𝐺
𝑔,𝜔 =

∑

𝑡∈
(𝜆𝑡,𝜔 − 𝐶𝑣

𝑔 )𝑝
𝐺
𝑔,𝑡,𝜔, ∀𝜔 ∈𝛺 (2)

𝑐𝐺𝑔 = 𝑧𝐺𝑔 − 1
𝛼𝐺𝑔

∑

𝜔∈𝛺
𝜋𝜔𝜚

𝐺
𝑔,𝜔 (3)

𝑧𝐺𝑔 − 𝛹𝐺
𝑔,𝜔 ≤ 𝜚𝐺𝑔,𝜔, ∀𝜔 ∈𝛺 (4)

𝜚𝐺𝑔,𝜔 ≥ 0, ∀𝜔 ∈𝛺 (5)

Eq. (2) represents the profits (𝛹𝐺
𝑔,𝜔) of the generator for scenario

, as spot revenues minus variable costs of generation. Eqs. (2)–(5)
epresents constraints for scenario-based formulation for CVAR [37]
here 𝑧𝐺𝑔 and 𝜚𝐺𝑔,𝜔 are auxiliary decision variables representing value-
t-risk (VAR) and the positive deviation between VAR and scenario
rofits.

The lower level models represents the clearing of the electricity spot
arket 𝐸𝐷𝜔 under scenarios 𝜔 ∈ 𝛺 incorporating generation offers and
emand bids (it is assumed that the generator offer at variable cost and
emand bids at its VOLL, limited by the MPC).

𝑡,𝜔, 𝑝
𝐺
𝑔,𝑡,𝜔 ∈ argmin

𝑉𝜔
𝐸𝐷𝜔 =

∑

𝑡∈

∑

𝑔∈
𝐶𝑣𝑐
𝑔 𝑝𝐺𝑔,𝑡,𝜔 +

∑

𝑡∈

∑

𝑑∈
𝐶𝑠ℎ
𝑑 𝑝𝑠ℎ𝑑,𝑡,𝜔,∀𝜔 ∈ 𝛺

(6)

where 𝑉𝜔 = {𝑝𝐺𝑔,𝑡,𝜔, 𝑝
𝑠ℎ
𝑑,𝑡,𝜔} and subject to:-

∑

𝑑∈
(𝑃𝐷

𝑑,𝑡,𝜔 − 𝑝𝑠ℎ𝑑,𝑡,𝜔) =
∑

𝑔∈
𝑝𝐺𝑔,𝑡,𝜔, ∀𝑡 ∈  , [𝜆𝑡,𝜔] (7)

0 ≤ 𝑝𝐺𝑔,𝑡,𝜔 ≤ 𝑃𝐺
𝑔 𝐴𝐺

𝑔,𝑡,𝜔, ∀𝑔 ∈ , 𝑡 ∈  , [𝜇𝐺
𝑔,𝑡,𝜔, 𝜇

𝐺
𝑔,𝑡,𝜔] (8)

0 ≤ 𝑝𝑠ℎ𝑑,𝑡,𝜔 ≤ 𝑃𝐷
𝑑,𝑡,𝜔, ∀𝑑 ∈ , 𝑡 ∈  , [𝜇𝑠ℎ

𝑑,𝑡,𝜔, 𝜇
𝑠ℎ
𝑑,𝑡,𝜔] (9)

The objective function (6) represents an economic merit-order dis-
patch that minimizes system costs. The lower level constraints are
typical of an economic dispatch. Eq. (7) ensures power balance as the
sum of generation and demand shortage. Eq. (8) ensures positive gener-
ation dispatch but below the maximum available generation capacity,
and Eq. (9) enforced demand shortage limits. The dual variables of each
constraint are shown in square brackets.

As the lower level program is a linear program, the bilevel model
can be recast as a single level program by using the first order necessary
and sufficient Karush–Kuhn–Tucker (KKT) conditions of the lower level
problem [38].

0 ≤ 𝑝𝐺𝑔,𝑡,𝜔 ⟂ 𝜇𝐺
𝑔,𝑡,𝜔 ≥ 0,∀𝑔 ∈ , 𝑡 ∈  , (10)

0 ≤ (𝑃𝐺
𝑔 𝐴𝐺

𝑔,𝑡,𝜔 − 𝑝𝐺𝑔,𝑡,𝜔) ⟂ 𝜇𝐺
𝑔,𝑡,𝜔 ≥ 0,∀𝑔 ∈ , 𝑡 ∈  , (11)

0 ≤ 𝑝𝑠ℎ𝑑,𝑡,𝜔 ⟂ 𝜇𝑠ℎ
𝑑,𝑡,𝜔 ≥ 0,∀𝑑 ∈ , 𝑡 ∈  (12)

0 ≤ (𝑃𝐷
𝑑,𝑡,𝜔 − 𝑝𝑠ℎ𝑑,𝑡,𝜔) ⟂ 𝜇𝑠ℎ

𝑑,𝑡,𝜔 ≥ 0,∀𝑑 ∈ , 𝑡 ∈  (13)

𝐶𝑣𝑐
𝑔 − 𝜆𝑡,𝜔 + 𝜇𝐺

𝑔,𝑡,𝜔 − 𝜇𝐺
𝑔,𝑡,𝜔 = 0,∀𝑔 ∈ , 𝑡 ∈  , [𝑝𝐺𝑔,𝑡,𝜔] (14)

𝐶𝑠ℎ
𝑑 − 𝜆𝑡,𝜔 + 𝜇𝑠ℎ

𝑑,𝑡,𝜔 − 𝜇𝑠ℎ
𝑑,𝑡,𝜔 = 0,∀𝑑 ∈ , 𝑡 ∈  , [𝑝𝑠ℎ𝑑,𝑡,𝜔] (15)

The complementarity constraints (10)–(13) can be linearized by replac-
ing 0 ≤ 𝑎 ⟂ 𝑏 ≥ 0 with (16), where M is a large enough positive
constant [39].

𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎 ≤ 𝜁𝑀, 𝑏 ≤ (1 − 𝜁 )𝑀, 𝜁 ∈ {0, 1} (16)

In addition the bilinear term 𝜆𝑡,𝜔𝑝𝐺𝑔,𝑡,𝜔 in (2) can be linearized using
Lemma 1 [35,40,41] (with proof provided in the Appendix) and by

using the strong duality theorem, as stated in [40].
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Fig. 2. Schematic illustrating the hierarchical relationship between generators and the spot market.
Lemma 1. The following relationship holds at the optimum of the lower
level problem:

𝜆𝑡,𝜔𝑝
𝐺
𝑔,𝑡,𝜔 = 𝐶𝑣𝑐

𝑔 𝑝𝐺𝑔,𝑡,𝜔 + 𝑃𝐺
𝑔 𝐴𝐺

𝑔,𝑡,𝜔𝜇
𝐺
𝑔,𝑡,𝜔 (17)

The strong duality theorem, as it relates to linear programs, says
that if a problem is convex, the objective functions of the primal and
dual problems have the same value at the optimum [40]. Therefore
with a slight abuse of notation (where  refers to the set of all gener-
ators, and {∖𝑔} refers to the set of generators excluding independent
generator 𝑔) we can state :

𝑃𝐺
𝑔 𝐴𝑔

𝑔,𝑡,𝜔𝜇
𝐺
𝑔,𝑡,𝜔 =

∑

𝑡∈

∑

𝑑∈
𝜆𝑡,𝜔𝑃𝐷

𝑑,𝑡,𝜔 −
∑

𝑑∈
𝑃𝐷
𝑑,𝑡,𝜔𝜇

𝑠ℎ
𝑑,𝑡,𝜔 −

∑

{∖𝑔}
𝑃𝐺
𝑔 𝐴𝑔

𝑔,𝑡,𝜔𝜇
𝐺
𝑔,𝑡,𝜔

−
∑

𝑡∈

∑

𝑑∈
𝐶𝑠ℎ
𝑑 𝑝𝑠ℎ𝑑,𝑡,𝜔 −

∑

𝑡∈

∑


𝐶𝑣𝑐
𝑔 𝑝𝐺𝑔,𝑡,𝜔 (18)

Thus the bi-level problem introduced above can be recast into the
following single equivalent mixed integer linear program that can be
solved to global optimality by off-the-shelf commercial solvers [42]:

Upper level objective function (1)

subject to:

Upper level primal constraints (2)–(5)
Lower level KKT conditions (10)–(15)
with complementarity constraints (10)–(13), replaced by (16)
Lemma 1 (17) and strong duality equality (18)

4.2. WEM: Market equilibrium

This section provides an algorithm to search for an equilibrium
in the WEM layer. Each generator is assumed to be a rational utility
maximizing agent. Each participant will seek to maximize its individ-
ual utility based on the decision making framework outlined above.
An equilibrium is reached if no generator can increase its utility by
deviating unilaterally from the solution. We use a Gauss–Seidel di-
agonalization approach to search for an equilibrium. Gauss–Seidel
diagonalization solves each agent’s individual decision-making problem
while considering the decisions of other agents from the previous iter-
ation [43]. The diagonalization process terminates when the decision
of each agent does not deviate from the last iteration.

The approach taken in this paper, described in Algorithm 1, is
similar to [33]. The algorithm iterates across generators to find an
5

equilibrium between independent generators. Each generator solves its
individual decision-making problem while fixing the decisions of other
generators to the values from the previous iteration. An equilibrium
is reached when no independent generators seek to deviate from their
decisions from the previous iteration. As noted in [44–47] the conver-
gence state of the diagonalization algorithm corresponds by definition
to a Nash equilibrium of the market, since none of the producers can
increase their profits by unilaterally modifying their offering strategies.
The existence and uniqueness of Nash equilibria in this problem is not
guaranteed [47,48]. As such in the case study it is possible to have
more than one equilibrium. Furthermore, the iterative diagonalization
approach is not generally guaranteed to converge to an equilibrium,
even if equilibria exist [44,49,50]. However, for each of the test cases
considered in the numerical study (Section 5), an equilibrium was
reached within a relatively small number of iterations. Each run of
the algorithm was tested against a range of starting conditions. In all
cases the algorithm converged to the same equilibria under a range of
different starting conditions.

Two critical outputs from the spot market equilibrium in the WEM
are information flows to the SRP. These are the set of generators that
are built in the spot market 𝑀 , and optimal demand shortage 𝑝𝑠ℎ∗𝑑,𝑡,𝜔
outcomes from the spot market given generators 𝑀 . These informa-
tion flows inform the execution of reliability insurance contracts and
generator tolling contracts.

Algorithm 1: Diagonalization to find spot market equilibrium in
WEM layer

input : Initial instance of problems (𝐺𝑀𝑃𝑔)
output: Equilibrium solution

1 initialization: set 𝜖 iteration counts 𝑛;
2 while max𝑔∈ |𝑃𝐺

𝑔,(𝑛) − 𝑃𝐺
𝑔,(𝑛−1)| > 𝜖 do

3 for 𝑔 ∈  do
4 solve (𝐺𝑀𝑃𝑔) ;
5 𝑃𝐺

𝑔 ← 𝑃𝐺
𝑔,(𝑛);

6 end
7 end
8 𝑝𝑠ℎ∗𝑑,𝑡,𝜔 ← 𝑝𝑠ℎ𝑑,𝑡,𝜔 ∈ argmin𝑉𝜔 𝐸𝐷𝜔∀𝑑 ∈ , 𝑡 ∈  , 𝜔 ∈ 𝛺;
9 𝑁 = ∖𝑀 ;
10 return
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4.3. Decision-making framework in SRP layer

4.3.1. Decision-making framework for the insurer of last resort
The formulation of the decision-making framework for an IOLR

is set out below. At a high-level, the IOLR takes certain information
flows from the WEM and makes decisions regarding the execution of
reliability insurance contracts with consumers, and the execution of
tolling contracts with generators, subject to prudential requirements to
maintain solvency (as described in Section 3). This takes the form of an
optimization problem (𝐼𝑁𝑆) outlined in Eqs. (19)–(26), and described
in detail thereafter.

The information flows from the WEM layer to the SRP layer relate
to generation built via the spot market 𝑀 and demand shortage 𝑝𝑠ℎ∗𝑑,𝑡,𝜔
from the spot market. The set of candidate generators available to the
IOLR 𝑁 (strategic generators) is the set of all candidate generation
 excluding the set of generators built via the spot market 𝑀 . Thus
𝑁 = ∖𝑀 .

max
𝑉 𝑖

𝑈 𝑖 = (1 − 𝛽𝑖)
∑

𝜔∈𝛺
𝜋𝜔𝛹

𝑖
𝜔 + 𝛽𝑖𝑐

𝑖 − 𝛾𝜙𝑖 (19)

where 𝑉 𝑖 = {𝜚𝑖𝜔, 𝑧
𝑖, 𝑃𝐺

𝑔 , 𝑝𝐺𝑔,𝑡,𝜔, 𝑝
𝑐
𝑑,𝑡,𝜔, 𝑄

𝑖
𝑑 , 𝜙

𝑖}, and subject to:

𝑖
𝜔 =

∑

𝑑∈
𝐶𝑃
𝑑 𝑄

𝑖
𝑑 −

∑

𝑡∈

∑

𝑑∈
𝐶𝑣𝑜𝑙𝑙
𝑑 𝑝𝑐𝑑,𝑡,𝜔𝑄

𝑖
𝑑 −

∑

𝑔∈𝑁

∑

𝑡∈
𝐶𝑣𝑐
𝑔 𝑝𝐺𝑔,𝑡,𝜔

−
∑

𝑔∈𝑁
𝐶𝐼
𝑔 𝑃𝐺

𝑔 , ∀𝜔 ∈ 𝛺 (20)

∑

∈
𝑝𝑐𝑑,𝑡,𝜔 =

∑

𝑑∈
𝑝𝑠ℎ∗𝑑,𝑡,𝜔 −

∑

𝑔∈𝑁
𝑝𝐺𝑔,𝑡,𝜔∀𝑡 ∈  , 𝜔 ∈𝛺 (21)

0 ≤ 𝑝𝐺𝑔,𝑡,𝜔 ≤ 𝑃𝐺
𝑔 𝐴𝐺

𝑔,𝑡,𝜔∀𝑔 ∈ 𝑁 , 𝑡 ∈  , 𝜔 ∈𝛺 (22)

𝑐𝑖 = 𝑧𝑖 − 1
𝛼𝑖

∑

𝜔∈𝛺
𝜋𝜔𝜚

𝑖
𝜔 (23)

𝑧𝑖 − 𝛹 𝑖
𝜔 ≤ 𝜚𝑖𝜔, ∀𝜔 ∈𝛺 (24)

𝑐𝑖 ≥ −𝜙𝑖 (25)

𝑃𝐺
𝑔 ≥ 0, 0 ≤ 𝑄𝐼

𝑑 ≤ 1, 𝜚𝑖𝜔 ≥ 0, 𝜙𝑖 ≥ 0, 𝑝𝑐𝑑,𝑡,𝜔 ≥ 0 (26)

The objective function (19) is given as a maximization of the mean-
CVAR risk measure of the IOLR’s profits (𝛹 𝑖

𝜔) minus the annualized cost
of capital reserved, where 𝛾 is an annual discount factor (The setting
aside of equity capital under a solvency constraint has an opportunity
cost and must be incorporated within the insurer’s surplus [29]).

Eq. (20) defines the IOLR’s profits. The first term represents pre-
mium revenues as the product of parameter 𝐶𝑃

𝑑 which is the insurance
premium levied upon each consumer 𝑑 and 𝑄𝐼

𝑑 , a decision variable that
reflects the fractional quantity of reliability insurance sold to consumer
𝑑 ∈ . The second term represents insurance compensation payouts
as the product of the VOLL compensation parameter specified in the
reliability insurance contract 𝐶𝑣𝑜𝑙𝑙

𝑑 (in $ per MWh), 𝑝𝑐𝑑,𝑡,𝜔 the emergency
emand curtailment associated with demand 𝑑, and 𝑄𝐷

𝑑 . The third term
epresents the tolling payments made to strategic generators (𝑔 ∈ 𝑁 ),
hich comprises investment costs as the product of parameter 𝐶𝐼

𝑔 ,
he annualized investment cost per MW and 𝑃𝐺

𝑔 , the decision variable
epresenting the built capacity of strategic generator 𝑔, and variable
osts as the product of unit variable cost 𝐶𝑣𝑐

𝑔 and the out-of-market
ispatch of the strategic generator 𝑝𝐺𝑔,𝑡,𝜔.

The demand shortage 𝑝𝑠ℎ∗𝑑,𝑡,𝜔 represents the maximum possible de-
and curtailment for demand 𝑑 at time 𝑡 in scenario 𝜔. As per (21)
emand curtailment can be reduced through prioritization (i.e. priori-
izing lower value load first) and through dispatch of strategic gener-
tion. Constraint (22) enforces capacity limits for strategic generators
nd the trivial constraints in (26) ensure that relevant decision vari-
bles are non-negative, and that the fractional quantities of insurance
ontracts are between 0 and 1.

The resultant optimization problem is a non-convex bilinear pro-
𝑐 𝐷
6

ram due to the presence of bilinear terms in the formulation 𝑝𝑑,𝑡,𝜔𝑄𝑑 . v
binary expansion could be used to convert the continuous 𝑄𝐼
𝑑 into a

et of binary variables and the exact McCormick relaxation [51] can be
sed to convert the problem into a MILP with special-ordered-set (SOS)
onstraints. However, in this case the small number of bilinear terms
nables the problem to be solved to global optimality by the Gurobi
ommercial solver (which is now able to solve non-convex bilinear
rograms to global optimality) [42,52] within acceptable timeframes.

.3.2. Decision-making framework for the retail consumer
The decision problem of retail consumer 𝑑 ∈ 𝑅 takes the form

of an optimization problem (𝐶𝑂𝑁𝑑) based on a mean-CVAR utility
aximization of the consumer surplus as follows:

max
𝑉 𝑐
𝑑

𝑈 𝑐
𝑑 = (1 − 𝛽𝑑 )

∑

𝜔∈𝛺
𝜋𝜔𝛹

𝑐
𝑑,𝜔 + 𝛽𝑑𝑐

𝑐
𝑑 (27)

where 𝑉 𝑐 = {𝜚𝑐𝑑,𝜔, 𝑧
𝑐 , 𝑄𝑑

𝑑}, and subject to:

𝛹 𝑐
𝑑,𝜔 = (𝐶𝑣𝑜𝑙𝑙

𝑑 −𝜆∗𝑡,𝜔)(𝑃
𝐷
𝑑,𝑡,𝜔−𝑝

𝑠ℎ∗
𝑑,𝑡,𝜔)−𝐶

𝑃
𝑑 𝑄

𝐷
𝑑 +

∑

𝑡∈
𝐶𝑣𝑜𝑙𝑙
𝑑 𝑝𝑠ℎ∗𝑑,𝑡,𝜔𝑄

𝐷
𝑑 , ∀𝜔 ∈ 𝛺 (28)

0 ≤ 𝑄𝐷
𝑑 ≤ 1 (29)

𝑐𝑑𝑐 = 𝑧𝑑𝑐 − 1
𝛼𝑑𝑐

∑

𝜔∈𝛺
𝜋𝜔𝜚

𝑐
𝑑,𝜔 (30)

𝑧𝑐𝑑 − 𝛹 𝑐
𝑑,𝜔 ≤ 𝜚𝑐𝑑,𝜔, ∀𝜔 ∈𝛺 (31)

𝜚𝑐𝑑,𝜔 ≥ 0, ∀𝜔 ∈𝛺 (32)

The objective function follows the formulation in [53] but includes
the ability for the consumer to hedge interruptions via the purchase
of an insurance contract. Eq. (28) defines the consumer surplus as
the benefits from electricity consumption minus the retail costs of
electricity plus any insurance compensation payable minus insurance
premium payments. For each consumer, the key decision variable
relates to the fractional quantity of insurance purchased as a proportion
of demand 𝑄𝐷

𝑑 given the insurance premium charged 𝐶𝑃
𝑑 (which is

rovided as a parameter to the decision problem). It is assumed that
holesale costs of electricity are passed on from the retailer to the

onsumer. Constraint (29) limits insurance contract purchases 𝑄𝐷
𝑑 to a

ractional quantity between 0 and 1 (as a proportion of demand), while
onstraints (30)–(32) define the CVAR. The consumer problem takes
he form of constrained linear program that can be solved to global
ptimality.

.3.3. SRP: Insurance equilibrium
This section provides an algorithm to search for an equilibrium in

he SRP layer (see Fig. 3). The IOLR and consumers are both assumed
o be rational utility-maximizing agents. The key external parameter
hat effects both types of the participants is 𝐶𝑃

𝑑 , the insurance premium
evied upon consumers .

We use a tatonnement (trial and error) process, set out in Algorithm
to compute an equilibrium where different values of the insurance

remium are trialled based on the insurance quantities sold and pur-
hased by the IOLR and consumers respectively. The algorithm draws
ost heavily upon the work of Mays [5] and Hoschle [53] where a price

s updated based on the differential between buy and sell quantities of
he relevant contract. This approach is a variant of the Gauss–Seidel di-
gonalization method [53] and is used for contract balancing and price
etting [5,32]. Uniqueness and existence under such conditions remain
n open issue, beyond simple cases. The initialization of the algorithm
egins with an initial instance of problems 𝐼𝑁𝑆 and 𝐶𝑂𝑁𝑑∀𝑑 ∈ ,
nd initial values for insurance premia for each insurance contract
etween the IOLR and consumer 𝑑 ∈ . For iteration 𝑘 the problems
𝑁𝑆 and 𝐶𝑂𝑁𝑑∀𝑑 ∈  are run and the insurance premia for each
nsurance contract is updated based on the differential between the
uantities purchased and the quantities sold (i.e. if purchase volumes
re greater than sell volumes the price is incremented upward, and vice

ersa). The algorithm is terminated when the difference between the
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Fig. 3. Schematic illustrating the tatonnement algorithm used to find an equilibrium in the SRP layer.
quantities purchased and sold for each insurance contract is negligible.
For the full market design, Algorithms 1 and 2 are run sequentially,
with the decision outcomes in Algorithm 1 informing the solution of
Algorithm 2. As with the diagonalization method, this algorithm does
not provide guarantees relating to finding a solution or of solution
uniqueness though equilibria were found in all of the test cases run,
against multiple starting points.

Algorithm 2: Tatonnement to find an insurance equilibrium in
SRP layer

input : Initial instance of problems (𝐼𝑁𝑆,𝐶𝑂𝑁𝑑∀𝑑 ∈ )
output: Equilibrium solution

1 initialization:
2 set 𝜖,𝛿, iteration counts 𝑘;
3 set initial value of 𝐶𝑃

𝑑 ∀𝑑 ∈ ;
4 while max𝑑∈ |𝑄𝐷

𝑑,(𝑘) −𝑄𝐼
𝑑,(𝑘)| > 𝜖 do

5 solve (𝐼𝑁𝑆) ;
6 for 𝑑 ∈  do
7 solve (𝐶𝑂𝑁𝑑)
8 end
9 𝐶𝑃

𝑑,(𝑘+1) = 𝐶𝑃
𝑑,(𝑘) + 𝛿(𝑄𝐷

𝑑,(𝑘) −𝑄𝐼
𝑑,(𝑘));

10 𝑘 ← 𝑘 + 1;
11 end
12 return

4.4. Risk neutral social optima

For comparison we also constructed a risk-neutral socially optimal
generation expansion model. In this setting, the problem is represented
as single large-scale optimization problem that seeks to minimize the
sum of investment costs and scenario-weighted expected total variable
generation and demand shortage costs. The mathematical formulation
for the optimization problem is written as:

min
{𝑝𝐺𝑔,𝑡,𝜔 ,𝑝

𝑠ℎ
𝑑,𝑡,𝜔 ,𝑃

𝐺
𝑔 }

𝐶𝐼
𝑔 𝑃𝐺

𝑔 +
∑

𝜔∈𝛺
𝜋𝜔𝛹

𝑆
𝜔 (33)

subject to:

𝛹𝑆
𝜔 =

∑∑

𝐶𝑣𝑐
𝑔 𝑝𝐺𝑔,𝑡,𝜔 +

∑ ∑

𝐶𝑣𝑜𝑙𝑙
𝑑 𝑝𝑠ℎ𝑑,𝑡,𝜔,∀𝜔 ∈ 𝛺 (34)
7

𝑡∈ 𝑔∈ 𝑡∈ 𝑑∈
∑

𝑑∈
(𝑃𝐷

𝑑,𝑡,𝜔 − 𝑝𝑠ℎ𝑑,𝑡,𝜔) =
∑

𝑔∈
𝑝𝐺𝑔,𝑡,𝜔, ∀𝑡 ∈  , (35)

0 ≤ 𝑝𝐺𝑔,𝑡,𝜔 ≤ 𝑃𝐺
𝑔 𝐴𝐺

𝑔,𝑡,𝜔, ∀𝑔 ∈ , 𝑡 ∈  (36)

0 ≤ 𝑝𝑠ℎ𝑑,𝑡,𝜔 ≤ 𝑃𝐷
𝑑,𝑡,𝜔, ∀𝑑 ∈ , 𝑡 ∈  (37)

5. Numerical study

We evaluate the insurance mechanism design on a numerical study
based on the South Australian system. The parameters are chosen
to best illustrate the operation of the market design, rather than to
recreate or predict market outcomes. For this case study, we compare
the outcomes from an energy-plus-insurance market (EIM) design with
an energy-only market (EOM) design and a risk-neutral socially optimal
generation expansion (RN).

Given the focus on dispatchable generation resources to balance
VRE, the capacity of VRE generation is determined exogenously, align-
ing with explicit renewable generation policy targets in a range of
power systems including the NEM. VRE generation capacity is sized
to a target percentage of annual VRE generation as a percentage of
demand. VRE availability projections are sourced from [54], which
provides variable generation availability on an asset and regional level
for 20 annual scenarios, and with 8760 time intervals in each scenario
(i.e. every half hour). Availability projections from the South East SA
Wind Renewable Energy Zone are adopted, which with a VRE target
a 40% of annual South Australian demand, results in 2100 MW of
required wind capacity in the system.

Each generator can choose to build capacity of a particular gener-
ation technology based on risk preferences. For the base case, three
natural gas-fired dispatchable generation technologies are considered,
combined cycle gas turbine (CCGT) and open cycle gas turbine (OCGT)
and reciprocating engine (RE), with 6 agents for each generation tech-
nology. We adopt heat rates and investment costs based on 2 × 2 × 1
GE7HA.02 configuration for CCGT, 1 × GE7FA configuration for OCGT
and 12 × 18 Wärtsilä 50DF dual-fuel configuration for RE. Heat rates
and annualized investment costs for CCGT and OCGT technologies are
sourced from [55] and converted into Australian $ based on a US $ to
Australian $ exchange rate of 1.35, while RE estimates are based on
publicly available information for the recent constructed Barker Inlet
Power Station [56] (as a relevant comparator was unavailable in [55]).
A gas price of $6 per Gigajoule is assumed. Each participant is assumed
to have an equal preference between the maximization of the scenario
weighted average profits and the CVAR risk measure (i.e. 𝛽 = 0.5) with
𝑔
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Fig. 4. Boxplot distribution of South Australia total system demand across 20 annual scenarios. The maximum demand across all of the scenarios is 3464 MW, and the minimum
demand is 593 MW.
Table 1
Generation assumptions for case study.

CCGT RE OCGT

Net heat rate (GJ/MWh) 6.7 7.9 10.4
Variable operating cost ($/MWh) 2.6 2.5 6.1
Total variable cost, 𝐶𝑣

𝑔 ($/MWh) 42.9 49.9 68.8
Investment cost annualized, 𝐶𝐼

𝑔 ($/MW/yr) 114 315 119 235 80 276
Number of generators 6 6 6
CVAR confidence level, 𝛼𝐺

𝑔 0.9 0.9 0.9
Risk tolerance, 𝛽𝑔 0.5 0.5 0.5

a confidence level of 90% for CVAR (i.e. 𝛼𝐺𝑔 = 0.90). Assumptions are
summarized in Table 1.

Total South Australia system load projections are based on [54],
which provides projections for every half-hour of a year, across 20
annual scenarios. Twenty-four representative days for demand and VRE
generation are selected from each of the scenarios using a Ward hier-
archical clustering algorithm [57]. Fig. 4 shows boxplot distribution of
total demand across the scenarios.

Demand parameters are set out in Table 2. Based on benchmark
state-of-the-art spot market design, multiple classes of demand have
been incorporated. We distinguish between retail consumers (whose
demand is fixed and inelastic) and market consumer that bid their
VOLL in the electricity spot market (and are actively curtailed based
on optimal dispatch outcomes). It is assumed that there is 102 MW
of market consumer capacity that is able to bid in spot markets at
bids ranging from bid prices ranging from $300/MWh to $14 000/MWh
(based on demand side participation projections in [54]). The source of
this demand bidding is expected to be primarily commercial demand re-
sponse and aggregated flexible heating, ventilation and air-conditioning
(HVAC) load. We also assumed that there are four classes of retail
consumers, each with a 25% share of total system load, with VOLL
ranging from $15 000/MWh to $30,300/MWh [16]. The insurance
compensation value for each demand type is set to the respective VOLL.
In the base case retail consumers are assumed to be risk averse with
𝛽𝑑 = 1 and tail probability 𝛼𝑑 = 0.99.

The spot electricity market is cleared on the basis of optimal merit-
order dispatch and settled on the marginal price with participants
bidding on the basis of short-run marginal cost with an administrative
market price cap of $15 000 per MWh.
8

Table 2
Demand assumptions for case study including demand bidding.

Demand type Demand Bid Quantity Insurance VOLL
bidding 𝐶𝑠ℎ

𝑑 𝑃𝐷
𝑑,𝑡,𝜔 𝐶𝑣𝑜𝑙𝑙

𝑑
($/MWh) (MW) ($/MWh)

D1 ‘retail consumer’ x – – � 15 000
D2 ‘retail consumer’ x – – � 20 200
D3 ‘retail consumer’ x – – � 25 300
D4 ‘retail consumer’ x – – � 30 300
D5 ‘market consumer’ � 400 4 x 400
D6 ‘market consumer’ � 750 13 x 750
D7 ‘market consumer’ � 4250 15 x 4250
D8 ‘market consumer’ � 7500 35 x 7500
D9 ‘market consumer’ � 14 000 35 x 14 000

The IOLR is assumed to have a tail probability 𝛼𝑖 for the CVAR risk
measure set at 0.995 (consistent with international insurer solvency
standards [31]). In the base case we assume that the IOLR utility
preferences are skewed towards expected returns i.e. 𝛽𝑖 = 0, which
provides a conservative estimate of the potential benefits of the EIM
design in incentivizing additional generation investment. Premiums are
initialized at a 1.0 multiple of expected losses. The code was written in
Julia and solution obtained using Gurobi 9.5 on an Intel Core i7 (9th-
Gen) 2.60 GHz CPU 16 GB RAM. We set an optimality gap of 0.1% for
solving each optimization.

Fig. 5 provides an example of the scheme in operation for a repre-
sentative day. For both cases, market consumers D5–D9 are curtailed
in priority of their demand bids both an EOM and EIM design. How-
ever, for retail consumers D1–D4 (where VOLL is greater than MPC),
there are distinct differences in outcomes. Under an EOM (the first
panel), retail load is curtailed on a rotating basis (where each load re-
ceives a proportionate share of curtailment). This is reflective of rolling
blackouts typically imposed by the system operator during extreme
scarcity. Under an EIM (second panel) with an operational priority
curtailment scheme, demand is curtailed in order of priority based
on the insurance compensation value specified in insurance contracts.
Two effects are prominent in this example — first the quantum of
curtailment experienced is lowered due to the incremental generation
procured by IOLR in the EIM scheme (398 MW lower at the peak), and
second the prioritization scheme allows loads with lower VOLL to be
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Fig. 5. Lost load outcomes under (a) EOM with market price cap and (b) an EIM with insurance and priority load curtailment (where load is curtailed in order of lowest VOLL).
The example provided is of lost load outcomes for scenario 18, representative day 12. Load curtailment is reduced in quantum and duration, due to incremental strategic generation
capacity being dispatched, and priority curtailment of load in order of value.
Table 3
Risk-neutral social optimum (RN), energy-only market (EOM) and energy-plus-insurance
market (EIM) outcomes under 40% renewable target.

Market design RN EOM EIM

Total capacity (MW) 3361 2730 3128
Market generation 3361 2730 2730
Strategic generation – – 398

USE - mean (%) 0.001 0.035 0.015
USE - worst (%) 0.020 0.311 0.116

curtailed in greater proportion, preserving higher value uses across the
representative day (for example, the EIM reduces the curtailment of the
highest value D4 load by 557 MWh over the day).

In Table 3 we present a comparison of outcomes between the EIM,
the EOM and the RN models under base case assumptions. In each
case, the same equilibrium was found for the case under consideration
when tested against a range of starting conditions. Under the EOM the
total capacity of generation built is 2730 MW — and under the EIM
the IOLR supports an additional 398 MW of peaking generation under
the strategic reserve. This is relative to 3361 MW built under the risk
neutral social optimum. Reliability outcomes are improved under the
base case, with an average system unserved energy (USE) of 0.015%,
relative to 0.035% under an EOM, though short of the risk-neutral
social optima of 0.001%. Worst case scenario USE outcomes for the
EIM also lower relative to the EOM. The key reason for why plant stock
is highest in the RN scenario is that it represents a socially optimal
outcome, implicit in which is the assumption of complete trading [32].
This enables the optimal selection of plant stock that maximizes social
9

welfare, without needing to consider the specific instruments available
for risk trading. In incomplete markets, such as the EOM and EIM, risk
aversion limits the incentives for future plant build. By providing an
additional risk hedging mechanism between the insurer and generators,
the EIM provides generators with the missing money to incentivize
more plant stock than what is enabled in the EOM alone.

The financial outcomes of the IOLR are presented in Table 4. The
insurer is able to generate a positive expected profit (weighted across
scenarios) of $32.3 million. The CVAR (under a tail probability 0.5%)
is $−61.6 million, which is in line with an insurance business model
that is exposed to rare but extreme outcomes. However, the solvency
constraints ensure that the IOLR holds sufficient cash reserves to offset
financial losses in the worst case. Moreover, the IOLR invests in mate-
rial additional generation capacity (in 398 MW of OCGT) though the
utilization of the resource is very limited with an average annualized
capacity factor (ACF) of 0.1%. This suggests that the capacity is mainly
a reserve and only used in worst-case or emergency scenarios.

Of interest is also the more granular outcomes with respect to
USE for individual consumers. Market consumers experience the same
outage experience under all designs, as they are able to bid into spot
markets. The experience of retail consumers (D1–D4) are different
across designs, and we concentrate on those in Fig. 6. In the EOM the
USE experience of all retail consumers is the same with average and
worst-case USE across scenarios (at 0.023% and 0.255% respectively).
The prioritization in the EIM allows for the periods of unserved energy
to be allocated to lower value consumers, illustrative of differential
reliability experiences between consumers. For example, average USE
for consumer D1 (with the lowest VOLL of all retail consumers) is

0.008% while D4 (with the highest VOLL) experiences no outage. The
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Fig. 6. Unserved energy (USE) outcomes segregated by demand type compared across an energy-only-market (EOM), energy-plus-insurance market (EIM) and risk-neutral (RN)
optimum — illustrating USE under an EOM remain higher than RN outcomes but lower than an EOM.
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Table 4
Insurer-of-last-resort financial outcomes.

Financial outcome Result $ million

Premium income 69.6
Generator variable costs (range) 0.0 to 0.0 1.6
Generator capital costs 31.9
Insurance compensation (range) 0.0 to 97.6

Strategic generation
OCGT capacity 398 MW
RE capacity 0 MW
CCGT capacity 0 MW
Generation ACF 0.1%

Expected profit 32.3
CVAR of profit −61.6
Technical reserves 61.6
Technical reserves - annualized cost 4.5

IOLR Utility 27.7

insurance premium paid also scales based on the value of load, at $11
million for D1 versus $23 million for D4 (or $33 to $67 per annum
when scaled down based on peak demand to a consumer with a peak
load of 10 kW).

In Fig. 7 we run a sensitivity against the risk preferences of market
generation where 𝛽𝑔 is varied from a risk-neutral to a risk-averse
preference (0 to 1.0). The intent of running such a scenario is to
indicate how outcomes are affected by a changing environment for
risk. As generators become risk averse and less willing to take on the
downside risk from spot prices, less generation is built varying from
2819 MW (risk-neutral generators) to 2138 MW (risk-averse genera-
tors). As the IOLR faces exposures to higher levels of USE from lower
market generation capacity, it adjusts its strategic reserve procurement
quantities to partially offset the reduction in market generation, with
10

additional strategic reserves procured by the IOLR increasing as market b
risk-aversion increases. The IOLR procures 942 MW from strategic
reserves for the 𝛽𝑔 = 1.0 (risk-averse generation) scenario relative
o 364 MW in the 𝛽𝑔 = 0.0 (risk-neutral generation) case. While a
igher level of unserved energy is experienced with risk-averse market
enerators, the expected USE is less than half of that experienced in
n EOM alone. Intuitively insurance premia also rise under higher risk
version, reflecting the increased outage risk from insufficient market
ased generation. Interestingly insurance premiums, in equilibrium, are
ower on a relative basis for risk averse when compared as against the
xpected value of losses ranging from 0.1–0.2 times expected losses for
he risk-averse case relative to 0.7–1.0 times for the risk-neutral case.
his suggests that while the absolute cost of insurance rises, the IOLR is

ncentivized to keep costs lower on a relative basis to avoid customers
hurning away from insurance.

The application of the results of this case study suggests that there
re benefits associated with market designs that encourage differential
eliability standards. With granular control infrastructure consumers
ould value essential load in the home differently to non-essential
oad. This could guide more granular curtailment during emergencies
llowing for preservation of essential services, mitigating against ’all-
r-nothing’ outcomes experienced during recent extreme events where
onsumers either experience complete outage or retail full electric
ervice. As against this there are five points of further consideration
nd analysis leading to avenues for research inquiry of differential
eliability. First, the reliability outcomes exhibit significant variation
cross different types of demand and are sensitive to the VOLL of
ach demand. As such, the approach to the specification of VOLL for
ifferent uses requires further analysis to ensure that customers are ap-
ropriately valuing the service during scarcity. Secondly, the variation
n levied premiums suggests that further consideration must be given
o how vulnerable consumers are to be treated, and whether similar
ubsidy or safety net schemes currently in place for energy prices can

e applied to the energy-plus-insurance model. Third, the sensitivity
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Fig. 7. Sensitivity of EOM and EIM market designs to different levels of risk aversion, where 𝛽𝑔 is varied from 0.0 to 1.0. Panel (a) illustrates the impact of generator risk aversion
upon average USE. Panel (b) illustrates the quantities of market and strategic generation capacity. Panel (c) illustrates the impact of generator risk aversion on IOLR expected
profits, CVAR and the level of technical reserves required. Panel (d) illustrates the impact upon consumer insurance premiums. As risk aversion increases the level of market
generation supported via spot prices reduces, with higher offsetting levels of strategic reserve procurement. While USE is higher in a risk-averse case relative to risk-neutral for
both EOM and EIM designs, on a relative basis average USE is less than half the EOM level.
e

v

of results to risk aversion means that the organizational, ownership
and capital structure of the insurers requires close attention in order
to guide appropriate risk-based decision making. The potential for
a decentralized investment decision-making model integrated within
existing retailer reliability obligations, such as in [22], is a worthwhile
extension. Fourth, while the uncertainty scenarios modeled here cover a
range of weather year outcomes they do not specifically model extreme
weather events, such as winter storms. As such the role of insurance
frameworks in the context of extreme events requires further more
granular investigation. Finally the frameworks for setting regulatory
reserves and solvency constraints are an important area of focus given
the importance of technical reserve levels to the design.

6. Conclusions and future work

In this paper, we have proposed a new reliability insurance over-
lay on existing energy-only markets that enables efficient generation
expansion and reliability differentiation between different types of
demand. Relative to an energy-only market design, the energy plus
insurance design has the potential to incentivize additional generation
capacity as the insurer is directly exposed to lost load events. Combined
with priority curtailment, the scheme enables reliability differentiation
when prices have reached the market price cap directly addressing the
missing money problem associated with such administrative mechanisms.
By aligning financial exposures to electricity interruption between cus-
tomers and the IOLR the design also enables economic incentives for
additional generation investments in strategic reserves. Key areas of
further investigation include consideration of consumer vulnerability
and technical approaches to setting VOLL and reserve levels.

Nomenclature

This section sets out relevant nomenclature for the mathematical
formulation:
11
Sets
𝑔 ∈  Set of generators
𝑔 ∈ 𝑀 Set of market generators
𝑔 ∈ 𝑁 Set of strategic generators
𝑑 ∈  Set of consumers
𝑑 ∈ 𝑀 Set of market consumers
𝑑 ∈ 𝑁 Set of retail consumers
𝜔 ∈ 𝛺 Set of scenarios
𝑡 ∈  Set of dispatch intervals

Parameters
𝛼𝑔∕𝑑∕𝑖 Tail probability for CVAR for generator 𝑔, consumer 𝑑, and

IOLR 𝑖
𝛽𝑔∕𝑑∕𝑖 Weight given to the CVAR for generator 𝑔, consumer 𝑑, and

IOLR 𝑖
𝜋𝜔 Scenario probability
𝐶𝑣
𝑔 Short-run variable cost of generator

𝐶𝐼
𝑔 Annualized investment cost of generator

𝐶𝑠ℎ
𝑑 Demand shortage cost

𝑃𝐷
𝑑,𝑡,𝜔 Consumer demand

𝐴𝐺
𝑔,𝑡,𝜔 Availability of generator

𝑝𝑠ℎ∗𝑑,𝑡,𝜔 Demand shortage of consumer, as output from WEM market
quilibrium

𝛾 Annualized discount factor
𝐶𝑃
𝑑 Reliability insurance premium for consumer 𝑑

𝐶𝑣𝑜𝑙𝑙
𝑑 Value of lost-load for consumer 𝑑

𝛿 Parameter that penalizes imbalance in the insurance contract
olumes sold and purchased

Decision variables
𝑝𝐺𝑔,𝑡,𝜔 Dispatch of generator
𝑝𝑠ℎ𝑑,𝑡,𝜔 Demand shortage of consumer

𝜆𝑡,𝜔 Spot market marginal price
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o
b

𝜆

𝑃𝐺
𝑔 Generation capacity

𝑧𝐺𝑔 CVAR auxiliary decision variable representing value-at-risk for
generator

𝑧𝑖 CVAR auxiliary decision variable representing value-at-risk for
IOLR

𝑧𝑐𝑑 CVAR auxiliary decision variable representing value-at-risk for
consumer

𝜚𝐺𝑔,𝜔 CVAR auxiliary decision variable as positive difference between
𝑧𝐺𝑔 and scenario profits for generator

𝜚𝑖𝜔 CVAR auxiliary decision variable as positive difference between
𝑧𝑖 and scenario profits for IOLR

𝜚𝑐𝑑,𝜔 CVAR auxiliary decision variable as positive difference between
𝑧𝑐𝑑 and scenario profits for consumer

𝜙𝑖 Insurance technical reserves
𝑄𝑖

𝑑 Decision variable representing proportional quantity of insur-
ance sold

𝑄𝑑
𝑑 Decision variable representing proportional quantity of insur-

ance purchased
𝑝𝑐𝑑,𝑡,𝜔 Demand curtailment associated with consumer 𝑑
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Appendix. Proof of Lemma 1

The non-linearity 𝜆𝑡,𝜔𝑝𝐺𝑔,𝑡,𝜔 can be reformulated as follows based
n [35,40,41]. The dual constraint is restated in (38) and multiplied
y 𝑝𝐺𝑔,𝑡,𝜔.

𝐶𝑣𝑐
𝑔 − 𝜆𝑡,𝜔 + 𝜇𝐺

𝑔,𝑡,𝜔 − 𝜇𝐺
𝑔,𝑡,𝜔 = 0

𝑡,𝜔𝑝
𝐺
𝑔,𝑡,𝜔 = 𝐶𝑣𝑐

𝑔 𝑝𝐺𝑔,𝑡,𝜔 + 𝜇𝐺
𝑔,𝑡,𝜔𝑝

𝐺
𝑔,𝑡,𝜔 − 𝜇𝐺

𝑔,𝑡,𝜔𝑝
𝐺
𝑔,𝑡,𝜔

(38)

The strong duality condition (18) ensures that the complemen-
tary slackness conditions hold. Therefore using the complementary
slackness conditions for (8) we obtain:

(𝑝𝐺𝑔,𝑡,𝜔 − 𝑃𝐺
𝑔𝐴

𝐺
𝑔,𝑡,𝜔)𝜇

𝐺
𝑔,𝑡,𝜔 = 0 (39)

𝑝𝐺𝑔,𝑡,𝜔𝜇
𝐺
𝑔,𝑡,𝜔 = 𝑃𝐺

𝑔𝐴
𝐺
𝑔,𝑡,𝜔𝜇

𝐺
𝑔,𝑡,𝜔 (40)

Using similar logic we obtain for the minimum generation condition
we obtain (40). By substituting (40) and (41) into (38) the relation for
Lemma 1 is obtained.

𝜇𝐺 𝑝𝐺 = 0 (41)
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𝑔,𝑡,𝜔 𝑔,𝑡,𝜔
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