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Abstract

Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells

tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial

respiration is functional. However, the lower energy efficiency of aerobic glycolysis with

respect to mitochondrial respiration makes this behaviour, namely the Warburg effect,

counter-intuitive, although it has now been recognized as source of anabolic precursors. On

the other hand, there is evidence that oxygenated tumour cells could be fuelled by exoge-

nous lactate produced from glycolysis. We employed a multi-scale approach that integrates

multi-agent modelling, diffusion-reaction, stoichiometric equations, and Boolean networks

to study metabolic cooperation between hypoxic and oxygenated cells exposed to varying

oxygen, nutrient, and inhibitor concentrations. The results show that the cooperation

reduces the depletion of environmental glucose, resulting in an overall advantage of using

aerobic glycolysis. In addition, the oxygen level was found to be decreased by symbiosis,

promoting a further shift towards anaerobic glycolysis. However, the oxygenated and hyp-

oxic populations may gradually reach quasi-equilibrium. A sensitivity analysis using Latin

hypercube sampling and partial rank correlation shows that the symbiotic dynamics

depends on properties of the specific cell such as the minimum glucose level needed for gly-

colysis. Our results suggest that strategies that block glucose transporters may be more

effective to reduce tumour growth than those blocking lactate intake transporters.

Author summary

Metabolic alteration is one of the hallmarks of cancer and the well-known metabolic alter-

ation of tumour cells is that cells prefer to do glycolysis over mitochondrial respiration

even under well-oxygenated and functional mitochondrial conditions. On the other hand,

there is evidence that oxygenated tumour cells could be fuelled by exogenous lactate
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produced from hypoxic glycolytic cells in which it can create a metabolic co-operation

between oxygenated and hypoxic cell populations. This metabolic co-operation could

allow tumour cells to economically share oxygen and glucose and promote tumour sur-

vival. Using a multi-scale approach combining multi-agent modelling, diffusion-reaction,

stoichiometric equations, and Boolean networks representing cell regulatory mechanisms,

we studied this metabolic co-operation between different populations of cells, exposed to

a changing microenvironment. We predict that the tumour environmental glucose deple-

tion is decreased while the oxygen depletion is increased by this metabolic symbiosis, pro-

moting a further shift towards glycolysis. Our results also show that blocking glucose

transporters could be more effective than blocking lactate intake transporters, because the

former would disrupt both glycolysis and lactate production, drastically reducing tumour

growth.

1. Introduction

Emergence of metabolic pathways played a vital role in cell evolution [1].Among metabolic

pathways, glucose metabolism is one of the basic survival metabolic pathways of human cells.

Glucose is imported from the extra-cellular environment through glucose transporters

(GLUT) of which GLUT1, GLUT2, GLUT3 and GLUT4 are best characterized. In the presence

of oxygen, healthy cells usually convert glucose into pyruvate and then pyruvate is converted

to acetyl-CoA. The acetyl-CoA is oxidized in the mitochondria in the tricarboxylic acid (TCA)

cycle [2]. This aerobic respiration or oxidative phosphorylation (OXPHOS) can produce about

28–36 ATP molecules per glucose molecule [3,4]. Under hypoxic/anoxic conditions (lack or

absence of oxygen), as it often occurs in cancer, cells are not able to produce mitochondrial

ATP and instead, they may use glycolytic ATP production. This only yields two ATP mole-

cules per every glucose and lactate molecules. However, this respiration pathway is also used in

presence of oxygen [3]. This use of glycolysis in aerobic conditions is known as the Warburg

effect and it is one of the hallmarks of cancer cells [5]. The pyruvate produced by glycolysis is

converted to lactate and then lactate and protons (H+ ion) are exported to the extra-cellular

environment through membrane proteins called monocarboxylate transporters (MCT) which

help to maintain the alkaline pH level inside tumour cells [6]. Glycolysis is an inefficient way

to produce ATP and therefore more glucose is needed to maintain a sufficient ATP production

rate for cell proliferation. When there is a low glucose concentration in the medium, cancer

cells use lactate instead of glucose as their energy source [6,7]. Lactate is imported through

MCT transporters (in addition to their function as lactate exporters) and the imported lactate

is then converted back to pyruvate that can be oxidized in the mitochondria producing far

more ATP molecules. This is the so-called “reverse Warburg effect”, one of the adaptive meta-

bolic mechanisms of tumour cells [8,9]. Vascular tumours tend to have oxygenated cells in the

tumour boundary, near vessels, and hypoxic cells in distant regions, thus this metabolic repro-

gramming could induce a metabolic symbiosis between lactate-fuelled oxygenated OXPHOS

cells and glucose-fuelled hypoxic glycolytic cells [6,10], which, in turn, could result in a benefi-

cial metabolic cooperation [7,10–14] (Fig 1). Therefore, inhibition of lactate consumption by

cancer cells could be an effective therapeutic strategy [10,15]. On the other hand, lactate accu-

mulation could cause higher intra-cellular acidity and lactate can also inhibit pyruvate dehy-

drogenase (PDH) and activate HIF.

The study of intra-cellular dynamics in the context of metabolic symbiosis of cancer pres-

ents a difficult challenge, as experimental approaches alone often fall short of capturing the
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dynamic and complex nature of these processes. To address these challenges, we employed

computational modelling to simulate metabolic symbiosis of cancer. However, to gain a deeper

understanding of the complex intra-cellular mechanisms underlying metabolic symbiosis in

tumours, we needed a modelling framework suitable to study the interactions between hetero-

geneous cell populations, including the effect of perturbing intra-cellular gene networks (i.e.,

cell regulatory networks) and the cellular microenvironment. Thus, we developed a cell regula-

tory Boolean network built on prior knowledge and integrated it with a multi-scale computa-

tional model. Use of a multi-scale model was necessary to capture the effects of gene

alterations on emerging properties of tumour and its microenvironment. Our model has three

different spatial scales to describe different biological processes and cell-cell and cell-microen-

vironment interactions. The three scales are the intra-cellular, cellular, and extra-cellular scales

and these scales are inter-connected each other. Both intra-cellular and cellular scales were

modelled as agent-based models while the extra-cellular scale was modelled as a continuum

model. More details about our model are given below. We investigated the possible beneficial

effects of this potential synergy on the growth of the whole tumour and what factors influence

the metabolic cooperation. Specifically, we asked:

i. How would the metabolic cooperation between hypoxic and oxygenated cancer cells affect

nutrient levels in the microenvironment?

ii. Does this metabolic cooperation lead to increased tumour growth, overall and for specific

cell populations?

Fig 1. Metabolic symbiosis in tumour. Schematic diagram and flow chart illustrating the metabolic symbiosis mechanism between oxygenated and hypoxic

tumour cells. Oxygenated cells at the tumour boundary (shown as green cells) consume exogenous lactate via MCT1 transporters and undergo lactate

metabolism through OXPHOS. Inner hypoxic cells (shown as brown cells) consume glucose through GLUT transporters and undergo glycolysis and release

lactate into the tumour microenvironment using MCT4 transporters. Metabolic symbiosis between the two cell populations (green cells and brown cells) helps

hypoxic cells increase their glucose uptake, thereby helping tumour cells survive under low glucose conditions (created with BioRender.com).

https://doi.org/10.1371/journal.pcbi.1011944.g001
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iii. How is this cooperation affected by changes in environmental conditions (levels of oxygen,

glucose, lactate etc.), cell spatial competition, heterogeneous somatic mutations, and con-

tinuous fluctuation versus steady state of nutrient levels in the microenvironment?

iv. What are the best strategies to disrupt this metabolic symbiosis?

2. Methods: Multi-scale approach with multi-agent modelling,

diffusion-reaction and stoichiometric equations, and Boolean

network integration

Agent-based modelling (ABM) is a useful methodology to study ecological problems such as

the one considered here and identify emerging behaviours of heterogeneous populations [16–

20]. Indeed, ABM models have been employed by us and others to study how tumours respond

to drugs [19,21–23], the impact of environmental conditions [22,24], cell metabolism

[3,4,25,26] and cell competition [27,28]. However, most of these models have assumed homo-

geneous environments and populations and have none or extremely simplified sub-cellular

molecular interactions. To investigate emerging behaviours from heterogeneous utilization of

cellular pathways, we adopted a recently proposed multi-scale agent-based framework that

enabled us to model cancer cells, the microenvironment surrounding them (including nutri-

ents and oxygen), and their respective gene regulatory networks [16]. The model was devel-

oped building on the widely adopted modelling platform NetLogo [29], with previous [16] and

new gene network and spatial functionalities developed by our laboratory as described below.

Fig 2A shows the basic components of our model, and Fig 2B demonstrates how different spa-

tial scales communicate with each other. More detailed descriptions of the model are given in

Fig 2. Agent-based mathematical model. (A). The model is a multi-scale agent-based model implemented using the NetLogo platform. The extra-cellular

scale models gradients of substances such as oxygen, glucose and lactate by using partial differential equations. The cellular scale models cell-cell interactions

using a cellular automaton approach. The smallest scale, the intra-cellular scale, handles subcellular molecular interactions using a Boolean gene regulatory

network. All scales communicate with each other and therefore the tumour growth is an emerging property of the sub-cellular molecular interactions. The

model can be used to study tumour growth under different environmental conditions, gene alterations and heterogeneous cell populations (created with

BioRender.com). (B). The model flow chart shows how the three different scales are connected. If the local oxygen and glucose levels are below their respective

threshold values, the cell becomes necrotic. If the cell is not in the necrotic state, the intra-cellular regulatory network determines the cell fate which is

Proliferation or Apoptosis or Growth Arrest. An apoptotic cell is removed from the simulation immediately. A proliferative cell can divide if there is empty

space nearby, otherwise it can switch to growth arrest state and waits a TQ time before checking environmental conditions again to find its new phenotype. The

cell phenotype can influence the gradients of the diffusible substances on the microenvironment through producing/consuming diffusible substances based on

its phenotype. The altered environmental properties are fed to the intra-cellular network of the cell again through input nodes and then the network can decide

its new phenotype according to altered microenvironmental conditions.

https://doi.org/10.1371/journal.pcbi.1011944.g002
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S1 Text. The intra-cellular scale represents the cell’s gene regulatory mechanisms, which is a

mitogen-activated protein kinase (MAPK) network [30], driving the growth of cancer cells (S2

Fig). Additionally, we modelled metabolic pathways including cellular respiration, glucose and

lactate metabolism, and resulting ATP production. Specifically, glucose is imported through

GLUT1 transporters (Note that not all GLUT isoforms are included here and GLUT1 is highly

expressed in breast cancer samples as shown in S4 Fig) and is converted to pyruvate at the end

of the glycolysis process (Figs 1 and S2). The pyruvate can go through OXPHOS, which pro-

duces mitochondrial ATP (mitoATP) or can be converted into lactate resulting in only glyco-

lytic ATP (glycoATP). Both mitoATP and glycoATP will determine the ATP production rate,

and if the ATP production rate is above a certain threshold, that is 80% of the maximum possi-

ble ATP production rate [4], the cell will be able to proliferate–subject to inhibition by other

parts of the regulatory network. When cells do not use mitochondrial respiration, the pyruvate

will be converted to lactate and then it will be exported to the environment through MCT4

membrane proteins. When there is enough lactic acid and oxygen in the medium, cells will

import lactic acid through MCT1 membrane proteins. The lactate will be converted back into

pyruvate and pyruvate will go through OXPHOS producing mitochondrial ATP [12,31,32]. To

cover cellular functions including proliferation, apoptosis, growth arrest, cellular response to

growth factors and the hypoxic microenvironment, we modelled the links between glucose/

lactate metabolism and a previously developed MAPK-HIF Boolean network [16,30]. Each

node of the Boolean network has its own specific Boolean logical condition and if the condi-

tion is true the node is considered as active (i.e., 1) and otherwise inactive (i.e., 0). To model

Boolean logical conditions for the metabolic network nodes and the nodes linking with the

existing MAPK-HIF network, supporting evidence was used from the literature (Table A in S1

Text). This network is encapsulated inside each tumour cell and the network can obtain sti-

muli such as growth factors and nutrients from the extra-cellular environment through input

nodes which represent membrane receptors and transport gates. Our choice of a Boolean net-

work to represent intra-cellular molecular interactions has been discussed previously [16].

Briefly, it was motivated by its ability to capture the essence of complex regulatory networks in

a simplified yet biologically meaningful and computationally efficient manner. Boolean net-

works allowed us to model cancer cell behaviours through binary on/off states of its genes,

effectively lumping complex intra-cellular molecular interactions into manageable, logical

conditions. In this study, we leveraged the inherent simplicity and flexibility of Boolean net-

works over other computational methods such as ordinary differential equations to gain

insights into the regulatory processes that drive metabolic symbiosis within tumour cells.

In the cellular scale, each cell is represented by entities in a lattice. Gradients of diffusible

substances in the microenvironment (glucose, oxygen, lactate etc.) are modelled in the extra-

cellular scale. The soluble substances: oxygen, glucose, lactate and growth factors (GFs), are

described by the diffusion-reaction equation as given below.

@CS

@t
¼ DSr

2CS þ RSrcell;S ð1Þ

where C, D and R are the substance concentration, its diffusion coefficient and its rate of con-

sumption or production, respectively. ρcell,s represents the density of cells which consume or

produce substance S. Typically, the time scale of substance diffusion (order of seconds) is

much smaller than that of cell phenotype changes (order of hours) and therefore the diffusion

is assumed to be in a steady state when the cell phenotype is updated. Cell necrosis occurs

when both oxygen and glucose levels are lower than their respective critical values, as previ-

ously used [20]. If proliferative cells do not have enough neighbouring space to divide, those

cells will switch to a quiescent state until they have some empty space to proliferate, thus
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modelling contact inhibition [33,34]. We used the model in two-dimensional space (2D) for

the present study.

The sink term of Eq (1) (R) is described in accordance with the stoichiometry of oxygen,

glucose, and lactate in their respective reaction equations [3,4,27]. Therefore, the oxygen con-

sumption rate Ro2 is modelled as Ro2 ¼ mo2

Co2

Ko2þCo2
mitoATPþ K � glycoATPð Þ;K ¼ 0:5, in

which μo2 is the maximum oxygen consumption rate and Ko2 is the half-saturation coefficient.

mitoATP and glycoATP are dynamic variables and their status are provided by the executable

cell regulatory network encapsulated inside each cell (S1 and S2 Figs), at each time step of the

simulation. Specifically, when the cell uses glycolytic ATP production, glycoATP is 1 and oth-

erwise it is 0. Similarly, if the cell uses mitochondrial ATP production, then mitoATP is 1 and

otherwise it is 0. The value of K�glycoATP reflects the amount of oxygen consumption by a cell

engaged in the glycolysis process. Here, we assume that even under glycolysis the tumour cells

can consume a certain amount of oxygen for some other cellular processes, such as for example

macromolecule synthesis [35].

The glucose consumption rate can be calculated using the stoichiometry of the glucose oxi-

dation equation given below.

C6H12O6 þ 6O2 ! 6CO2 þ 6H2Oþ A0 � ATP ð2Þ

where, A0 is the ATP yield at the relevant oxygen and glucose abundance conditions, which is

about 28 to 36 ATP molecules. The proportion of ATP production by glycolysis and OXPHOS

depends on the cell type [36] and therefore, we assume that glycolytic and OXPHOS cells have

similar ATP production rates for their proper functioning. The glucose consumption rate is

then modelled as

RG ¼
mo2

6

Co2

Ko2 þ Co2

CG

KG þ CG
mitoATPð Þ þ

mo2

6

A0

2

CG

KG þ CG
glycoATPð Þ: ð3Þ

Taking different ATP production efficiencies of OXPHOS and glycolysis, the ATP produc-

tion rate of a cell is then described as

RATP ¼ A0

mo2

6

Co2

Ko2 þ Co2

CG

KG þ CG
mitoATPð Þ þ A0

mo2

6

CG

KG þ CG
glycoATPð Þ: ð4Þ

The glucose conversion into pyruvate in the glycolysis process can be written as

C6H12O6 þ 2NADþ þ 2HPO2�

4
þ 2ADP! 2C3H3O3 þ 2NADH þ 2ATPþ 2H2Oþ 2Hþ ð5Þ

and then pyruvate conversion to lactate can be written as

C3H3O3 þ NADH þHþ ! C3H6O3 þ NADþ: ð6Þ

Eqs (5) and (6) show that one glucose molecule can produce two lactate molecules through

the Warburg effect, and therefore the lactate production rate can be modelled as

RL;p ¼
2mo2

6

A0

2

CG

KG þ CG
glycoATPð Þ: ð7Þ

Considering that stoichiometry between glucose and oxygen is 1:6 for mitochondrial respi-

ration (Eq 2), and glucose to pyruvate is 1:2 for glycolysis, it is assumed that lactate to oxygen

ratio for reverse Warburg effect is 1:3. Therefore, the lactate consumption rate for the reverse
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Warburg effect is estimated as

RL;c ¼
2mo2

6

Co2

Ko2 þ Co2

CL

KL þ CL
mitoATPð Þ: ð8Þ

The glycolysis pathway can produce two protons (H+) per glucose molecule and hence the

proton production rate is modelled as

RHþ ¼ bA0

mo2

6

CG

KG þ CG
glycoATPð Þ: ð9Þ

Here, β<1 is the proton buffering coefficient of the tumour microenvironment [4] and it is

chosen as 0.001 for this model because it results in a realistic pH level in the tumour microen-

vironment. The local extra-cellular pH due to exported H+ ion is calculated as pH = −log10([H
+]).

The consumption rate of growth factors and inhibitors are modelled as RS = γS,CCS and the

production rate of any growth factor is described as RS = γS,P.

The diffusible substance (oxygen, glucose, growth factors etc.) concentrations are kept con-

stant at the boundary of the computational domain. These boundary values and all other

model parameters are given in Table C in S1 Text. Not all the parameters are based on evi-

dence from previous studies, and therefore some parameter values are assumed based on other

relevant data. However, we ran ten replicates of each simulation to assess the effect of different

initial conditions, and a sensitivity analysis based on Latin hypercube sampling and partial

rank correlation [37,38] was performed to ensure the correctness and robustness of all our

conclusions.

The level of symbiosis is quantified by the metabolic symbiosis index (MSI) and its defini-

tion is motivated by [31] as below:

MSI ¼ ;LðAoxyÞ

;LðAoxyÞþ;GðAoxyÞ
�

;GðAoxyÞ

;LðAoxyÞþ;GðAoxyÞ
if ;L(Aoxy)>;G(Aoxy) and ;L(Ahypo)< ;G(Ahypo); and

MSI = 0 otherwise. Here, ;L(A) and ;G(A) are lactate metabolic and glycolytic cell fractions of

the tumour region A, respectively. Aoxy and Ahypo are oxygenated and hypoxic regions of the

tumour, respectively. The symbiosis index would vary from 0 to 1 depending on the strength

of the symbiosis.

3. Results & discussion

3.1 A gene network model of cellular metabolism and respiration

First, we used RNAseq data for multiple breast cancer cell lines grown under normoxic and

hypoxic conditions (see S4 Fig for results, S1 Text for experimental conditions) to evaluate the

coherence of our modelling assumptions. We observed that for cells under hypoxic conditions,

the expression levels of SLC2A1 (or GLUT1), SLC16A3 (or MCT4) and LDHA increased, in

agreement with our model of the Warburg effect and previous reports [39–41]. The increased

expression of these genes supports our modelling hypothesis that hypoxic tumour cells trans-

port more glucose, then to convert it into pyruvate, and finally the pyruvate would be metabo-

lized to lactate and exported to the tumour microenvironment through MCT4 transporters as

we have modelled in our Boolean network (S2 Fig).

We then used the model with parameters setting in Table C in S1 Text to investigate meta-

bolic symbiosis between oxygenated and hypoxic cell populations. Our simulations showed

metabolic symbiosis between hypoxic and oxygenated cells of the tumour when MCT1 was in

wild type status (MCT1wt), while this symbiosis was lost when MCT1 was knocked out in our

model. Of note, we model knockouts by setting a constrain on the status of the corresponding
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node in the Boolean network (MCT1) to inactive (i.e., 0 status), for the duration of the current

simulation. When a tumour grows with MCT1wt, we observe symbiosis, whereby the well-

oxygenated tumour cells on the boundary of the simulated organoid switch to OXPHOS while

hypoxic inner cells switch to glycolysis (Fig 3A). Importantly, glycolytic and OXPHOS cell

populations co-exist under symbiosis, while the tumour growth mainly depends on the aerobic

glycolytic population when symbiosis stops (Fig 3B and 3C). In the symbiotic tumour, the size

of both cell populations is initially comparable, and the OXPHOS cell population dominates

over the glycolytic cell population later when the glycolytic cells produce more lactate for

OXPHOS cells (Fig 3B). However, when MCT1 is inactive the symbiosis is lost and the

OXPHOS cell population is about only 4.5% of the glycolytic cell population at the end of the

simulation because OXPHOS is not driven by lactate (Fig 3C). When symbiosis exists in the

tumour, we observe that the cells at the boundary consume more oxygen for lactate metabo-

lism, and therefore oxygen is depleted inside the tumour pushing to a more hypoxic environ-

ment (Fig 3D). However, when symbiosis stops, the emergence of a hypoxic cell population is

delayed (Fig 3E). As the hypoxic population emerges when symbiosis exists in the tumour, the

symbiosis index rapidly increases from zero to 1 indicating that metabolic cooperation

Fig 3. Tumour growth and symbiosis. (A). If MCT1 is not mutated (MCT1wt), symbiosis is observed, while when MCT1 is mutated with loss of function

(MCT1-), symbiosis is not observed. Different cell populations are shown: OXPHOS (blue cells, glucose/lactate—> pyruvate—>OXPHOS), Glycolysis (green

cells, glucose—>pyruvate—>lactate), both OXPHOS and glycolysis (purple cells), not metabolically active or quiescence (gray cells). Gradients of glucose,

lactate, tumour growth factor alpha (TGFA) and pH are shown on the microenvironment. (B, C). Number of total, glycoATP and mitoATP cells are shown.

The total number of cells contains all the cells in the tumour including dead cells. The mitoATP and glycoATP are the number of cells that rely on OXPHOS

and glycolysis for ATP production, respectively. (D, E). Number of hypoxic and oxygenated tumour cells with MCT1 wild type and mutated condition are

shown. The hypoxic cell population is not seen when symbiosis is lost (MCT1-) because oxygen cannot be depleted fast enough without lactate oxidation. (F,

G). Metabolic symbiosis index and number of active (viable) cells are shown when tumour grows with MCT1wt and MCT1-, so with and without symbiosis.

The metabolic symbiosis index quantifies the strength of symbiosis between hypoxic and oxygenated tumour cells. The index can range from 0 to 1 depending

on the symbiosis strength. The active cells are the cells with their metabolic pathways are active (i.e., blue, green and purple cells shown in A). The shaded area

of curves shows respective standard deviation.

https://doi.org/10.1371/journal.pcbi.1011944.g003
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between oxygenated and hypoxic tumour cells establishes at that time (Fig 3F). These simula-

tion results clearly show that a tumour would gain a growth advantage due to metabolic symbi-

osis because symbiotic tumour cells can proliferate through either glycolysis (i.e., glucose to

lactate) or OXPHOS (i.e., glucose/lactate to OXPHOS), or both pathways (Fig 3G). In support

of the results from our simulations, in-vitro experiments have also shown that lactate metabo-

lism can increase growth of human cancer cells in glucose-limited mediums of breast [15], gli-

oma [31] and colon [10] cancer. In-vitro studies of breast cancer cells have also shown that the

presence of lactate would enable cells to withstand glucose-limited conditions [15].

3.2 Metabolic symbiosis between oxygenated and hypoxic tumour cells

depends on the status of genes that are commonly altered in cancer

We then asked if a similar scenario would be observed under a number of gene alterations that

are commonly observed in cancer. Therefore, we examined gene aberration and expression

patterns observed in the clinical setting for breast cancer samples taken from The Cancer

Genome Atlas (TCGA) (see S1 Text for details). We specifically asked how our network genes

are likely to either over or under-express in clinical samples. We took a conservative approach

and considered the gene as over-expressed when the standard deviation was above +3 with

respect to normal samples and under-expressed as when it was below -3. S5 Fig shows the

probability of aberrant gene expression (i.e., the percentage of samples that gene is over (S5A

Fig) or under expressed (S5B Fig)). Of note, typically a greater number of genes would be con-

sidered as differentially expressed with respect to normal samples, but for the current study,

we restricted the set of genes to the genes associated with our network. As can be seen in our

results, in our network more genes tend to be under-expressed than over-expressed. Using a

published protocol-sigQC [42] we also looked for a correlation among the absolute expression

of these genes taken from TCGA (S6A Fig) and Cancer Cell Line Encyclopedia (CCLE) (S6B

Fig) databases. Although some correlations could be observed, this was overall not strong with

correlation coefficients found between -0.5 and +0.5, and many around 0. Thus, for the pur-

pose of our simulations we assumed in first instance that the aberrant over- or under-expres-

sion of these genes occurred independently of each other (S6C Fig). While this might be

improved in future studies, it allowed us to simplify the problem in first instance, and simulate

each gene knockout or enrichment in our model as a single event rather than as linked coordi-

nated events. Furthermore, TCGA and CCLE datasets (S6C Fig) showed similar distributions

of sigQC metrics of variability and expression, suggesting that this gene set would be applicable

to both cell lines and clinical samples. More details about these metrics can be found in [42]

and are not repeated here.

Next, we perturbed the status of each of the network genes in our model and the model was

run with MCT1wt and MCT1- conditions to investigate symbiosis and possible interaction

between symbiosis and gene alterations commonly observed in cancer. To investigate the sym-

biotic relationships and potential interactions between gene alterations in cancer, we utilized

our Boolean network for efficient simulation in our model. Each gene in the network was sys-

tematically perturbed to observe dynamic responses under different genetic conditions. The

model was then run with MCT1wt and MCT1- conditions, allowing us to explore the interplay

between gene alterations and symbiotic processes. The discrete nature of Boolean networks

has provided us a straightforward approach to alter individual genes and study their interac-

tions with metabolic symbiosis. This investigation can not only reveal individual effects but

also discover potential synergies or antagonisms between altered genes and metabolic symbio-

sis. We asked whether each of these gene alterations would affect the metabolic symbiosis-

induced growth of the tumour (Fig 4A and 4B), symbiosis index (S7A and S7B Fig) and if
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there was a difference between the number of active (viable) cells in symbiotic and non-symbi-

otic tumours (Figs 4C, 4D, and S7C–S7E). As we can see in Figs 4A, 4B, S7A, and S7B, some

gene alterations give a growth advantage when there is symbiosis between hypoxic and nor-

moxic cells (MDM2+, ERK+, MSK+, p38-, p53-, p14- etc.; here + and—indicate enriched and

knockout status, respectively, in which the corresponding Boolean node is set to 1 and 0,

respectively), while some other gene alterations reduce tumour growth under symbiosis (p14

+, FOXO3+, GRB2+, RAS-, PLCG-, MYC- etc.). Symbiosis-induced growth advantage is seen

at the later stage of tumour growth because it takes some time for the emergence of hypoxic

cells in the tumour and then establish a cooperative interaction between two cell populations,

approximately after 17 days (S7A and S7B Fig).

Gene enrichments such as EGFR+, ERK+ and DUSP1+ and gene knockouts such as p53-,

p38-, PDH- significantly change the number of active cells obtained between symbiotic and

non-symbiotic tumours (Figs 4C, 4D, and S7E). Similarly, gene enrichments such as MDM2+,

ERK+ and DUSP1+ and gene knockouts such as p53-, p38-, p14- significantly increase the

number of active cells obtained under symbiosis compared to non-symbiosis conditions

(S7C–S7E Fig).

It is important to note that under MYC+ condition, the tumour growth is increased under

both MCT1wt and MCT1- conditions. However, the tumour growth increase in the presence

of symbiosis (MCT1wt) is slightly less than the tumour growth increase in the absence of sym-

biosis (MCT1-), and therefore the percentage change in tumour growth due to symbiosis is

negative (i.e., decrease) as seen in Fig 4A. Interestingly, for some genes, including for example

GRB2, MYC, and LDHB, the tumour growth in the presence of symbiosis is reduced regardless

of the nature of gene alteration (enrichment or knockout). This is somewhat counterintuitive;

Fig 4. Metabolic symbiosis simulations with network gene alterations: The gene enriched (+) and knockout (-) status were simulated by setting the

respective node of the regulatory network to 1 and 0, respectively. The gene wild type (WT) status was simulated without setting the respective node to

either 0 or 1. Each gene was altered individually. (A). Percentage tumour growth increase due to symbiosis is shown for each gene enrichment status. (B).

Percentage tumour growth increase due to symbiosis is shown for each gene knockout status. (C). Whether tumour growth is significantly different (p-

value< 0.05) between symbiosis and non-symbiosis for each gene enrichment status is shown. (D). Whether tumour growth is significantly different (p-

value< 0.05) between symbiosis and non-symbiosis for each gene knockout status is shown. Clusters of gene alterations can be identified, which enhance

tumour growth due to symbiosis while some other gene alterations together with symbiosis adversely affect tumour growth (A, B). Colours indicate

percentage growth increase by symbiosis (A, B) and p values (C, D). p values from 0 to 0.05 are shown in red to white colour scale and p values� 0.05 are

shown in grey colour.

https://doi.org/10.1371/journal.pcbi.1011944.g004
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however, it does not mean that tumour growth rate is exactly the same under both types of

gene alterations. For example, GRB2- tumour cells grow faster than GRB2+ cells, though both

alterations reduce tumour growth at similar proportions under symbiosis.

These results taken together introduce the important concept that the impact of symbiosis

on the tumour, whether beneficial or detrimental, will also depend on the type of gene aberra-

tions present in the tumour cells. Thus, this supports the need for more advanced genomics

and metabolic combined classifications of patients, which consider not only the gene expres-

sion observed at a given time before treatment, but also the predicted interaction of that spe-

cific gene expression profile with a given perturbation. In the present model, knockout of

MCT1 transporter blocks lactate consumption and hence metabolic symbiosis is disrupted,

but these concepts could be extended to other transporters and receptors. As shown above, the

application of Boolean gene networks proves highly valuable in understanding the impacts of

such alterations in cell molecules on the macroscopic emergent characteristics of tumors.

3.3 p53 status affects the metabolic symbiosis between oxygenated and

hypoxic cells

The most commonly mutated gene in cancer, and also in our samples, is the tumour suppres-

sor p53. TP53 is mutated in 65.5% of the CCLE breast cancer samples and 32.6% of TCGA

breast cancer samples (TCGA, PanCancer Atlas) [43]. Not only p53 is well-known to be

involved in apoptosis and growth arrest of cells [44], but it is also a regulator of the glycolysis

pathway with mutations in p53 deregulating cell metabolism in a number of ways including

increased GLUT expression [45,46]. Therefore, we studied the effect of p53 alterations on met-

abolic symbiosis of oxygenated and hypoxic cells in cancer by growing p53wt and p53- cells in

isolated populations in our model. Fig 5 shows variations of cell numbers, cell metabolic path-

way utilization and ATP production rates for p53wt and p53 knockout (p53-) simulations.

Tumour growth is predicted to be accelerated under p53-, which is expected because cell apo-

ptosis is stopped. However, our simulation proposes an additional mechanism for this because

in p53- cells, the glucose transporter GLUT1 expression is increased, and therefore the higher

glucose uptake contributes to the higher growth rate. In our results, the number of cells pro-

ducing mitoATP (i.e mitochondrial ATP production through OXPHOS) is greater than the

number of cells producing glycoATP (i.e glycolytic ATP production through glycolysis alone).

This is a consequence of lactic acid excretion by the glycolytic cells and its utilization by oxy-

genated OXPHOS tumour cells (Fig 5A and 5B). By comparing OXPHOS/Glycolysis ratio, it is

clear that p53- enhances glycolysis over time, partly because inhibiting p53 causes increased

glucose uptake as mentioned above (Fig 5C). As expected, the cell ATP production rate is

found to be independent from both p53 status and metabolic pathway because it was assumed

that cells can adjust their nutrient consumption rates to maintain a similar ATP production

rate for all metabolic pathways (Fig 5D and 5E). For example, ATP production rates of glycoly-

sis and OXPHOS are similar while glucose consumption by glycolytic cells is much higher

than OXPHOS cells.

Fig 6A–6D compare the oxygen, glucose, lactate and pH levels in the medium over time for

p53wt and p53- simulations. It shows that oxygen and glucose are depleted at the center of the

tumour because when tumour size increases less nutrients would diffuse to the center of the

tumour, or they would be consumed at higher rates by the cells at the tumour rim. Lactate

accumulates at the center of the tumour making it more acidic. For the p53- tumour, we can

see that the tumour microenvironment becomes more acidic compared to the p53wt tumour.

Fig 7A and 7B show percentage change of glucose and oxygen in the medium due to metabolic

symbiosis for both p53wt and p53- tumours. In the p53wt case, the glucose at the center is
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increased by symbiosis, while in the p53- simulation, the glucose level at the tumour center is

increased by symbiosis only at the initial phase of the tumour growth. As already shown in Fig

4B, the tumour gets larger when p53- cells grow with, rather than without, symbiosis, and

hence more glucose is consumed by the symbiotic tumour (MCT1wt) than by the non-symbi-

otic tumour (MCT1-). This would be the reason we see a lower glucose concentration in the

center of the tumour at the later stages of symbiotic p53- tumour growth. However, it is vital

to note that the glucose level at the tumour boundary where most of the proliferative cells

reside is always higher due to symbiosis (Fig 7A). With symbiosis occurring between oxygen-

ated and hypoxic tumour cells, oxygenated cells would consume more oxygen for mitochon-

drial lactate metabolism and therefore symbiosis would result in less oxygen throughout the

tumour compared to a non-symbiotic tumour (Fig 7B).

To get a clearer insight into how symbiosis affects the levels of extra-cellular environmental

glucose and oxygen, it is necessary to compare symbiotic and non-symbiotic tumours of equal

sizes. As tumours grow differently in the two conditions, this would be possible only at the ini-

tial stage. Therefore, we performed a sensitivity analysis by varying the initial sizes of the

tumour, and compared the nutrient levels between symbiosis and non-symbiosis only at the

initial stage of the tumour growth. This allowed us to simulate the contribution of symbiosis

on nutrient levels for different sizes of the tumour. S8A Fig shows that both p53wt and p53-

tumours have an increase in glucose level in the environment due to symbiosis. We observe

Fig 5. Tumour growth under wild type and mutated p53 status. Effect of p53 status on OXPHOS (shown as mitoATP), glycolysis (shown as glycoATP)

and ATP production rate are shown. p53wt and p53- cells were grown in isolation. The starting number of cells was 100. (A, B). Growth of p53wt (A) and

p53- (B) cells over time. The OXPHOS cell population is marginally dominant over glycolytic population regardless of the p53 status. (C). Evolution of

OXPHOS/Glycolysis cell ratio with p53wt and p53- status. (D, E). Variation of OXPHOS (mitoATP) and glycolytic (mitoATP) ATP production rate of

p53wt (D) and p53- (E) cells as tumour grows. The tumour cells with p53 knockout were found to grow faster than p53wt cells because they lacked p53 to

suppress tumour growth.

https://doi.org/10.1371/journal.pcbi.1011944.g005
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that the glucose level increment for the largest p53- tumour (i.e., with 500 initial cells) is partic-

ularly strong, indicating that the glucose level at the center of the tumour would be increased

by about 100% due to symbiosis. S8B Fig indicates that metabolic symbiosis would result in a

low concentration of oxygen in the tumour microenvironment, and thus a higher degree of

hypoxia in the tumour, as already shown in Fig 3.

In summary, our simulations illustrate the interaction between p53 status and metabolic

symbiosis, and its effect on tumour growth and environmental oxygen and glucose levels. Spe-

cifically, symbiosis would increase glucose level (i.e., prevent glucose depletion due to glycoly-

sis) while it would decrease oxygen level at the tumour boundary. These symbiosis-induced

nutrient conditions (i.e., increased glucose and hypoxic conditions) of the microenvironment

may contribute to further p53- selection or the modulation of other metabolic pathways [47].

It should be noted that although microenvironmental glucose level is increased by symbiosis,

it is not increased beyond the glucose level set at the boundary of the simulation domain (i.e., 5

mM) in which this behaviour is similar to that of actual tumour glucose levels, which do not

increase beyond blood glucose level.

3.4 Heterogeneity in the local microenvironment affects the extent of

metabolic symbiosis

We asked to what extent changes in the gradient of diffusible substances and cell heterogeneity

could impact on the observed metabolic symbiosis. To investigate this, the model was run with

different nutrient conditions, with p53 wt/- and MCT1 wt/-, simulating heterogeneous

Fig 6. Distribution of tumour microenvironmental substances under wild type and mutated p53 status. (A-D). Heat maps show spatial-temporal variation

of microenvironmental (A) oxygen, (B) glucose, (C) lactate, and (D) pH levels for p53wt and p53- tumour growth (here, the Length is the cross section of the

tumour microenvironment through the center of the tumour). Red lines show the development of tumour boundary over time. The results show that p53 loss

of function could make the tumour microenvironment more acidic during the period of time (i.e., 25 days) considered here. This is mainly because the p53-

tumour grows faster and therefore more waste products are accumulated inside the tumour making it more acidic.

https://doi.org/10.1371/journal.pcbi.1011944.g006
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environmental conditions. First, we varied the levels of glucose, oxygen and lactate, for p53wt

or p53- cells. When the glucose and lactate levels are kept at a low value (1 mM), the p53wt

tumour shrinks over time because dead cells are not replaced by new cells due to lack of nutri-

ents (S9A and S9B Fig). However, in a p53- tumour, cell apoptosis is stopped and those cells

can also use the initially provided lactate (5mM) and hence they can proliferate through lactate

metabolism when there is enough oxygen. When lactate decreases as it is consumed by tumour

cells, the cells are starved and hence OXPHOS cell population starts to decrease after 25 days

(S9C and S9D Fig). When we maintain a constant lactate level (5mM) at low glucose level (1

mM), we can see that the tumour continues its growth through lactate metabolism when

enough oxygen is available (S9A and S9C Fig). Then, when we maintain low oxygen (3% O2)

and enough glucose (5 mM) levels at the boundary of the medium, we can see that cells use gly-

colysis for both p53wt and p53- tumours and the tumour growth continues through pure gly-

colysis (S9B and S9D Fig). S10 Fig further shows how the tumour responds to different

combinations of oxygen and glucose levels. At low oxygen level (3% O2), glycolysis is the dom-

inant pathway and at intermediate oxygen level (6% O2) we can see that the glycolysis and

OXPHOS cell populations are comparable. Then, at the high oxygen level (9% O2), the domi-

nant cell population is OXPHOS because there is sufficient oxygen for mitochondrial metabo-

lism of either glucose or lactate.

The half-saturation coefficients (i.e., KO2, KG etc.) quantify the sensitivity of nutrient uptake

by tumour cells to the variation of environmental nutrient levels. S11 Fig shows that cell’s

Fig 7. Symbiosis-induced percentage change of glucose and oxygen in the tumour microenvironment. (A-B). Percentage change of

(A) glucose and (B) oxygen in the tumour microenvironment over time for tumour growth with p53wt and p53- status. Length and red

lines are as described in Fig 6. The model was run with MCT1wt and MCT1- status. The percentage change of glucose and oxygen in

the tumour microenvironment was calculated over time. The heat maps suggest that symbiosis increases glucose level while decreasing

oxygen level at the tumour boundary. More supplementary results are shown in S8 Fig.

https://doi.org/10.1371/journal.pcbi.1011944.g007
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metabolic pathway would be more sensitive to the half-saturation coefficient of oxygen than

that of glucose for the model.

Next, we simulated two p53- cell populations in direct competition; one population had

metabolic symbiosis capacity (MCT1wt) and the other population did not (MCT1-).

Initially, two cell populations were randomly mixed at a 1:1 ratio. The glucose and lactate

levels were set to either 1 mM or 5 mM. When both glucose and lactate are at the lowest levels,

we can see that there is no tumour growth (Fig 8A). However, when we increase lactate level to

5 mM at the lowest glucose level, MCT1wt cell population grows while MCT1- cell population

is eliminated from the tumour because there is not sufficient glucose for the survival of MCT1-

cells (Fig 8B). The MCT1wt cell population gets a smaller growth advantage over MCT1- pop-

ulation at 5 mM glucose and 1 mM lactate levels (Fig 8C). When both nutrients are at 5 mM,

there is no clear difference between two cell populations because there would be enough glu-

cose for MCT1- cells and enough lactate and glucose for MCT1wt cells for their growth

(Fig 8D).

The above results show that the nutrient levels in tumour cells not only induce a switch to

different metabolic pathways for tumour survival, but also would apply a selection pressure on

the spatial competition between symbiotic and non-symbiotic cells.

Fig 8. Competition between symbiotic and non-symbiotic tumour cells. Graphs depicting the number of active cells for two p53- cell populations with or

without symbiotic capacity, with MCT1wt and MCT1-, respectively. The ratio of MCT1wt: MCT1- was 1:1 at the start of the simulations. Cells were allowed to

compete at 6% of oxygen and varying levels of glucose and lactate maintained at the boundary of the computational domain. The number of total, active

MCT1wt and active MCT1- cells are shown. (A). 1mM glucose and 1 mM lactate, (B). 1mM glucose and 5 mM lactate, (C). 5 mM glucose and 1 mM lactate,

(D). 5 mM glucose and 5 mM lactate. The results show that symbiotic cells would not get a significant competitive advantage over non-symbiotic cells if there is

sufficient glucose in the tumour microenvironment.

https://doi.org/10.1371/journal.pcbi.1011944.g008

PLOS COMPUTATIONAL BIOLOGY Metabolic symbiosis in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011944 March 15, 2024 15 / 29

https://doi.org/10.1371/journal.pcbi.1011944.g008
https://doi.org/10.1371/journal.pcbi.1011944


3.5 GLUT and MCT1 as actionable targets to disturb metabolic symbiosis

Inhibitors of metabolic pathways have been investigated as potential cancer therapeutics and

various proteins involved in glucose metabolism such as GLUT, HK and LDH have been con-

sidered [48,49]. Lactate transporter inhibitors block the Warburg and reverse Warburg effects

and hence lactate-driven OXPHOS would be reduced [50–53]. However, blocking either glu-

cose or lactate intake transporters would potentially force cancer cells to switch between glu-

cose and lactate metabolic pathways and exhibit therapy resistance. We hypothesized that

tumour cells would switch between glucose and lactate metabolic pathways when either path-

way was blocked. Therefore, we simulated how the tumour would respond to GLUT1 and

MCT1 inhibitors (denoted as GLUT1i and MCT1i) at varying concentration levels and investi-

gated whether tumours would show therapy resistance against respective drugs. Both inhibi-

tors were introduced at the beginning of simulations at a constant level at the boundary of the

simulation domain. We assumed that these inhibitors would reach tumour cells by pure diffu-

sion through the tumour microenvironment. It was assumed that the maximum inhibitory

level of each drug is 85% and the drug would inhibit the respective membrane protein at a

probability of
0:85∗½Inhibitor�
IC50þ½Inhibitor�, where [Inhibitor] and IC50 are the inhibitor concentration near the

cell and half-maximum inhibitory concentration of the inhibitor, respectively.

Fig 9A shows p53wt tumour cells at the end of the simulation under different combinations

of MCT1i and GLUT1i levels. We can see that the OXPHOS cell population dominates in the

tumour at low concentration of both drugs. As the MCT1i drug concentration is increased, the

glycolytic cell population dominates over OXPHOS (S12A–S12C and S13A Figs). At GLUT1i

concentration of 1×IC50, p53wt tumour growth is completely stopped at higher concentra-

tions of MCT1i because glycolysis is disturbed, and hence apoptotic cells are not replaced by

new cells. For p53- cells (Figs 9B, S12D–S12F, and S13B), we can see that we need a higher

Fig 9. MCT1 and GLUT1 inhibition with continuous drug administration. Heatmaps depicting how MCT1 and GLUT1 inhibitors (denoted as MCT1i and

GLUT1i) interfere with glycolysis, OXPHOS, and tumour growth. The MCT1i concentration, [MCT1i], was varied up to 1000 times of its half-maximal

inhibitory concentration (IC50) value while GLUT1i concentration, [GLUT1i], was varied up to 100 times of its IC50 value. Inhibitor concentration was

maintained at the boundary of the computational domain throughout the simulation time. (A). Number of total cells, OXPHOS cell population and glycolytic

cell population of p53wt tumour after 25 days of growth. (B). Number of total cells, OXPHOS cell population and glycolytic cell population of p53- tumour

after 25 days of growth. The initial tumour consisted of 100 cells, with either with p53wt or p53- status.

https://doi.org/10.1371/journal.pcbi.1011944.g009
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concentration of drugs to reduce tumour growth and it shows that p53- tumour may exhibit

more resistance against these inhibitors. These results show that p53- tumour cells would

exhibit some therapy resistance for GLUT1 inhibitors by using lactate metabolism. However,

metabolically active cells (i.e., green and blue coloured cells) would decrease as the concentra-

tions of both drugs are increased.

We also investigated the effect of different drug application strategies on tumour growth. In

the first scenario, MCT1 inhibitor was initially administered, followed by alternative treat-

ments of MCT1 and GLUT1 inhibitors, each for a fixed period. In the second scenario, both

MCT1 and GLUT1 inhibitors were simultaneously applied for a fixed period, followed by a

therapy-free interval of same length, and this cycle was repeated. Simulations were performed

for three levels of drug concentrations (i.e., [MCT1i]/IC50 = [GLUT1i]/IC50 = 1, 10 and 100)

and three levels of periods (i.e., 2, 5 and 7.5 days). A third scenario was used as the control in

which both inhibitors at half of above drug concentration levels were continuously adminis-

tered throughout the simulation time. The results show that scenario one is the least effective

sequential strategy because tumour cells can switch between glycolysis and OXPHOS when

drugs were applied alternatively (Figs 10 and S14A). In the second scenario, both OXPHOS

and glycolytic cell populations increase during therapy free intervals and therefore tumour

would grow at a reduced rate (Figs 11 and S14A). The results also show that continuous

administration of higher concentration levels of inhibitors (i.e., 10, 100) can completely stop

tumour growth (S14B Fig).

Fig 10. MCT1 and GLUT1 inhibition with alternative and periodic drug administration. Heatmaps depicting how MCT1 and GLUT1 inhibitors interfere

with glycolysis, OXPHOS, and tumour growth when both drugs were given alternatively and periodically. Both MCT1i and GLUT1i concentrations were kept

at same level, and it was maintained at 1, 10 and 100 of respective half-maximal inhibitory concentration (IC50) value. Inhibitor concentration was maintained

at the boundary of the computational domain and varied periodically throughout the simulation time. The initial tumour consisted of 100 cells, with p53-

status. Number of total cells, OXPHOS cell population and glycolytic cell population of p53- tumour after 30 days of growth are shown. The period “NA”

represents the simulation with continuous supply of both drugs at half of the respective concentration.

https://doi.org/10.1371/journal.pcbi.1011944.g010
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Looking at previous experimental work of use of MCT1 and GLUT inhibitors, Guan and

Morris (51) have shown that MCT1 inhibitors AZD3965 and CHC can block lactate uptake

and hence tumour growth of 4T1 murine mammary carcinoma cell line. Guan, Rodriguez-

Cruz (50) have also shown that AR-C155858 and AZD3965 would reversibly inhibit MCT1 of

4T1 cells. As reported in [54], AR-C155858 is effective in reducing mammosphere formation

of MCF7 and T47D cell lines. All these findings indicate that MCT1 would be a potential ther-

apeutic target for breast cancer. However, our results suggest that blocking MCT1 would force

tumour cells to switch to glycolysis and develop resistance against MCT1 inhibitors regardless

of the p53 status. A recent clinical trial of the MCT1 inhibitor AZD3965 showed that some

patients had slight increase in 18FDG uptake suggesting a lack of anti-tumour effect of the

drug [55]. Yet, it should be noted that blocking MCT1 can disrupt metabolic symbiosis and

therefore it would have unfavourable effect on tumour growth because glucose would be

depleted faster when symbiosis is blocked as discussed earlier. Various GLUT inhibitors such

as Glutor and Glupin seem to be effective in impairing glucose metabolism of tumour cells

[56,57], but our results suggest that tumour cells may resist GLUT inhibitors if the microenvi-

ronment has enough lactate.

Our results show that even though metabolic symbiosis can be disturbed and hence tumour

growth can be reduced by targeting MCT1 and GLUT1 transport proteins in concordance

with previous experimental studies, the tumour cells can also exhibit some resistance against

those inhibitors by switching between glucose and lactate metabolic pathways. However, the

model also predicts that a combination of MCT1 and GLUT1 inhibitors would be synergistic

and work against drug resistance and the tumour growth can be completely stopped if both

Fig 11. MCT1 and GLUT1 inhibition with simultaneous and periodic drug administration. Heatmaps depicting how MCT1 and GLUT1 inhibitors

interfere with glycolysis, OXPHOS, and tumour growth when both drugs were given simultaneously and periodically. Other simulation conditions remained

consistent with those in Fig 10. Number of total cells, OXPHOS cell population and glycolytic cell population of p53- tumour after 30 days of growth are

shown. The period “NA” represents the simulation with continuous supply of both drugs at half of the respective concentration.

https://doi.org/10.1371/journal.pcbi.1011944.g011
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inhibitors are applied at an appropriate concentration. Though tumour growth can be

completely stopped at high inhibitor concentrations, it is important to note that inhibitor level

and schedule need to be carefully selected in clinical trials with consideration of potential nor-

mal tissue toxicity.

3.6 Metabolic symbiotic dynamics would depend on the characteristics of

cells and microenvironment

As many of the assumptions were taken from existing literature, we performed a sensitivity

analysis based on Latin Hypercube Sampling (LHS) and partial rank correlation coefficients

[38,58] to identify the parameters that more strongly affected our predictions. The model

parameters related to diffusion and activation thresholds of substances (Table C in S1 Text)

were varied within 20% from their baseline values. The total number of parameters was 20. To

perform LHS, the range of each parameter (i.e., 80% - 120% of the baseline value) needs to be

divided into an equal number of bins. The number of bins was chosen as 40 (for LHS, the

number of bins needs to be more than 4×number of parameters/3) and then the LHS input

parameter matrix was created according to the LHS sampling method. Then, our model was

run for the parameter set in each bin and the model outputs were recorded against each

parameter set. The values of each parameter and each output were ranked across bins from 1

to 40 and then the partial correlation coefficient was calculated between each parameter and

each output.

S15 Fig shows the statistically significant (p<0.05) partial correlation coefficients between

the model parameters and four model outputs. We can see that the model outputs are corre-

lated with some model parameters, but in a time dependent manner. The results show that the

number of total cells, OXPHOS, glycolytic, and necrotic cells are not significantly sensitive to

most of the parameters. This could be because the tumour size would mainly be determined by

the phenotypes of boundary cells rather than inner cells which have greater contact inhibition

due to denser packing. The total number of cells is negatively correlated with the glucose acti-

vation threshold (i.e., minimum glucose level needed to activate Glucose_supply node of the

network. See S1 Text for more details about activation threshold) and lactate diffusion coeffi-

cient. This behaviour is intuitive because as the glucose activation threshold is increased, a

fewer number of cells would have glycolysis and when the lactate diffusion coefficient is

increased more lactate would diffuse out from the tumour and hence less lactate would be

available for OXPHOS. The oxygen diffusion and half-saturation coefficients have positive

correlation with OXPHOS at early and later stages of tumour growth, respectively. These two

parameters would increase the oxygen level in the medium and hence this dependency could

be expected. The oxygen consumption and activation threshold are strongly and negatively

correlated with OXPHOS at later stages of tumour growth because increase of these parame-

ters would cause lack of oxygen for respiration.

Lactate diffusion coefficient and activation threshold also have strong negative correlation

with OXHPOS at early stage of the growth because increase of these parameters would weaken

lactate intake through MCT1 transporters. The glucose activation threshold and lactate diffu-

sion coefficient negatively correlate with glycolysis at later stages of tumour growth. The strong

positive correlation between the lactate activation threshold and glycolysis at the early stage of

the growth would be due to lactate intake being disturbed by increase in the threshold and

hence more tumour cells tend to use glycolysis rather than lactate-fuelled OXPHOS. The oxy-

gen consumption rate and glucose deficient necrosis threshold have some positive correlations

with necrosis because both parameters would enhance nutrient depleted conditions in the

medium.
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S16 Fig shows how symbiosis-induced tumour growth correlates with model parameters.

The glucose activation threshold strongly and positively correlates with growth advantage

gained by symbiosis. This is because an increased activation threshold could decrease glucose

consumption and glycolysis and it would then force more tumour cells to maintain their

growth through lactate metabolism. Therefore, as glucose activation threshold is increased,

tumour cells which have symbiotic capacity would gain a growth advantage over non-symbi-

otic tumour cells.

Our results show that tumour has a symbiosis-induced growth advantage and domination

of the mitochondrial ATP producing cell population over glycolytic cell population for the

whole LHS parameter space (S17 Fig). These results suggest that a 20% perturbation of the

baseline parameters would not change qualitative behaviour of the model output and therefore

the conclusion of our work would remain the same throughout the LHS parameter space.

However, if changes were beyond these levels the specific conditions would need to be set, and

the simulations reassessed.

4. Conclusions

Agent-based modelling is a powerful simulation technique adopted in many fields of sociol-

ogy, engineering, and biology to study complex emerging behaviours of heterogeneous sys-

tems. Here, we used and extended a multi-scale framework merging multi-agent modelling,

diffusion-reaction and stoichiometric equations, and Boolean networks to understand how

metabolic symbiosis between oxygenated and hypoxic tumour cells influence tumour growth.

By integrating these diverse modelling approaches, including a Boolean network describing

intercellular molecular interactions, we gained a deeper understanding of the complex interac-

tions shaping the tumour microenvironment and influencing overall tumour progression. The

discrete nature of Boolean networks allowed us to understand interactions between gene alter-

ations and metabolic symbiosis that enhance or reduce tumour survival. Specifically, we show

that:

i. Glucose level in the tumour microenvironment can be maintained by metabolic symbiosis

and that this symbiosis helps hypoxic tumour cells survive through glycolysis, using this

extra-cellular glucose. We found that the oxygen level of the medium would be depleted

faster due to symbiosis and then more tumour cells would switch to a hypoxic state. The

nutrient conditions in the medium would vary over time as tumour evolves. It is well-

known that hypoxic tumour cells can exhibit cancer therapy resistance particularly radio-

therapy [59] and therefore, this metabolic symbiosis would indirectly increase therapy resis-

tance. For instance, as it is clear in the literature [60,61], blocking lactate uptake would

sensitize tumour xenografts to radiotherapy.

ii. Metabolic symbiosis would allow more glycolytic cells to switch to lactate-driven OXPHOS

and hence more glucose would be available for the remaining glycolytic cells. Therefore,

this metabolic cooperation would increase the active cell population in the tumour. The

dependence on glucose may explain some of relationship of diabetes mellitus to cancer inci-

dence and prognosis.

iii. As glucose and oxygen levels increase in the medium, the glycolytic and OXPHOS cell

populations respectively increase. The outcome of the direct competition between symbi-

otic and non-symbiotic cells of the tumour would depend on the environmental nutrient

levels. For instance, symbiotic cells would have a growth advantage in a glucose-limited

lactate medium. The pathways in which alteration (i.e., under or over expressions) in the
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regulatory network would have beneficial or detrimental effects due to symbiosis on the

tumour growth were identified.

iv. Some gene alterations (i.e., knockout or enrichment) can interact with metabolic symbiosis

to decrease tumour growth. Furthermore, both p53wt and p53- cells show some resistance

against MCT1 inhibitors. However, use of MCT1 inhibitors in combination with GLUT1

inhibitors may disrupt metabolic cooperation between oxygenated and hypoxic cell popu-

lations. The results also indicate that administering both inhibitors simultaneously is more

effective than employing a sequential therapy that alternates between the two drugs.

Our sensitivity analysis shows that the model outputs are sensitive to some model parame-

ters only at different stages of tumour growth. However, the results show that the qualitative

behaviour of the model would remain the same in whole parameter space which is within

±20% from the baseline value of each parameter.

The present model is a relatively simplified model of the metabolic symbiosis between hyp-

oxic and oxygenated tumour cells. The model could be used to understand how metabolic

changes induced by therapy in different genetic backgrounds interact. The utilization of a

Boolean network to describe intercellular molecular interactions greatly facilitated our study,

enabling us to easily investigate the effects of a range of gene alterations on metabolic symbio-

sis. While our Boolean network effectively captures the binary state of gene activity-either

active or inactive-it falls short in representing the continuous spectrum in gene expression. To

address this limitation, a potential enhancement involves expanding the Boolean nodes with

continuous or multiple levels, representing low, intermediate, and high gene expression states.

This refinement would better align with the dynamic nature of gene expression, providing a

more accurate representation of the underlying biological processes. Future work should also

consider including pathways such as lipid metabolism signalling pathway, adding further

microenvironmental features (fibroblast, ECM, immune cells, and angiogenesis etc.), tumour

heterogeneity and therapy modelling. Ultimately, any simulation result would need to be con-

firmed in validation in pre-clinical setting, but our findings could help in guiding the experi-

mental design of such studies.

Supporting information

S1 Text. Methodology and Parameters. Different spatial and temporal scales of the model

and how these scales interact each other are described. More details about the cell regulatory

network and model parameters are given.

(DOCX)

S1 Chart. Breast Cancer Cell Lines Gene Expressions. Breast cancer cell line gene expression

data under normoxic and hypoxic conditions are given. The unit is log2 (FPKM+2). The data

were used to produce S4 Fig.

(CSV)

S1 File. Cell Regulatory Network. This is the source file to open the network with GINsim

software (http://ginsim.org) and all the Boolean logical conditions and respective supporting

evidence can be seen there. Download GINsim software from http://ginsim.org and upload S1

File to visualise cell regulatory network and logical conditions.

(ZGINML)

S2 File. Cell Regulatory Network. A high resolution image of the network.

(PNG)
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S1 Fig. Multi-scale modelling framework. The extra-cellular scale, an equation-based model,

describes distributions of diffusible substances in the tumour microenvironment. The cellular

scale, an agent-based model which is a cellular automaton model, describes cell-cell and cell-

microenvironmental interactions. The intra-cellular scale, an agent-based model which is a

Boolean network, describes subcellular molecular interactions. The three scales are coupled

each other and information are shared between them.

(DOCX)

S2 Fig. The cell regulatory network of our model (microC model). The modified MAPK net-

work decides the cell phenotype based on inputs obtained from the microenvironment. Oxy-

gen_supply, Glucose_supply, EGFR_stimulus, cMET_stimulus, FGFR_stimulus,

TGFBR_stimulus, DNA_damage and Growth_inhibitor are inputs to the network. The inhibi-

tor nodes (EGFRI, cMETI, FGFRI, GLUT1I, MCT1I, and MCT4I) are also inputs. The inhibi-

tor nodes are activated by respective drugs (e.g. GLUT1I is activated by GLUT1D, MCT1I is

activated by MCT1D and so on). The Boolean network is updated asynchronously, and cell

phenotypical outputs are calculated. The outputs are Proliferation, Apoptosis, Necrosis and

Growth_Arrest. The yellow-colored nodes are diffusible substances. The newly added interac-

tions to the original MAPK network taken from [30] are shown in dotted lines. The solid and

dotted green lines are positive interactions and solid and dotted red lines are negative interac-

tions. More details about Boolean logical conditions at each node are given in [16,30] and

Tables A and B in S1 Text. A high-resolution image of this network is available in S1 and S2

Files.

(DOCX)

S3 Fig. Different time scales are used for different processes. The smallest time step is

defined as the time for updating one node of the regulatory network (TNetwork). Cell phenotype

and diffusion fields are updated at red (TPhynotypes) and green (TDifusion) ticks, respectively. A

cell which is older than the cell division time (TDivision) can divide if its phenotype is Prolifera-

tion.

(DOCX)

S4 Fig. (A). Expression of our network genes of some Triple Negative Breast Cancer (TNBC)

and non-TNBC cell lines under normoxia (N) and hypoxia (H). The unit is log2 (FPKM+2).

(B). The gene expressions (EXP) at hypoxia are normalized by respective expressions at nor-

moxia (log2 (EXP at hypoxia/ EXP at normoxia)). The data used to produce these Figs are

given in S1 Chart.

(DOCX)

S5 Fig. (A). TCGA breast cancer samples with high mRNA expression of network genes rela-

tive to normal samples. Genes are ordered from high to low of percentage of high mRNA sam-

ples. (B). TCGA breast cancer samples with low mRNA expression of network genes relative

to normal samples. Genes are ordered from high to low of percentage of low mRNA samples.

The horizontal axis shows samples with high (red) or low (blue) expressions of respective

genes. We considered the gene as over-expressed when the standard deviation was above +3

with respect to normal samples and under-expressed as when it was below -3.

(DOCX)

S6 Fig. sigQC metrics were calculated for our network genes in TCGA and CCLE breast

cancer RNA Seq. datasets. (A). Correlation coefficients between genes are shown for TCGA

data. (B). Correlation coefficients between genes are shown for CCLE data. (C). Distribution

of correlation coefficients and comparison of sigQC metrics calculated for genes using TCGA
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and CCLE datasets. The distribution of the metrics are fairly similar between two datasets.

(DOCX)

S7 Fig. Metabolic symbiotic simulations with network gene alterations (Enriched (+) and

Knockout (-) status) and wild type (WT) status. (A). Temporal variation of symbiosis index

at each gene enrichment status. (B). Temporal variation of symbiosis index at each gene

knockout status. (C). Whether symbiosis-induced growth is greater than non-symbiotic

tumour growth with each gene enrichment is shown. (D). Whether symbiosis-induced growth

is greater than non-symbiotic tumour growth with each gene knockout status is shown. The

results show that clusters of gene alterations can be identified, which enhance symbiosis while

some other gene alterations reduce symbiosis (A, B). Colors indicate symbiosis index (A, B)

and p values (C, D). p values from 0 to 0.05 are shown in red to white color scale and p

values� 0.05 are shown in grey color. (E). Genes are clustered based on p-value is less than

0.05 (red) or not (white) of the results shown in Fig 4C (top-left), Fig 4D (top-right), S7C Fig

(bottom-left), and S7D Fig (bottom-right).

(DOCX)

S8 Fig. Symbiosis-induced changes of glucose and oxygen of the microenvironment over

time. Here, the Length is the cross section through the center of the tumour. The heat maps show

the variation of the percentage change of oxygen and glucose due to metabolic symbiosis under

p53wt and p53- status, and at different initial tumour sizes. (A). The symbiosis would increase the

glucose level in the medium. (B). The symbiosis would decrease the oxygen level in the medium.

(DOCX)

S9 Fig. Tumour growth under different environmental conditions (different levels of glu-

cose, lactate and oxygen) are shown for p53wt and p53- cells. (A). p53wt cells with 6% oxy-

gen level. (B). p53wt cells with 3% oxygen level. (C). p53- cells with 6% oxygen level. (D). p53-

cells with 3% oxygen level. The results show that both glucose and lactate metabolism can fuel

tumour growth when tumour is well-oxygenated.

(DOCX)

S10 Fig. Tumour growth curves are shown for different combinations of oxygen and glu-

cose. As the oxygen level is increased, more tumour cells switch to OXPHOS because they

have both glucose and lactate as the energy source for mitochondrial ATP production. The

oxygen level at the boundary of the simulation domain (square box) was maintained at 3%,

6%, and 9% O2 while the glucose level was at 1 mM (A), 5 mM (B) and 10 mM (C). Note that

oxygen and glucose levels in the tumour were much lower than these boundary values.

(DOCX)

S11 Fig. The effect of half-saturation coefficients of oxygen and glucose on the metabolic

pathways is shown. The half-saturation coefficient of oxygen was kept at 0.045% oxygen (A),

0.45% oxygen (B) and 4.5% oxygen (C) while the half saturation coefficient of glucose was var-

ied to 0.004 mM, 0.04 mM and 0.4 mM. The pathways seem more sensitive to the variation of

the half-saturation coefficient of oxygen.

(DOCX)

S12 Fig. Tumour growth over time at different combinations of GLUT1 and MCT1 inhibi-

tors. [GLUT1i]/IC50 and [MCT1i]/IC50 were varied from 0 to 100 and 0 to 1000, respectively.

(A, B, C). p53wt tumour cells. Note that the tumour is completely disappeared at [GLUT1]/

IC50 = 10. (D, E, F). p53- tumour cells. Temporal variations of total cells (A, D), glycolytic

cells (B, E), and OXPHOS cells (C, F) are shown.

(DOCX)
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S13 Fig. MCT1 and GLUT1 inhibition. Bar charts depicting how MCT1 and GLUT1 inhibi-

tors (denoted as MCT1i and GLUT1i) interfere with glycolysis, OXPHOS, and tumour growth.

The MCT1i concentration, [MCT1i], was varied up to 1000 times of its half-maximal inhibi-

tory concentration (IC50) value while GLUT1i concentration, [GLUT1i], was varied up to 100

times of its IC50 value. Inhibitor concentration was maintained at the boundary of the compu-

tational domain throughout the simulation time. (A). Number of glycolytic and mitochondrial

ATP producing cells of p53wt tumour after 25 days of growth. (B). Number of glycolytic and

mitochondrial ATP producing cells of p53- tumour after 25 days of growth. The initial tumour

consisted of 100 cells, either with p53wt or p53- status.

(DOCX)

S14 Fig. Dynamics of total, glycolytic (glycoATP), and OXPHOS (mitoATP) cell popula-

tions over time under different application strategies of MCT1 and GLUT1 inhibitors. The

simulations were initiated with a population of 100 p53- cells, and the inhibitor concentrations

were set to [MCT1i]/IC50 = [GLUT1i]/IC50 = 10. (A). In the first scenario, MCT1 inhibitor

was initially administered, followed by alternating treatments of MCT1 and GLUT1 inhibitors

for a constant period. In the second scenario, both MCT1 and GLUT1 inhibitors were simulta-

neously applied for a constant period of time, followed by a therapy-free interval, and this

cycle repeated each for 5 days, until the total simulation time reached 30 days. The period was

set to 2, 5 and 7,5 days. (B). The control cases. The inhibitors were set to MCT1i]/IC50 =

[GLUT1i]/IC50 = 5 and they were continuously applied (Left). No therapy was applied in this

case (Right).

(DOCX)

S15 Fig. Partial correlation coefficients between model parameters and outputs over time.

The model outputs are total number of cells, OXPHOS cell, glycolytic cell, and necrotic cell

populations. The outputs have significant correlations with some parameters in a time depen-

dent manner.

(DOCX)

S16 Fig. Partial correlation coefficients between symbiosis-induced growth increment of

tumour and model parameters over time. Glucose activation threshold and oxygen con-

sumption rate have strong positive correlations with metabolic symbiosis while glucose diffu-

sion coefficient and oxygen activation threshold have negative correlations with symbiosis.

(DOCX)

S17 Fig. (A). Number of active tumour cells with symbiosis (MCT1wt) and without symbiosis

(MCT1-) for each perturbed parameter set (PS1-40) and the baseline parameter set (PS-Base).

(B). Number of total cells, and mitochondrial and glycolytic ATP producing cells obtained at

each parameter set.

(DOCX)
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