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Lo studio e, in generale, la ricerca della verità e della bellezza

sono una sfera di attività nella quale

ci è consentito di rimanere bambini per tutta la vita.

Albert Einstein

The pursuit of truth and beauty

is a sphere of activity in which we are permitted

to remain children all our lives.

Albert Einstein
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Abstract

In stratified sampling for finite populations, several authors have discussed the prob-

lem of sample allocation and selection in absence of previous information on the variability

inside the strata, suggesting various kinds of two steps sampling or sequential sampling

strategies. However, the proposed methods either do not allow design unbiased estimates

of the population parameters or are not optimal or do not take into consideration budget

constraints.

In this thesis we propose a group sequential adaptive procedure with permanent random

numbers (AGSPRN) fo stratified finite populations. It generates a sample allocation very

close to Neyman’s optimal one and design unbiased estimates of the population mean or

total, taking into consideration budget constraints and a linear cost function.

Among all the AGSPRN procedures characterized by different number of steps K and

units q added at each step, this work aims at finding the optimal pair (K, q) that min-

imizes: 1) the variance of the estimator given a cost function and a budget constraint,

2) the total cost given a threshold on the estimator variance, 3) a risk function obtained

as a combination of cost and estimator variance. Since these problems are analytically

intractable because of the prohibitive form of the distribution of the estimator variance,

we proceed through a Monte Carlo investigation. First of all, we provide a simulation

study in order to show some properties of the optimal AGSPRN procedure. Especially,

the study shows that the optimal AGSPRN procedure tends not to coincide with some of

the sampling designs proposed in the literature, which are less efficient. Moreover, focus-

ing on the cost function, we assess the impact of various values of the cost components

on the optimal group sequential sampling technique.

Then, we set up a methodology that allows to obtain the optimal AGSPRN procedure

when the population values are not known, which is the usual case. The proposed method

is adopted for a real application in the field of territory management, in order to obtain

the optimal group sequential procedure and provide efficient estimates for the quality

control index of a land cover database, in presence of a cost function.

Some convergence properties are also proved for a slightly modified version of the AGSPRN

procedure in the context of infinite populations, using martingales arguments.
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Chapter 1

Introduction

Adaptive sequential sampling for finite populations is the core topic of this thesis. The

need of implementing efficient sampling methods that hinge on the information gained

along the procedure arises in many practical situations, where it is fundamental to produce

efficient analyses with time and money constraints. In agro-environmental and agricul-

tural contexts this is more than true. A real issue in agro-environmental statistics has

led us to consider the ambitious goal of finding an optimal adaptive sequential sampling

procedure that offers efficient estimates with the least amount of money.

1.1 Motivation

In front of practical problems, statistical analyses are required to be reliable and efficient

in terms of cost, time and precision. Resources are often limited and solutions have to be

timely, aiming at saving money while preserving efficiency. One of the most critical point

for a statistical analysis is the collection of a sample from a finite population. Adding

flexibility to a sampling procedure for finite populations is one of the challenges of this

thesis. The main tool we are going to use to reach this crucial aim is adaptive sequential

sampling. Four different elements become parts of our complex framework: sampling for

finite populations, adaptive procedure, costs and sequential setting with various stopping

rules. These are all important components that real applications should require from a

statistical analysis. Particularly, what has led us to consider all these aspects are some

procedures in territory management that require a very efficient finite population sam-

pling frame, which seeks also to save costs and time.

Among all the finite population sampling designs, stratified sampling is the most widely

used procedure in applied contexts. Hence, we have chosen it as the basic sampling tech-

nique for this thesis. Further important details about this design will be presented in

Chapter 2.

In a finite populations sampling context, it is a well known practice to introduce costs,
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assuming a linear cost function which plays an important role in the search of the optimal

sample (see, for instance, Cicchitelli et al. [1992, pp 96–99], Cochran [1997, pp 318–322],

Thompson [2012, pp 147]). The traditional approaches to cost issues are integrated in

conventional sample designs, in adaptive cluster sampling (Thompson and Seber [1996,

pp 152–153]), in stratified sampling with adaptive allocation (Carfagna et al. [2012]). One

of our goals is to associate a cost function to a group sequential stratified sampling design

with adaptive allocation in order to generate the most efficient estimators both in terms

of cost and precision. A design with adaptive allocation denotes a sampling procedure

where the sample units are selected in each stratum along more steps and the current

allocation may depend on the previously collected data (Thompson and Seber [1996, pp

192–199]). Moreover, we will consider a sequential framework with different stopping

rules that take into account the estimator variance, the total cost including the step cost

and the total risk obtained as a combination between cost and estimator variance. Our

sampling procedure will stop when the estimator variance will be under a threshold v or

the total cost and the risk will be minimized. Stein [1945], Chow and Robbins [1965], Ray

[1957] and Liu [1997] investigated a similar sequential setting, but they refer to infinite

population and normally distributed data, which are not divided into strata. Kadane

[2005] showed how an optimal dynamic sample allocation among strata can be computed

in the presence of a cost function and estimator variance constraint. However, he did

not consider the adaptive rule and the cost per step. Hardwick and Stout [1995, 2009]

proposed computational algorithms for adaptive designs in a simpler setting. Rosenberger

and Sriram [1997], Jennison and Turnbull [1999], Melfi and Page [1998, 2000], Melfi et al.

[2001], Muliere et al. [2006a], Muliere et al. [2006b], Rosenberger et al. [2001], Rosen-

berger and Lachin [2015], Antognini and Giovagnoli [2015] proposed adaptive designs for

infinite population, mainly in the context of clinical trials. They also studied consistency

and asymptotic normality of the estimators for a wide class of designs, often utilizing

martingales arguments. In Chapter 6 we will extend our design to an infinite population

framework, studying consistency and asymptotic normality of the proposed estimator,

using the same tools of the cited authors and of Etoré and Jourdain [2010].

In the finite populations context, Carfagna [2007] introduced a two steps adaptive pro-

cedure with permanent random numbers which is extended by Carfagna and Marzialetti

[2009b] to a sequential setting, giving rise to an adaptive sequential procedure with per-

manent random numbers. Since the methods introduced by Carfagna [2007], Carfagna

and Marzialetti [2009b] deal with finite populations, adaptive allocation and sequential

framework, we use them as a starting point.

Therefore, we will propose a group sequential stratified sampling procedure with adaptive

allocation for finite populations in the presence of a cost function that considers the cost

per each selected unit, the cost per step and a fixed cost. The aim will be to find the

optimal adaptive procedure in terms of minimum cost, maximum precision of the estima-
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tor, minimum risk computed as a combination between cost and estimator variance. The

search of this optimal adaptive design needs to know the distribution of the estimator

variance, which is analytically prohibitive. Hence, we will proceed through a Monte Carlo

study, which requires as inputs some precise information about the target population. We

will propose a methodology that allows to update this information at each step of the

sampling procedure, in order to obtain the optimal adaptive technique for a population

that is very similar to the target one.

1.2 Motivating application

This thesis has a very concrete and important motivation. It originates from the need

of evaluating the quality and validate land cover databases produced through photo-

interpretation of remote-sensing data.

Aerial or satellite remote-sensing data are widely used for monitoring land cover and for

testing the effect of land use policies. Satellite images are given as a set of measures of

electromagnetic radiation reflected by the earth surface. Each individual measure corre-

sponds to an area unit (pixel) and a certain interval of wavelength (channel), generally

ranging from the visible spectrum to the thermal infrared. The most important charac-

teristics of an optical satellite sensor are the number of channels, the wavelength of each

of them and the spatial resolution, that is, the size of the pixel; for civil use images, it

can range from less than 1 m to 5 km, while the most widely used images for land cover

monitoring have medium resolution, for example, 30m (Figure 1.1). Remote-sensing data

are photo-interpreted according to a land cover legend in which each class (or label) rep-

resents a land cover type. Generally, the legend is defined before starting the photo-

interpretation. The result of this process is a database, whose main elements are the

polygons (homogeneous land areas with regular borders) of specific land cover types. The

database is created in a Geographic Information System (GIS) that allows many kinds

of operations on the polygons, such as dividing a polygon into two pieces, merging the

polygons, overlaying different information layers and so on. Further details about GIS

and remotely sensed data analysis can be found in Benedetti et al. [2015].

Public administrations are the main customers of land cover databases for various

purposes; but we have to remember that a prerequisite for making a reliable analysis

using a land cover database is the quality of the evaluated database, that should be

high. The scale of remote-sensing data used in the photo-interpretation represents only

the level of detail of the basic material and cannot be considered as the quality of the

land cover database. The quality should be analysed from two viewpoints: the quality

of the photo-interpretation and the level of agreement between the database and reality

(validation). Owing to cost and time, the quality control of the photo-interpretation as
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Figure 1.1: Example of satellite images with various pixel sizes.

well as the validation can be performed only on the basis of a sample of polygons in the

methodological framework of statistical sampling from finite population.

Quality control should be done by repeating the photo-interpretation process with the

same basic material. In our case, a very expert photo-interpreter (the controller) repeats

the photo-interpretation on a sample of polygons.

Validation is a comparison of the land cover database with another representation of

reality, which is considered more reliable. We compare a sample of polygons with the

corresponding ground truth, in case the scale of remote-sensing data is compatible with

the ground truth; otherwise, the comparison is made with other remote-sensing data with

a more detailed scale.

Generally, in photo-interpretation projects, very few resources are devoted to quality

control; thus, a very cost-effective sample design is required. Since we want to use quality

control for continuously improving the database production process, it must be performed

in a very short time, during the photo-interpretation process. This is the reason that has

led us to adopt an adaptive sequential sampling procedure for quality control as well as

for validation: it allows to reach high precision of estimates with the smallest sample

size and in the shortest time, especially when a small amount of information is available.

Moreover, the costs can be controlled step by step, ending up with a sample that is the

most efficient in terms of estimates precision and costs.

It is worth mentioning that sometimes the desire of homogeneity suggests to use a common

legend or satellite-data even though they are inappropriate for specific projects. The use

of an adaptive sequential sampling procedure during the photo-interpretation not only

allows quality control and validation, but it is also a way to improve the legend according

to customer’s needs.
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1.2.1 Adaptive sequential sampling for quality control

Let us focus on the quality control operation of a land cover database. A photo-interpreter

classifies the satellite images according to a legend of different land cover types. However,

during this procedure, he can make mistakes concerning the border of the polygons as

well as the land cover type. Therefore, another expert (the controller) repeats the photo-

interpretation on a sample of polygons in order to test if some mistakes have been made

by the previous photo-interpreter. This procedure is called quality control of land cover

databases and it is measured through some parameters such as the percentage of area cor-

rectly photo-interpreted and the percentage of the polygons correctly photo-interpreted.

In Chapter 5 we will focus on estimating the first index by an estimator developed through

an adaptive sequential sampling for finite populations. Indeed, the most important aim

in this operation for territory management is to obtain efficient estimates of the quality

indexes, saving time and resources, modifying the sampling procedure according to the

stakeholders needs and to the results obtained along the way.

The use of stratified finite population is required in this context since the kind of land

cover type and the size of the polygons affect the probability of making mistakes in the

photo-interpretation. However, the layers under stratification must be chosen carefully.

In our application, we will choose the land cover type and the size of the polygons as

stratifying factors. We will discuss in details in Chapter 5 all the aspects of stratification

and the sampling procedures for our data-set.

1.2.2 Adaptive sequential sampling for validation

In order to assess the agreement of the database with the ground truth and verify the

capability of the database to satisfy the client’s needs, an adaptive sequential sampling can

be adopted also for validating the database. Indeed, a continuous sequential validation

during the production process allows:

• timely detection of discrepancies between the database and reality, which makes the

product inappropriate for the customer’s needs;

• drawing the characteristics of the database progressively closer to the client’s needs;

the customer himself often is not aware of his requirements until he starts using the

database;

• changing the data source in order to cut some costs if, for instance, during the

procedure the adopted remote-sensing data are realized to be more detailed than

those required by the user’s needs, producing unjustified costs;

• timely testing (and in case changing) the legend for photo-interpretation during the
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photo-interpretation process in order to identity the most appropriate legend for the

specific area and project.

1.2.3 Data

In 1999, the Italian Statistical Institute (ISTAT) carried out an experiment funded by Eu-

rostat and produced a land-cover/land-use database with a detailed CORINE 1 (Carfagna

and Marzialetti [2009a]) legend and a scale of 1:25,000 for the Arezzo province.

We will analyse, in Chapter 5, the classification of 110 polygons that became part of the

dataset produced by ISTAT. Since we have the results of both classifications made, respec-

tively, by the photo-interpreter and by the controller during the quality control operation,

we will compute the quality control index of the area correctly photo-interpreted. Then

we will evaluate the performance of its estimate obtained through the adaptive group

sequential procedure which uses as input the entire data-set or only a sample of it.

1.3 Outline of thesis

Many aspects of adaptive sequential sampling for finite populations are examined in this

thesis. In Chapter 2 we review the main concepts of finite populations sampling and

conventional designs (simple random sampling, stratified random sampling), proceeding

towards adaptive cluster sampling and sampling with adaptive allocation (multiple steps

sampling, two steps sampling with permanent random numbers, adaptive sequential sam-

pling with permanent random numbers). An excursus about two steps and sequential

estimation in the infinite population context is also presented.

In Chapter 3 we propose an adaptive group sequential procedure with permanent random

1Between 1985 and 1996 the first Corine land-cover (CLC) inventory for the EU-15 and most of the
new member states was implemented. It was a project carried out in order to characterize the land
surface. A uniform nomenclature across Europe at a scale of 1:100,000 was used. The CLC nomenclature
mostly included land-cover items, though land-use elements could also be found. The CLC Technical
Team (under the responsibility of the European Topic Centre on Terrestrial Environment) carried out
a validation at the end of the project as well as a quality control during the production process (see
European Environment Agency 2006). Validation was not performed by acquiring new ground data.
The LUCAS 2001/2002 survey originally carried out for agro-environmental purposes was used instead.
The accuracy of the CLC database was assessed by reinterpreting the LU- CAS field photographs (in
combination with IMAGE2000 and other LUCAS statistics), which were provided for 8,231 locations in
the 18 x 18 km sampling grid. The total percent correct was 87.0 ± 0.8. However, since LUCAS was
not originally intended to validate Corine Land Cover, 22 of the 44 CLC classes could not be validated
due to low representativeness in LUCAS; thus, the reliability of CLC for half of the classes could not be
evaluated by LUCAS. Moreover, the LUCAS survey was available only for 18 of the 29 countries where
CLC was created. The quality control during the production process was meant to monitor and provide
guidelines about where to improve the production of the CLC database in the different countries. The
feedback given at this stage was qualitative and its overall objective was to realize a homogeneous and
comparable database at European level.
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numbers (AGSPRN) in presence of a linear cost function. We aim at finding an optimal

adaptive stratified sampling procedure in terms of:

• minimum variance of the estimator given a cost function and a budget constraint

(Case 1);

• minimum total cost given a threshold on the estimator variance (Case 2);

• minimum risk obtained as a combination of estimator variance and cost (Case 3).

These problems are analytically unsolvable because of the prohibitive distribution of the

estimator variance. Hence, in order to solve them, we propose a Monte Carlo study, which

requires as inputs some precise information about the target population. This is a very

delicate point. In Chapter 3 the Monte Carlo method is applied directly to a specific

target population, under particular values of the cost components. In this case, we use

the entire target population to find the optimal sampling design. This step seems quite

ineffective, but it is useful to show some properties of the optimal AGSPRN procedure

and to assess the effects of the cost components on it. The main results of this chapter

are reported in Missiroli and Carfagna [2016].

In Chapter 4 we set up a methodology in order to find the optimal AGSPRN procedure

when only a pilot sample of the population is available, that is usually the case in the-

oretical and practical situations. The results are then compared with those obtained in

Chapter 3.

Chapter 5 deals with the search and the application of the optimal AGSPRN procedure in

order to estimate the quality control index for the data produced by ISTAT (see Section

1.2.3).

In Chapter 6, we try to connect a slightly modified version of our AGSPRN procedure

to the infinite population context, proving consistency and asymptotic normality of the

AGSPRN estimator.

Finally, we provide a final discussion and directions for future research.
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Chapter 2

Literature review

2.1 Introduction

This chapter deals with the basic theory of survey sampling for finite populations and

in particular it is focused on some results from the literature about adaptive sequential

sampling, which is the topic under investigation. An excursus about different sampling

designs is presented. In the finite populations sampling context, it is critical to highlight

the distinction between ‘model-based’ sampling and ‘design-based’ sampling ; the latter

is, in its adaptive framework, our main area of interest. The most important results for

infinite population adaptive sampling are also reported.

2.2 Different approaches in survey sampling

As we underlined, it is important to distinguish between a ‘design-based’ approach and a

‘model-based’ sampling. Thompson and Seber [1996] can be a good guide to understand

these important concepts. A finite populations sampling context is characterized by a

population of N units (u1, ..., uN) indexed by their labels (1, ..., N) and a variable of in-

terest yi is associated to unit i, for i = 1, ..., N . The value y of the variable can be nominal,

ordinal or scalar, unidimensional or vector valued. The vector of the population y-values

will be denoted by y = (y1, ..., yN)′. In the ‘design based’ approach, y is considered a

fixed set of unknown constant. In the ‘model based’ view (Chambers and Clark [2012]),

the vector y is considered a realization of a random vector Y having a joint distribution

F which may depend on unknown parameters φ ranging in a parameter space Φ. In a

Bayesian setting φ has a known prior distribution.

An unordered sample of size n is a set s = {i1, ..., in} of n of the N labels (some of

which may be the same, as in sampling with replacement), which forms, together with

the associated y-values, denoted by ys, the set of data D = (s,ys). The last term D is a

random variable, since each sample s is characterized by a probability of being selected.
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A realization of D is denoted by d.

An ordered sample of size n is a sequence s0 = (i1, ..., in) of n of the N labels. The associ-

ation of the ordered sample y-values, denoted by y0, with their units labels is represented

by the random variable D0 = (s0,y0). S indicates the set of all possible samples with

fixed or variable size of a given population and Y is the set of all possible values of y.

The aim is to select a sample, observe the y-values and estimate some function η(y) of

the population y-values. The population total η(y) =
∑N

i=1 yi = τ , the population mean

η(y) = 1
N

∑N
i=1 yi = Y and the population variance η(y) =

∑N
i=1(yi − µ)2/(N − 1) = σ2

are examples of population functions η(y) that can be estimated.

Different procedures, called sampling designs, can be used to select a sample. The key

of the selection is the probability p(s|y) of getting sample s, for each possible sample

s ∈ S. It may depend on the configuration of y, the y-values of the population. The

design probabilities satisfy p(s|y) ≥ 0 for all s ∈ S and
∑

s∈S p(s|y) = 1 for all y ∈ Y .

If the selection probabilities do not depend on the value of the variable of interest or on

any parameter values, although they may depend on the value of auxiliary variables x

that may be known in the population, the selection procedures are known as conventional

designs. Inside this class p(s|y) = p(s) holds. They include simple random sampling,

stratified random sampling, systematic, cluster sampling.

If the procedure for selecting units depends on the values of the variable of interest, but

only through the units included in the sample denoted by ys, that is p(s|y) = p(s|ys), we

are in presence of adaptive designs. This class includes random sampling with a sequential

stopping rule, adaptive cluster sampling designs, adaptive allocation in stratified designs

and many others.

Design of the form p(s|y), in which the selection probabilities are influenced by values

of units not included in the sample or by unknown parameter values, will be termed

nonstandard.

2.3 The efficiency of an estimator

Starting from the classical context of statistical inference for infinite populations, let

us denote with Z a random variable taking value in Z, according to a distribution Pθ,

with the unknown parameter θ laying in Θ. In decision theory, an estimator represents

a decision rule δ that is a function from Z to A, the space of actions. The unknown

parameter θ to be estimated is called state of nature and takes values in Θ. In estimation

problems with frequentist approach, the loss associated to a decision rule is expressed by a

loss function L(θ, δ(z)): Θ×A→ R, which represents the divergence of the estimate δ(z),

given a realization z of the random variable Z, from the parameter θ. The risk function

is defined as the expected value of the loss function with respect to the distribution of
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Z, Pθ, that is: Rθ(θ, δ(Z))=Eθ[L(θ, δ(Z))]. A decision rule δ1 is R-better than another

decision rule δ2 if Rθ(θ, δ1(Z)) ≤ Rθ(θ, δ2(Z)) for all θ ∈ Θ, with strict inequality for some

θ. A decision rule is said to be admissible if there exists no R-better decision rule.

Different kinds of loss functions can be used. In an estimation setting, the common choice

is the quadratic loss function L(θ, δ(Z)) = (θ− δ(Z))2, and the risk function corresponds

to the mean square error (MSE):

MSEθ(θ, δ(Z)) = Eθ[(δ(Z)− θ)2] = varθ[δ(Z)] + [Eθ[δ(Z)]− θ]2,

where the second term is the bias. When δ(Z) is unbiased, the MSEθ(θ, δ(Z)) is the vari-

ance of δ(Z). Among the unbiased estimators, the one that has uniformly the minimum

variance for each value of θ is called UMVUE (uniform minimum variance unbiased esti-

mator). Particularly, an unbiased estimator δ(Z) for θ is UMVUE if ∀θ ∈ Θ the following

holds:

varθ[δ(Z)] ≤ varθ[δ̃(Z)] (2.1)

for any unbiased estimator δ̃(Z). Not always an UMVUE exists, since inequality (2.1)

may not hold for all values θ in Θ. Fixing the target θ, an estimator is more efficient than

another if its MSE is smaller for that target.

Moving to the finite populations context an estimator δ(D) of θ is a function of the data

D and it is unbiased for θ if its expected value is equal to θ, for any possible values of θ,

that is:

E(δ(D)) =
∑
si∈S

δ(di)p(si) = θ, ∀θ,

where the sum is extended to all possible samples in the sample space S provided by the

plan, p(si) is the probability of extracting the specific sample si and di = (si,ysi) are the

observed data.

The MSE in a finite population context is equal to:

MSEθ(δ(D)) = E(δ(D)− θ)2 =
∑
si∈S

[δ(di)− θ]2p(si) = V (δ(D)) + [E[δ(D)]− θ]2,

where V (δ(D)) is the variance of the estimator, that is V (δ(D)) = [δ(D) − E(δ(D))]2

and [E[δ(D)]− θ]2 = B2 is the square of the bias. Comparing estimators and increasing

their precision will become fundamental in this thesis, since one of our aim is to find the

optimal sampling design which generates the estimator with the highest precision.

Now let us focus on the different kinds of sampling designs.
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2.4 Conventional designs

With the term conventional designs we indicate a sampling procedure in which the selec-

tion probabilities of the units do not depend on the values of the variable of interest or on

any other parameter. Designs of this type are simple random sampling, stratified random

sampling, systematic sampling, cluster sampling, double sampling (see Cicchitelli et al.

[1992], Cochran [1997], Conti and Marella [2012]).

2.4.1 Simple random sampling

Simple random sampling (Cochran [1997, pp 18-30]) is a sampling design which assigns

to each unit of the population of size N an equal probability of being drawn. Similarly,

according to this sampling plan, each of distinct subset of size n has an equal chance of

being chosen for the sample. If the unit that has been drawn is removed from the popula-

tion for all subsequent draws, this method is called random sampling without replacement

(SRSWOR). In this case, two samples are considered distinct if they differ for at least

one unit. Hence, the number of samples is equal to all the possible combinations of N

elements taken n at a time without repetition, that are computed through the binomial

coefficient
(
N
n

)
. According to SRSWOR, the probability of selecting a sample of size n

from a population of size N is equal to 1/
(
N
n

)
for all the possible samples.

Simple random sampling with replacement (SRSWR) is instead a design where all the N

elements of the population are associated to an equal and constant probability of being

drawn, that is equal to 1
N

, without counting the times they have already been drawn.

Two samples are considered distinct if they contain one or more different units or the

same units but with a different selection order. Hence, the sample space is composed by

Nn samples, where Nn is the number of combinations of N elements taken n at a time

with repetition. The probability of selecting a sample according to SRSWR is 1/Nn.

Denote with Y the population mean, with y the sample mean, with τ = NY the popula-

tion total that is estimated by τ̂ = Ny. It is well known that the sample mean based on

simple random sampling is an unbiased estimate of Y and τ̂ is unbiased for the population

total τ .

The variance of the mean y from a simple random sample without replacement is

V (y) =
S2

n

N − n
N

=
S2

n
(1− n

N
) =

S2

n
(1− f), (2.2)

where S2 =
∑N

1 (yi−Y )2

N−1 is the population variance and f = n
N

is the sampling fraction.

An unbiased estimate of V (y) is V̂ (y) = s2

n
N−n
N

= s2

n
(1 − f) where s2 =

∑n
1 (yi−y)2
n−1 is an

unbiased estimate of S2. The variance of the sample total and its unbiased estimate are

the same of the sample mean ones multiplied by N2.
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The variance of the mean estimator for a simple random sampling with replacement is

the same of expression (2.2) multiplied by (N − n)/(N − 1).

Throughout this thesis we will focus on simple random sampling without replacement,

since it is often used as a base for the configuration of other sampling designs.

2.4.2 Stratified random sampling

In stratified sampling the population of size N is first divided into H subpopulations of

N1, N2, ..., NH units so that N1+N2+ ...+NH = N . The subpopulations are called strata.

A simple random sample without replacement is taken in each stratum. We are interested

in studying the variable Y , knowing that at each unit i of the population is associated a

value of Y equal to yi, for i = 1, ..., N .

The following quantities can be defined for stratum h, with h = 1, ..., H:

Nh: total number of units in stratum h;

nh: number of sample units in stratum h;

Wh = Nh
N

: weight of stratum h;

fh = nh
n

: sampling fraction in stratum h;

yhi: value of the variable of interest for unit i in stratum h;

Y h = 1
Nh

∑Nh
i=1 yhi: mean in stratum h;

yh = 1
nh

∑nh
i=1 yhi: sample mean in stratum h;

S2
h = 1

Nh−1
∑Nh

i=1(yhi − Y h)
2: variance in stratum h;

s2h = 1
nh−1

∑nh
i=1(yhi − yh)2: unbiased estimate of the variance S2

h in stratum h.

An estimator of the population mean, according to the stratified random sampling de-

sign, is given by:

yst =
H∑
h=1

Nhyh
N

=
H∑
h=1

Whyh,

that is unbiased since in every stratum the sample mean yh is unbiased for the stratum

mean Y h, with h = 1, ..., H. Indeed, a simple random sampling without replacement is

implemented in each stratum and it ensures unbiased mean estimator.

The stratified mean estimator yst and the stratified estimator for the total τ̂ =∑H
h=1Nhyh are the core elements of our investigation.

The variance of yst is the following:

V (yst) =
H∑
h=1

W 2
h

S2
h

nh

Nh − nh
Nh

. (2.3)
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An unbiased estimator of V (yst) is

V̂ (yst) =
H∑
h=1

W 2
h

s2h
nh

Nh − nh
Nh

.

The allocation of the sample units into the strata, i.e. the choice of the values n1, ..., nH ,

is an important step in stratified sampling. It depends on the aim of the analysis, on

the available information, on the examined context and on the variable of interest. A

popular choice is to allocate the sample units n1, ..., nH into the strata proportionally to

the stratum weights W1, ...,WH , that is:

nh
n

=
Nh

N
or

nh
Nh

=
n

N
.

This allocation scheme is called proportional allocation and it provides the equality

between the stratified mean estimator yst and the sample mean estimator y =
∑H
h=1 nhyh
n

.

In the following section we will focus on the allocation schemes which minimize some

objective functions, such as the variance of the stratified mean estimator.

2.4.3 Simple and multipurpose allocation

Also in the finite population sampling context we can be interested in obtaining the sam-

ple size n that minimizes an objective function Ψ(n), given a sampling plan. Particularly,

focusing on stratified random sampling, we aim at finding the allocations n1, ..., nH that

minimize an objective function Ψ(n1, ..., nH). Starting from the simplest case, the al-

locations are chosen in order to minimize a single criterion such as the variance of the

stratified mean estimator. If Ψ(n1, ..., nH) = V (yst) the following optimization problem

has to be solved for a fixed sample size n:

minn1,...,nHV (yst) = minn1,...,nH

H∑
h=1

W 2
h

S2
h

nh

Nh − nh
Nh

. (2.4)

The solution is called optimal allocation or Neyman allocation and it is:

nh = n
NhSh∑
NhSh

h = 1, ..., H (2.5)

If we substitute (2.5) in expression (2.3) we derive the minimum value of V (yst) for a

fixed n, that is:

V (yst)min =
(
∑H

h=1WhSh)
2

n
−
∑H

h=1WhS
2
h

N
.

Neyman allocation is a key element of this thesis and it will have a fundamental role
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among the following chapters.

In more complex situations we can be interested in finding the allocations which optimize

a good trade-off between more experimental criteria. This target allocation scheme should

be obtained by two traditional approaches, that Antognini and Giovagnoli [2015] reclaimed

in a similar context:

• combined optimization: the function Ψ(·) that has to be optimized is a combination

of the different experimental goals by means of suitable weights. For combination

purposes, all criteria have to be standardized to put them into a comparable scale.

For instance, considering two criteria Ψ1(·) and Ψ2(·), the standardization consists

in choosing them to lie in [0; 1], namely Ψ1, Ψ2: [0; 1]→ [0; 1]. The criterion that is

minimized is a convex combination between the two different criteria:

Ψ(·) = ωΨ1(·) + (1− ω)Ψ2(·),

where the weights ω and 1−ω in (0, 1) represent the relative importance of Ψ1 and

Ψ2. If both criteria are strictly convex, the solution is unique.

• constrained optimization: one criterion is optimized under suitable conditions on

the other criterion.

The first approach is used in Section 3.5 of Chapter 3, where a risk function is obtained

as a combination of cost and estimator variance criteria.

Let us focus on stratified random sampling and consider as experimental goals the variance

of the stratified mean estimator V (yst) and the total sampling cost. The latter criterion

is chosen to be represented by a linear cost function:

C(n1, .., nH) = C0 +
H∑
h=1

chnh,

where C0 is the fixed cost and ch is the variable cost for each unit in stratum h, with

h = 1, ..., H. Constrained optimization is applied in order to obtain the optimal allocation.

The estimator variance V (yst) is minimized for a specified sampling cost or the total cost

C(n1, .., nH) is minimized for a specified value of V (yst), that is:

minn1,...,nHV (yst) subject to C(n1, .., nH) = C0 +
H∑
h=1

chnh = C (2.6)

and

minn1,...,nHC0 +
H∑
h=1

chnh subject to V (yst) = v, (2.7)
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where C and v are two positive constants.

Both problems (2.6) and (2.7) lead to the same solution ([Cochran, 1997, pp 97-98]), that

is:

nh = n
WhSh/

√
ch∑H

l=1WlSl/
√
cl
. (2.8)

This result is similar to expression (2.5), indeed it represents Neyman’s allocation when

costs are also considered. Substituting (2.8) in the constraint of problem (2.6) we obtain

the following overall sample size:

n = (C − Co)
1∑H

h=1
NhSh

√
ch∑H

l=1WlSl/
√
cl

;

whereas if we replace (2.8) in the constraint of problem (2.7) we get:

n =
(
∑H

h=1NhSh
√
ch)
∑H

h=1WhSh/
√
ch

v + 1
N

∑H
h=1WhS2

h

.

These passages are fundamental for the development of our topic. The framework we are

focusing on is more complex, but the underlying idea is very similar: we aim at finding the

optimal sampling procedure that minimizes the variance of the estimator given a budget

constraint or the cost function given a precision of the estimator, or the risk function

obtained as a combination of cost and estimator variance according to the combined

optimization approach described previously.

If we are interested in finding an optimal sampling procedure for stratified sampling it is

necessary to know the strata variances in formula (2.5) to compute the optimal allocation

that leads to the minimum value of the estimator variance. If they are not know, we have

to move to an adaptive sampling context, which allows to estimate them proceeding by

steps. We will see some adaptive designs in Section 2.5 and our sampling proposals in

Chapter 3 and 4.

2.5 Adaptive designs

Both adaptive sampling and sequential sampling belong to the class of adaptive designs. In

such designs, the units are added to the sample along different steps and the information

gained at each step plays an important role to build the later steps. In sequential sampling

one unit (purely sequential sampling) or a bunch of units (group sequential sampling) is

added at each step and provides information to decide whether or not stopping sampling,

whereas in adaptive sampling the information gained at each step is essential to decide

which units are chosen in the next step and/or how they are allocated in the strata
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(adaptive stratified sampling). In both sampling procedures the sample size is not fixed

a priori. Further details about group sequential sampling with adaptive allocation rule

for infinite population can be found in Denne and Jennison [2000], Müller and Schäfer

[2001], Posch et al. [2005], Morgan and Stephen Coad [2007] who have explored them in

the context of clinical trials.

2.5.1 Adaptive sampling in the ‘design based’ approach

Adaptive cluster sampling

In this section we briefly introduce adaptive cluster sampling. A complete reference is

Thompson and Seber [1996].

For this sampling design the idea of neighborhood is very important. A neighborhood

is defined for each unit in a population of size N in such a way that it has objective

characteristics (i.e. if the units are land areas a neighborhood of a unit consists of all the

units adjoining its borders). A simple random sample s0 including n0 units is selected. If

the value yi of the variable of interest for unit i ∈ s0 satisfies a condition C, the units in its

neighborhood are selected. If any other units of that neighborhood satisfies C also their

neighborhoods are included in the sample. We continue this procedure until a cluster

of units is obtained; the units in the border on this cluster do not satisfy condition C

and they are called edge units. The final sample consists of n0 clusters, not necessary

different. If a unit in the initial sample does not satisfy condition C, its neighborhood is

not selected, and it forms a cluster of size 1. The following quantities are defined:

Ai: cluster generated by unit i with its edge units removed (a selection of any unit in Ai

leads to the selection of all Ai);

mi: number of units in Ai;

ai: number of units in networks where unit i is an edge unit;

αi: probability that unit i is included in the sample;

αij: probability that both units i and j are included in the sample.

The probability αi is defined as follows:

αi = 1−
[(
N −mi − ai

n1

)
/

(
N

n1

)]
The adaptive cluster estimator µ̂ for the population mean is

µ̂ =
1

N

ν∑
i=1

yi
αi

=
1

N

κ∑
k=1

y∗k
αk
,

where y1, y2, ..., yν are the y-values of the ν distinct units in the final sample, y∗k is the

sum of the y-values for the kth network, κ is the number of distinct networks and αk is
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the probability that the initial sample intersects the k-th network. If there are xk units

in the kth network:

αk = 1−
[(
N − xk
n1

)
/

(
N

n1

)]
αjk = 1−

[(
N − xj
n1

)
+

(
N − xk
n1

)
−
(
N − xj − xk

n1

)]
/

(
N

n1

)

v̂ar(µ̂) =
1

N2

[
κ∑
j=1

κ∑
k=1

y∗j y
∗
k

αjk

(
αjk
αjαk

− 1

)]
,

where v̂ar(µ̂) is the estimated variance of the mean estimator µ̂.

Adaptive cluster sampling is an example of a pure adaptive design: the selected units give

information on the units to be chosen consequently. If the selected units provides infor-

mation only on the numbers of units to be later selected we are dealing with a sampling

design with adaptive allocation.

Adaptive allocation in stratified sampling

In conventional stratified sampling, the optimal allocation (Neyman allocation) de-

pends on population variances (see formula (2.5)) that are generally unknown. A practical

recommendation is to substitute them with sample variances computed from past data

or from a pilot survey. Another approach is to develop the survey in steps and estimate

the variances from initial steps, thus approximating the optimal allocation based on prior

knowledge of the actual variances.

Cox [1952], Sandvik et al. [1996], Mukhopadhyay [2005] are some of the authors that have

considered the problem of sample allocation with unknown strata variances and proposed

different kinds of two steps sampling. However, these procedures do not admit design

unbiased estimates of the parameters.

Thompson and Seber [1996, pp 189-191] suggested a sequential approach in k phases

(phases are considered sampling steps). At the kth phase, a complete stratified random

sample is selected, with sample sizes possibly depending on data from previous phases.

Then the traditional stratified estimator for the total, call it τ̂k, based on the data from

the kth phase, results to be unbiased for the population total τ . Therefore the weighted

average

τ̂w =
K∑
k=1

wkτ̂k,

where wk ≥ 0 denotes a given weight, such that
∑K

k=1wk = 1, is an unbiased estimator

of the population total τ .

τ̂w is unbiased because each of the estimators τ̂k is design unbiased and the weights wk

are fixed in advance, i.e. they do not depend on observations during the survey. However,
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stratum boundaries as well as sample sizes can change from phase to phase, being based on

observations in the previous phase of the survey. Thompson and Seber [1996] also proved

that the variance of the total τ̂w can be estimated by using the conventional estimator.

Carfagna et al. [2008] applied the approach proposed by Thompson and Seber with just

two steps, i.e. K=2. In the first phase, they selected a complete stratified random sample

of polygons with probability proportional to stratum size. The number of sample units n1

selected in the first phase must be fairly small because the unique aim of this first sample

is to estimate the standard deviation of the strata necessary to compute the Neyman’s

allocation. At the same time, n1 has not to be too small since the estimates of the

standard deviations must be reliable, in fact they are not updated like it is done in the

sequential procedure. Once the standard deviations in the different strata are estimated,

the Neyman’s allocation with sample n1 + n2 is computed, where n1 + n2 is the sample

size required for reaching a specified standard deviation S of the estimate of the total

(Cochran [1997], formula 5.50):

n1 + n2 =

(∑H
h=1Nhsh

)2
S2 +

∑H
h=1Nhs2h

, (2.9)

where s2h is the estimate of the population variance for stratum h computed at the first

step, H is the total number of strata and Nh is the population units in stratum h.

First of all, Carfagna et al. [2008] assigned the same weights to the estimators in the two

phases (weights independent of the observations), which result into an unbiased estima-

tor of the total. Next, they assigned weights proportional to the sample size (n1 and

n2). Finally, they found the optimal weights that minimize the variance of τ̂k under the

assumption that sampling is independent in the two phases. These weights are

w1opt =
V ar(τ̂2)

V ar(τ̂1) + V ar(τ̂2)
, w2opt =

V ar(τ̂1)

V ar(τ̂1) + V ar(τ̂2)
.

Therefore, it turns out that the higher the variance of the estimator of phase one, the

higher is the weight assigned to phase two estimator. In this way the weights depend on

the observations, making the estimator biased but efficient.

Since the Thompson and Seber’s method requires the selection of a complete stratified

random sample at each phase, it results not to be very efficient. Hence, Carfagna [2007]

proposed a two steps selection procedure with permanent random number (TSPRN) in

order to develop a more efficient design which allocates the sample units of the second step

only in those strata where supplementary selection is needed. Indeed, the TSPRN assigns

a random number to each unit in each stratum, then, the units are ordered according

to the associated number and this order corresponds to the selection order. At the first
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step, a subset of units is selected in each stratum. At the second step, a group of units in

each stratum is added to the sample, following the selection order fixed at the beginning

of the procedure. The size of the group of units selected at the second step depends on

the results obtained during the first selection. Thus, only one selection is performed and

the set of selected units in each stratum can be considered as a random sample without

replacement (Ohlsson [1995]); clearly, there is no need to select at least two units from

each stratum at each step. Consequently, the TSPRN results to be more efficient than

the procedure proposed by Thompson and Seber, as shown in Carfagna [2007]. At the

first step the sample units n1 are allocated proportionally to each stratum getting nh1,

for h = 1, ..., H; the standard deviations of the strata are then calculated to compute

Neyman’s allocation with total sample size n1 + n2 obtained by formula (2.9). In some

strata, the optimum sample size (nh) can be less than or equal to the number of units

already controlled (nh1) In such cases, no other sample units are sampled; otherwise, nh2

sampling units are controlled: nh2 = nh − nh1 if nh − nh1 ≥ 0, otherwise nh2 = 0. This

implies that the effective sample size will be larger that the one computed by formula

(2.9).

Now suppose that we are interested in estimating the population mean Y through the

stratified mean estimator ystT generated by the TSPRN procedure, that is

ystT =
H∑
h=1

Nh

N

nh1+nh2∑
i=1

yhi
nh1 + nh2

. (2.10)

In the TSPRN procedure the total sample size is not based on the values assumed by

the estimator ystT , but only on the standard deviation of this estimator, hence ystT is

unbiased. Indeed, using permanent random numbers, the selection of the units at the

second step is independent from the results obtained in the first step and the selection

is considered a simple random sampling without replacement. The sample size of each

stratum in the second step is the unique element that depends on the standard deviations

of the strata calculated in the previous steps. Thus, the conditional expectation of ystT
at the second selection, given the data d1 collected at the first step, is:

E[ystT |d1] = E[ystT |n11 + n12, ..., nH1 + nH2],

which is unbiased for Y . Thus the unconditional expectation is also unbiased for Y .

Likewise, the unconditional variance of ystT is:

V ar[ystT ] = E[V ar(ystT |n11 + n12, ..., nH1 + nH2)] + V ar[E(ystT |n11 + n12, ..., nH1 + nH2)],

but E(ystT |n11 + n12, ..., nH1 + nH2) is the constant Y , having variance equal to zero,

so that V ar[ystT ] = E[V ar(ystT |n11 + n12, ..., nH1 + nH2)], which, for stratified random
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sampling, is:

E[V ar(ystT |n11 + n12, ..., n1H + n2H)] = E

[
H∑
h=1

Nh

(nh1 + nh2)

Nh − (nh1 + nh2)

N2
S2
h

]
,

where S2
h is the population variance for stratum h. The term inside the expected value is

estimated by:

V̂ ar(ystT |n11 + n12, ..., nH1 + nH2) = E

[
H∑
h=1

Nh

(nh1 + nh2)

Nh − (nh1 + nh2)

N2
s2h

]
,

where s2h is the sample variance for stratum h computed at the second step.

Therefore, an unbiased estimator of V ar(ystT ) is:

V̂ ar(ystT ) =
H∑
h=1

Nh

nh1 + nh2

Nh − (nh1 + nh2)

N2

∑nh1+nh2
i=1

(
yhi −

∑nh1+nh2
i=1 yhi
nh1+nh2

)2

(nh1 + nh2)− 1
.

Adaptive sequential stratified sampling with adaptive allocation

Carfagna and Marzialetti [2009b] went further, proposing an adaptive sequential pro-

cedure with the use of permanent random numbers (ASPRN). When the population is

divided into strata it is possible to assign a random number to each unit in each stra-

tum and order the units according to the associated number; this order corresponds to

the selection order. The procedure continues selecting a first stratified random sample

with probability proportional to stratum size, including at least two sample units per

stratum and estimating the variability inside each stratum. In case in one stratum the

estimated variability is zero, the ASPRN assigns to this stratum the variance estimated

in the stratum with the lowest positive variance. Then, Neyman’s allocation is computed

with sample size n+1 and one sample unit in the stratum with the maximum difference

between actual and Neyman’s allocation is selected. Then the parameter of interest and

its precision are estimated. If the precision is acceptable, the process stops; otherwise,

Neymas’ s allocation is computed with sample size n+2, and so on, until the precision

considered acceptable is reached. Due to the use of permanent random numbers, the

sample size per stratum depends on the previously selected units, whereas the sample

selection does not; thus the ASPRN allows design unbiased and efficient estimates of the

parameters of interest.

Suppose we are interested in estimating the population mean Y through the stratified

Tesi di dottorato "Adaptive Sequential Sampling for Finite Populations with Applications in Agricultural and Agro-Environmental Statistics"
di MISSIROLI SILVIA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2017
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



22

mean estimator ystA, obtained by the AGSPRN procedure, that is

ystA =
H∑
h=1

Nh

N

nhk∑
i=1

yhi
nhk

, (2.11)

where nhk is the sample size in stratum h at the k-th selection, for h = 1, ..., H. As in

TSPRN, the estimator ystA in (2.11) is unbiased for Y since, in the proposed sequential

procedure, the stopping rule is not based on values assumed by ystA but only on its

standard deviation. Moreover, the estimates of the strata variances that are updated at

each step affect only the sample size of the different strata, not the sample selection in

each stratum. This is due to the use of the permanent random numbers (Ohlsson [1995]).

Let dk−1 denotes the data collected through the sequential procedure before the k-th

selection. The data dk−1 affect only the strata allocations n1k, ..., nHk at the k-th step,

they do not affect the selection of the units which is independent because of the use

of permanent random numbers. Thus, the conditional expectation of ystA at the k-th

selection, given the information collected in previous selections, is:

E [ystA|dk−1] = E [ystA|n1k, ..., nHk] .

Given the sample size nhk, ystA at the k-th selection is, under stratified random sampling,

unbiased for Y . Therefore the unconditional expectation of ystA is also unbiased for Y .

The stopping rule is not based on the value of ystA but on its standard deviation, thus the

last selection of the sequential procedure does not differ from the k-th selection. This can

allow us to conclude that ystA, under stratified random sampling, is an unbiased estimator

for Y .

The unconditional variance of ystA is:

V ar[ystA] == E[V ar(ystA|n1k, ..., nHk)] + V ar[E(ystA|n1k, ..., nHk)],

but E(ystA|n1k, ..., nHk) is the constant Y , having variance equal to zero, so that

V ar[ystA] = E[V ar(ystA|n1k, ..., nHk)], which, with stratified random sampling, is:

E[V ar(ystA|n1k, ..., nHk)] = E

[
H∑
h=1

Nh

nhk

Nh − nhk
N2

S2
h

]
,

where S2
h is the population variance for stratum h. An estimator for the variance of ystA

is:

V̂ ar(ystA) =
H∑
h=1

Nh

nhk

Nh − nhk
N2

∑nhk
i=1

(
yhi −

∑nhk
i=1 yhi
nhk

)2
nhk − 1

.
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The permanent random numbers (PRN) technique

Ohlsson [1995] proves that the use of Permanent Random Numbers (PNR) in sampling

from a population yields to a simple random sample without replacement. Indeed, if we

associate to each unit of the population a random number, uniformly distributed over

the interval (0, 1) and if we order them in an ascending order, the first n units of the list

constitute a simple random sampling without replacement of size n.

Following Ohlsson [1995], let us denote with Pr(s) the probability of extracting the sample

s of size n from a population of size N through the PRN technique. We shall prove that

Pr(s) =
1(
N
n

) . (2.12)

Let Xn be the largest of the PRN corresponding to the last unit nth of the sample s

and let f(x) be the pdf of Xn. Conditioning on the outcome of Xn = x we get:

Pr(s) =

∫ 1

0

P (s|Xn = x)f(x)dx.

The probability of s conditioned on the value x of Xn is equal to the probability of

observing N − n units with values greater than x, hence we obtain:

Pr(s) =

∫ 1

0

(1− x)N−nnxn−1dx = nB(n,N − n+ 1) = n
(n− 1)!(N − n)!

N !
, (2.13)

where B(., .) is the Beta function. Result in (2.13) is equal to the right term in (2.12).

Comparison between different adaptive sampling procedures

Carfagna and Marzialetti [2009b] introduced a comparison between TSPRN, ASPRN

and other sampling procedures, dealing with the estimator of A, that is the percentage of

the area correctly photo-interpreted, a quality index introduced in Section 1.2.1. It is the

main element of our application described in Chapter 5 and it will be defined in details

in Section 5.4. They showed that for the AGSPRN procedure, the standard deviation of

the estimate of A decreases as the sample size increases, but this decrease is not strictly

monotone. They also reported that as the sample size increases, the estimator tends to

converge to the real value in the population. Moreover, the ASPRN procedure is more

efficient than the stratified sampling with proportional allocation and fixed sample size,

requiring less sample units to achieve the same standard deviation of the estimate.

Carfagna and Marzialetti [2008] analysed also the behavior of Cohen’s Kappa estimator

with an adaptive sequential procedure (ASPRN). Cohen’s Kappa is an agreement index

which discounts the total proportion of agreement (p0) by the level of agreement expected

by chance (pc). It is based on a matrix in which, in the case of land quality control, we
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insert the area of polygons classified to class i by the photo-interpreter and to class j by

the controller, divided by the total area.

Cohen’s Kappa is:

κ =
po − pc
1− pc

=

∑
i pii −

∑
pi+ · p+i

1−
∑
pi+ · p+i

where pii is the percentage of the total area photo-interpreted as the same land cover
type “i”, while pi+ and p+i are the percentages of the total area classified in the class
“i”respectively by the photo-interpreter and the controller.
When the sample size is sufficiently large, it is possible to compute the standard deviation
of Cohen’s Kappa using a large sample variance of the estimate:

V ar(κ) =
1

n(1− pc)2

∑
i

pii {1− (pi+ + p+i)(1− κ)}2 + (1− κ)2
∑
i 6=j

pij(pi+ + p+j)
2 − {κ− pc(1− κ)}2

 .

Carfagna and Marzialetti [2008] found out that the behaviour of the estimate of Cohen’s

Kappa for increasing sample size is less volatile with ASPRN than with proportional al-

location. The ASPRN and the proportional allocation procedures result into very similar

values of the standard deviation as the sample size increases. The same holds for the

coefficient of variation. The reason can be that the formula for computing the standard

deviation of Cohen’s Kappa cannot take the advantage of optimal allocation of the sam-

ple units in the strata, since it does not take into account the stratification. Moreover,

the standard deviation of Cohen’s Kappa is based on large sample properties, hence a

high pilot sample size is required to increase the performance of the ASPRN procedure.

Carfagna and Marzialetti [2008] analyzed the behavior of the Cohen’s Kappa’s standard

deviation for large sample size, hence the conclusion should be reliable.

Carfagna and Marzialetti [2009b] compared the ASPRN with TSPRN finding out that the

ASPRN is more efficient than TSPRN because the former allows to obtain the same pre-

cision of the estimates sampling less units. However, if a budget constraint is introduced,

the ASPRN becomes less efficient than TSPRN because the selection of each sample unit

is a step in the process, with the consequent cost (Carfagna et al. [2012]). This motivates

the study developed in Chapter 3, where we will investigate the possibility of defining an

adaptive procedure with a optimum number of steps K, that is a compromise between

the TSPRN and the ASPRN. It should reduce the costs incurred by the ASPRN and, at

the same time, it should preserve the ASPRN capability to generate a sample allocation

very close to Neyman’s one.
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2.5.2 Adaptive designs in the ‘model based’ approach

Optimal two phases strategy for known population model

Thompson and Seber [1996, pp 237-239] showed that when the population model is

known, the optimal adaptive procedure is always better or as good as the best nonadaptive

method. In the ’model based’ approach, y is a realization of a random vector Y having

a density function f(y,φ) which is assumed to be known exactly; φ can have a prior

distribution. The ideal adaptive two-phase design is obtained in two steps. The first step

presents a selection of units s1, whereas in the second steps units s2 are sampled in such

a way that the following function is minimized:

gs2(s1,ys1) = E
{[
t(s1,ys1 , s2,Ys2)− η(Y)

]2 |s1,ys1} =

∫
(t− η)2f(ys1|s1,ys1 ;φ)dys1

where s1 is the vector of units not in the first sample, ys1 are the y-values of the units s1,

f(ys1|s1,ys1 ;φ) is the conditional density, given the initial sample, of the components of

y not in s1, t is an estimator and η = η(Y) is the population target we want to estimate.

The conditional mean-square error for the optimal choice is then

mins2gs2(s1,ys1) = miniE
{[
t(s1,ys1 , s2,Ys2)− η)

]2 |s1,ys1 , s2 = i
}

where i refers to the integer that identifies one of the possible sample in S2, the countable

set of all possible second-phase samples.

Thus, starting with initial sample s1 and taking the optimal choice for s2 (say s2 = j),

the overall mean-square error is

E[(T − η)2|s1, s2 = j] =

∫
mins2gs2(s1,ys1)f(y;φ)dy.

The best nonadaptive design, on the other hand, will select s2 to minimize the mean-

square error without taking the first-phase observations ys1 into account. If this occurs

at s2 = k, the mean-square error for the optimal conventional design is

E[(T − η)2|s1, s2 = k] = mins2

∫
gs2(s1,ys1)f(y;φ)dy.

We can compare this with the adaptive design as given above by noting that, by a basic

property of integration,∫
mins2gs2(s1,ys1)f(y;φ)dy ≤ mins2

∫
gs2(s1,ys1)f(y;φ)dy.

Hence, the optimal adaptive procedure will always be as good as or better than the best

nonadaptive procedure.
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2.5.3 Adaptive designs in the infinite population context

Fixed-width confidence intervals and two-stage procedures

In an infinite population context, we assume that y1, y2, ... is a sequence of independent

and identically distributed (i.i.d) N(µ, σ2) random variables where both parameters are

unknown with µ ∈ (−∞,+∞), σ ∈ (0,+∞). The aim is to construct an interval I for µ

of fixed length 2d and such that Pµ,σ(µ ∈ I) ≥ 1 − α, with α ∈ (0, 1), d(> 0). Ghosh et

al. [1997, Section 3.7] showed that any fixed sample size procedure does not exist as a

solution for this problem. Stein [1945] referred to the two-stage procedures giving more

mathematical and statistical foundations.

Given the sample ys = (y1, ..., yn)′, the confidence interval for µ is In = [yn ± d] where yn
is the sample mean. Pµ,σ(µ ∈ I) = 2Φ(n1/2d/σ)− 1, which would be at least (1−α) if we

choose n to be the smallest integer greater than or equal to a2σ2/d2, where Φ(a) = 1 −
(1/2)α. If σ would be known, C = a2σ2/d2 is also known and the solution would be easy.

But in this case it is not and we require a two-stage procedure: in the first phase m(≥ 2)

units, y1, ..., ym, are drawn and let ym = m−1
∑m

i=1 yi, S
2
m = (m − 1)−1

∑m
i=1(yi − ym)2.

We define:

N = N(d) = max

{
m,

[
a2m−1S

2
m

d2

]∗
+ 1

}
,

where am−1 is the upper (α/2)th quantile of the Student t distribution with (m− 1) de-

grees of freedom and [x]∗is the larger integer smaller than x.

If N = m the process stops and no more units will be added, otherwise (N −m) units are

sampled at the second stage. The interval IN = [yN ± d] based on all N units sampled is

proposed for µ and the following properties are satisfied:

(i) Pµ,σ{µ ∈ In} ≥ 1− α for all µ and σ2;

(ii)
a2m−1σ

2

d2
≤ Eµ,σ(N) ≤ m+

a2m−1σ
2

d2
;

(iii) limd→0Eµ,σ(N
C

) =
a2m−1

a2
;

(iv) limd→0 Pµ,σ{µ ∈ In} = 1− α for all µ and σ2.

Sequential fixed-width interval estimation

The two-stage procedure proposed by Stein was extended by Ray [1957] who was

the first to suggest a sequential procedure to obtain a fixed-width interval estimator

for estimating the mean of a normal distribution when σ is unknown. Assuming the

same setting of the previous paragraph, where y1, y2, ... is a sequence of independent and

identically distributed (i.i.d) N(µ, σ2) random variables with both parameters unknown,

µ ∈ (−∞,+∞), σ ∈ (0,+∞). If σ2 is known the optimal sample size to reach the
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prefixed value 1 − α for the confidence interval of µ would be the smallest integer such

that n ≥ σ2a2/d2 = n∗, where a is the upper 100(α/2)% quantile of N(0, 1) and d is the

length of the semi-confidence interval for µ.

Ray proposed a stopping rule, when σ2 is not known:

N∗ = smallest odd integer n ≥ n0(≥ 3) for which n ≥ a2S2
n

d2
,

where S2
n is the sample variance and n0 is the initial sample size. Let us define λ = σ2/d2,

C∗(λ) = Pµ,σ2(yN∗ − d ≤ µ ≤ yN∗ + d), and D∗(λ) = Eµ,σ2(N∗), where yN∗ is the sample

mean when N∗ is the sample size. Ray’s computations show that as λ becomes large,

C∗(λ) tends to a value smaller than 0.95.

Chow and Robbins [1965] define another stopping rule:

N = inf{n ≥ n0 : n ≥ a2S2
n

d2
},

where n0 is the initial sample size. This sequential procedure possesses the following

properties, if 0 ≤ σ2 ≤ +∞:

(i) Pσ2(N <∞) = 1;

(ii) Eσ2(N) ≤ n0 + 1 + n∗;

(iii) Eσ2(N2) 6= (n0 + 1 + n∗)2 − 2;

(iv) N ≡ N(d) ↓ a.s. in d; N →∞ a.s. as d → 0; E(N)→∞ as d→ 0;

(v) N/n∗ → 1 a.s. as d → 0;

(vi) limd→0Eσ2(N/n∗) = 1;

(vii) limd→0 Pµ,σ(yN − d ≤ µ ≤ yN + d) = 1− α.

2.6 The connection between infinite population ap-

proach and ‘design based’ approach in two-steps

and sequential adaptive estimation

In this section the properties of the estimators generated by two-steps and sequential

adaptive procedures in infinite population context are extended to those estimators ob-

tained through the same procedures with a finite population approach. The main tool

that allows this connection is the classical central limit theorem(CLT). It usually requires

independent and identically distributed random variables, conditions that are usually not

satisfied in sampling without replacement. Hence, it is not easy to verify the validity

of CLT for the majority of the finite populations sampling schemes. Each case needs a

proper analysis and a typical approach to demonstrate the validity of the finite population
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central limit theorem is through simulations (Bellhouse [2001]).

2.6.1 Simple random sampling with replacement (SRSWR)

In simple random sampling the values y1, y2, ..., yn of the units in the sample are i.i.d. and

they have common distribution FN(x) = 1/N
∑N

i=1 I{yi ≤ x} which is unknown. The

aim is to estimate the population mean Y . The conditions to apply the classical central

limit theorem are here satisfied. Let us suppose that yn is the mean of a sample of size

n and a confidence interval for Y is Id(yn) = (yn − d, yn + d). By the CLT the coverage

probability of Id(yn) is approximately

CP ∼= 2Φ

(
d
√
n

σN

)
− 1,

where σN is the variance of FN . Thus, if

n ≥ σ2
Na

2

d2
,

the coverage probability is approximately 1-α, with a the upper (1-α/2) quantile of a

standardized Normal distribution.

When σ2
N is not known, the Chow-Robbins sequential procedure can be used, starting

from a sample size m(≥ 2) and then calculating the sample size at each step through the

sample variance based on n observations, that is:

s2n =
1

n− 1

n∑
i=1

(yi − yn)2.

The sequential stopping variable is:

N(d) = min

{
n : n ≥ m,n ≥ s2na

2

d2

}
.

The Chow-Robbins sequential procedure is asymptotically consistent and efficient, as

d → 0. Zacks [2009, pp 82–83] showed by a simulation study that this holds also in a

finite population context.

Stein’s two-stage procedure may often be more convenient: at stage one, m units are

sampled with a SRSWR procedure, computing s2m and

Nm =

[
a2s2m
d2

]∗
+ 1.
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If Nm ≤ m the procedure stops and the confidence interval of Y is (ym − d, ym + d);

however, if Nm > m, we go to the second step where Nm − m units are sampled and,

combining the two samples, we can compute the confidence interval (yNm − d, yNm + d).

2.6.2 Simple random sampling without replacement (SRSWOR)

In SRSWOR the random variables y1, y2, ..., yn are neither independent nor identically

distributed, but if the sample size n is very small respect to the population size N (n/N <

0.1), some properties of the sample mean like convergence in distribution to the normal

might still approximately hold. Erdős and Rényi [1959] and Hájek [1960] established

necessary and sufficient conditions for the validity of central limit theorem in simple

random sampling without replacement from finite populations.

In SRSWOR the variance of yn is (S2/n)(1 − n/N) = S2(1/n − 1/N), where S2 is the

population variance. Thus if we want to apply Stein’s two-stage procedure with s2m the

variance of the sample drawn in the first step, the stopping variable is:

Nm = min

{[
N

a2s2m
Nd2 + a2s2m

]∗
+ 1, N

}
.

In the second step, we draw (N∗m − m) units following a SRSWOR procedure and we

calculate yn averaging the two combined samples:

yn =
my(1)m + (Nm −m)y

(2)
Nm−m

max{m,Nm}
,

where y(1)m is the mean of the first sample and y
(2)
Nm−m is the mean of the second sample.

The conditional expectation of yn given the first sample ys1 is:

E[yn|ys1 ] = Y P{Nm > m}+ E[y(1)m I{Nm ≤ m}].

If

P{Nm ≤ m} = P

{
s2m ≤

Nmd2

(N −m)a2

}
is small, then yn is approximately unbiased.

An adaptive sequential procedure can be also applied by starting from a sample size

equal to m and then adding one unit at each step to calculate the sample variance of the

combined sample. The stopping variable is:

N∗(d) = min

{
n : n ≥ m,

Na2s2n
Nd2 + a2s2n

≤ n

}
.
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Zacks [2009, pp 86] showed by a simulation study that the two-steps procedure with

SRSWOR is more efficient than that with SRSWR. Moreover, he also showed that the

sequential procedure is not more efficient that the two-steps one.

2.6.3 Stratified simple random sampling

It is possible to apply Stein’s two-stage procedure to stratified simple random sampling.

Bickel and Freedman [1984] studied the conditions required to apply the classical central

limit theorem to stratified random sampling from finite populations.

Knowing the population weights Wh of the strata (h = 1, ..., H), at step one m units are

allocated proportionally to the strata, that is nh1 = mWh. The sample variances of each

stratum s2nh1 are then calculated; they are unbiased estimates of the strata population

variances S2
h. The number of units that have to be sampled to obtain a fixed length 2d

of the confidence interval for the population mean Y is:

Nm =

[
N

a2
∑H

h=1Whs
2
nh1

Nd2 + a2
∑H

h=1Whs2nh1

]∗
+ 1.

If Nm ≤ m the process stops and the population mean Y is estimated by ym±d, where

ym =
∑H

h=1Whynh1 . However, if Nm > m the remaining units Nm−m are allocated among

the strata according to the Neyman’s rule:

n
(2)
h = (Nm −m)

W
(2)
h s2nh1∑H

j=1W
(2)
j s2nj1

where W
(2)
h = (Nh − nh1)/(N −m). The estimate of Y is ŷn ± d, where

ŷn =
H∑
h=1

Wh

nh1yn(1)
h

+ nh2yn(2)
h

nh1 + nh2
. (2.14)

ynh1 and ynh2 are respectively the mean of stratum h of the first-step and the second-step

samples, with h = 1, ..., N .

Theorem 2.6.1. Zacks [2009, pp 89]

Under the two-steps stratified sampling ŷn is unbiased, that is:

E[ŷn] = Y for all values of Y .

Proof : Denote with F1 the σ-field generated by (ynh1 , S
2
nh1
, h = 1, ..., H). Notice that,

given nh2, the second step sample is a simple random sample (Nh−nh2) for each stratum.
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The conditional expected value of ynh2 given F1 is:

E[ynh2|F1] =
NhY h − nh1ynh1

Nh − nh1
, (2.15)

where Y h is the population mean in stratum h. Substituting the quantity in (2.15) in

(2.14), we obtain:

E[ŷn|F1] =
H∑
h=1

WhY nh1 .

Finally, since E[Y nh1 ] = Y h, h = 1, ..., H, we get:

E[ŷn] =
H∑
h=1

WhY h = Y , for all values of Y .

Zacks [2009, pp90] showed by simulations that the coverage probability (CP) of Id(ŷn)

is approximately equal to 1−α and there is a significant advantage in adopting a stratified

random sampling with respect to a simple random sampling.

This is the framework we want to expand in Chapter 3 to a group sequential procedure

(slightly different from the Chow and Robbin’s one) with the addiction of budget and cost

function.

2.7 Summary

In this chapter we have discussed the main aspects of the topic underlying this thesis. We

have introduced the finite population sampling situation, presenting two of the most used

conventional designs: simple random sampling and stratified random sampling, focusing

on the research of the optimal sample size when costs are considered and a prefixed level of

the estimator variance is desired. We have explored some adaptive designs, e.g. adaptive

cluster sampling, dealing particularly with adaptive allocation in stratified sampling. We

discussed the k-phases adaptive sampling procedure proposed by Thompson and Seber

[1996], a two steps adaptive procedure with permanent random numbers (TSPRN) in-

troduce by Carfagna [2007] and a sequential adaptive procedure with permanent random

numbers (ASPRN) presented by Carfagna and Marzialetti [2009b]. The contribution that

we will present in Chapter 3 is an extension of these methods. Moreover, in this chapter

we have discussed the adaptive sequential methods for an infinite population context.

The two steps procedure of Stein [1945] and the sequential one of Ray [1957] are the main

results in this setting. Zacks [2009] have investigated the connection between infinite

population approach and finite population one in two steps and adaptive estimation. In

Chapter 3 we will extend the existing methods to a group sequential context and we will
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add the costs of sampling, proposing an optimal adaptive group sequential procedure for

finite population, in the presence of a cost function.
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Chapter 3

The adaptive group sequential

procedure with permanent random

numbers (AGSPRN)

3.1 Introduction

In Chapter 2 we have introduced the adaptive sequential procedure with permanent ran-

dom numbers (ASPRN) and the two steps sequential procedure with permanent random

numbers (TSPRN), which are two special and opposite cases of adaptive procedure. The

ASPRN procedure consists in selecting one unit per step until the stopping rule is sat-

isfied. The TSPRN procedure involves only two steps, adding, after having selected the

pilot sample, all the necessary units at the second step. Moreover, Section 2.5.1 shows

that if a cost function with a relevant step cost is introduced, the TSPRN results more

efficient than the ASPRN, a point that reshuffles all the conclusions reached before. The

intuition at the base of this chapter is that it should exist a compromise procedure between

the TSPRN and the ASPRN, able to generates a more efficient estimator in presence of a

cost function. Therefore, in the next section we will propose an adaptive group sequential

procedure with the use of permanent random numbers (AGSPRN), from which we can

derive, as a particular case, the compromise solution we are looking for. The AGSPRN

proceeds along K steps, adding a bunch of q units at each step and following the same

adaptive allocation rule of TSPRN and ASPRN procedures, which can be derived as par-

ticular cases.

We will repeatedly apply the AGSPRN sampling scheme with different q and K to a

known simulated population in the presence of a linear cost function and we will show

that for some combinations (K, q) it gives rise to more efficient estimators than those

generated by the TSPRN, the ASPRN and by other classical sampling procedures. The

efficiency is measured in terms of:
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1. variance of the generated estimator given a cost function and a budget constraint

(Section 3.3);

2. total cost given a threshold on the estimator variance (Section 3.4);

3. a risk function, obtained through a combination of cost and estimator variance

(Section 3.5).

Particularly, the results will show that, for each of these three criteria, there is a

most efficient estimator generated by the AGSPRN procedure characterized by an opti-

mal number of steps Kopt and an optimal number of units qopt added at each step (optimal

AGSPRN procedure).

Three Monte Carlo algorithms are provided in order to find the optimal AGSPRN proce-

dure according to criteria 1, 2 and 3. However, these algorithms require as inputs some

precise information about the target population. We can use the pilot sample to derive

some assumptions, even though it may be not reliable, particularly if its size is small.

Hence, in Chapter 4 we will develop a method which allows to update, at each step, the

information about the distribution of the variable of interest in each stratum, in order to

obtain the optimal AGSPRN procedure. In this chapter we aim at showing some prop-

erties of the optimal sampling technique, using as inputs of the Monte Carlo algorithms

directly the target population.

3.2 The adaptive group sequential procedure with

permanent random numbers (AGSPRN)

In Chapter 2 we have pointed out that if a budget constraint and a cost function with a

relevant step cost are introduced, the ASPRN procedure may become less efficient than

the TSPRN procedure. Therefore, the precision of the estimator under budget constraint

can be increased adding more units per step. This is the reason that leads us to propose

an adaptive group sequential procedure with permanent random numbers (AGSPRN).

Our objective is to find the optimal number of steps Kopt for the AGSPRN procedure

and the optimal number of units added per step qopt that allow to preserve both the cost

efficiency of the TSPRN procedure and a sample allocation close to Neyman’s one that

results from the ASPRN procedure. Indeed, the closer the stratum allocation is to the

optimal one the higher will be the precision of the estimator.

Therefore, our idea is to preserve the same adaptive sequential scheme of the ASPRN,

adding at each step a number of unit q in the strata where the difference between the

Neyman allocation and the sequential allocation is positive, in a proportional way.
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The adaptive group sequential procedure with permanent random numbers (AGSPRN)

is a group sequential procedure which generates a stratified random sample, with an

adaptive strata allocation at each step. Given a population of size N that is stratified

into H strata of size N1, ..., NH , for any integer q ∈ [1, N−n0], where n0 is the preliminary

or first step sample size, the AGSPRN procedure is developed as following:

(i) assign a random number to each unit in each stratum, then order the units according

to the associated number;

(ii) at the first step [k = 1] select a first stratified random sample of size n0 with

proportional allocation, selecting at least two sample units per stratum and estimate

the variance inside each stratum;

(iii) compute Neyman’s allocation with sample size n = n0 + q and select q sample

units only in the strata with positive difference between Neyman’s allocation and

the actual one (the allocation is proportional to this difference). Then estimate the

parameter of interest and its precision;

(iv) if the stopping rule is satisfied, or the units of the population are all drawn, stop

the process; otherwise estimate the strata variances and start again from step (iii)

using a sample size equal to n+ q.

Let us suppose that the parameter of interest is the population mean Y of some variable

Y . Let K denote the step at which the stopping rule is satisfied. Due to the use of the

permanent random numbers, we can adopt the direct expansion stratified estimator in K,

that is ystK =
∑H

h=1
Nh
N
yhK , where h refers to the stratum and yhK is the sample mean

in stratum h after K steps. One can derive some interesting properties of the estimator

ystK =
∑H

h=1
Nh
N

∑nhK
i=1 yihK , where nhK are the units allocated to the stratum h at step

K and yihK is the y-value of unit i in stratum h after K steps, with i = 1, ..., nhK and

h = 1, ..., H.

Let dK−1 denote the data collected through the AGSPRN procedure between the first and

the (K − 1)-th selection. The permanent random numbers assign the selection order to

all the sampling units in each stratum before the adaptive selection procedure starts, thus

dK−1 affects only the allocations n1K , ..., nHK at step K, not the selection of the units.

Hence, the conditional expectation of ystK at the K-th selection, given the information

collected in previous selections, is:

E [ystK |dK−1] = E [ystK |n1K , ..., nHK ] = Y .

Given the sample size nhK , ystK at the K-th selection is, under stratified random sampling,

unbiased for Y . Therefore, the unconditional expectation of ystK is also unbiased for Y .
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Note that the stopping rule is not based on the value of ystK but on its standard deviation,

thus the last selection of the sequential procedure does not differ from the K-th selection.

This allows us to conclude that ystK , under stratified random sampling, is an unbiased

estimator for Y :

E [ystK ] = E{E [ystK |dK−1]} = E{E [ystK |n1K , ..., nHK ]} = E[Y ] = Y . (3.1)

The unconditional variance of ystK is:

V (ystK) = E[V (ystK |n1K , ..., nHK)] + V [E(ystK |n1K , ..., nHK)],

but E(ystK |n1K , ..., nHK) is the constant Y , having variance equal to zero, so V [ystK ] =

E[V (ystK |n1K , ..., nHK)], which, for stratified random sampling, is:

V (ystK) = E[V (ystK |n1K , ..., nHK)] = E

[
H∑
h=1

N2
h

nhKN2

Nh − nhK
Nh

S2
h

]
, (3.2)

where S2
h is the population variance for stratum h. It is prohibitive to solve expression (3.2)

analytically, since it depends on the all possible realizations of the allocations n1K , ..., nHK

at the K-th step.

An estimator of V (ystK) is:

V̂ (ystK) =
H∑
h=1

N2
h

N2

Nh − nhK
NhnhK

∑nhK
i=1 (yihK − yhK)2

nhK − 1
(3.3)

This result is an extension of that derived by Thompson and Seber [1996, pp 191] for the

k-phases adaptive estimator.

Since an AGSPRN procedure is defined for each integer q ∈ [1, N−n0], let us denote with

V (ystK ;K, q) and V̂ (ystK ;K, q) respectively the quantities in (3.2) and (3.3) computed at

the K-th step with q units added at each step.

Moreover, if we aim at estimating the percentage P of units that posses some character-

istic, the estimator is

pstK =
H∑
h=1

Nh

N

nhK∑
i=1

yihK
nhK

=
H∑
h=1

Nh

N
yhK =

H∑
h=1

Nh

N
phK ,

where yihK is the variable which assumes value 1 if the unit i in stratum h possesses the

characteristic and 0 otherwise, phK is the percentage of sample units in stratum h which
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possesses the characteristic. Given n1K , ..., nHK an estimate of V (ystK) is given below:

V̂ (ystK ;K, q) = V̂ (pstK ;K, q) =
H∑
h=1

N2
h

N2

Nh − nhK
NhnhK

s2hK ; (3.4)

where s2hK = nhK
nhK−1

phK(1− phK) is the sample variance in stratum h at step K.

To introduce the cost in AGSPRN procedure, let us consider the following linear cost

function:

C = C(K, q) = C0 + cn[n0 + q(K − 1)] + ckK, (3.5)

where C0 is the fixed cost, cn is the cost per unit, ck is the cost per step and K is the

total number of steps performed by the AGSPRN procedure before stopping.

Another important element to be considered is the risk function which combines both

criteria of estimator variance and cost for each pair (K, q) characterizing each AGSPRN

procedure stopped at the K-th step. Its expression is given by the sum of the expected

loss plus cost and when a square loss function is chosen it is equal to:

R(ystK , Y N ;K, q) = E[L(ystK , yN ;K, q)] + C(K, q) = λMSE(ystK , yN ;K, q) + C(K, q) =

= λV (ystK ;K, q) + C(K, q),

(3.6)

where λ is a constant used to combine the two criteria V (ystK ;K, q) = Ψ1(·) and Ψ2(·) =

C(K, q) according to a comparable scale. For each pair (K, q), R(ystK , yN ;K, q) takes

a defined value. We aim at minimizing it with respect to all the possible combinations

(K, q)’s in order to find the optimal AGSPRN procedure. However, this optimization

problem is analytically intractable. Hence, we will proceed through a Monte-Carlo study

and we will apply the compound optimization approach (Section 2.4.3) with the standard-

ized versions Ψ1s(·) and Ψ2s(·) of Ψ1(·) and Ψ2(·):

ωΨ1s(·) + (1− ω)Ψ2s(·),

where the weights ω and 1−ω in (0; 1) represent the relative importance of Ψ1s and Ψ2s,

with Ψ1s, Ψ2s: [0; 1]→ [0; 1].

The final aim is to find the optimal AGSPRN procedure with an optimal number of

steps Kopt and units qopt which minimizes:

Case 1. the variance of the estimator in (3.2) given the linear cost function in (3.5) and a
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budget constraint (C in (3.5) is given);

Case 2. the cost function in (3.5) given a threshold v on the estimator variance in (3.2);

Case 3. the risk function in (3.6), given thresholds v and c respectively on the estimator

variance and on the total cost.

In the following sections we will present the optimization problems related to the three

cases and we will provide algorithms in order to find their Monte Carlo solution since they

are analytically intractable. However, these algorithms require a quite precise knowledge

of the population. First of all, we will apply them directly to a normal population in

order to illustrate some properties of the optimal AGSPRN procedure in comparison with

TSPRN, ASPRN and other classical sampling procedures. In the next chapter we will

provide a reliable and useful method in order to obtain the optimal AGSPRN procedure

when precise knowledge of the population is absent, that is the most frequent situation.

3.3 Case 1: minimization of the estimator variance

given a budget constraint

To find the optimal AGSPRN procedure which minimizes the estimator variance given a

budget constraint the following optimization problem has to be solved:

min(K,q)V (ystK ;K, q) (3.7)

subject to

C(K, q) = C (≤ C) (3.8)

The equality is considered in the cost constraint (3.8); indeed we are supposed to

spend all the budget: more units are selected higher is the precision of the estimates.

Given C, for each integer K ∈ [2, C−C0−cnn0+cn
cn+ck

] there is a corresponding integer q =

b(C − C0 − cnn0 − ckK)/(CnK − cn)c, where b·c indicates the integer part, rounding to

the floor.

Let H(K,q)c denote the set of constrained pairs of integers:

{(K, q) : q = b(C−C0−cnn0−ckK)/(CnK−cn)c,∀ integer K ∈ [2,
C − C0 − cnn0 + cn

cn + ck
]}.

Hence, (3.7) reduces to:

min(K,q)∈H(K,q)c
V (ystK ;K, q)

As we explained previously, it is not easy to compute analytically the value of V (ystK ;K, q)

for each (K, q) ∈ H(K,q)c , therefore the solution should be investigated through Monte
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Carlo simulations. Morrison et al. [2008], Salehi and Brown [2010], Salehi et al. [2010] are

some of the authors who compared the efficiency of adaptive designs by simulations.

3.3.1 Monte Carlo study

The search of the optimal AGSPRN procedure, the optimal sampling procedure supposed

to be offered to the stakeholder, requires to apply a Monte Carlo study to a population

that has to be very close to the one under study. However, neither the population values of

the variable of interest Y are given nor the distribution of Y is known; just a pilot sample

of size n0 is available. The assumptions about the distribution of Y in each stratum,

i.e. f(yi|yi ∈ h) = fh(y,θh) for h = 1, ..., H, are the inputs of Algorithm 1, which is

applied to find the optimal AGSPRN procedure in presence of budget constraint. They

are derived from the pilot sample or from the study of the phenomenon and they are

not consequently updated after the selection of new units. For this reason Algorithm 1

presents some limitations that will be overcome in the next chapter. Indeed, in Chapter

4 we will develop an implementable method to make the search of the optimal AGSPRN

more reliable and useful, updating the inputs fh(y,θh), for h = 1, ..., H, at each sampling

step. In fact, if the assumptions on the distribution of Y in each stratum are very close

to the real distributions, the application of a sampling procedure is quite senseless, since

we would not need to estimate the target population parameters. In contrast, if fh(y,θh),

for h = 1, ..., H, are not precise the need of updating them is relevant.

Algorithm 1: Monte Carlo algorithm to find the optimal AGSPRN procedure in

terms of minimum estimator variance given a budget constraint.

Input: C,C0, cn, ck, H,R, n0, fh(y,θh), for h = 1, ..., H

Input: Nh, for h = 1, ..., H, s.t.
∑H

h=1Nh = N

for h = 1, ..., H do
draw Nh values from fh(y,θh)

end

foreach (K, q) ∈ H(K,q)c do

for r = 1, ..., R do

apply the AGSPRN procedure and compute V̂ r(ystK ;K, q)

end

compute the Monte Carlo mean

〈V R(ystK ;K, q)〉 = 1
R

∑R
r=1 V̂

r(ystK ;K, q) ' E(V̂ (ystK ;K, q)) = V (ystK ;K, q)

end

choose (K,q) ∈ H(K,q)c= argmin(K,q)∈H(K,q)c
〈V R(ystK ;K, q)〉.
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3.3.2 Normal distribution case

In this section we apply the Monte Carlo study to a known population, where the variable

of interest is distributed according to a Normal with different parameters in each stratum.

This means that the inputs fh(y,θh), for h = 1, ..., H, of Algorithm 1 are the real distri-

butions and they are not derived from a pilot sample. This seems to make the sampling

procedure quite useless. However, the aim of this section is to explore some properties

of the optimal AGSPRN procedure and to compare the results with those reported in

Chapter 4, where the population is supposed unknown.

The following setting is considered:

(i.) C = 500, C0 = 80, cn = 2, ck = 4, H = 10, n0 = 40,Wh
iid∼ U [450, 500];

(ii.) fh(y,θh) = N [h × 25 + 250, ah × 0.9], with h the stratum indicator, ah the hth

element of the vector a = [600 130 320 250 40 150 100 180 74 400]′;

(iii.) R = 1000. The AGSRPN procedure is applied 1000 times for each pair (K, q) ∈
H(K,q)c where H(K,q)c denote the set of constrained pairs of integers:

{(K, q) : q = b(170− 2K)/(K − 1)c,∀Kinteger ∈ [2, 57]}.

These are the inputs of Algorithm 1, that is applied in order to derive the optimal

AGSPRN procedure and some of its properties.

Figure 3.1 shows the overall behaviour of the Monte Carlo variance of the mean estimator

〈V R(ystK ;K, q)〉 as the constrained pair (K, q) ∈ H(K,q)c varies. In the horizontal axe only

the number of steps is reported, since a unique q is associated to each value of K. It is

clear that 〈V R(ystK ;K, q)〉 reaches a minimum in correspondence of a pair that is denoted

by (Kopt, qopt). The optimal AGSPRN procedure in presence of budget constraint is the

one that adds, at each step, qopt units and proceeds until the step Kopt.

Some results for normally distributed data are given in Table 3.1, where the Monte

Carlo error (MCE) is also reported. One can see from Table 3.1 that the optimal AGSPRN

lasts 4 steps and adds 54 units per step, excluding the pilot sample selected at the first

step. A comparison with TSPRN and ASPRN is also presented, since they are two

extreme cases of the AGSPRN procedure with (K, q) = (2, 166) and (K, q) = (61, 1)

respectively. Table 3.1 shows that the optimal AGSPRN procedure tends not to coincide

with the TSPRN and ASPRN procedures which give rise to an estimator whose variance is

higher. This confirms our intuition that exists a compromise procedure between TSPRN

and ASPRN which generates more efficient estimators in presence of a cost function. A

quite high value of the M. C. estimator variance is also reached using a stratified random

sampling (STRS), i.e., drawing all the units obtained with the available budget in just

one step with proportional allocation. Using the optimal AGSPRN procedure we gain a
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Figure 3.1: Monte Carlo variance of different AGSPRN mean estimators, 〈V R(ystK ;K, q)〉, for
normally distributed data (yN = 391.35) and with budget constraint, cn = 2, ck = 4.

variance reduction for the mean estimator of 40% with respect to STRS, with the same

budget. The true value of the mean in the simulated finite population is equal to 391.35

and we observe that all the procedures generate estimates very close to the real value.

However, among all the estimators, the optimal AGSPRN estimator is the closest to the

true value.

Table 3.1: Comparison of different adaptive estimators assuming Normal population with
C = 500, C0 = 80, cn = 2, ck = 4. The first row presents the optimal solution with the value
of ystK , its variance, the MCE, the sample size n and the pilot sample size n0. The consecutive
rows show the comparisons with other sampling procedures: TSPRN, ASPRN and STRS. Here,
Y = 391.35.

K q ystK 〈V R(ystK ;K, q)〉 MCE n n0

Optimal AGSPRN 4 54 391.53 175.80 0.221 202 40
TSPRN 2 166 391.71 195.43 0.233 206 40
ASPRN 57 1 391.84 365.76 0.500 96 40
STRS 1 0 391.72 297.04 0.300 207 207

Table 3.2 shows the comparison between different allocation methods. Using Neyman

allocation with the real values of the strata variances, we obtain the minimum value of the
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estimator variance. Hence, the allocations generated by TSPRN, ASPRN and AGSPRN

procedures should be compared with those reported in the last column of Table 3.2. The

AGSPRN procedure gives rise to the closest allocations to the optimal ones (the differences

are reported in brackets). The ASPRN performs relatively good but it allows to sample

only 96 units because of the step cost, thus it is generally inefficient.

Table 3.2: Comparison between different allocation methods. The differences with Neyman’s
allocation are reported in brackets.

STRATA Nh

nh
proport.
allocation

nh
TSPRN

nh
ASPRN

nh
optimal
AGSPRN

nh
Neyman’s
allocation

Stratum 1 493 21 47 (-10) 28 49 (-8) 57
Stratum 2 495 21 10 (-2) 4 15 (+3) 12
Stratum 3 496 21 37 (+7) 13 33 (+3) 30
Stratum 4 479 21 21 (-3) 9 21 (-3) 24
Stratum 5 453 20 4 (+1) 4 4 (+1) 3
Stratum 6 466 20 16 (+3) 4 12 (-1) 13
Stratum 7 463 20 4 (-4) 4 7 (-1) 8
Stratum 8 495 21 9 (-7) 8 16 (0) 16
Stratum 9 481 21 7 (0) 4 7 (0) 7
Stratum 10 487 21 51 (+14) 18 38 (+1) 37

Total 4808 207 206 96 202 207

Unit cost and step cost can vary considerably in applied problems. We believe that

taking into account the impact of the cost components on the results is critical. Hence,

we have performed extensive simulation to assess the impact of different values of the

unit cost on the optimum combination of K and q and on the variance of the the mean

estimator. As Table 3.3 shows, an increase of cn under a fixed budget causes a decrease of

qopt and an increase of Kopt. Obviously the number of total sample units decreases and,

consequently, the variance of the estimator increases. The optimal AGSPRN procedure

tends to maintain a high number of steps Kopt as much as possible, since a decrease of

Kopt inflates the estimator variance more than a decrease of qopt. On the other hand, if

the cost per step ck increases, the number of optimal steps Kopt decreases with a relatively

low effect on the total sample size and, consequently, on the variance of the estimator.
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Table 3.3: Effect of cn and ck for normally distributed data in presence of budget constraints.

cn ck Kopt qopt ystK 〈V R(ystK ;K, q)〉 MCE n
2 4 4 54 391.53 175.80 0.221 202

2.5 4 5 30 391.42 221.07 0.277 160
3 4 5 23 391.54 268.12 0.336 132
4 4 5 15 391.87 357.63 0.473 100

cn ck Kopt qopt ystK 〈V R(ystK ;K, q)〉 MCE n
2 2 5 41 391.59 173.05 0.216 204
2 4 4 54 391.53 175.80 0.221 202
2 6 3 80 391.52 180.23 0.219 200
2 8 3 79 391.57 181.87 0.222 198

3.4 Case 2: minimization of the total cost given a

threshold on the estimator variance

We are interested in the search of the optimal AGSPRN procedure which minimizes the

total cost C as expressed in (3.5) given a constraint v on the estimator variance in (3.2).

Let us consider all the possible pairs of integers (K, q) ∈ H(K,q), where the set H(K,q)

is defined as following:

{(K, q) : K integer ∈ [2,
N − n0

q
], q integer ∈ [1,

N − n0

K
]}.

We aim at solving the following optimization problem:

min(K,q)∈HC(K, q) = min(K,q)∈H[C0 + cn[n0 + q(K − 1)] + ckK]

subject to

V (ystK ;K, q) ≤ v

Since the expression in (3.2) is analytically intractable, we proceed through a Monte

Carlo study, applying for each integer q the AGSPRN procedure until step K, with

(K, q) ∈ H, and computing V̂ (ystK ; q,K) at the K-th step.

3.4.1 Monte Carlo study

The Monte Carlo algorithm (Algorithm 2) requires as inputs to derive the distribution

of the variable of interest in each stratum. Indeed the AGSPRN procedure has to be

applied to a population very close to the one under study. Thus the inputs fh(y,θh), for

h = 1, ..., H, are some distributions very close to the real ones, derived from the study

of the phenomenon or from the pilot sample. However, this is a very crucial point in a
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finite population setting and a more refined method is proposed in Chapter 4 to update

fh(y,θh), for h = 1, ..., H.

Algorithm 2: Monte Carlo algorithm to find the optimal AGSPRN procedure in

terms of minimum cost given a threshold v on the estimator variance.

Input: C0, cn, ck, H,R, n0, v, fh(y,θh), for h = 1, ..., H

Input: Nh, for h = 1, ..., H, s.t.
∑H

h=1Nh = N

for h = 1, ..., H do
draw Nh values from fh(y,θh)

end

foreach (K, q) ∈ H(K,q) do

for r = 1, ..., R do

apply the AGSPRN procedure and compute V̂ r(ystK ;K, q)

end

compute the Monte Carlo mean:

〈V R(ystK ;K, q)〉 = 1
R

∑R
r=1 V̂

r(ystK ;K, q) ' E(V̂ (ystK ;K, q)) = V (ystK ;K, q);

compute the cost C(K, q)

end

choose (K,q) ∈ H(K,q) s.t. min(K,q)∈H(K,q)
C(K, q) and 〈V R(ystK ;K, q)〉 ≤ v

3.4.2 Results for normally distributed data

In this section, the optimal AGSPRN procedure that minimizes the cost function given a

constraint on the variance of the estimator is obtained for a known population. The aim

is to show some of its properties and to assess the impacts of the cost components on it.

Algorithm 2 is applied using the same population and the same setting of Section 3.3.2:

(i.) C0 = 80, cn = 2, ck = 4, H = 10, n0 = 40, v = 200,Wh
iid∼ U [450, 500];

(ii.) fh(y,θh) = N [h × 25 + 250, ah × 0.9], with h the stratum indicator, ah the hth

element of the vector a = [600 130 320 250 40 150 100 180 74 400]′;

(iii.) R = 1000. The AGSRPN procedure is applied 1000 times for each pair (K, q) ∈
H(K,q).

From Figure 3.2 it is clear that if the number of steps K of an AGSPRN procedure

increases, than it would be enough to add less units q at each step to allow the Monte Carlo

estimator variance to be under the threshold v. Specifically, an increase of K results into

a rapid decrease of the estimator variance. This is obvious since at each step the variances

inside each stratum are estimated more precisely and, consequently, the allocations get
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Figure 3.2: Monte Carlo variance of the mean estimator generated by AGSPRN procedures
with different value of K and q. The red line represents the threshold v.

closer to the optimal ones.

Table 3.4 shows the results related to Normal distributed data. The Monte Carlo error

(MCE) has also been reported in the second last column. The optimal AGSPRN procedure

when cn = 2, ck = 4 and the threshold v = 200 consists of 4 steps and 46 units per step

for a total cost of 452. This result is very similar to that observed previously when the

budget constraint C was equal to 500, cn = 2, ck = 4 and v = 175.8.

If the threshold v increases to 250, 3 steps with 52 units per step are enough to guarantee

the estimated variance to be lower than the constraint. Obviously, the higher the threshold

v, the lower will be sample size, cost and number of steps.

Let us investigate what happens if the cost components are modified. A decrease of cn

produces a decrease of Kopt from 4 to 3 and an increase of qopt from 46 to 71. If the cost

decreases, then the sample size is higher to balance the decrease of the number of steps.

If cn increases, then Kopt increases and qopt decreases as we expected; the sample size also

decreases, whereas the cost increases.

The last three rows of the table shows the impact of the cost per step ck. If ck increases,

keeping fixed the cost per unit cn, the number of steps Kopt obviously decreases, with a

small increase of the sample size and of the total cost.

By comparing rows 3-5 to 6-8 of Table 3.4, we notice a symmetric pattern. The optimal

AGSPRN procedure seems to rely on the ratio cn/ck that is a core element from a practical
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point of view.

Table 3.4: AGSPRN procedure for different values of v, cn and ck for normally distributed
data and n0 = 40, C0 = 80, R = 103, H = 10. Here, Y = 391.35.

v cn ck Kopt qopt ystK 〈V R(ystK ;K, q)〉 C(K,q) MCE n
200 2 4 4 46 391.84 199.14 452 0.240 178
250 2 4 3 52 392.20 248.31 380 0.308 144
200 1 4 3 71 392.17 199.07 280 0.248 182
200 3 4 5 34 391.88 199.52 628 0.239 176
200 4 4 6 27 391.81 199.76 804 0.239 175
200 2 2 6 27 391.81 199.76 442 0.239 175
200 2 2.6 5 34 391.88 199.52 445 0.239 176
200 2 8 3 71 392.17 199.07 468 0.248 182

3.5 Case 3: minimization of the risk given constraints

on the budget and on the estimator variance

In this section we focus on the optimal AGSPRN procedure which minimizes the risk func-

tion given in (3.6), that is obtained as a convex combination of two standardized criteria:

estimator variance and total cost. This is particularly important in practical situations

since the stakeholders have limited budget and they do not want to compromise efficiency.

Therefore, considering the trade off between estimator variance and cost is crucial.

Let us consider all the possible pairs of integers (K, q) ∈ H(K,q), where the set H(K,q)

is defined as following:

{(K, q) : K integer ∈ [2,
N − n0

q
], q integer ∈ [1,

N − n0

K
]}.

The optimal AGSPRN procedure is the solution of the following optimization problem:

min(K,q)∈HR(ystK , yN ;K, q) = min(K,q)∈H[ω(λV (ystK ;K, q)) + (1− ω)C(K, q)] (3.9)

subject to {
V (ystK ;K, q) ≤ v

C(K, q) ≤ c

The constant λ in (3.9) is used to put V (ystK ;K, q) and C(K, q) in a comparable scale.

We have chosen the following value:
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λ =
max(K,q)∈HC(K, q)−min(K,q)∈HC(K, q)

max(K,q)∈HV (ystK ;K, q)−min(K,q)∈HV (ystK ;K, q)
(3.10)

Moreover, we subtract the values min(K,q)∈HV (ystK ;K, q) and min(K,q)∈HC(K, q) re-

spectively, in order to obtain the standardized versions of V (ystK ;K, q) and C(K, q).

Since the optimization problem expressed by (3.9) is analytically prohibitive, we proceed

through a Monte Carlo study, applying for each integer q the AGSPRN procedure until

step K, with (K, q) ∈ H, and computing V̂ (ystK ; q,K) at the K-th step.

3.5.1 Monte Carlo study

The limitation of the proposed Monte Carlo study is that it requires to make some

realistic assumptions about the distribution of Y in each stratum. Similarly to Algo-

rithms 1 and 2, the inputs of Algorithm 3 includes the assumed strata distributions, i.e.

f(yi|yi ∈ h) = fh(y,θh), for h = 1, ..., H, that generate the population to which the

AGSPRN procedure is applied for each integer q. They can be derived from the study of

the phenomenon or from the pilot sample.

Algorithm 3: Monte Carlo algorithm to find the optimal AGSPRN procedure in

terms of minimum risk obtained as a combination of the estimator variance and the

cost function.

Input: c, cn, ck, H,R, n0, v, ω, fh(y,θh), for h = 1, ..., H

Input: Nh, for h = 1, ..., H, s.t.
∑H

h=1Nh = N

for h = 1, ..., H do
draw Nh values from fh(y,θh)

end

foreach (K, q) ∈ H(K,q) do

for r = 1, ..., R do

apply the AGSPRN procedure and compute V̂ r(ystK ;K, q)

end

compute the Monte Carlo mean:

〈V R(ystK ;K, q)〉 = 1
R

∑R
r=1 V̂

r(ystK ;K, q) ' E(V̂ (ystK ;K, q)) = V (ystK ;K, q);

compute the cost C(K, q) and the risk R(K, q)

end

choose (K,q) ∈ H(K,q) s.t. min(K,q)∈H(K,q)
R(K, q) given 〈V R(ystK ;K, q)〉 ≤ v and

C(K, q) ≤ c.
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3.5.2 Normal distribution case

We are interested in showing some properties of the optimal AGSPRN procedure which

minimizes the risk function. To reach this aim we apply the Monte Carlo study directly

to a given simulated population, where the strata distributions gh(y,βh), for h = 1, ..., H,

are Normal with different parameters in each stratum. Hence, the inputs fh(y,θh), for

h = 1, ..., H, of Algorithm 3 coincide here with the true strata distributions gh(y,βh),

for h = 1, ..., H; they are not estimated from the pilot sample or from the study of the

phenomenon. Algorithm 3 is then applied to the same setting of Sections 3.3.2 and 3.4.2:

(i.) C0 = 80, cn = 2, ck = 4, H = 10, n0 = 40, v = 300, c = 600,Wh
iid∼ U [450, 500];

(ii.) fh(y,θh) = N [h × 25 + 250, ah × 0.9], with h the stratum indicator, ah the hth

element of the vector a = [600 130 320 250 40 150 100 180 74 400]′;

(iii.) R = 1000. The AGSRPN procedure is applied 1000 times for each pair (K, q) ∈
H(K,q).

Figure 3.3: Risk functions as q varies for different K with AGSPRN procedure.

Figure 3.3 shows how the risk varies for different values of K and q. More specifically,

when q is low the risk is also lower for higher values of K, but the contrary holds when q
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is large. This happens because of the increase of the cost, which impacts more than the

decrease of the estimator variance.

Table 3.5: AGSPRN procedure for different values of v, c, cn, ck and ω with normally dis-
tributed data and n0 = 40, C0 = 80.

ω v c cn ck Kopt qopt 〈V R(ystK ;K, q)〉 C(K,q) R(K,q) MCE n
0.5 300 600 2 4 5 52 142.40 596 1480.98 0.17 248
0.5 300 600 3 4 6 25 211.29 599 2387.24 0.25 165
0.5 300 600 4 4 5 21 281.07 596 3505.14 0.37 124
0.5 300 600 2 2 5 53 140.20 594 1046.28 0.16 252
0.5 300 600 2 8 4 68 146.15 600 2379.87 0.17 244
0.5 200 500 2 4 4 54 176.54 500 1736.28 0.21 202
0.1 300 600 2 4 4 47 195.78 458 612.43 0.23 182
0.9 300 600 2 4 5 52 142.40 596 2320.16 0.17 248

Results for different values of v, c, cn, ck and ω are shown in Table (3.5). The optimal

AGSPRN procedure for cn = 2 and ck = 4 involves 5 steps and 52 units per step, a result

very similar to those obtained in Case 1 and Case 2. If the cost per unit cn increases to 3,

the number of steps increases, the total sample size decreases, and the risk will be double.

An additional increase of cn reduces both Kopt and qopt, producing a high increment of the

variance and consequently, high increment of risk. An increase of cn has a deep negative

impact on the risk.

If ck increases, the number of steps Kopt decreases, but the overall impact on the sample

size and on the estimator variance is very small.

Moreover, a decrease of the values of the constraints makes Kopt and n smaller, whereas

the risk larger. Since the risk function inflates more the estimator variance because

of the large value of λ, we choose ω to be equal to 0.2, in order to weigh more the

cost component. The last row of Table (3.5) shows that 4 steps and 65 units per steps

characterize the optimal AGSPRN procedure when the cost of the sampling process gets

higher importance. Indeed, a lower number of steps and a smaller sample size will result

into a cheap procedure, but with less precise estimates.

3.6 Discussion

In Chapter 2 we have analysed the literature concerning adaptive and sequential pro-

cedures, devoting particular attention to the two steps adaptive procedure with perma-

nent random numbers (TSPRN, Carfagna [2007]) and the adaptive sequential procedure

with permanent random numbers (ASPRN, Carfagna and Marzialetti [2009b]). Carfagna

et al. [2012] showed that, when a cost function is introduced and the step cost is high,

the ASPRN could be less efficient than the TSPRN. Therefore, it has arisen the need to
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introduce a compromise solution between TSPRN and ASPRN, which reduces the costs

to be suffered by ASPRN when the cost per step ck becomes relatively high, preserving

the advantages that an adaptive sequential procedure has in terms of efficiency of the es-

timators. Thus, in this chapter, we have addressed the problem of identifying an adaptive

sampling procedure with an optimum number of steps and of sample units allocated at

each step in order to reach the maximum efficiency of the estimator in terms of variance,

cost or risk. We have proposed an Adaptive Group Sequential Procedure with permanent

random numbers (AGSPRN) from which the TSPRN and the ASPRN can be derived as

particular cases.

We have introduced the approach based on the minimization of a risk function which

is a convex combination of two standardized criteria: the cost of the procedure involving

K steps and q units per step, and the variance of the estimator generated by the pro-

cedure. This approach can be useful in applied problems, where it is important to take

into account the precision of the results but also the cost of reaching that precision. A

procedure that balances the precision of the estimates and the cost to reach it, assigning

to the two criteria different levels of importance, is essential.

Through a Monte Carlo study applied to a simulated normal population, we have

showed that, when the cost per step is not negligible, the optimal AGSPRN procedure

tends not to coincide with ASPRN, TSPRN and also it is more efficient than a simple

stratified random sampling that is applied in just one step, since the technique of pro-

ceeding along more steps allows to generate a sample allocation very close to Neyman’s

one.

A key role is played by the cost function and by the values of its components. Al-

though, we have chosen a linear cost function, the impact of different functions on the

optimal procedure should be analyzed in future works. In particular, we have seen that

the the ratio cn/ck is relevant in choosing the optimal number of q and K. Hence, in

applied problems, reducing some costs in favor of others can be fundamental to gain effi-

ciency in the estimates.

In all the three minimized criteria (variance, total cost and risk), we have noticed that

an increase of the unit cost, under a fixed budget and a linear cost function, causes an

increase of the number of optimal steps Kopt and a decrease of the number of units per

step qopt. Obviously, the total number of sample units decreases and consequently, the

variance of the estimator of the mean increases. The optimal AGSPRN procedure tends

to maintain a high number of steps, since a decrease of the number of steps inflates the

estimator variance more than a decrease of the number of sampling units per step. On

the other hand, if the cost per step increases, the number of optimal steps decreases, with

a relatively low effect on the total sample size and, consequently, on the variance of the

estimator.

Moreover, when the optimal AGSPRN procedure is obtained through the minimization

Tesi di dottorato "Adaptive Sequential Sampling for Finite Populations with Applications in Agricultural and Agro-Environmental Statistics"
di MISSIROLI SILVIA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2017
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



51

of the risk function, it is important to choose carefully the values of the thresholds v, c

and the value of the weight ω according to the customers needs.

To find the optimal AGSPRN procedure, one has to make some strong assumptions

about the distribution of the variable of interest inside each stratum. Usually they can

be derived by the study of the phenomenon or by the information collected in the pilot

sample. This is not very practical and applicable unless we are aware that the proposed

distribution can suite perfectly the analyzed data. In this chapter a Monte Carlo study is

applied directly to the target population, in order to study some properties of the estima-

tor generated by the optimal AGSPRN procedure. However, applying the Monte Carlo

study directly to the target population in order to find the optimal sampling procedure

is quite useless. In fact, it would be probably more convenient to estimate directly the

population parameter of interest. Hence, to make the research of the optimal AGSPRN

procedure more flexible and applicable to real problems, the estimate of the distribution

of the variable of interest derived from the pilot sample can be updated at each step,

when additional units are selected. We will develop this idea in the next chapter.
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Chapter 4

The search of the optimal AGSPRN

procedure

4.1 Introduction

In Chapter 3 we have proposed the adaptive group sequential procedure with perma-

nent random numbers (AGSPRN). A Monte Carlo simulation study was suggested to

investigate the optimal AGSPRN procedure in terms of:

1. minimum variance of the estimator given a cost function and a budget constraint

(Case 1, Section 3.3);

2. minimum cost given a threshold on the estimator variance (Case 2, Section 3.4);

3. minimum risk, obtained through a combination of cost and estimator variance (Case

3, Section 3.5).

In these three cases, the simulation procedures require as inputs some accurate as-

sumptions about the distributions of the variable of interest inside each stratum. They

are usually unknown, but they can be derived from the study of the phenomenon or they

can be estimated through the data collected in the pilot sample. However, in the proposed

Monte Carlo procedures (see Algorithms 1, 2, 3 of Chapter 3), the estimates of these dis-

tributions are not updated when new units are selected. The aim of this chapter is to

overcome this limitation, proposing a method to obtain the optimal AGSPRN procedure

updating the distribution of Y at each step k, when more information is gained. It is an

extension of the bootstrap technique for adaptive designs proposed by Rosenberger and

Hu [1999] who applied it to infinite population with Bernoulli distribution in the clinical

trials context.
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4.2 The AGSPRN procedure in practice

In this section, we present in details the search of the optimal AGSPRN procedure when

the distribution of the variable of interest Y is updated at each step after the selection of

new units. We have the following steps:

(i) at the first step [k = 1] select a first stratified random sample of size n0 with

proportional allocation, selecting at least two sample units per stratum and estimate

the variance inside each stratum;

(ii) make some assumptions on the distribution form of Y inside each stratum using

the selected units, estimate the parameters and generate from that distribution

Nh − bnh0c values, h = 1, ..., H, such that all the finite population of size N is

obtained; here bnh0c is the integer part rounding to the floor of the n0 units allocated

to stratum h;

(iii) Using the estimated population, simulate R times the application of the AGSPRN

procedure with different values of q and choose the optimal pair (Kopt, qopt) ac-

cording to the three different criteria (minimum estimator variance given a budget

constraint, minimum cost given a threshold on the estimator variance, minimum

risk);

(iv) compute Neyman’s allocation with sample size n = n0 + qopt and select qopt sample

units only in the strata with positive difference between Neyman’s allocation and

the actual one (the allocation is proportional to this difference). Then estimate the

parameter of interest and its precision;

(v) if the stopping rule is satisfied and Kopt = 2 stop the process, otherwise start again

from step (ii) fixing n0 = n0 + qopt and C0 = C0 + ck;

The optimal AGSPRN procedure obtained through this method is characterized by

a number of units added at each step that can vary from step to step, depending on

the updated population. This procedure allows to obtain a sample allocation as close as

possible to Neyman’s one, by computing, at each step, the allocation and the combination

of number of steps and of units per step, given the linear cost function in (3.5).

The method is formally described in Algorithm 4.
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Algorithm 4: Algorithm for the optimal AGSPRN procedure when only a pilot

sample of size n0 is available and the population is updated at each selection of new

units.

Input: C0, cn, ck, H, n0, C (Case 1), v(Case 2), c and v(Case 3)

Input: Nh, for h = 1, ..., H, s.t.
∑H

h=1Nh = N

for m = 1, ..., N − n0 do

for h = 1, ..., H do

from bnh0c make assumptions on the distribution fmh (y,θm) and estimate its

parameters;

generate Nh − bnh0c values from fmh (y,θm);

compute the variance Smh using the population value in stratum h;

end

if m=1 and the stopping rule with the sample of size n0 is satisfied then
stop the process and estimate the parameter of interest;

else
find the optimal pair (Km

opt, q
m
opt) of the AGSPRN procedure according to the

chosen criterion (Case 1, Case 2, Case 3);

select qmopt units among the strata proportionally to the positive difference

between the Neyman’s allocation (computed with sample size n = n0 + qmopt
and Smh as variances for h = 1, ..., H) and the actual one;

if the stopping rule is satisfied (and for Case 1,3 Km
opt = 2) then

stop the process and estimate the parameter of interest from the sample

of size n0 + qmopt;

else
set C0 = C0 + ck and n0 = n0 + qmopt;

end

end

end

4.3 Case 1: minimization of the estimator variance

given a budget constraint

The aim of this section is to find the optimal AGSPRN procedure in term of minimum

variance of the mean estimator (formula (3.2)), given a budget constraint and the linear

cost function in (3.5).

We also assume the same finite population and setting as those used for simulations is

Chapter 3 (Sections 3.3.2, 3.4.2, 3.5.2), i.e.,

(i) H = 10, Nh
iid∼ U [450, 500];
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(ii) yih
iid∼ N [h× 25 + 250, ah× 0.9], with h the stratum indicator, ah the hth element of

the vector a = [600 130 320 250 40 150 100 180 74 400]′;

(iii) Y = 391.35.

At m=1, we suppose to have a pilot sample of size n0 selected from the population

designed by (i) and (ii). A density estimation is obtained for each stratum and N − n0

values are generated from it. This can be done by applying a normal kernel density

estimation for each stratum from the data collected in the pilot sample or by making

assumptions on the distribution of Y in each stratum and estimating the parameters.

The last procedure is recommended when the pilot size in each stratum is small, that is

usually the case. Then, Algorithm 1 is applied to find the optimal AGSPRN procedure for

the finite population composed by n0 units selected from the real population and N − n0

units generated by the estimated density, with R = 1000, C = 500, c0 = 80, cn = 2,

ck = 4.

Table 4.1: Optimal AGSPRN procedure at m=1, with C = 500, C0 = 80, cn = 2, ck = 4.
The optimal pair (K1

opt, q
1
opt), the value of ystK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=1 K1
opt q1opt ystK 〈V R(ystK ;K, q)〉 MCE n n0

Optimal AGSPRN with
kernel density estimation 4 54 364.60 303.93 0.341 202 40

Optimal AGSPRN with
model assumption 4 54 349.98 178.33 0.201 202 40

Table 4.1 shows the optimal solutions obtained by applying a kernel density estimation

(first row) and a parameters estimation after having made assumptions on the distribution

form of Y (second row). Since for this simulation experiment we choose a pilot sample

of size n0 = 40 and 10 strata, the second method is more accurate. In this case, after

an exploratory analysis of the pilot sample units, we assume that in each stratum Y is

normally distributed with different parameters that are estimated. Now we set C0 =

C0 + ck = 80 + 4 = 84 and n0 = n0 + q1opt = 40 + 54 = 94, we estimate the variances inside

each stratum and calculate Neyman’s allocation with the new size n0. Then, q1opt units are

selected only in those strata with positive difference between Neyman’s allocation and the

actual one (the selection is proportional to this difference). From the sample of size n0 we

compute again a kernel density estimation or we make assumptions on the distribution

of Y estimating its parameters in each stratum in order to generate the new population

values. Algorithm 1 is again applied to find the optimal AGSPRN solutions that are

showed in Table 4.2.

By repeating the same steps at m = 3, i.e., C0 = C0 + ck = 84 + 4 = 88 and

n0 = n0 + q2opt = 94 + 54 = 148, the optimal AGSPRN procedure is shown in Table 4.3.
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Table 4.2: Optimal AGSPRN procedure at m=2, with C = 500, C0 = 84, cn = 2, ck = 4.
The optimal pair (K2

opt, q
2
opt), the value of ystK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=2 K2
opt q2opt ystK 〈V R(ystK ;K, q)〉 MCE n n0

Optimal AGSPRN with
kernel density estimation 3 54 365.53 167.45 0.174 202 94

Optimal AGSPRN with
model assumption 3 54 370.00 123.77 0.127 202 94

Finally, since at m=3 the optimal solution consists of two steps, we stop the process and

select 54 units from the real population. The estimate ystK is equal to 394.85 with a

variance V̂ (ystK ;K, q) equal to 179.50 if we use a kernel estimation of the density. The

values of ystK and V̂ (ystK ;K, q) are respectively equal to 395.41 and 170.73 if during the

procedure we have made assumptions on the distribution of Y , estimating its parameters.

In both cases we observe that ystK is close to the real value Y=391.5. Moreover, if we

compare these solutions to the optimal AGSPRN procedure (Table 3.1) applied when the

finite population is known from the beginning (not estimated step by step), the results

are very similar: the optimal pair is the same (Kopt = 4, qopt = 54) and the final estimate

is slightly less precise when the population is estimated at each step. This small loss in

precision is a low price to pay for making the search of the optimal AGSPRN procedure

applicable in practice.

Table 4.3: Optimal AGSPRN procedure at m=3, with C = 500, C0 = 88, cn = 2, ck = 4.
The optimal pair (K3

opt, q
3
opt), the value of ystK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=3 K3
opt q3opt ystK 〈V R(ystK ;K, q)〉 MCE n n0

Optimal AGSPRN with
kernel density estimation 2 54 388.12 192.65 0.192 202 148

Optimal AGSPRN with
model assumption 2 54 389.49 158.24 0.168 202 148

4.4 Case 2: minimization of the total cost given a

threshold on the estimator variance

The second aim of this chapter is to find the optimal AGSPRN procedure that minimizes

the linear cost function in (3.5), given a threshold v on the variance of the mean estimator

in (6.1).
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Our real finite population is the same of that used in the previous section and for simu-

lations in Chapter 3 (Sections 3.3.2, 3.4.2, 3.5.2):

(i.) H = 10, Nh
iid∼ U [450, 500];

(ii.) yih
iid∼ N [h× 25 + 250, ah× 0.9], with h the stratum indicator, ah the hth element of

the vector a = [600 130 320 250 40 150 100 180 74 400]′;

(iii.) Y = 391.35.

Algorithm 2 of Chapter 3 is applied, with R = 1000, v = 200, C0 = 80, cn = 2, ck = 4,

n0 = 40. At each m, the optimal pair (Km
opt, q

m
opt) is obtained, finding the AGSPRN

procedure which minimizes the linear cost function, given a threshold v on the variance

of the mean estimator. We stop when Km
opt = 2 and V̂ (ystK ;K, q) ≤ v, with a sample

composed of n0 + qmopt units. At each m, n0 is set to be equal to the sum of qm−1opt and

the previous n0, whereas C0 = C0 + ck. Moreover, a density estimation is obtained for

each stratum and N − n0 values are generated from it. This can be done by using the

units of the pilot sample to compute a kernel density estimation for each stratum or to

make assumptions on the distribution of Y in each stratum, estimating the parameters.

We favour the latter procedure since the pilot sample size n0 is small with respect to the

number of strata H = 10. From the information gained through the pilot sample, we

assume that Y is normally distributed with different parameters in each stratum.

Tables 4.4 - 4.6 show the results of the optimal AGSPRN procedure at each m obtained

through a kernel density estimation of the finite population and by model assumptions

with estimated parameters, before the stopping rule is satisfied and Km
opt = 2.

Table 4.4: Optimal AGSPRN procedure at m=1, with v = 200, C0 = 80, cn = 2, ck = 4. The
optimal pair (K1

opt, q
1
opt), the value of ystK , its variance, the cost, the MCE, the sample size n

and the pilot sample size n0 are reported for the procedure involving kernel density estimation
(first row) and density derivation with model assumptions and estimated parameters (second
row).

m=1 K1
opt q

1
opt ystK 〈V R(ystK ;K, q)〉 C(K, q) MCE n n0

Optimal AGSPRN with
kernel density estimation 3 122 363.37 199.99 660 0.46 284 40

Optimal AGSPRN with
model assumption 4 45 349.74 199.53 446 0.464 175 40

At m = 2, K2
opt is equal to 2 for both estimation methods, thus in order to stop the

procedure, we have to verify if the stopping rule is satisfied. After the strata variances and

Neyman’s allocations are computed, we select q2opt units only in those strata with positive

difference between Neyman’s allocation and the actual one (the selection is proportional

to this difference). Then, we calculate ystK and its variance. They are respectively equal

to 392.61 and 231.36 if the kernel density estimation method is applied, whereas they
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assume the values of 386.53 and 326.40 if model assumptions method is employed. In

both cases V̂ (ystK ;K, q) does not satisfy the constraint v. Hence, we proceed to m = 3,

we update the estimation of the distribution of Y and we apply Algorithm 2 of Chapter

3.

Table 4.5: Optimal AGSPRN procedure at m=2, with v = 200, C0 = 80, cn = 2, ck = 4. The
optimal pair (K2

opt, q
2
opt), the value of ystK , its variance, the cost, the MCE, the sample size n

and the pilot sample size n0 are reported for the procedure involving kernel density estimation
(first row) and density derivation with model assumptions and estimated parameters (second
row).

m=2 K2
opt q

2
opt ystK 〈V R(ystK ;K, q)〉 C(K, q) MCE n n0

Optimal AGSPRN with
kernel density estimation 2 23 388.47 199.83 462 0.408 185 162

Optimal AGSPRN with
model assumption 2 49 364.82 199.80 360 0.457 134 85

Table 4.6: Optimal AGSPRN procedure at m=3, with v = 200, C0 = 80, cn = 2, ck = 4. The
optimal pair (K3

opt, q
3
opt), the value of ystK , its variance, the cost, the MCE, the sample size n

and the pilot sample size n0 are reported for the procedure involving kernel density estimation
(first row) and density derivation with model assumptions and estimated parameters (second
row).

m=3 K3
opt q

3
opt ystK 〈V R(ystK ;K, q)〉 C(K, q) MCE n n0

Optimal AGSPRN with
kernel density estimation 2 21 390.38 198.52 510 0.41 206 185

Optimal AGSPRN with
model assumption 2 30 391.62 197.07 424 0.443 164 134

For m = 3, the optimal AGSPRN procedure results are given in Table 4.6. According

to the kernel density estimation method, we select 21 units and we compute the values of

ystK and V̂ (ystK ;K, q) that are equal to 394.20 and 193.91 respectively. Since K3
opt = 2

and V̂ (ystK ;K, q) ≤ v we stop the process and obtain an optimal adaptive sequential

procedure that considers 4 steps with 40, 122, 23 and 21 units added respectively at each

step and a cost of 510. It is quite more expensive than the optimal AGSPRN procedure

obtained when the population is totally known (first row of Table 3.4), since the final

sample contains 28 more units, despite the fact that it is achieved through the same

number of steps. This is the cost of gaining precision when the population y-values are

not totally known. However, if we use the model assumptions method to derive the

distribution of Y , the selection of additional 29 units (q3opt) does not allow the variance of

the estimator to be under the threshold v. Hence, we repeat again the procedure at m = 4

and obtain an optimal pair consisting of 2 steps and 15 units per step. The values of ystK
and V̂ (ystK ;K, q) are respectively equal to 390.44 and 199.85, satisfying the constraint

v. The optimal adaptive sequential procedure for an unknown population consists of 5
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steps and 40, 45, 49, 30, 15 units added respectively at each step, for a total cost of 458.

We found that the number of sampled units is close to that generated by the optimal

AGSPRN procedure with known population, but the latter involves one step less and is

slightly cheaper, as we expected.

4.5 Case 3: minimization of the risk given constraints

on the budget and on the estimator variance

In this case we are interested in finding the optimal AGSPRN procedure which minimizes

the risk function in expression (3.6) given thresholds c and v respectively on the cost and

the estimator variance. Here, the real population is not supposed to be totally known

in advance, contrary to what we have assumed in Section 3.5. However, the units are

selected from the same population and the same setting is applied:

(i.) H = 10, Nh
iid∼ U [450, 500];

(ii.) yih
iid∼ N [h× 25 + 250, ah× 0.9], with h the stratum indicator, ah the hth element of

the vector a = [600 130 320 250 40 150 100 180 74 400]′;

(iii.) Y = 391.35.

We fix v = 300, c = 600, C0 = 80, cn = 3, ck = 4 and apply Algorithm 4.

At m = 1, a pilot sample of size n0 = 40 is selected among the 10 strata and the distribu-

tion of the variable of interest Y is derived in each stratum through a kernel estimation

(method 1) or assuming a distribution form and estimating its parameters from the se-

lected units (method 2). Then, the y-values of the population are generated from the

estimated distributions, assuming that the strata sizes Nh are known, for h = 1, ..., H.

The number of repetitions R is chosen to be equal to 1000 and Algorithm 3 is applied to

the generated population, whose n0 values are substituted by the pilot sample selected

from the real population.

Table 4.7 shows the optimal AGSPRN procedure at m = 1. The first row refers to the

results obtained when the distribution of the variable of interest is estimated through the

kernel method, whereas the second row reports the optimal AGSPRN procedure when

model assumptions are used to derive the distribution of Y inside each stratum. We no-

tice that the latter method is more appropriate since the units of the pilot sample selected

in each stratum are few. Particularly, after some exploratory analyses on the data of the

pilot sample, normal distribution is assumed for Y , with different parameters in each

stratum.

For each m, the weight ω is set equal to 0.5 and the value of λ in expression (3.10) is equal

to 10.12 if model assumptions are considered, with max(K,q)∈HC(K, q) = C(K = N −
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n0, q = 1) = 28772, min(K,q)∈HC(K, q) = C(K = 1, q = 0) = 164, max(K,q)∈HV (ystK ;K, q) =

V (ystK ;K = 1, q = 0) = 2826.46 and min(K,q)∈HV (ystK ;K, q) = 0.

However, max(K,q)∈HV (ystK ;K, q) is equal to 5720.32, when a kernel estimation for the

density of Y is used, with a consequent λ equal to 5.01. For the same values of total cost

and variance estimator, different lambda’s produce different values of the risk in absolute

term, but not in relative term. Indeed, as Tables 4.7 - 4.9 show, the optimal pair is the

same for both estimation methods, even though the value of λ is different.

We compute the strata variances and then we select q1opt = 107 units from the real popu-

lation, only in those strata with positive difference between Neyman’s allocation and the

actual one (the selection is proportional to this difference). The allocations are the same

for both estimation methods, giving rise to the same values of ystK and V̂ (ystK ;K, q),

respectively equal to 372.96 and 204.22. However, the values of the risk do not coincide

because of the different λ’s: 979.70 and 1142.50 are the risk amounts respectively related

to the kernel density estimation method and the model assumption one.

Table 4.7: Optimal AGSPRN procedure at m=1, with v = 300, c = 600, C0 = 80, cn = 2,
ck = 4. The optimal pair (K1

opt, q
1
opt), the estimated variance of ystK , the cost C(K, q), the risk

R(K, q), the MCE, the sample size n and the pilot sample size n0 are reported for the procedure
involving kernel density estimation (first row) and density derivation with model assumptions
and estimated parameters (second row).

m=1 K1
opt q

1
opt 〈V R(ystK ;K, q)〉 C(K, q) R(K, q) MCE n n0

Optimal AGSPRN with
kernel density estimation 3 107 227.41 600 786.65 0.254 254 40

Optimal AGSPRN with
model assumption 3 107 124.52 600 848.18 0.142 254 40

At m = 2, we set n0 = q1opt+n0 and C0 = C0+4 = 80+4 = 84. Moreover, we estimate

more precisely the distribution of Y in each stratum after the selection of q1opt units and

we generate from it N − n0 units in order to apply Algorithm 3. The optimal AGSPRN

procedure for both estimation methods is shown in Table 4.8. It consists of other 3 steps

and 52 units per step. We proceed computing the variances inside each stratum and

Neyman’s allocations with size n0 + q2opt = 147 + 52 = 199. Supplementary units are

selected only in those strata with positive difference between Neyman’s allocation and

the actual one, for a total amount of 52 units. Then, the mean and its variance are

calculated, obtaining a value of 400.04 and 200.22 respectively. The risk is 662.66 for

the kernel estimation method and 1176.27 if we use the assumption of normality for the

distribution of Y . We argue that this gap between risk measures is due to the different

values of λ.

At m = 3, we set C0 = C0+4 = 88, n0 = n0+q2opt = 147+52 = 199 and Algorithm 3 is

applied to the population generated by the updated estimated distribution of the variable

of interest. As Table 4.9 shows, we obtain the same optimal AGSPRN procedure by using

Tesi di dottorato "Adaptive Sequential Sampling for Finite Populations with Applications in Agricultural and Agro-Environmental Statistics"
di MISSIROLI SILVIA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2017
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



62

Table 4.8: Optimal AGSPRN procedure at m=2, with v = 300, c = 600, C0 = 84, cn = 2,
ck = 4. The optimal pair (K2

opt, q
2
opt), the estimated variance of ystK , the cost C(K, q), the risk

R(K, q), the MCE, the sample size n and the pilot sample size n0 are reported for the procedure
involving kernel density estimation (first row) and density derivation with model assumptions
and estimated parameters (second row).

m=2 K2
opt q

2
opt 〈V R(ystK ;K, q)〉 C(K, q) R(K, q) MCE n n0

Optimal AGSPRN with
kernel density estimation 3 52 111.56 598 495.96 0.130 251 147

Optimal AGSPRN with
model assumption 3 52 94.06 598 693.05 0.10 251 147

both kernel estimation or model assumptions for the density of Y . Since K3
opt = 2 we

stop the process and choose as the optimal adaptive sequential procedure the one which

proceeds for 4 steps adding at each step 40, 107, 52, 53 units respectively.

Finally, we calculate the strata variances and we compute Neyman’s allocations with

sample size n0 + 53 = 252. We select 53 units from the real population only in those

strata with positive difference between Neyman’s allocation and the actual one. We

obtain the same final strata sample sizes by using both methods of density estimation

for Y . Hence, the values of ystK and V̂ (ystK ;K, q) are the same, respectively equal to

402.65 and 154.13. However, the risk assumes different values, i.e., 601.41 when the kernel

density estimation method is applied and 996.01 if we use the assumption of normality

for the distribution of Y . Both values are smaller than those obtained at the previous

steps and the constraints on cost and estimator variance are satisfied. Hence, it is safe

to conclude that estimating the distribution of Y by steps when it is unknown leads to a

correct AGSPRN procedure which is optimal for the minimization of the risk. Moreover,

it is a very close result to the one obtained with known population (first row of Table

3.5), which consists in a procedure that samples just 4 units less, using one more step.

Table 4.9: Optimal AGSPRN procedure at m=3, with v = 300, c = 600, C0 = 88, cn = 2,
ck = 4. The optimal pair (K3

opt, q
3
opt), the estimated variance of ystK , the cost C(K, q), the risk

R(K, q), the MCE, the sample size n and the pilot sample size n0 are reported for the procedure
involving kernel density estimation (first row) and density derivation with model assumptions
and estimated parameters (second row).

m=3 K3
opt q

3
opt 〈V R(ystK ;K, q)〉 C(K, q) R(K, q) MCE n n0

Optimal AGSPRN with
kernel density estimation 2 53 157.07 600 606.29 0.161 252 199

Optimal AGSPRN with
model assumption 2 53 122.56 600 831.19 0.122 252 199
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4.6 Discussion

In this chapter we have proposed a method useful to obtain the optimal AGSPRN pro-

cedure when the values of the variable of interest Y are not known for all the units in

the population. Since the population is generally unknown, the presented method is very

useful to estimate a population parameter timely and efficiently, especially when only a

pilot sample is available and no previous studies on the phenomenon are provided.

At each selection of new units, the distribution of Y is derived through a kernel density

estimation or making some assumptions on it and estimating its parameters. The two

methods give rise to optimal AGSPRN procedures that are very similar and also very

close to those obtained in Chapter 3 when the population is completely known.

It is worthy to say that when the pilot sample size is small as compared to the number

of strata, estimating the distribution of Y on the basis of assumptions about its form is

more appropriate than the kernel density estimation method.

We observe that a moderate decrease of precision with respect to the optimal AGSPRN

procedure with known population is detected particularly in Case 2 and Case 3 and it is

often compensated adding one step or some more units to the sampling process.

In the next chapter we will investigate the search of the optimal AGSPRN procedure for

a real application, when the population values of the variable of interest are supposed to

be both known and not totally known.
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Chapter 5

Application: quality control of a

land cover database

5.1 Introduction

Adaptive sequential sampling plays a significant role in many practical applications. It

may be an important tool used by territory management to evaluate the quality of a land

cover database.

Land cover databases are essential instruments for the territory management activities.

Since they give information about land cover and land cover dynamics (when their appli-

cation is repeated over time), they are used to assess the impact of alternative policies in

a region in order to increase the potential of a territory. They are produced through aerial

photos of high, medium and coarse resolution satellite data, depending also on the kind

of utilization required, ranging from a local to a global scale. Satellite images are given

as a set of measures of electromagnetic radiation reflected by a unit area of the Earth’s

surface. These unit areas are called pixels and they can range in size from less than 1

m to 5 km. The size of the pixels represents the spatial resolution of an optical satellite

sensor and it is one of its main characteristics, together with the number of channels and

the wavelength of each of them. The most widely used images for land cover monitoring

have medium resolution, for example, 30 m.

The images are photo-interpreted or semi-automatically classified in order to produce the

land cover databases, whose main users are public administrations and the scientific com-

munity. Semi-automatic classification is performed pixel by pixel or by continuous groups

of pixels; it can be supervised or unsupervised. Photo-interpretation and supervised clas-

sification of remote sensing data require to define in advance a legend of different cover

types according to which the pixels or the polygons (land areas with regular borders) are

classified. The result is a database or a land cover map created in a geographic informa-

tion system (GIS) that allows different kinds of operations on the pixels or polygons, such
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as their subdivision, merger or overlay.

Evaluating the quality of a land cover database is a fundamental step in the production

process and its quality should be high to make the database reliable. Sometimes, relia-

bility is confused with the scale of the images which represents the level of detail of the

basic material, not the quality of the database that is evaluated by the degree of precision

in the classification procedure. Indeed, it is not an easy task to classify correctly pixels or

polygons since the variability among pixels of the same land cover type in different con-

ditions (soil, humidity, phenological phase etc.) can be much higher than the variability

between different land cover types. The result of the classification, i.e., a land cover map

or a database, has generally some missing data and a certain proportion of errors.

Quality control of the photo-interpretation and its validation are the procedures

through which the errors are detected and the overall quality of the database is measured.

Quality control is the procedure that consists in repeating the photo-interpretation on a

sample of polygons by a very expert photo-interpreter (the controller).

Validation is a comparison of the land cover database with another representation of re-

ality, which is considered more reliable. A sample of polygons is usually compared with

the corresponding ground truth or with other remote-sensing data compatible with the

source of images.

Strahler et al. [2006] underlined the importance of validation: “As a guideline, producing

a global land cover map should consist of three more-or-less equal parts: data preparation,

classification and validation. Without proper validation, any land cover map, whether at

global, regional or local scale, remains an untested hypothesis.”

However, in photo-interpretation projects, very few resources are generally devoted to

quality control and validation; thus, these procedures are performed on a sample of poly-

gons or points in the methodological framework of design-based statistical inference. The

choice of a design-based sample is due to the minimal assumptions required to justify the

validity of the quality estimators and their precision for different kind of applications and

users. Strahler et al. [2006] again stated: “An inference framework heavily dependent on

a model or other assumptions would require the cumbersome task of not only explicitly

identifying these assumptions and model structures, but also justifying that they were

satisfied for the particular application. The multitude of uses and users of a global map

would suggest that validating assumptions may be even more difficult because of the large

number of different analyses to which the data would be subject. Lastly, the objectivity

provided by the randomization protocol of probability sampling provides assurance that

the sample has not been selected, either consciously or unconsciously, to produce favor-

able accuracy results”.

Due to the limited resources devoted to quality control and validation of land cover

databases, a very cost-effective sample design is required. Moreover, it is necessary to

have timely estimates in order to improve the database production, during the photo-
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interpretation process. Thus, an adaptive sequential sampling is the best procedure to

adopt for quality control as well as for validation: it allows to reach high precision of

estimates with the smallest sample size and in the shortest time, especially when a small

amount of information is available. Moreover, the costs can be controlled step by step,

ending up with a sample that is optimal in terms of estimates precision and costs.

A key element of the production of a database is the legend, which is usually defined

in advance. Due to the desire of homogeneity different projects share a common legend,

even though it is not always appropriate. Thus, an adaptive sequential procedure is also

an optimal tool to improve the legend during the process, according to customer’s needs.

In this chapter we will present an application of the adaptive group sequential proce-

dure with permanent random numbers (AGSPRN) to the quality control of a land cover

database, in order to estimate the quality indexes efficiently in terms of precision and

costs.

5.2 Adaptive sequential sampling for quality control

and validation of a land cover database

The use of an adaptive sequential procedure for validation and quality control of a land

cover database has many advantages. Traditionally, one of the oldest approach to quality

control is acceptance sampling, which was widely used during the 1930s and 1940s. It

consists in inspecting a sample of items from a given lot, in order to decide whether to

accept or reject the whole lot. Different sampling schemes are applied to select the sam-

ple of items. Here, the number of items to be selected is fixed in advance. Wald [1947]

introduced the idea of sampling sequentially, adding a unit (item-by-item sequential sam-

pling) or a group of units (group sequential sampling) at each step, deciding whether or

not stopping sampling according to a decision stopping rule and to the corresponding

probability ratio test. The total sample size is not predetermined and, theoretically, the

procedure may continue indefinitely. Wald [1947] showed that the sequential probability

ratio test allows to save 50% of the total sampled units as compared with the most pow-

erful classical test with the same errors of the first and the second kinds.

In the quality control and validation of a land cover database, the use of an adaptive

sequential sampling has several advantages. Indeed, in order to assess the agreement of

the database with the ground truth (validation) and verify the capability of the database

to satisfy the client’s needs, selecting a sample sequentially and adaptively during the

production process allows to detect timely the discrepancies between the database and

reality, which make the product inappropriate for customer’s needs. These are not often

clear at the beginning of the database production, hence proceeding step by step allows to

draw the characteristics of the database and the legend progressively closer respectively
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to the client’s need and to the specific geographic area of interest. It is also possible to

save some costs if, for instance, during the procedure, the adopted remote-sensing data

are realized to be more detailed than those required by the user’s needs, producing un-

justified costs.

In the quality control procedure, instead, a photo-interpreter classifies the satellite im-

ages according to a legend of different land cover types. During this procedure he can

make mistakes concerning the border of the polygons as well as the associated land cover

type. Therefore, it is necessary that another expert (the controller) repeats the photo-

interpretation on a sample of polygons in order to detect the mistakes and the discrepan-

cies between the two classifications. The level of accuracy is then measured through some

parameters such as the percentage of area correctly classified, the percentage of the poly-

gons correctly classified by the first photo-interpreter and pixel counting (Gallego et al.

[2010]).

In this chapter we are interested in estimating the percentage of area correctly classified,

assuming that the sample given to the controller is selected through an optimal AGSPRN

procedure, in order to obtain more precise and timely estimates of the quality parame-

ters, saving costs. Usually, 85 % of polygons correctly classified represents an acceptable

level of accuracy, even though some applications can require a higher value (Carfagna and

Gallego [2005]).

In the field of classification of land cover images, stratifying the population is necessary

because the kind of land cover type and the size of polygons affect the probability of

making mistakes in the photo-interpretation. Hence, in our application we will choose

these factors as layers for the stratification. Usually stratification is derived from the

first photo-interpretation of remote sensing images, even though using existing land cover

maps can be cheaper. For instance, CORINE Land Cover (CLC) map 1 has been used

as a basis for stratification in Spain with satisfactory results (Gallego et al. [1999]). In

some cases, strata are associated to specific land cover type or groups of land cover types

(summer or winter crops for example). Some examples can be found in FAO [1996],

FAO [1998], Cotter and Tomczak [1994]. The relative efficiency of stratification is the

ratio between the variance that would have been obtained without stratification and the

estimated stratified variance (Cochran [1997, pp 99-101]). Landscape complexity deeply

affects efficiency. Where landscapes present a strong mixture of different crops, as in most

western European countries, the efficiency is generally low. It can be increased if a stra-

tum is characterized by a very dominant crop (in Catalonia the efficiency of stratification

reached a value of 10 for rice in 1992). In the Mississippi area, relative efficiency in 1999

was around 3 for dominant crops and around 1 (no gain) for other crops.

Since the majority of applications deal with finite population, sampling designs for finite

1see footnote 1, pp 5-6
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populations are the most required tools. In the next section, we will discuss in details all

the aspects related to the stratification and the application of the AGSPRN procedure

for our data-set.

5.3 Dataset

In 1999, the Italian Statistical Institute (ISTAT) carried out an experiment funded by

Eurostat that produced a land-cover/land-use database with a detailed CORINE legend

(Carfagna and Marzialetti [2009a]) and a scale of 1:25,000 for the Arezzo province. The

resulted database has required a strong coherence between its data in order to be an

efficient tool of territorial analysis, management and planning.

In this chapter we analyse the classification of 110 polygons that became part of the

dataset produced by ISTAT. Four land cover types are analysed. The following informa-

tion are available for each polygon:

• the land cover type associated to the polygon by the first photo-interpreter (type 1,

2, 3 or 4);

• the land cover type associated to the polygon by the controller (type 1, 2, 3 or 4);

• the size of the polygon.

The stratification is computed according to two factors: the land cover type associated to

the polygons by the first photo-interpreter and the size of the polygon (small-large size,

the median for each cover type is used as the cut-off). The result is the following:

• stratum 1: land cover type 1 and small size (18 polygons);

• stratum 2: land cover type 2 and small size (21 polygons);

• stratum 3: land cover type 3 and small size (14 polygons);

• stratum 4: land cover type 4 (6 polygons);

• stratum 5: land cover type 1 and big size (17 polygons);

• stratum 6: land cover type 2 and big size (21 polygons);

• stratum 7: land cover type 3 and big size (13 polygons);

For the fourth land cover type, the two strata identified by polygon’s size have been

collapsed because of their very small sizes. The result is a partition in seven strata.

We are interested in one of the main quality control indexes: the percentage of the area

correctly photo-interpreted, knowing that the analysed area (X) covers totally 272.228 m2.
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A polygon is correctly photo-interpreted if the first photo-interpreter and the controller

classify it according to the same cover type. Since the dataset provides information for

all the population of polygons, we can directly compute the values of this index, that

is 83.67 %. Indeed, the controller assigns a different land cover type to 28 out of 110

polygons, specifically, to 7, 12, 7, 2 polygons of the 1st, 2nd, 3rd and 4th land cover

types, respectively.

The aim of this chapter is to show the properties of the estimator of the area correctly

photo-interpreted generated by the optimal AGSPRN procedure, finding the optimal pair

(Kopt, qopt) in terms of minimum variance of the estimator given a cost function and a

budget constraint (Case 1, Section 3.3), minimum cost given a threshold on the estimator

variance (Case 2, Section 3.4), minimum risk obtained as a combination of estimator

variance and cost (Case 3, Section 3.5). The results are obtained by assuming to known

the entire population or just a sample of it, in order to make a comparison. In the latter

case we apply the procedure described in Chapter 4.

5.4 Estimation of the percentage of the area correctly

photo-interpreted through the AGSPRN proce-

dure

We are interested in estimating the percentage (A) of the area correctly photo-interpreted

through the optimal AGSPRN procedure. The value of A is equal to 83.67% as we

mentioned in the previous section. Mathematically, it can be expressed by the following

quantity:

A =
τ

X
× 100,

where X is the area of the photo-interpreted region that is known and equal to 272.228 m2,

whereas τ is the area correctly photo-interpreted and it is supposed to be estimated, even

though we know the population. Indeed, the aim is to investigate the general performance

of the optimal AGSPRN procedure. The estimator of A at the Kth step is:

astK =
τ̂stK
X
× 100 =

∑H
h=1Nh

∑nhK
i=1

yih
nhK

X
× 100,

where H denotes the number of strata, yih is a variable that takes value equal to the

area of the polygon i in stratum h if it is correctly photo-interpreted (its classification by

the first photo-interpreter and the controller coincides), 0 otherwise, N is the size of the

population, Nh denotes the size of stratum h, for h = 1, ..., H, nhK is the sample size of

stratum h at step K. For our dataset we have: N = 110, H = 7, N1 = 18, N2 = 21, N3 =

14, N4 = 6, N5 = 17, N6 = 21, N7 = 13.
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The estimator astK is unbiased for A, since the estimator of the total τ̂stK is unbiased in

a stratified sampling design and X is a constant. Moreover, as we reported in Section

3.2 for the mean estimator ystK , if the stopping rule is independent from τ̂stK , the use of

permanent random numbers in the AGSPRN procedure allows (3.1) to hold for astK .

The variance of astK is given by:

V (astK) = E[V (astK |n1K , ..., nHK)] = E

[
H∑
h=1

N2
h

nhK

Nh − nhK
Nh

S2
h

]
× 1002

X2
, (5.1)

where S2
h is the population variance for stratum h. Given a realization of the allocations

n1K , ..., nHK , the estimate of V (astK) is:

V̂ (astK) =
H∑
h=1

N2
h

Nh − nhK
NhnhK

∑nhK
i=1 (yihK − yhK)2

nhK − 1
× 1002

X2
, (5.2)

where yhK is the mean estimate in stratum h after K steps. In the next sections the

values of V̂ (astK) are always scaled by 10000.

In the case under study, the linear cost function takes the expression of (3.5), where the

cost components C0, cn, ck are chosen to be respectively equal to 30, 2, 4 and the sample

size n0 is 32. Let us see in details the solutions of the optimal AGSPRN which minimizes:

Case 1. the variance of the estimator in (5.1) given the linear cost function in (3.5) and a

budget constraint (C in (3.5) is given);

Case 2. the cost function in (3.5) given a threshold v on the estimator variance in (5.1);

Case 3. the risk function in (3.6), given thresholds v and c respectively on the estimator

variance and on the total cost.

In the next section, the optimal AGSPRN procedure is obtained by a Monte Carlo

study applied to the whole population. In Section 5.4 the results will be compared with

the optimal AGSPRN procedure derived from just a part of population, using the method

described in Chapter 4. Indeed, using the whole population to obtain an optimal sam-

pling procedure is a contradiction; it is just an expedient useful to compare the proposed

method with the most precise solution.
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5.4.1 The optimal AGSPRN procedure with known population

The entire population showed in Section 5.3 is here totally used to derive the optimal

AGSPRN procedure according to Case 1, 2 or 3. The results will be used to show some

properties of the optimal AGSPRN procedure and they will be compared with those ob-

tained in Section 5.4.

Case 1

The AGSPRN procedure in presence of budget constraint is applied to the dataset de-

scribed in section 5.3 in order to verify the performance of the estimator astK for the

percentage of the area correctly photo-interpreted. Algorithm 1 of Chapter 3 is imple-

mented by fixing C = 180, C0 = 30, cn = 2, ck = 4, n0 = 32 and R = 1000. The y-values

are known for each unit in the population, that means this is basically an exploratory

study about the AGSPRN estimator. The true value A of the percentage of the area

correctly photo-interpreted is 83.67%.

Table 5.1: Comparison of different adaptive estimators for the percentage of the area correctly
photo-interpreted, with C = 180, C0 = 30, cn = 2, ck = 4. The first row presents the optimal
solution with the value of astK , its variance, the MCE, the sample size n and the pilot sample
size n0. The consecutive rows show the comparisons with other sampling procedures: TSPRN,
ASPRN and STRS. Here, A = 83.67%.

K q astK 〈V R(astK ;K, q)〉 MCE n n0

Optimal AGSPRN 3 18 0.820 0.0013 2.53 ×10−6 68 32
TSPRN 2 39 0.818 0.0015 2.59 ×10−6 71 32
ASPRN 14 1 0.787 0.0052 9.86 ×10−6 45 32
STRS 1 0 0.816 0.0049 5.15 ×10−6 73 73

Table 5.1 shows that selecting 18 units at the second and third step allows to get a

reduction of 73 % in the estimator variance with respect to the variance of the estimator

obtained through a simple stratified random sample with the selection performed in just

one step, using the same amount of budget. We also note that the bias of the estimator

is not high in both cases. Moreover, the optimal AGSPRN procedure is shown not to

coincide with the TSPRN and ASPRN procedures which produce a higher estimator

variances. Table 5.2 shows the effect of cn and ck on the optimal AGSPRN procedure.

Since the population size and the budget are not very high, an increase of cn under a fixed

budget causes a decrease of Kopt and an increase of qopt, in order to maintain a quite high

sample size with a low increase of the estimator variance. As cn increases, qopt and the

sample size decrease, with a consequent reduction of the estimator variance. Contrary to

Table 3.3, the optimal number of steps Kopt does not increase, because when the budget

and the population size are low, it is preferable to reduce Kopt in order to maintain a
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quite high sample size. On the other hand, if the cost per step ck increases, the number

of optimal steps Kopt decreases with a relatively low effect on the total sample size and,

consequently, on the variance of the estimator also reduced.

Table 5.2: Effect of cn and ck for the percentage of the area correctly photo-interpreted, with
C = 180, C0 = 30, cn = 2, n0 = 32.

cn ck Kopt qopt astK 〈V R(astK ;K, q)〉 MCE n
2 4 3 18 0.820 1.3× 10−3 2.53 ×10−6 68

2.5 4 2 24 0.807 2.9× 10−3 4.50 ×10−6 56
3 4 2 15 0.800 5.1× 10−3 7.69 ×10−6 47

cn ck Kopt qopt astK 〈V R(astK ;K, q)〉 MCE n
2 2 4 13 0.823 1.0× 10−3 1.80 ×10−6 71
2 4 3 18 0.820 1.3× 10−3 2.53 ×10−6 68
2 8 2 35 0.818 1.7× 10−3 2.59 ×10−6 67

Case 2

Case 2 deals with the search of the optimal AGSPRN procedure which minimizes the

cost function in (3.5) given a threshold v on the estimator variance in (5.1). Algorithm

2 of Chapter 3 is applied to the dataset described in Section 5.3, for n0 = 32, C0 = 30,

R = 1000 and for different values of v, cn and ck. Since the y-values are available for all

the units in the population, our objective is to conduct an exploratory analysis to evaluate

the performance of the optimal AGSPRN estimator and assess the impacts of the cost

components on the optimal procedure.

Table 5.3: AGSPRN procedure for different values of v, cn and ck for the percentage of the
area correctly photo-interpreted and n0 = 32, C0 = 30, R = 103, H = 7. Here, A = 83.67%.

v cn ck Kopt qopt astK 〈V R(astK ;K, q)〉 C(K,q) MCE n
0.00125 2 4 3 17 0.819 1.23× 10−3 174 2.18 ×10−6 66
0.00096 2 4 4 12 0.819 0.95× 10−3 182 1.77 ×10−6 68
0.00125 1 4 2 37 0.819 1.21× 10−3 107 2.06 ×10−6 69
0.00125 4 4 3 17 0.819 1.23× 10−3 306 2.18 ×10−6 66
0.00125 4.2 4 4 11 0.816 1.23× 10−3 319.6 2.02 ×10−6 65
0.00125 2 1.9 4 11 0.816 1.23× 10−3 167.6 2.02 ×10−6 65
0.00125 2 2 3 17 0.819 1.23× 10−3 168 2.18 ×10−6 66
0.00125 2 8 2 37 0.819 1.21× 10−3 184 2.06 ×10−6 69

Table 5.3 shows the optimal AGSPRN procedure when cn = 2, ck = 4 and the thresh-

old is v = 1.25× 10−3. It consists of 3 steps and 17 units per step for a total cost of 174.

This result is very similar to that observed in Table 5.2 when the budget constraint C

was equal to 180, cn = 2, ck = 4 and v = 1.3× 10−3.
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If the threshold v decreases to 0.96 × 10−3, more steps are necessary to guarantee the

estimated variance to be lower than the constraint. The optimal pair (Kopt, qopt) is equal

to (4, 12), i.e., the lower is the threshold v, the higher will be the sample size, the cost

and the number of steps.

Now we assess the effects of the different cost components. From our study, we observe

that a decrease of cn produces a decrease of Kopt from 4 to 2 and an increase of qopt from

17 to 37. Consequently, we also observe a decrease of the total cost and an increase of

the sample size to balance the reduction of the number of steps. If cn increases, then Kopt

increases and qopt decreases as we expected, producing a reduction of the sample size and

a conspicuous increase of the total cost.

Moreover, if ck increases, keeping fixed the cost per unit cn, the number of optimal steps

Kopt obviously decreases, whereas qopt increases, with a small increase of the sample size

and of the total cost.

By comparing rows 3-5 to 6-8 of Table 3.4, we notice symmetry in the results. This con-

firms the conclusion shown in Table 3.4: the optimal AGSPRN procedure seems to rely

on the ratio cn/ck that is a core element from a practical point of view.

Moreover, the bias of astK is not high, when a sample size that ranges from 55% to 65%

of the population size is considered.

Case 3

We are now interested in finding the optimal AGSPRN procedure which gives rise to an

estimator for the percentage of the area correctly photo-interpreted in such a way that the

risk function in (3.6) is minimized, given thresholds v and c respectively on the estimator

variance and on the total cost.

Algorithm 3 of Chapter 3 is applied to the land cover dataset, fixing n0 = 32, C0 = 30,

R = 1000. Table 5.4 shows the result for different values of cn, ck, the thresholds v and

c, the weight ω.

Table 5.4: AGSPRN procedure for different values of v, c, cn, ck and ω for the percentage of
the area correctly photo-interpreted and n0 = 32, C0 = 30, R = 103, H = 7. Here, A = 83.67%.

ω v c cn ck Kopt qopt 〈V R(astK ;K, q)〉 C(K,q) R(K,q) MCE n
0.5 0.005 230 2 4 4 20 0.21 ×10−3 230 93.09 4.66 ×10−7 92
0.5 0.005 230 3 4 3 15 1.71 ×10−3 228 372.09 2.85 ×10−6 62
0.5 0.005 230 4 4 2 16 4.84 ×10−3 230 1241.7 7.84 ×10−6 48
0.5 0.005 230 2 2 7 10 0.17 ×10−3 228 87.43 4.08 ×10−7 92
0.5 0.005 230 2 8 3 28 0.30 ×10−3 230 104.38 6.46 ×10−7 88
0.5 0.0012 180 2 4 3 18 1.03 ×10−3 178 171.62 1.92 ×10−6 68
0.1 0.005 230 2 4 3 17 1.24 ×10−3 174 88.53 2.02 ×10−6 66

When the cost and estimator variance criteria are weighted equally (ω = 0.5), the
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optimal AGSPRN procedure for v = 0.005, c = 230, cn = 2 and ck = 4 consists of 4 steps

and 20 units per step. For each unitary increment of the cost cn, the number of steps and

the total sample size decrease, whereas the risk quadruples.

If ck increases, the number of steps Kopt decreases, with a small impact on the sample

size, on the estimator variance and, consequently on the risk.

Moreover, a decrease in the values of the thresholds reduces Kopt and n, with a negative

impact on the risk, which increases. This is obvious: higher constraints require more units

or a higher estimator variance to be satisfied.

When ω is equal to 0.5, we notice that the optimal AGSPRN procedure selects as many

units as possible, until the threshold c of the budget is reached. This is due to the

large value of λ and to the small value of the constraint c with respect to the term

max(K,q)∈HC(K, q) in expression (3.10). These factors contribute to inflate more the

estimator variance than the cost in the risk function. In order to balance the criteria, we

used ω to be equal to 0.1. The last row of Table (5.4) shows that a decrease of ω produces

a decrease of Kopt and qopt, with a consequent decrement of the sample size and of the

risk. This means that when the cost of the sampling process gets higher importance, the

optimal AGSPRN procedure will be cheaper, but with less precise estimators.

5.4.2 The optimal AGSPRN procedure with unknown popula-

tion

In this section we assume that the y-values are known only for a sample of polygons. We

apply Algorithm 4 of Chapter 4 to find the optimal AGSPRN procedure when the pop-

ulation is not known. Moreover, we compare the results to the previous sections, where

the population y-values in the dataset are completely used, giving rise to the most precise

AGSPRN estimators. Let us illustrate the solutions of the optimal AGSPRN procedure in

terms of minimum variance of the estimator given a cost function and a budget constraint

(Case 1), minimum cost given a threshold on estimator variance (Case 2), minimum risk

obtained as a combination of cost and estimator variance (Case 3).

Case 1

To find the optimal AGSPRN procedure that minimizes the variance of the percentage

of polygons correctly photo-interpreted given a budget constraint and only a pilot sample

we apply Algorithm 4, as given in Section 4.3.

Let us fix C0 = 30, C = 180, cn = 2, ck = 4 and the seven strata weights as described in

the dataset of Section 5.3.

At m = 1, a sample of size n0 = 32 is selected from this dataset, observing the y-values

relative to the area correctly photo-interpreted for each sampled polygon. This pilot
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sample is used to estimate the distribution of the variable of interest, generating N − n0

values. Since the strata sizes in the pilot sample are not high, it is preferable to use

the pilot units to make assumptions about the distribution of Y in each stratum and to

estimate the parameters. The area of a polygon is a continuous and positive variable, let

us denote it with S. A realization of S for the polygon i is denoted with si. We assume

a Gamma distribution for each stratum. The Shapiro-Wilk test confirms this assumption

for each stratum. The parameters of each Gamma distribution are then estimated and

N − n0 values are overall generated. The correct classification of a polygon can be in-

stead described by a Bernoulli random variable, let us call it Z. The reason of Bernoulli

distribution selection is that Z takes value 1 if the polygon is correctly classified, 0 if it

is not. The dataset described in Section 5.3 includes this information for each polygon,

hence it is possible to estimate in each stratum the probability of classifying correctly the

polygon, using the units selected in the pilot sample. Then, Nh−nh0 units are generated

from the h-th bernoulli distribution, where nh0 are the units of the pilot sample selected

in stratum h, for h = 1, ..., H. The y-values of the area correctly photo-interpreted for

each polygon are obtained multiplying the values of Z and S, in such a way that yi is

equal to si if the polygon i is correctly photo-interpreted, 0 otherwise.

Once we have generated the required data, we can apply Algorithm 1 of Chapter 3 to

find the optimal AGSPRN procedure in the presence of a cost function and a budget

constraint, fixing R = 1000.

Table 5.5: Optimal AGSPRN procedure at m=1, with C = 180, C0 = 30, cn = 2, ck = 4.
The optimal pair (K1

opt, q
1
opt), the value of astK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=1 K1
opt q

1
opt astK 〈V R(astK ;K, q)〉 MCE n n0

Optimal AGSPRN with
kernel density estimation 3 18 1.083 2.17 ×10−3 3.52 ×10−6 68 32

Optimal AGSPRN with
model assumption 3 18 1.153 2.59 ×10−3 4.09 ×10−6 68 32

Table 5.5 shows the optimal solutions. We present the optimal AGSPRN procedure

obtained deriving the distribution of Y from a kernel density estimation in the first row

of Table 5.5, whereas the results for model based assumption method are reported in the

second row. The latter method is more appropriate to estimate the density of Y , since

the pilot sample strata sizes are small.

Following the steps of Algorithm 4, at m = 2 we set C0 = C0 + ck = 30 + 4 =

34 and n0 = n0 + q1opt = 32 + 18 = 50. The variances inside each stratum are then

estimated and Neyman’s allocations are computed with size n0, selecting q1opt units only in

those strata with positive difference between Neyman’s allocation and the actual one (the
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selection is proportional to this difference). From the sample of size n0 we compute again

a kernel density estimation (supplementary method) and we estimate in each stratum the

parameters of the Gamma and Bernoulli distributions, in order to generate the updated

population values. Algorithm 1 is again applied to find the optimal AGSPRN procedure

for both methods. The solutions are showed in Table 5.6.

Table 5.6: Optimal AGSPRN procedure at m=2, with C = 180, C0 = 34, cn = 2, ck = 4.
The optimal pair (K2

opt, q
2
opt), the value of astK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=2 K2
opt q

2
opt astK 〈V R(astK ;K, q)〉 MCE n n0

Optimal AGSPRN with
kernel density estimation 2 19 0.867 2.19 ×10−3 3.05 ×10−6 69 50

Optimal AGSPRN with
model assumption 2 19 0.781 1.74 ×10−3 2.86 ×10−6 69 50

We found that, at m = 2, the optimal number of steps of the AGSPRN procedure is

equal to 2 and we have to verify whether or not the stopping rule is satisfied. We compute

the variances inside each stratum and Neyman’s allocations. Other 19 units are selected

only in those strata with positive difference between Neyman’s allocation and the actual

one (the selection is proportional to this difference).

Finally, we calculate astK and V̂ (astK ;K, q) that are respectively equal to 0.821 and

1.12 × 10−3 for both methods used to estimate the distribution of Y . This means that

both methods lead to the same allocations and to a value of astK very close to the real

one (A=0.836).

Moreover, the comparison of these solutions with those obtained through the optimal

AGSPRN procedure applied when the population is totally known (Table 5.1) shows that

the optimal pair is the same (Kopt = 3, qopt = 18), with just a unit less in the second step.

The final estimate is even slightly more precise when the population is estimated, because

of the addition of one extra unit that is allowed by the flexibility of these methods which

let qopt vary along the steps. The most important point is that the optimal AGSPRN

procedure, when the population is known, leads to the same strata allocations than that

applied to an estimated population.

Case 2

In this case we are interested in finding the optimal AGSPRN procedure that minimizes

the linear cost function in (3.5), given a threshold v on the variance of the percentage of

the area correctly photo-interpreted as expressed in (5.1).

Algorithm 4 is applied, with v = 1.25× 10−3, C0 = 30, cn = 2, ck = 4 and strata weights

corresponding to the seven groups of polygons as described in the dataset of Section 5.3.
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From this finite population, at m = 1, a pilot sample of size n0 = 32 is selected and

the optimal AGSPRN procedure is obtained, following Algorithm 2 of Chapter 3, with

R = 1000.

Table 5.7: Optimal AGSPRN procedure at m=1, with 1.25 × 10−3, C0 = 30, cn = 2, ck = 4.
The optimal pair (K1

opt, q
1
opt), the value of astK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=1 K1
opt q

1
opt astK 〈V R(astK ;K, q)〉 C(K,q) MCE n n0

Optimal AGSPRN with
kernel density estimation 4 16 1.075 1.23× 10−3 206 3.77 ×10−6 80 32

Optimal AGSPRN with
model assumption 4 14 1.121 1.17× 10−3 194 2.49 ×10−6 74 32

Table 5.7 shows the results for both methods of estimating the distribution of Y in

each stratum, where Y is the random variable associated to the area correctly photo-

interpreted. The first row refers to the solution concerning the case in which a kernel

density estimation is applied to the y-values of the pilot sample, in order to generate the

overall y-values of the population, whereas the second row shows the optimal pair of the

AGSPRN procedure applied to a population generated from a distribution whose form

and parameters are derived from the pilot sample. Similarly to the previous section, the

y-values are obtained by multiplying bernoulli and gamma random variables. We found

that the estimation method based on model assumptions is more appropriate, since the

pilot stratum sizes are not high. As Algorithm 4 outlines, for each m both methods of

estimating the distribution of Y are applied to a pilot sample with updated size n0 =

n0 + qm−1 and the optimal AGSPRN procedure is obtained by following Algorithm 2,

with C0 = C0 + ck and R = 1000.

Table 5.8: Optimal AGSPRN procedure at m=2, with 1.25 × 10−3, C0 = 34, cn = 2, ck = 4.
The optimal pair (K2

opt, q
2
opt), the value of astK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=2 K2
opt q

2
opt astK 〈V R(astK ;K, q)〉 C(K,q) MCE n n0

Optimal AGSPRN with
kernel density estimation 3 16 0.682 1.16× 10−3 206 2.11 ×10−6 80 48

Optimal AGSPRN with
model assumption 3 14 0.776 1.21× 10−3 194 2.06 ×10−6 74 46

Tables 5.8 and 5.9 show the results of the optimal AGSPRN procedure for m = 2 and

m = 3 obtained through a kernel density estimation of the finite population and by model

assumptions with estimated parameters, before the stopping rule is satisfied and Km
opt = 2.
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Table 5.9: Optimal AGSPRN procedure at m=3, with 1.25 × 10−3, C0 = 38, cn = 2, ck = 4.
The optimal pair (K3

opt, q
3
opt), the value of astK , its variance, the MCE, the sample size n and

the pilot sample size n0 are reported for the procedure involving kernel density estimation (first
row) and density derivation with model assumptions and estimated parameters (second row).

m=3 K3
opt q

3
opt astK 〈V R(astK ;K, q)〉 C(K,q) MCE n n0

Optimal AGSPRN with
kernel density estimation 3 10 0.831 1.13× 10−3 218 2.31 ×10−6 84 64

Optimal AGSPRN with
model assumption 3 10 0.945 1.13× 10−3 210 2.37 ×10−6 80 60

For each m, in order to verify whether or not the variance is below the threshold v, we

select qmopt from the real population and we compute the estimator variance. At m = 3

the optimal solution consists of 3 steps and 10 units per step. We add 10 units to the

sample and we compute the variance estimator, that is equal to 0.77 × 10−3 if we have

used the kernel density estimation method to find the optimal pair, whereas it is equal to

1.07× 10−3 by assuming a model for the distribution of Y . In both cases the estimate of

V (astK ;K, q) is below the threshold v = 1.25× 10−3 and we can stop the process. Hence,

the optimal AGSPRN procedure with kernel density estimation consists of 4 steps: 32

units are selected at the first step, 16 at the second and at the third, 10 units at the fourth

step, with a final estimate of the percentage of the area correctly photo-interpreted equal

to 0.833 and a total cost equal to 194. Whereas the optimal AGSPRN procedure with

model assumption for the distribution of Y involves 4 steps and 32 units selected at the

first step, 14 at the second and the third steps, 10 at the fourth step, with ast4 = 0.810

and a total cost equal to 186.

If we compare these solutions with that shown in the first row of Table 5.3, where the

optimal AGSPRN procedure is obtained using the real population, we notice some differ-

ences. The latter consists of 3 steps and 17 units per step, with an estimate of A equal

to 0.819, a total sample size of 66 units and a total cost of 174. It requires less sample

units to allow the estimator variance to be under the threshold and, consequently, it is

less expensive, as we expected. However, the estimate of A is slightly less precise than

that obtained through the optimal AGSPRN procedure with kernel estimation for the

distribution of Y .

Case 3

Let us suppose that all the y-values of the population are not known, which is usually

the case. Therefore, Algorithm 4 has been applied in order find the optimal AGSPRN

procedure which gives rise to an estimator for the percentage of the area correctly photo-

interpreted that minimizes the risk function in (3.6), given thresholds v and c respectively

on the estimator variance and on the total cost. Algorithm 3 is not appropriate, because
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the entire dataset is supposed not to be available, contrary to Case 3 of Section 5.4.

We fix n0 = 32, C0 = 30, v = 0.005, c = 230, cn = 2, ck = 4. At m = 1, a sample of 32

polygons is selected from the land cover database with proportional allocation, assuming

known the population sizes Nh, for h = 1, ..., H. Then, the distribution of the variable of

interest Y is derived in each stratum, using a kernel estimation (method 1) or assuming

a distribution form and estimating its parameters from the selected units (method 2).

Since we have small size of the pilot sample in each stratum, the latter method is more

appropriate. Successively, N − n0 y-values are generated from the estimated distribution

and then added to the pilot sample of size n0 in order to assemble the entire population.

Now it is possible to apply Algorithm 3 to the generated population, choosing R = 1000.

Table 5.10: Optimal AGSPRN procedure at m=1, with v = 0.005, c = 230, C0 = 30, cn = 2,
ck = 4. The optimal pair (K1

opt, q
1
opt), the estimated variance of astK , the cost C(K, q), the risk

R(K, q), the MCE, the sample size n and the pilot sample size n0 are reported for the procedure
involving kernel density estimation (first row) and density derivation with model assumptions
and estimated parameters (second row).

m=1 K1
opt q

1
opt 〈V R(astK ;K, q)〉 C(K, q) R(K, q) MCE n n0

Optimal AGSPRN with
kernel density estima-
tion

3 18 1.70 ×103 178 57.00 2.99 ×106 68 32

Optimal AGSPRN with
model assumption 3 19 1.38 ×103 182 59.20 2.38 ×106 70 32

Table 5.10 shows the optimal AGSPRN procedure at m = 1. We notice that if the

distribution of Y is derived through a kernel density estimation the optimal adaptive

sequential procedure consists of 3 steps and 18 units per step (first row of Table 5.10),

whereas if assumptions are made on the distribution of Y the optimal pair considers one

unit more at each step (second row of Table 5.10). For each m, in order to compute the

risk, the component ω in expression (3.9) is set equal to 0.5 and the value of λ in formula

(3.10) is equal to 19912.59, with max(K,q)∈HC(K, q) = C(K = N − n0, q = 1) = 566,

min(K,q)∈HC(K, q) = C(K = 1, q = 0) = 98, max(K,q)∈HV (a;K, q) = V (astK ;K = 1, q =

0) = 0.0235 and min(K,q)∈HV (ystK ;K, q) = 0. The term max(K,q)∈HV (a;K, q) is equal

to 0.0188 when model assumptions for the density of Y are used, with a consequent λ

equal to 24823.81. Once we have computed the strata variances, Neyman’s allocations

are calculated with sample size q1opt + n0. Successively, q1opt units are selected from the

real population, only in those strata with positive difference between Neyman’s allocation

and the actual one (the selection is proportional to this difference). Then, we estimate

the percentage of the area correctly photo-interpreted and its variance, that are equal to

0.845 and 6.3× 103 if the kernel density estimation method is used and equal to 0.83871

and 5.86× 103 if model assumptions are considered to derive the distribution of Y . The

former method gives rise to a risk equal to 83.35, whereas the latter one generates a risk
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of 93.84.

Table 5.11: Optimal AGSPRN procedure at m=2, with v = 0.005, c = 230, C0 = 34, cn = 2,
ck = 4. The optimal pair (K2

opt, q
2
opt), the estimated variance of astK , the cost C(K, q), the risk

R(K, q), the MCE, the sample size n and the pilot sample size n0 are reported for the procedure
involving kernel density estimation (first row) and density derivation with model assumptions
and estimated parameters (second row).

m=2 K2
opt q

2
opt 〈V R(astK ;K, q)〉 C(K, q) R(K, q) MCE n n0

Optimal AGSPRN with
kernel density estima-
tion

2 28 1.51 ×103 198 65.05 2.37 ×106 78 50

Optimal AGSPRN with
model assumption 2 23 1.53 ×103 190 65.07 2.71 ×106 74 51

At m = 2, we set n0 = q1opt + n0 and C0 = C0 + 4 = 80 + 4 = 84. Moreover, we

estimate more precisely the distribution of Y in each stratum after the selection of q1opt
units and we generate from it N − n0 units in order to form the entire population. Then,

we apply Algorithm 3 and results are given in Table 4.8, where it is showed that the two

methods of density estimation give rise to similar optimal AGSPRN procedures, with final

samples that differ for only four units. Since K2
opt = 2, we verify if the stopping rule is

satisfied by computing the variances inside each stratum and Neyman’s allocations with

size n0+q2opt. Supplementary units are selected only in those strata with positive difference

between Neyman’s allocation and the actual one, for a total amount of q2opt units. Then,

the percentage of the area correctly interpreted, its variance and the risk are estimated

through the final sample, obtaining values of 0.855, 0.42× 10−3 and 54.25 respectively if

the kernel estimation method is adopted and values equal to 0.843, 0.60× 10−3 and 53.54

if model assumptions on the distribution of Y are used. The risk values in both cases

are smaller than those obtained at the previous step. Furthermore, the constraints on

cost and estimator variance are satisfied. This indicates that estimating the distribution

of Y by steps when it is unknown leads, even in a real case, to a correct AGSPRN

procedure which is optimal for the minimization of the risk. The results are slightly far

from those presented in Section 5.4.1. Especially, the first row of Table 5.4 shows that

when the population is known, the optimal AGSPRN procedure consists of 4 steps and

20 units per step, giving higher priority to decrease the variance of the estimator respect

to the cost. However, when the y-values are generated from an estimated population,

the optimal AGSPRN procedure considers just 3 steps and samples about 15 units less,

giving more importance to the cost criterion. This can be due to the values of λ in the

risk function and, particularly, to the ratio between the constraint c (or v) and the value

of max(K,q)∈HC(K, q) (or max(K,q)∈HV (a;K, q)).

Tesi di dottorato "Adaptive Sequential Sampling for Finite Populations with Applications in Agricultural and Agro-Environmental Statistics"
di MISSIROLI SILVIA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2017
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



82

5.5 Discussion

Practical problems require timely and efficient tools to achieve solutions with minimum

amount of resources. This is the reason that has led us to apply the proposed AGSPRN

procedure to the quality control operation of a land cover database. In the field of ter-

ritory management, limited resources are devoted to measure the quality of a land cover

database. Thus, adaptive sequential sampling can be an useful tool to provide efficient

estimates, in terms of time and money. The aim of this chapter has been to show it.

In Section 5.4.1 we have showed that, given the same budget, the optimal AGSPRN pro-

cedure obtained through a Monte Carlo study applied to the known population provides

estimates for the area correctly photo-interpreted which are more precise than those ob-

tained with conventional standard designs. Moreover, it allows to reach the same precision

of the estimator with a lower amount of money. These findings are very important from

applied and operating points of view.

In this chapter we have also discussed the optimal AGSPRN procedure obtained when

the population values of the area correctly photo-interpreted are not completely known.

The results coincide with those derived in Section 5.4.2, with exception of some light

differences in Case 2 and Case 3, confirming the validity of this procedure also in applied

contexts.
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Chapter 6

The AGSPRN procedure in an

infinite population context:

convergence properties of the

estimator

6.1 Introduction

In a finite population context the definitions of consistency and convergence of an esti-

mator are quite different respect to those related to an infinite population setting.

Following the definition of consistency for finite population stated by Cochran [1997, pp

21], an estimator is called consistent if the estimates become exactly equal to the popu-

lation value when n=N, that is when the sample consists of the whole population. This

definition has some limitations. For instance, the sample total is considered consistent ac-

cording to this statement even though it is a very bad estimator for the population total.

Hence, we present another definition of consistency [Cicchitelli et al., 1992, pp 57–58].

An estimator θ̂n of θ is consistent if and only if the following holds:

limn→∞
N→∞
n
N
<1

Pr(|θ̂n − θ| < ε) = 1,

where ε is a whatever small positive quantity, n is the sample size, N is the population

size and θ does not change when N increases.

In order to study the convergence properties of the estimator generated by the optimal

AGSPRN procedure, let us call it optimal AGSPRN estimator, we move to an infinite

population context, i.e. supposing N, the finite population size, very big. Etoré and

Jourdain [2010] found similar results for a stratified Monte Carlo estimator. Also Bélisle

and Melfi [2008], Flournoy et al. [2012], Tymofyeyev et al. [2012] discussed some prop-
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erties of estimators generated by adaptive sequential procedure in an infinite population

framework, devoting particular attention to binary data.

6.2 Setting

Let Y be a Rd-valued random variable such that E(Y 2) < ∞. We are interested in

estimating c = E(Y ) using a stratified sampling. Let (Ah)1≤h≤H be a partition of Rd into

H strata such that ph = P (Y ∈ Ah). The values ph are supposed to be known and positive

for each integer h ∈ [1, H]. Given this partition, c is equal to
∑H

h=1 phE(Yh), where Yh is

distributed according to the conditional law of Y given Y ∈ Ah. The stratified estimator

for c is:

ĉ =
H∑
h=1

ph
Nh

Nh∑
i=1

Y i
h =

1

N

H∑
h=1

ph
qh

qhN∑
h=1

Y i
h ,

where Nh are i.i.d drawings of Yh, Y
i
h indicates the unit i belonging to stratum h, N =∑H

h=1Nh and qh = Nh
N

.

We have E(ĉ) = c and the variance of the estimator is equal to

V (ĉ) =
H∑
h=1

p2hσ
2
h

Nh

=
1

N

H∑
h=1

p2hσ
2
h

qh
=

1

N

H∑
h=1

(
p2hσ

2
h

qh
)2qh ≥

1

N

H∑
h=1

(
p2hσ

2
h

qh
qh)

2, (6.1)

where σ2
h = V (Y |Y ∈ Ah) for all 1 ≤ h ≤ H. We consider that σh > 0 for at least one

index h (Condition 1 ).

In our finite population context, we have c = E(Y ) = Y and Wh = ph, that is the

probability of selecting one unit from stratum h. Moreover, ĉ = yst, V (ĉ) = V (yst),

Nh = nh, for h ∈ 1, ..., H and N = n.

The lower bound of the variance in (6.1) is reached when the units are drawn from each

stratum according to the optimal (Neyman) allocation:

qh =
phσh∑H
j=1 pjσj

=: q∗h, ∀1 ≤ h ≤ H.

Substituting q∗h in (6.1) we then have:

V (ĉ) =
1

N
(
H∑
h=1

p2hσ
2
h)

2 =:
σ2
∗
N
.

Usually both E(Yh) and σh are not known for all h = 1, ..., H, hence it is necessary to

sample in steps. At each step we estimate the conditional variances and the allocations

of the drawings in each stratum. This gives rise to an adaptive stratified estimator.
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6.3 A modified version of the AGSPRN procedure

for infinite population

A little modification of the AGSPRN procedure is fundamental to achieve some conver-

gence properties. Let Nk
h denote the units selected in stratum Ah till the end of step k.

The increments Mk
h = Nk

h − N
(k−1)
h are obtained at each step k using the information

contained in the Nk−1 first drawings.

The modified AGSPRN procedure is applied as following:

At step k=1 set σ̂0
h = 1 for all integer h ∈ [1, H].

At step k ≥ 2 compute the strata standard deviations using the information gained in

the previous steps:

σ̂k−1h =

√√√√√ 1

Nk−1
h

Nk−1
h∑
j=1

(Y j
h )2 − (

1

Nk−1
h

Nk−1
h∑
j=1

Y j
h )2.

Then we make at least one drawing in each stratum. This is the element that modifies

the standard AGSRPN procedure. It ensures the convergence of the estimator and of the

σ̂kh. In the AGSPRN procedure some strata can also be not sampled at step k ≥ 2. This

condition imposes to select at least one unit from each stratum and makes the AGSPRN

procedure be less efficient.

We then have:

∀1 ≤ h ≤ H Mk
h = 1 + m̃k

h with m̃k
h ∈ N , (6.2)

where
∑H

h=1 m̃
k
h = Nk−Nk−1−H, and possibly m̃k

h = 0 for some indexes. In our AGSPRN

procedure q = Nk −Nk−1 and we choose m̃k
h = bmk

hc, where b·c indicates the integer part

rounding to the floor and

mk
h =

[
(Nk−1 + q −H)

phσ̂
k−1
h∑H

j=1 pj σ̂
k−1
j

−Nk−1
h

]
∑H

i=1

[
(Nk−1 + q −H)

piσ̂
k−1
i∑H

j=1 pj σ̂
k−1
j

−Nk−1
i

](q −H) =

=

[
(Nk−1 + q −H)

phσ̂
k−1
h∑H

j=1 pj σ̂
k−1
j

−Nk−1
h

]
[(Nk−1 + q −H)−Nk−1]

(q −H) =

= (Nk−1 + q −H)
phσ̂

k−1
h∑H

j=1 pjσ̂
k−1
j

−Nk−1
h , ∀1 ≤ h ≤ H,

(6.3)

with the convention that m̃1
h = bn0phc, h = 1, ..., H, where n0 is the pilot sample size of

our AGSPRN procedure.
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Proposition 1.1 If E|Y | <∞, then

ĉk
k→∞−−−→ c a.s.

If moreover, E(Y 2) <∞, then, a.s,

∀1 ≤ h ≤ H σ̂kh
k→∞−−−→ σh and

H∑
h=1

phσ̂
k
h

k→∞−−−→ σ∗

The validity of the previous proposition is ensured by the strong low of large numbers and

by the fact that the selection of at least one unit at each step in each stratum (condition

6.2) allows Nk
h to converge to infinity when k →∞.

6.4 Convergence Properties

Let us consider the following theorem.

Theorem 2.1

Given Condition 1, E(Y 2) < ∞ and k/Nk → 0 as k → ∞, then using the AGSPRN

procedure (slightly modified) we have:√
Nk(ĉ

k − c) inlaw−−−→
k→∞

N (0, σ2
∗)

To prove the theorem we need Proposition 2.1 and Proposition 2.2.

Proposition 2.1

If E(Y 2) <∞ and

∀1 ≤ h ≤ H
Nk
h

Nk
−−−→
k→∞

q∗h a.s., (6.4)

then √
Nk(ĉ

k − c) inlaw−−−→
k→∞

N (0, σ2
∗).

Proposition 2.2

Given Condition 1, E(Y 2) < ∞ and k/Nk → 0 as k → ∞, then using the AGSPRN

procedure (slightly modified) we get

∀1 ≤ h ≤ H
Nk
h

Nk
−−−→
k→∞

q∗h a.s..
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Proof of Proposition 2.1

To prove the proposition 2.1 we need the CLT for martingales that we recall below.

Central limit theorem for martingales

Let (µn)n∈N be a square-integrable (Fn)n∈N vector martingale. Suppose for a deterministic

sequence (γn) increasing to +∞ we have,

i)
〈µ〉n
γn

P−−−→
n→∞

Γ

ii) The Lindeberg condition is satisfied, i.e. for all ε > 0

1

γn

n∑
k=1

E
[
||µk − µk−1||21{||µk−µk−1||≥ε

√
γn}|Fk−1

] P−−−→
n→∞

0.

Then
µn√
γ
n

inlaw−−−→
n→∞

N (0,Γ).

In our case, we have:

√
Nk(ĉ

k − c) =


p1

Nk

Nk
1

...

pH
Nk

Nk
H


′

1√
Nk


∑Nk

1
j=1(Y

j
1 − E(Y1))

...∑Nk
H

j=1(Y
j
H − E(YH))

 .

We can apply the CLT for martingales by setting µk := (
∑Nk

1
j=1(Y

j
1−E(Y1)), . . . ,

∑Nk
H

j=1(Y
j
1−

E(YH)))′. If we define the filtration (Gk)k∈N by (Gk) = σ(1j≤Nk
h
Y j
h , 1 ≤ h ≤ H, 1 ≤ j),

it can be shown that (µk) is a (Gk)-martingale. This is thanks to the fact that Nk
h are

(Gk−1) measurable. We can show that:

〈µ〉k
Nk

= diag(
Nk

1

Nk

σ̂2
1, . . . ,

Nk
H

Nk

σ̂2
H)

where diag(v) denotes the diagonal matrix with vector v on the diagonal. Thanks to (6.4),

we thus obtain
〈µ〉k
Nk

a.s.−−−→
k→∞

diag(q∗1σ
2
1, . . . , q

∗
Hσ

2
H)

This result with a use of the CLT for martingales and of Slutzky’s theorem could lead to

the desired result.

The Lindeberg’s condition is not easy to prove for the sequence in k, hence Etoré and
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Jourdain [2010] proved it for the sequence (c̃n) of estimators of c, such that (ĉk = c̃N
k
).

We will show that (ĉk) is a subsequence of (c̃n), therefore the results obtained for the

latter can be extended to the former sequence. Let us see below some details.

Let n ∈ N and let k ∈ N such that Nk−1 < n ≤ Nk. The quantity νnh is defined as the

numbers of drawings in the h-th stratum among the first n drawings and we can write

that
∑H

h=1 ν
n
h = n. The following estimator is then defined:

c̃n :=
H∑
h=1

ph
νnh

νnh∑
j=1

Y j
h

Allocation rule for the single drawing

For n = 0, νnh = 0, for h = 1, ..., H.

1. For k> 0 set rkh :=
Nk
h−N

k−1
h

Nk−Nk−1 for h = 1, ..., H

2. For Nk−1 < n ≤ Nk, and given the νn−1h ’s find

hn = argmax1≤h≤H

(
rkh −

νn−1h −Nk−1
h

n−Nk−1

)
If hn is not unique, choose the index with the greatest rkh. If it is not enough to make hn

unique, choose the greatest h.

3. Set νnhn = νn−1hn
+ 1 and νnh = νn−1h if h 6= hn

There exist always an index h for which rkh −
νn−1
h −NK−1

h

n−Nk−1 > 0, since

H∑
h=1

νn−1h −NK−1
h

n−Nk−1 =
n− 1−Nk−1

n−Nk−1 < 1 =
H∑
h=1

rkh.

Moreover, for the first n ∈ {Nk−1 + 1, ..., Nk} such that νn−1h = Nk
h in the h-th stratum,

rkh −
νn−1
h −NK−1

h

n−Nk−1 ≤ 0 and νn
′

h = νnh = Nk
h for n ≤ n′ ≤ Nk.

The consequence is that

νN
k

h = Nk
h , ∀1 ≤ h ≤ H, ∀k ∈ N ,

and

ĉk = c̃N
k

.

Proposition 2.3. Under the following assumptions of Proposition 2.1,

√
n(c̃n − c) inlaw−−−→

n→∞
N (0, σ2

∗).

To verify the Lindeberg condition in order to prove this proposition we need the following
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lemma.

Lemma 2.1 When (6.4) holds, then

∀1 ≤ h ≤ H,
νnh
n
−−−→
n→∞

q∗h a.s.

Proof. For x ∈ R∗+ or n ∈ N , the integer k is such that Nk−1 < x and n ≤ Nk.

For any n ∈ N and 1 ≤ h ≤ H we have:

νnh
n

=
n−Nk−1

n
· ν

n
h −Nk−1

n−Nk−1 +
Nk−1

n
· N

k−1
h

Nk−1 ,

and we define for x ∈ R+ the following quantity:

f(x) :=
x−Nk−1

x
· N

k
h −Nk−1

h

Nk −Nk−1 +
Nk−1

x
· N

k−1
h

Nk−1 .

We will see that, as n tends to infinity, f(n) tends to q∗h and f(n)− νh
n

tends to zero.

The derivative of f on any interval (Nk−1, Nk] shows that this function is monotonic on

it. We know that f(Nk−1) =
Nk−1
h

Nk−1 and f(Nk) =
Nk
h

Nk . So if
Nk
h

Nk tends to q∗h as k tends to

infinity, the following holds:

f(n) −−−→
n→∞

q∗h. (6.5)

As rkh =
Nk
h−N

k−1
h

Nk−Nk−1 we have:

νkh
n
− f(n) =

n−Nk−1

n

(
νnh −Nk−1

n−Nk−1 − r
k
h

)
. (6.6)

If we show that

rkh −
H − 1

n−Nk−1
h

<
νnh −Nk−1

h

n−Nk−1 < rkh +
1

n−Nk−1 , (6.7)

we can derive from (6.6) and (6.7) the following result:

−H − 1

n
<
νkh
n
− f(n) <

1

n
,

which combined with (6.5) allows us to get the desired conclusion.

In order to check (6.7), we start showing that

νnh −Nk−1
h

n−Nk−1 < rkh +
1

n−Nk−1 . (6.8)

Two cases are discussed. Either no drawings at all are made in stratum h between Nk−1
h

and n, that is νn
′

h = Nk−1
h for all Nk−1 < n′ ≤ n, then (6.8) is trivially verified.
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Either some drawings are made between Nk−1
h and n. Let us denote by n′ the index of the

last one, i.e. νnh = νn
′

h = νn
′−1

h + 1. If a drawing is made at n′ we see that
νn
′

h −N
k−1
h

n′−Nk−1 < rkh.

Thus, the following holds:

νn
′−1

h −Nk−1
h

n−Nk−1 ≤ νn
′−1

h −Nk−1
h

n′ −Nk−1 < rkh

and
νnh −Nk−1

h

n−Nk−1 =
νn
′−1

h + 1−Nk−1
h

n′ −Nk−1

Hence (6.8) is showed for this case.

Knowing that 1 =
∑H

h=1 r
k
h =

∑H
h=1

νnh−N
k−1
h

n−Nk−1 we get

νnh −Nk−1
h

n−Nk−1 = rkh +
∑
h6=j

(
rkj −

νnh −Nk−1
h

n−Nk−1

)

Using this result and expression (6.8) we obtain (6.7).

Proof of Proposition 2.3. For n ≥ N1, we have νnh ≥ 1 for all 1 ≤ h ≤ H and we

can write

√
n(ĉn − c) =


p1

n
νn1
...

pH
n
νnH


′

1√
n
µn, (6.9)

where

µn =


∑νn1

j=1(Y
j
1 − E(Y1))

...∑νnH
j=1(Y

j
H − E(YH))

 .

It can be shown that (µn) is a (Fn)-martingale, where (Fn)n∈N is the filtration defined

as (Fk) := σ(1j≤νnhY
j
h , 1 ≤ h ≤ H, 1 ≤ j). Indeed, for n ∈ N , let k ∈ N such that

Nk−1 < n ≤ Nk. For h = 1, .., H, Nk−1
h and Nk

h are respectively FNk−1 and (FNk−2)

measurable. For each 1 ≤ h ≤ H, the variable νkh is FNk−1 measurable since it depends

on the Nk−1
h ’s and the Nk

h ’s. Thus µn is Fn-measurable and it can be shown easily that

E[µn+1|Fn] = µn.

We wish to use Theorem 2.2 with γn = n. The term diag(ah) will denote the H × H

matrix having null coefficients except the h-th element of the diagonal which is equal to

ah.

Let us verify the Lindeberg condition. By using the sequence (hn) defined before, we
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obtain the following result:

1

n

n∑
l=1

E[||µl − µl−1||21{||µl−µl−1||>ε
√
n|Fl−1] =

=
1

n

n∑
l=1

E[|Y νlhl
hl − E(Yhl)|21

{|Y
νl
hl

hl −E(Yhl)|>ε
√
n
|Fl−1] =

≤ 1

n

n∑
l=1

sup1≤h≤HE[|Yh − E(Yh)|21{|Yh−E(Yh)|>ε√n] =

= sup1≤h≤HE[|Yh − E(Yh)|21{|Yh−E(Yh)|>ε√n].

(6.10)

As

sup1≤h≤HE[|Yh − E(Yh)|21{|Yh−E(Yh)|>ε√n] −−−→
n→∞

0,

the Lindeberg condition is proved.

We now show point i) of the CLT for martingales. We have,

〈µ〉n =
n∑
l=1

E[(µk − µk−1)(µk − µk−1)′|Fk−1] =

=
n∑
l=1

diag(E[|Y νkhk
hk − E(Yhk)|2])

=
n∑
l=1

diag(σ2
hk

).

(6.11)

Consequently, by using Lemma 2.1 we get:

〈µ〉n
n

= diag(
νn1
n
σ2
1, . . . ,

νnH
n
σ2
H) −−−→

n→∞
diag((q∗1σ

2
1, ..., q

∗
Hσ

2
H)) a.s.,

Theorems 2.2 implies that:

〈µ〉n
n

inlaw−−−→
n→∞

N (0, diag(q∗1σ
2
1, . . . , q

∗
Hσ

2
H)) (6.12)

By Lemma 2.1 the following holds:

(p1
n

νn1
, · · · , pH

n

νnH
) −−−→
n→∞

(
p1
q∗1
, · · · , ph

q∗H
) a.s. (6.13)

Finally, by using Slutsky’s Theorem 6.9, 6.12 and 6.13, we obtain:

√
n(c̃n − c) inlaw−−−→

n→∞
N (0, σ2

∗).
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Proof of Proposition 2.2

In order to prove Proposition 2.2, we need to know that Proposition 1.1 implies conver-

gence of ρkh =
phσ̂

k
h∑H

j=1 pj σ̂
k
j

as k → +∞. The following Lemma is also fundamental.

Lemma 2.2. Under the assumptions of Theorem 2.1, the following holds

∀1 ≤ h ≤ H, ρkh −−−→
k→∞

q∗h a.s.

Now, we can proceed with the proof of Proposition 2.2.

For all 1 ≤ h ≤ H we have Nk

Nk =
k+

∑k
l=1 m̃

l
h

Nk . Since we know that ml
h − 1 < m̃l

h < ml
h + 1,

then: ∑k−1
l=1 m̃

l
h +mk

h

Nk
≤ Nk

h

Nk
≤ 2k

Nk
+

∑k−1
l=1 m̃

l
h +mk

h

Nk
. (6.14)

We get:

∑k−1
l=1 m̃

l
h +mk

h

Nk
=
Nk−1
h + (Nk−1 + q −H)

phσ̂
k−1
h∑H

j=1 pj σ̂
k−1
j

−Nk−1
h

Nk
=

=
(Nk −H)ρk−1h

Nk
= ρk−1h − Hρk−1h

Nk
,

where the sequence (ρk−1h ) defined by ρ̃nh = ρnh converges a.s. to q∗h as n tends to

infinity, by Lemma 2.2. The second term converges to 0 when k tends to infinity. Hence∑k−1
l=1 m̃

l
h+m

k
h

Nk converges to q∗h as k →∞, and
Nk
h

Nk → q∗h by (6.14) when k/Nk → 0.

6.5 Discussion

The aim of this chapter has been to show some important convergence properties about

the stratified mean estimator generated by an adaptive sequential procedure that pursues

Neyman’s allocation in the infinite population context. More specifically, given a variable

of interest Y , we have proved that the distribution of the estimator of E(Y ) converges to

a Normal distribution having mean E(Y ) and variance equal to the minimum variance

that the estimator can reach, the one achieved by Neyman’s allocations. The convergence

holds if either the number of steps k or the number of total drawings N tend to infinity.

Hence, in the setting described for our AGSPRN procedure, the convergence would hold

also as q tends to infinity if we work with infinite population framework. The key elements

of this proof have been to use martingales arguments and to show that the sequence in k

is a subsequence of that in n, the drawings.
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These results are obtained for an adaptive sequential procedure that has the same setting

and the same adaptive rule as our AGSPRN procedure. However, the latter has to be

slightly modified in order to allow the convergence properties to hold, that is, providing

the selection of at least one unit in each stratum at each step. This can become very

cumbersome, especially in applied situations. Moreover, Carfagna [2007] introduced the

permanent random technique to the adaptive sequential procedure in order to avoid to

select at each step a complete stratified random sample, as in Thompson and Seber [1996,

pp 189-191]. Hence, further research should investigate the behaviour of our AGSPRN

estimator also in a finite population context, when both the numbers of units of the pop-

ulation N and the sampled units are large and when the sample units are selected not

necessarily in all the strata. This is not a trivial task, as also Cicchitelli et al. [1992, pp

294-295] underlined. Thanks to the permanent random numbers technique, at each step

k, the sample selected in each stratum can be considered as a simple random sample with-

out replacement. If the approximation to the Normal holds in each stratum, the stratified

mean estimator can be considered approximately normal, since it is a linear combination

of the strata sample means. Zacks [2009, pp 84-86] investigated by simulations the ap-

proximation to the Normal of the mean estimator generated by a simple random sampling

without replacement. Usually, a correct stratification gives rise to homogeneous strata

and leads the strata means to be normally distributed.

When the strata sizes are small (as in several practical applications), it is necessary to

use the Student’s t-distribution, with the complication to compute its degrees of freedom.

If the population size and the sample size are homogeneous among strata, if the distribu-

tions are approximately normal inside each stratum and the strata variances are similar,

the degrees of freedom are set equal to n−H, where n is the total sample size and H is

the number of strata. However, these regular conditions are particularly rare, hence the

degrees of freedom have to be reduced in order to increase the confidence interval size.

An approximated formula to compute the degree of freedom (gl) for general conditions is:

gl =
[
∑H

h=1 V̂ (Whyh)]
2∑H

h=1 V̂
2(Whyh)/(nh − 1)

,

where V̂ (Whyh) = W 2
h (1− fh)s2h/nh.

In stratified random sampling, the situation is more complex than in simple random

sampling, because several factors affect the distribution of the sample mean such as the

number of strata, the stratification procedure, the sample allocations. This complexity,

that increases in an adaptive sequential setting, prevents to give some general instructions

about the convergence properties of the AGSPRN estimator in a finite population context.
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Chapter 7

Conclusions

One of the aim of this thesis has been to satisfy the need of finding a flexible sampling

procedure for a stratified finite population, which allows to generate timely and efficient

estimates of the parameter of interest, in the presence of a linear cost function. This

need especially arises in real applications, where time and resources are often limited, and

efficient estimates are generally requested.

Adaptive designs have been the first tools we have considered, since they allow more

flexibility than the conventional designs. We have explored in Chapter 2 the literature

concerning adaptive and sequential procedures, devoting particular attention to the finite

population context. Stein’s two step procedure, Ray’s, Chow and Robbins’s adaptive

sequential procedures for infinite population have been briefly analysed. In the finite

populations context, we have particularly focused on the two steps adaptive procedure

with permanent random numbers (TSPRN, Carfagna [2007]) and the adaptive sequential

procedure with permanent random numbers (ASPRN, Carfagna and Marzialetti [2009b]),

which were proved to be more efficient than Thompson and Seber’s method (Thompson

and Seber [1996, pp 189-191]). Carfagna et al. [2012] showed that, when a cost function is

introduced and the step cost is high, the ASPRN may be less efficient than the TSPRN.

Thus, the presence of a cost function is a key element for the identification of the op-

timal adaptive procedure which can be seen as a compromise solution between TSPRN

and ASPRN, able to reduce the costs to be suffered by ASPRN when the cost per step

becomes relatively high, preserving the advantages that an adaptive sequential procedure

has in terms of efficiency of the estimators. Determining this optimal adaptive sequential

procedure has been the aim of our work. Hence, in Chapter 3 we have proposed an adap-

tive group sequential procedure for stratified sampling with the use of permanent random

numbers (AGSPRN), which consists in adding q units at each step until the Kth step,

where the stopping rule is satisfied. The TSPRN and the ASPRN can be derived from

it as particular and usually less efficient cases. We have chosen different stopping rules,

concerning the estimator variance, the total cost and the risk. Indeed, we have introduced
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the approach based on the minimization of a risk function which is a convex combination

of two standardized criteria: the cost of the procedure involving K steps and q units per

step, and the variance of the estimator generated by the procedure. This approach can

be useful in applied problems, where it is important to take into account the precision of

the results but also the cost of reaching that precision. A procedure that balances the

precision of the estimates and the cost to reach it, assigning to the two criteria different

levels of importance, is essential.

Specifically, we have focused on the problem of determining the optimal AGSPRN pro-

cedure, that minimizes: 1) the variance of the estimator given a cost function and a

budget constraint, 2) the total cost given a threshold on the estimator variance, 3) the

risk function. These problems resulted to be analytically unsolvable, since the distribution

of the variance of the estimator generated by the AGSPRN procedure is mathematically

intractable. Hence, a Monte Carlo study has been performed to compute the value of the

estimator variance for some AGSPRN procedures, with different values of q and K. The

simulation experiment requires to have some inputs about the target population, which

can be derived from the pilot sample. In Chapter 4 we have proposed an adaptive Monte

Carlo, which allows to update, at each step, the distribution of the variable of interest in

each stratum, in order to generate a population very close to the target one.

In Chapter 3 we have applied the Monte Carlo study directly to the target population, in

order to show some properties of the optimal AGSPRN procedure. For instance, we have

found out that, when the cost per step is not negligible, the optimal AGSPRN procedure

is usually more efficient than ASPRN, TSPRN and also with respect to a simple stratified

random sampling applied in just one phase, since the adaptive rule allows to generate a

sample allocation very close to Neyman’s one.

A key role is played by the cost function and by the values of its components. We

have chosen a linear cost function, but the impact of different functions on the optimal

procedure should be analyzed in future works. Especially, we have seen that the ratio

cn/ck is relevant in choosing the optimal number of q and K. Hence, in applied problems,

reducing some costs in favor of others can be fundamental to gain efficiency in the esti-

mates.

Moreover, we have assessed the impact of different values of the cost components on the

optimum number of steps and of sample units to be allocated at each step. We have

noticed that an increase of the unit cost, under a fixed budget and a linear cost function,

causes an increase of the number of steps and a decrease of the number of units per step.

Obviously the total number of sample units decreases and, consequently, the variance of

the estimator of the mean increases. The optimal AGSPRN procedure tends to maintain

a high number of steps, since a decrease of the number of steps inflates the estimator

variance more than a decrease of the number of sampling units per step. On the other

side, if the cost per step increases, the number of optimal steps decreases, with a relatively

Tesi di dottorato "Adaptive Sequential Sampling for Finite Populations with Applications in Agricultural and Agro-Environmental Statistics"
di MISSIROLI SILVIA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2017
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



97

low effect on the total sample size and, consequently, on the variance of the estimator.

In Chapter 4, we have proposed a method useful to obtain the optimal AGSPRN

procedure when the values of the variable of interest Y are not known for all the units

in the population. This is the standard situations, thus the proposed technique can be

convenient to estimate timely and efficiently a population target, when only a pilot sam-

ple is available. The optimal adaptive sequential procedure derived with this method is

characterized by a variable number of units added at each step, that depends on the up-

dated estimate of the population. Comparing the optimal AGSPRN procedure obtained

when the population y-values are partially unknown with that found for a totally known

population, we have noticed that they are very similar. This is an encouraging result. If

a moderate decrease in precision arises, it is usually balanced by a small increase of the

number of steps or units per step.

The proposed method can be implemented in many practical applications. In Chapter

5 we have applied it to find the optimal AGSPRN procedure in order to estimate the

quality index of a land cover database, equal in this particular case to the percentage of

the land area correctly photo-interpreted. Usually limited resources are devoted to the

quality control operation of a land cover database, thus, timely and efficient estimates are

required, in terms of cost, estimator precision and risk. The optimal AGSPRN procedure

found when the population y-values are unknown is noticed to be close to that obtained

for a totally known population. However, a particular attention has to be devoted to the

formulation of the risk function, and, particularly to the value of λ in expression (3.9).

In the filed of territory management, when the cost of transport is high and the spa-

tial autocorrelation of population units is moderate, sampling contiguous polygons can

be cost efficient. Hence, adapting the proposed optimal AGSPRN procedure to cluster

sampling of polygons can be a future development of this work, taking into account the

spatial autocorrelation and the cost functions, which should incorporate also the cost of

transport.

Additional efficiency may be gained adding qk units at the kth step in such a way that a

different number of units is added at each step according to the needs arisen on the way.

Hence, a future development of this procedure is letting q varying along the steps. More-

over, the work can be extended considering the aim of getting information on more than

one variable of interest, applying a multiple adaptive allocation along the steps (Bethel

[1989], Ullah et al. [2014]).

Finally, some useful convergence properties are proved for a slightly modified version

of the AGSPRN estimator, in the infinite population context. For instance, the distri-

bution of the AGSPRN estimator is showed to converge to a Normal distribution having

as expected value the real value of the parameter and as variance the minimum variance

that a stratified mean estimator can reach, i.e. when the units are allocated to the strata

according to the Neyman’s rule. The convergence holds when either the number of steps
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or the number of units per step go to infinity. In a finite population context proving the

same properties is not easy, since when the strata initial sample sizes are small the nor-

mal approximation for the distribution of the mean estimator does not hold. Moreover,

in a stratified random sampling the complexity is increased by the allocation rule and

the stratification process. Showing convergence properties in a finite population context

(supposing the population size is very big) for a mean estimator generated by a stratified

adaptive sequential sampling procedure can be one of the challenge for future works.

In this thesis we have discussed a complex framework which considers sequential es-

timation with an adaptive allocation rule and continuous responses in a stratified finite

population context and in the presence of a cost function. The intersection of all these

aspects has not been explored yet; it is a complete open research topic, as also Hu and

Rosenberger [2006, pp 158] stated for the clinical trials context, where a treatment corre-

sponds to a stratum:

For K > 2 treatments, we have discussed only binary responses. The

optimization framework should apply to continuous responses, and this is a

completely open problem.(...)

Most larger clinical trials impose a sequential monitoring procedure to allow

for early stopping. The basic statistical formulation requires determining the

distribution of sequentially computed test statistics. Under response-adaptive

randomization, this is a difficult task. Numerical studies have been performed

(...).

There has been little theoretical work done to this point, nor has there been

any evaluation of sequential monitoring in the context of sequential estimation

procedures such as the doubly-adaptive coin design. Regarding the intersec-

tion of sequential analysis and response-adaptive randomization, Rosenberger

(2002) states: ‘Surprisingly, the link between [response adaptive randomiza-

tion] and sequential analysis has been tenuous as best, and this is perhaps the

logical place to search for open research topics’.
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