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Abstract 
Background: 
A growing enthusiasm for machine learning (ML) has been noted among academics and healthcare 
practitioners. Despite the transformative potential of ML-based applications for patient care, their 
uptake and implementation in healthcare organizations is still sporadic. Numerous challenges currently 
impede or delay widespread implementation of ML in clinical practice, and limited knowledge is 
available regarding how these challenges have been addressed so far. 
Objectives: 
The aim of this work is twofold: i) to examine the characteristics of the ML-based applications and the 
implementation process in clinical practice, using the Consolidated Framework for Implementation 
Research (CFIR) as theoretical guidance; ii) to synthesize the strategies adopted by healthcare 
organizations to foster successful implementation of ML. 
Methods: 
A systematic literature review was conducted based on the PRISMA guidelines. The search was 
conducted using three databases (PubMed, Scopus, and Web of Science) over a 10-year time frame 
(2013-2023). The search strategy was built around four blocks of keywords (artificial intelligence, 
implementation, health care, and study type). Only empirical studies documenting the implementation 
of ML applications in clinical settings were considered. The implementation process was investigated 
using a thematic analysis and coding procedure. The study protocol was registered in PROSPERO with 
registration number 403873.  
Results: 
Thirty-four studies were selected for data synthesis. Selected papers were relatively recent, with only 
9% of the records published before 2019. ML-based applications were implemented mostly within 
hospitals (29/34, 85%). In terms of clinical workflow, ML-based applications supported mostly 
prognosis and diagnosis, as observed in 20 (59%) and 10 (29%) studies, respectively. The 
implementation efforts were analyzed using the CFIR domains. As for the inner setting, access to 
knowledge and information (12/34, 35%), IT infrastructure (11/34, 32%), and organizational culture 
(9/34, 26%) were amongst the most observed dimensions influencing the success of implementation. 
As for the ML innovation itself, factors deemed relevant were its design (15/34, 41%), relative 
advantage with respect to existing clinical practice (14/34, 41%), and perceived complexity (14/34, 
41%). As for the other domains – i.e., processes, roles, and outer setting, stakeholder engagement 
(12/34, 35%), reflecting and evaluating practices (11/34, 32%) and the presence of implementation 
leaders (9/34, 26%) were the main factors identified as salient. 
Conclusions: 
This study contributes to shed some light on the factors that are relevant and that should be accounted 
for in an implementation process of ML-based applications in healthcare. While the relevance of ML-
specific dimensions, like trust, emerges clearly across several implementation domains, the evidence 
from this study highlighted that relevant implementation factors are not necessarily specific for ML, 
but rather transversal for digital health technologies. More research is needed to further clarify the 
factors that are relevant to implementing ML-based applications at the organizational level, and to 
support their uptake within healthcare organizations. 
 
Keywords: Artificial Intelligence; Machine Learning; Implementation; Healthcare Organization; 
Barriers; Facilitators 
  



   
 

   
 

Introduction 
Background 
Artificial intelligence (AI) has been unquestionably acknowledged as a game changer in health care [1], 
even more so after technological advances in the field of machine learning (ML) have contributed to 
further expand the frontiers of its possible applications [2]. Compared to knowledge- or rule-based 
systems that automate established human clinical reasoning methods through a series of “if-then” 
statements [3], ML encompasses all the non-knowledge-based models that automatically (or semi-
automatically) learn from the exposure to abundant quantities of data and detect patterns through 
explicit or latent recognition rather than conventional programming. ML is expected to serve primarily 
as a decision support tool to enhance rather than a replacement of human work [4], thereby providing 
healthcare professionals (HCPs) with improved predictions and rendering their decision-making 
process more accurate [5]. Despite some AI systems having already shown to be equal or even superior 
in performance to HCPs [6], full automation of a broad range of human tasks is expected to occur only 
at later stages. 
Whether ML is intended to provide inputs to human decision making or to act autonomously, these 
technological advancements do not automatically translate into clinical practice. The road to 
implementing ML applications in patient care is indeed ridden with several challenges, creating an 
inevitable chasm between ML and its clinical integration [7], [8].  
Challenges for the implementation of AI systems, without an exclusive focus on ML, have been 
previously outlined, with a breadth of interdependent factors at different stakeholder group levels [9], 
[10]. For HCPs, core considerations pertain to the need for ML outputs to be meaningful inputs in their 
decision making and be explainable. ML algorithms are often associated with the so-called “black box” 
effect [11], [12]. The lack of transparency in data and outputs can be a significant concern for HCPs, as 
it hampers model interpretability (i.e., the possibility to understand or interpret how a given output has 
been produced), and explainability (i.e., the capacity of a model to be explained, even if not totally 
interpretable) [13]. ML applications and outputs are therefore likely to clash with the principles of 
evidence-based medicine, which instead lies upon the highest possible standards of interpretability and 
explainability. Concerns about the potential implications for accountability and personal responsibility 
regarding mistakes or computational misdiagnosis by ML applications present additional 
implementation challenges.  
At the patient level, fair implementation of ML applications necessitates continuous supply of 
standardized data to train, validate and incessantly improve performance and prevent algorithmic bias 
[9]. Notions of patient confidentiality and privacy should be reimagined entirely as data must be shared 
across multiple institutions to maximize their value and allow for improved algorithms [14]. 
Lastly, distinctive implementation challenges have been identified at the level of healthcare 
organizations, dealing with financial challenges and funding mechanisms, as well as issues related to 
the computational resources that are necessary to support the implementation of ML.  
Several implementation frameworks for healthcare technologies are on hand, but no widely recognized 
model addresses all the specific issues that are relevant to ML applications [15], [16], [17]. To date, 
research on ML implementation has been predominantly conceptual in nature, with an underreporting 
of empirical investigations into the specifics and consequences of implementation processes in real-life 
settings [18], [19]. Available studies have primarily focused on the quantitative impact of ML 
algorithms on health outcomes or accuracy, without examining the corresponding implementation 
processes [20]. Recently, Chomutare et al. conducted a scoping review to identify barriers and 
facilitators to the implementation of ML from empirical studies [21], while Tricco et al. focused on the 
strategies adopted to implement ML tools in hospital settings [22]. However, additional inquiry is 
needed to determine whether the literature on the implementation of ML applications in healthcare 
adequately acknowledges the unique challenges encountered along the implementation process, as well 
as the strategies adopted to overcome them.  
 



   
 

   
 

Research Objectives 
This systematic literature review primarily aims to identify studies on the real-life implementation of 
ML applications in clinical practice and to synthesize insights about the features of these innovations 
and the processes deployed to facilitate their effective implementation. We set out to address the 
following research questions: 

1. What are the characteristics of ML applications implemented in clinical practice as reported in 
the scientific literature? 

2. What processes and strategies do healthcare organizations employ to foster the successful 
implementation of ML applications in clinical practice? Which factors are recognized as more 
relevant for the (un)successful implementation of ML applications?  

 
Methods 
Overview 
This systematic review adopted the Preferred Reporting Items for Systematic Review and Meta-
Analysis (PRISMA) 2020 guidelines [23]. The review was previously registered within the 
International Prospective Register of Systematic Reviews (PROSPERO) with registration number 
403873. All the methodological details are provided in the published research protocol [24]. The most 
relevant aspects are summarized hereafter, with any deviations from the protocol duly noted.  
 
Positionality of the research team 
Positionality refers to how individuals identify with, and relate to, different social dimensions such as 
gender, race, and ethnicity [25], and as such is a relevant aspect to consider in qualitative research. To 
that end, the research team comprises five Italian white researchers (LMP, VA, AC, FP, GC). Broadly 
speaking, the team as a whole, composed of 60% females and 40% males, shares a common background 
in management studies, with focus on healthcare management. LMP is a PhD student who is working 
in the area of AI and ML under the perspective of the organizational implementation of AI tools in 
healthcare organizations. VA is a PhD student who has conducted prior research at the intersection 
between digital health and implementation science. AC has multi-annual experience in organizational 
studies and qualitative research focusing on issues related to innovations in healthcare and professional 
dynamics in healthcare organizations. FP is a young adult expert in digital health technologies, focusing 
on their regulation and value assessment. GC has multi-annual experience in organizational studies and 
qualitative research focusing on institutional dynamics, novel technologies, and professions. 
    
Eligibility criteria 
This review focused on empirical studies investigating aspects related to the implementation of ML 
applications within healthcare organizations. We adopted the definition of implementation as an “active 
and planned effort to mainstream innovation within an organization” [26], while healthcare 
organizations encompass all entities delivering health services, including hospitals, outpatient centers, 
primary care facilities, and public health institutions. Studies were selected based on the eligibility 
criteria defined in the research protocol [24] and summarized in Table 1. The recently updated version 
of the Consolidated Framework for Implementation Research (CFIR), a commonly used model to assess 
factors influencing implementation and to explain barriers and facilitators to implementation 
effectiveness [27], [28], was used as one criterion for inclusion. Specifically, only studies that explicitly 
reported factors related to the CFIR domains of inner setting or processes were considered eligible for 
inclusion (Textbox 1). 

Textbox 1. Domains of the Consolidated Framework for Implementation Research (CFIR) 
I. Innovation - Domain that collects the characteristics of the implemented object from a multi-

faceted point of view.  
II. Outer setting - Domain designed to capture factors that are inherent with the context where 

the organization exists.  



   
 

   
 

III. Inner setting - Domain which encompasses the characteristics of the organization in which 
the innovation is implemented. It includes both structural attributes, which characterize the 
inner setting regardless of the implementation, and features that are specific to the 
implementation.  

IV. Roles - Domain which refers to the individuals who have significantly contributed to the 
implementation and their characteristics.  

V. Implementation process - Domain that collects all the information on the activities and 
strategies adopted to concretely implement the innovation. 

 

Table 1. Eligibility criteria 

 Inclusion criteria Exclusion criteria 

Study design 

Empirical studies illustrating the 
implementation of ML-based 
applications (e.g., experimental/quasi-
experimental, observational, hybrid, 
simulation study designs, qualitative 
designs, case studies, etc.) 

Effectiveness research study designs, 
literature reviews, commentaries, 
editorials, opinion articles, study 
protocols, studies collecting perceptions 
on implementation and unrelated to 
specific ML-based applications 

Intervention 

Analysis of the implementation of ML-
based applications by at least covering 
factors related to the inner setting or 
process domains based on the CFIR 

Analysis of the implementation of 
logic- or knowledge-based applications 
(e.g., expert systems), or of ML-based 
applications with no considerations 
related to the inner setting or process 
domain 

Stakeholder groups ML-based applications used at least by 
HCPs 

ML-based applications targeting 
patients and other non-clinical 
stakeholders (e.g., caregivers, policy 
makers, regulators) only 

Setting Hospitals, outpatients and other 
community care settings   All other settings, including home care 

Timeframe Studies published from 2013 until 
March 2023 Studies published before 2013 

Abbreviations: CRIF: Consolidated Framework on Implementation Research; ML: machine learning; 
HCP: healthcare professionals 

Information sources 
Literature searches were conducted in Medline (PubMed), Scopus, and Web of Science and replicated 
in top-tier management journal databases. In addition, the reference lists of all included studies and of 
the reviews identified were scanned to ensure comprehensive coverage of relevant literature. Grey 
literature was not considered. 

Search strategy 
The search strategy was developed by the research team through an iterative process and is based on 
four main concepts: (1) artificial intelligence; (2) implementation; (3) healthcare; (4) study design. 
Multimedia Appendix 1 contains the search strings used for each database. The general term “artificial 
intelligence” was used broadly to encompass studies that address AI and ML as synonymous terms. 
The search was performed in April 2023.  

Study selection and data collection process 
Two researchers (VA, LMP) screened the first 100 retrieved studies based on titles and abstracts. Once 
alignment over the inclusion/exclusion criteria was reached, the remaining records were independently 
screened by the two reviewers in equal parts based on title and abstract. Disagreements over final 
inclusions were solved with a third researcher (FP). Studies deemed eligible for full-text reading were 



   
 

   
 

assessed in-depth (VA, LMP, FP). Disagreements were resolved by dialogue with two additional 
researchers (GC, AC). The entire research team read all the studies included in the analysis. The data 
collection process was performed by three reviewers (VA, LMP, FP) who extracted data using an ad 
hoc Microsoft Excel sheet preliminarily developed by the research team. To ensure consistency across 
reviewers, the extraction sheet was tested by each reviewer and re-calibrated before starting the data 
collection process. Any disagreements were resolved by discussion with the research team, with final 
decisions reached by consensus.  

Data items 
Data items were extracted based on established classifications or schemes, when applicable [24]. These 
encompassed information on the papers (e.g., journal of publication, publication year), the ML 
application (e.g., name, brief description, main practice of use, level of autonomy, degree of integration 
with other technologies), and the implementation process (e.g., stage of implementation, geographical 
location, care setting, specific unit of implementation). Furthermore, factors influencing the 
implementation process were assessed following the five domains of the updated version of the CFIR. 

Quality assessment 
The critical appraisal of the studies selected for data synthesis was performed using the Mixed Method 
Appraisal Tool (MMAT; [29]), a tool designed specifically for systematic reviews that include 
heterogeneous studies, as it allows to assess the methodological quality of five types of study designs 
(i.e., qualitative studies, RCTs, non-randomized studies, quantitative descriptive studies, mixed 
methods studies). Quality appraisal was performed by two researchers (VA, LMP), and disagreements 
were discussed and solved. The quality assessment represents a deviation from the protocol, which did 
not include this step. 

Data synthesis  
Given the significant heterogeneity across study designs, research objectives, and outcomes observed, 
as well as the expected predominance of qualitative studies, we opted for a thematic synthesis approach 
to capture and synthesize the salient attributes of the implementation process based on the CFIR 
constructs [30], [31]. The analysis considers findings from the data extraction process as qualitative 
data and includes summaries and interpretation of findings from the authors of the reviewed studies. 
Hence, direct quotes from participants were excluded in cases where the study employed qualitative 
data collection methods (e.g., interviews). 
We used both an inductive and a deductive approach. Following the three thematic synthesis steps, we 
initially reviewed each paper and highlighted relevant aspects through line-by-line coding to capture 
and collect key data. The coding process involved three reviewers (VA, LMP, FP). To identify recurring 
topics, primary codes were then compared, organized and labeled to derive descriptive themes reflecting 
their meaning. Descriptive themes were used to develop higher-level analytical themes. The formulation 
of descriptive themes and the following assignation to analytical themes was initially proposed by a 
researcher (LMP) and iteratively refined through discussion with two other researchers (VA, FP).  
The higher-level analytical themes were subsequently deductively redefined by the entire research team 
within the constructs of the CFIR, which served as the final theoretical framework guiding our analysis. 
 

Results 

Study selection 
We retrieved 3,520 unique records that were initially screened based on titles and abstracts. A total of 
67 records were deemed eligible for full-text screening (67/3,520, 2%). Additionally, we identified 36 
eligible records from manual search of reference lists of excluded literature reviews and full-text 
screened records. Out of the 103 papers analyzed in full-text, 69 were excluded and 34 were included 



   
 

   
 

in the review (34/103, 33%). The primary reason for exclusion was the focus of the intervention 
analyzed in the papers (53/69, 77%), as they either had a clinical or technical purpose without 
addressing factors related to implementation in an organizational setting or regarded non-ML-based 
applications. Figure 1 provides an overview of the selection process and the reasons for exclusion. 

Figure 1. PRISMA flow diagram 

 
  

Study characteristics 
Most of the studies documenting the implementation of ML-based applications were set in the USA 
(18/34, 53%). Other locations included China (4/34, 12%), Canada, Brazil, and the Netherlands (each 
2/34, 6%), Italy, Spain, Norway, Korea, India, and Austria (each 1/34, 3%). Papers selected for data 
synthesis were relatively recent, with only three out of 34 (9%) published before 2019. Outlets were 
mostly clinical and/or in the field of information technology (IT) (30/34, 88%), while the remaining 
four focused on managerial or organizational studies (12%). Most of the selected studies followed 
qualitative or mixed methods designs (22/34, 65%), often relying on methods such as interviews and 
case studies.  
 
Quality assessment in studies 
Quality appraisal of the selected studies was performed using the MMAT tool. The studies were 
heterogeneous in terms of study design, and different MMAT questions were used to assess their 
quality. Overall, 18 studies leveraged the questions of qualitative studies, seven of quantitative non-
randomized, five of quantitative descriptive studies, three of mixed methods studies, and one of 
quantitative randomized studies. Overall, the quality assessment suggests a medium-good quality of the 
studies, with only 12.5% of the assessment questions uncertain or unclear (“Can’t tell”). The detailed 
output of the quality appraisal can be found in Appendix 2. 
 



   
 

   
 

Characteristics of ML applications 
Table 2 provides a general description of the ML-based applications implemented in the selected 
studies, while Multimedia Appendix 3 contains more detailed information on the characteristics of these 
applications.  The most recurrent applications comprised predictive modeling algorithms, visualization 
tools and alert-delivering mechanisms. All the applications identified by our search were clinical 
practice applications, according to the definitions from the European Parliamentary Research Service 
[32]. Moreover, none of the applications had decisional autonomy; therefore, all systems could be 
classified as clinical decision support systems (CDSS).  
In terms of settings, ML-based applications were mostly implemented within hospitals (29/34, 85%), 
including general, university or teaching hospitals, academic medical centers, and research centers. A 
few studies (4/34, 12%) were based in a community or primary care setting. Within hospital settings, 
the most recurring implementation units were emergency departments (ED) (11/34, 32%) and critical 
care units such as intensive care unit (ICU) (4/34, 12%), while in some studies implementation occurred 
in multiple units or at the hospital level (5/34, 15%). 
The clusters identified by Rajkomar were used as a theoretical guide to classify the clinical workflow 
activities in which the ML-based applications were used [33]. In 20 studies (59%), the ML tools 
supported prognosis. Many of these applications were designed to predict the risk of developing specific 
conditions such as sepsis (8/34, 24%), in-hospital deterioration (3/34, 9%), intracranial hemorrhage 
(1/34, 3%), or hearth failure (1/34, 3%). Other applications predicted the risk of unplanned hospital 
admission or re-admission (4/34, 12%). Ten papers (29%) illustrated applications for diagnosis, either 
as standalone computer vision tools to detect diseases from diagnostic imaging (e.g., pneumonia from 
CT scans, large vessel occlusions from CT angiogram, child maturation from x-rays), or as diagnostic 
supports in emergency physician triage; three papers (9%) illustrated applications for treatment 
optimization and personalization. 
ML capabilities relate to the clinical workflow activities, with forecasting (i.e., the ability to find 
complex patterns in data and make predictions) being the most prevalent capability (19/34, 56%), as 
this function is typical of tools that predict the risk of an adverse event (12/34 forecasting tools are for 
prognosis). Instead, computer vision was exclusively included in the algorithms with diagnostic 
purposes, with all six computer vision tools intended for diagnosis. 
As for the level of integration with existing technologies, 17 ML-based algorithms (50%) were 
embedded in electronic health records (EHRs) or similar platforms (i.e., add-ons to the EHR software 
in use). Fourteen algorithms (41%) were standalone applications, fed either with internal or external 
data, including images or text. One application (3%) was embedded in the hospital hardware 
technology, namely scanner machines [36]. Computer vision applications were always standalone 
applications provided as software to be installed within existing hardware (i.e., hospital computers) and 
integrated with local picture archiving and communication systems (PACS). 
The ownership of the algorithms was also assessed, revealing a division between applications purchased 
from commercial vendors (14/34, 41%) and those internally developed (12/34, 35%). The latter were 
often linked with the organizational setting, as six of these studies were carried out in teaching hospitals, 
academic medical centers or research centers. Externally purchased applications were more common in 
other settings and exhibited greater diversity in terms of purposes, while homegrown tools were 
generally intended for prognostic purposes. In eight studies, information on the name or the 
development process of the application was irretrievable, preventing determination of algorithm 
ownership.  
Details on the specific ML models employed were often missing, although it is possible to infer that 20 
of the analyzed studies (59%) were based on supervised learning models such as random forests, 
decision trees, or logistic regressions.   

Table 2. Overview of ML applications 



   
 

   
 

N. Authors Year Application 
name 

Application output 
description 

Implementation 
setting (unit) 

Clinical workflow 
activity 

1 Lee et al. 
[34] 2015 - 

Prediction of patient 
characteristics, 
complaint types, and 
admission and 
readmission patterns 

Hospital (ED) Prognosis 

2 Hengstler et 
al. [35] 2016 IBM Watson 

Building hypotheses and 
evidence on cancer 
diagnosis 

Hospital 
(oncology) Diagnosis 

3 McCoy & 
Das [36] 2017 InSight Prediction of risk of 

developing severe sepsis 

Community 
hospital (ED, 
ICU) 

Prognosis 

4 Bhattacharya 
et al. [37] 2019 

Niramai 
Thermalytix 
and 
iBreastExam 
(iBE) 

Earlier detection of 
breast cancer 

Hospital 
(radiology) Diagnosis 

5 Cruz NP et 
al. [38] 2019 Savana 

Recommendations for 
improving adherence to 
healthcare pathways 

Primary care Clinical/Organizational 
workflow 

6 Ginestra et 
al. [39] 2019 EWS 2.0 Prediction of risk of 

developing sepsis 

Teaching 
hospital (non-
ICU settings) 

Prognosis 

7 Gonçalves et 
al. [40] 2020 Laura Prediction of risk of 

developing sepsis 
Hospital 
(several units) Prognosis 

8 
Sun & 
Medaglia 
[41] 

2019 IBM Watson 
for Oncology 

Decision-making support 
for personalized 
treatment planning 

Hospital 
(oncology) Treatment 

9 Baxter et al. 
[42] 2020 - Prediction of unplanned 

readmission 

Teaching and 
research hospital 
(unspecified) 

Prognosis 

10 Cho et al. 
[43] 2020 

DEWS (Deep-
Learning-based 
Early Warning 
System) 

Prediction of in-hospital 
cardiac events 

Hospital 
(cardiology) Prognosis 

11 Frontoni et 
al. [44] 2020 - 

Production of indicators 
for quality-of-care 
processes of T2D 

Primary care Clinical/Organizational 
workflow 

12 Hassan et al. 
[45] 2020 Viz.ai Detection of large vessel 

occlusions 
Hospital 
(stroke unit) Diagnosis 

13 
Romero-
Brufau et al. 
[46] 

2020 - 

Prediction of hospital 
readmission and 
formulation of targeted 
recommendations 

Hospital 
(all units) 

Prognosis 
Treatment 

14 Sandhu et al. 
[47] 2020 Sepsis Watch Prediction of risk of 

developing sepsis 
Teaching 
hospital (ED) Prognosis 

15 Sendak et al. 
[48] 2020 Sepsis Watch Prediction of risk of 

developing sepsis 
Teaching 
hospital (ED) Prognosis 

16 Strohm et al. 
[49] 2020 BoneXpert 

Assessment of child 
maturation and bone age 
and prediction of adult 
height 

Hospital 
(radiology) 

Diagnosis 
Prognosis 

17 Xu et al. 
[50] 2020 SensEcho 

Classification of sleep 
stage, detection of sleep 
apnea and recognition of 

Hospital 
(general and 
respiratory) 

Diagnosis 



   
 

   
 

abnormal ECG signals 
from a multi-sensor 
wearable device 

18 Jauk et al. 
[51] 2021 - Prediction of risk of 

developing delirium 

Hospital 
(surgery, 
internal 
Medicine) 

Prognosis 

19 Morales et 
al. [52] 2021 Laura Digital 

ER 
Detection of COVID-19 
symptoms Community Diagnosis 

20 
Murphree 
DH et al. 
[53] 

2021 - 

Treatment optimization 
and identification of 
likely-to-benefit patients 
for palliative care 

Hospital (all 
inpatient units) Treatment 

21 Yao et al. 
[54] 2021 3D CSAC-Net Detection of mild 

COVID-19 pneumonia 
Hospital 
(unspecified) Diagnosis 

22 Davis MA et 
al. [55] 2022 Aidoc 

Prediction of risk of 
developing intracranial 
hemorrhage 

Research 
hospital 
(radiology) 

Prognosis 

23 Henry et al. 
[56] 2022 TREWS Prediction of risk of 

developing sepsis 

Acute care 
hospital 
(inpatient acute 
units and ED) 

Prognosis 

24 Joshi et al. 
[57] 2022 - Prediction of risk of 

developing sepsis 

Community and 
teaching 
hospitals 
(several units) 

Prognosis 

25 Lebovitz et 
al. [58] 2022 - 

Image processing, 
segmentation and 
classification for 
imaging diagnostics 

Teaching 
hospital 
(radiology) 

Diagnosis 

26 Rushlow et 
al. [59] 2022 - 

Prediction of risk of low 
left ventricular ejection 
fraction 

Primary care Prognosis 

27 Schwartz et 
al. [60] 2022 CONCERxN Prediction of risk of in-

hospital deterioration 

Teaching 
hospital (acute 
units and ICU) 

Prognosis 

28 Sibbald et al. 
[61] 2022 Isabel Differential diagnosis Teaching 

hospital (ED) Diagnosis 

29 Singer et al. 
[62] 2022 

Low Bed Tool 
and 
Readmission 
Risk Tool 

Prediction of reduced 
bed availability and 
prediction of risk of 
readmission 

Hospital 
(ICU, surgery, 
pediatrics)  

Clinical/Organizational 
workflow 
Prognosis 

30 Wijnhoven 
[63] 2022 

Sepsis 
Identification 
Speed 

Prediction of risk of 
developing sepsis 

Teaching 
hospital 
(neonatology) 

Prognosis 

31 Zhai et al. 
[64] 2022 Nu-CDSS 

Formulation of 
recommendations for 
nurses’ diagnosis, 
interventions and 
outcome evaluations 

Teaching 
hospital 
(unspecified) 

Clinical/Organizational 
workflow 

32 Pou-Prom et 
al. [65] 2022 CHARTwatch 

Early warning system 
designed to predict 
patient risk of clinical 
deterioration 

Teaching 
hospital (general 
internal 
medicine) 

Prognosis 

33 Hinson et al. 
[66] 2022 - 

Estimation of the short-
term risk for clinical 
deterioration in patients 
with or under 
investigation for 
COVID-19 

Teaching 
hospital (ED) Prognosis 

34 Berge et al. 
[67] 2023 

Information 
System for 
Clinical 

Detection and 
classification of patient 
allergies 

Hospital 
(anesthesia, 
ICU) 

Diagnosis 



   
 

   
 

Concept-based 
Search 

Abbreviations: ECG: electrocardiogram; ED: emergency department; ICU: intensive care unit; T2D: 
type 2 diabetes 
 
Implementation process characteristics 

This section presents the results of the thematic analysis, discussed following the five domains of the 
CFIR, namely innovation, outer setting, inner setting, roles, and implementation process. From the 34 
studies analyzed, 222 quotes were extracted. Quotes were organized in 167 descriptive themes and 35 
analytical themes. Analytical themes were finally embedded into 23 CFIR constructs. The detailed 
result of the coding process can be found in Appendix 4. To provide a simplified overview of the coding 
process, Table 3 summarizes the analytical themes, their correspondence with CFIR constructs, and 
relative frequencies. Results are reported according to the frequency of information extracted on CFIR 
domains. 

Table 3. Analytical themes, constructs and domains of CFIR 

Construct   Analytical themes   Papers, 
 n (%) References   

Inner setting domain (n = 25, 74%)  

A. Structural characteristics (A.2 IT 
infrastructure)   

Integration with existing IT   
11 (32%)   [35], [38], [40], [41], [49], [50], 

[52], [59], [60], [62], [63]   
Data governance   
System infrastructure   

D. Culture   Professional habits   
9 (26%)   [39], [40], [41], [42], [47], [49], 

[61], [64], [68]  User perceptions   

F. Compatibility   Local workflow adaptation   7 (21%)   [42], [46], [49], [51], [64], [65], 
[67]  

H. Incentive systems   
Economic incentives   

2 (6%)   [44], [58] 
Organizational incentives   

I. Mission alignment   
Organizational strategy   

4 (12%)   [41], [49], [57], [64] 
Organizational support   

J. Available resources   Resource reallocation   1 (3%)   [34] 

K. Access to knowledge & information   Skills   12 (35%)   [36], [40], [41], [42], [47], [50], 
[51], [57], [59], [65], [66], [68] 

Innovation domain (n = 22, 65%)  
A. Innovation source   Trust in the innovation source   3 (9%)   [35], [41], [46]   
B. Innovation evidence base   Empirical evidence on added value   2 (6%)   [49], [51]   

C. Innovation relative advantage   
Performance trust   

14 (41%)   
[39], [41], [42], [45], [46], [47], 
[49], [57], [58], [60], [61], [63], 

[64], [67]   
Perceived cons   
Perceived benefits   

E. Innovation trialability   Testing period   1 (3%)   [65]   

F. Innovation complexity   Explainability   14 (41%)   
[34], [35], [39], [41], [46], [47], 
[51], [56], [57], [58], [60], [61], 

[63], [67]   

G. Innovation design   
Complementarity   

15 (44%)   
[35], [41], [47], [51], [54], [55], 
[56], [57], [58], [60], [61], [64], 

[66], [67], [68]   
Ease of use   
Risks   



   
 

   
 

Process domain (n = 22, 65%)  

E. Tailoring strategies   
Framing   

9 (26%)   [35], [40], [47], [48], [49], [56], 
[57], [59], [64]   

Tailoring   

F. Engaging   
Early involvement of end-users   

12 (35%)   [35], [40], [47], [48], [53], [57], 
[59], [60], [62], [63], [64], [65]   

Professional buy-in   
Iterative development   

H. Reflecting & evaluating   Feedback   11 (32%)   [36], [38], [40], [47], [48], [50], 
[51], [62], [63], [64], [67]   

I. Adapting   
Local data   

6 (18%)   [38], [41], [43], [46], [53], [60]   
Adaptability   

Individuals domain – Roles sub-domain (n = 11, 32%)   

E. Implementation leads   
Implementation lead   

9 (26%)   [36], [42], [47], [48], [49], [57], 
[63], [64], [65]   Implementation team   

F. Implementation team members   Interdisciplinary teams   7 (21%)   [47], [48], [53], [57], [63], [64], 
[66]   

Outer setting domain (n = 9, 26%)  

B. Local attitudes   
Patient acceptance   

4 (12%)   [35], [37], [41], [52]   
Public attitude   

D. Partnership & connections   
Inter-institutional partnerships   

4 (12%)   [44], [49], [52], [63]   
Public-private partnerships   

E. Policies & laws   

Medicolegal issues   

6 (18%)   [35], [41], [48], [49], [52], [63]   
MD regulation   
Guidelines   
Data protection   

G. External pressure   Peer influence   1 (3%)   [56] 
  
  



   
 

   
 

Figure 2. Relative importance of CFIR constructs (bubble size represents frequency) 

 
 
Note to Figure 2: the percentages represent the proportion of papers in which each construct and domain appear, 
out of the 34 included in the review. The size of bubbles corresponds to the frequency of occurrence of each 
construct.  



   
 

   
 

Inner setting 
The inner setting domain was the most frequently described, with 25 studies mentioning at least one 
construct from this domain as relevant to explaining the implementation process of the ML application. 
The most recurrent constructs were access to knowledge and information (12/34, 35%), IT 
infrastructures (11/34, 32%), and culture (9/34, 26%). 
First, the access to knowledge construct aligns with the topic of skills. Studies emphasized the 
importance or providing end-users with access to training programs on both hard and soft skills before 
implementation [50], [51], [57], [66], including computer and technical literacy linked with the 
complexity of the application’s functioning [59], [65], and the medical domain that the application 
addresses [47]. The latter referred to dimensions such as communication, empathy, and ability to listen, 
especially when different HCPs are involved in the implementation process [40], [41], [47].  
Second, the IT infrastructure construct encompassed two prominent themes. The first broadly concerns 
data management and data governance. Themes such as data collection and quality [41], [60], [61], 
security [35], availability [38], [40], and sharing [41], [63] were highly  described as challenges for 
adoption of the application. There were also significant references to building IT infrastructures [63] 
and to the need to integrate new technologies with existing IT systems (e.g., EHR). While integration 
promoted ease of use by reducing the need for manual inputs [49], [50], [52], some argued for the ML 
application not to directly populate EHRs to preserve HCP autonomy and prevent medicolegal 
accountability [61]. 
Finally, the construct of culture was articulated into the themes of professional habits and alignment of 
perceptions among stakeholders. The impact of introducing ML applications on professional habits was 
significant as this affected how professionals work, interact, and make decisions [64]. For instance, the 
habit of working without technological support was considered a barrier to implementation [41], [42]. 
The need for gradual changes in professional habits was seen as a factor that could hinder the adoption 
of ML applications in settings with high job rotations (e.g., teaching hospitals) [34]. Additionally, ML 
applications often are not tailored to local workflows, and do not consider the different approaches of 
professionals in diverse contexts [41]. The other theme related to culture was that of perceptions and 
expectations among different internal stakeholders (e.g., management, physicians, nurses, and technical 
staff). Misalignments among these stakeholders were common, particularly regarding trust in ML in 
general [47], [49], or the expected target users (e.g., residents vs. expert physicians) [47], [61]. 
 

Innovation 
The innovation and its characteristics were among the most frequently mentioned domains (22/34, 
65%), with three constructs absorbing a significant portion of relevant descriptive themes: innovation 
design (15/34, 41%), relative advantage (14/34, 41%), and complexity (14/34, 41%). 
First, innovation design encompassed themes related to the applications’ design and functioning, 
including the types of human-machine interaction, as well as the associated risks. The most recurrent 
themes within this construct revolved around ease of use and intuitive design [35], [47], [51], [64]. The 
former was often linked to minimizing manual intervention, such as data input [51], [54], and was also 
associated with dimensions of trust in the applications, such as trust in the process and the cognitive 
burden for HCPs, in the form of fatigue from (over-)alerting [35], [64], which could be a barrier to 
professional buy-in [57]. Some studies explicitly cited the theme of human-centered design as a 
development framework that starts with the assessment of end-users’ needs and the environment in 
which the ML application will be used [56], [66], [69]. Another recurrent theme was the human-
machine complementarity. For HCPs, it was often important to maintain a sense of control over the 
application and not perceive it as an attempt of uncontrolled substitution and automation [34], [35], 
[58], [67]. Human-machine complementarity was also associated with fewer disruptions to established 
workflows, enhancing the overall benefits associated to the use of a ML application [47], [55]. 
Moreover, complementarity could increase trust in the application, both from a micro-perspective (e.g., 
its functioning) [35], [56], and from a macro-perspective (e.g., the purpose of the application, and the 



   
 

   
 

reasons for choosing to integrate ML within a clinical context) [58], [60], [67]. The risks of ML use in 
decision-making processes also emerged. These included the risk of automation, in terms of 
overreliance on ML recommendations [41], and the risk of bias, tied to the underlying data and training 
model of the ML application [61]. Moreover, potential negative consequences of automation risk on 
clinical ability were mentioned [56].  
Second, the relative advantage revolved around the perception of benefits and costs associated with the 
use of ML, as well as factors influencing trust in its performance. The most frequently perceived 
benefits were related to the organizational dimension, in terms of optimization of the workflow resulting 
from the elimination of unnecessary steps [45], increased attention from end-users to all cases managed 
by the application [47] and enhanced interactions among physicians and other HCPs [64]. Conversely, 
references to the economic impact were ambiguous. On one hand, faster decision-making could be 
considered a potential advantage [49]; on the other hand, human-machine interaction could also lead to 
a loss of efficiency compared to human intervention only [42], [58]. Another barrier to professional 
buy-in is that the perceived poor ability of the application to take contextual factors into account calls 
into question its clinical relevance Among the perceived advantages, trust in the application’s 
performance and its determinants were often commented on. For the analysis, the concept of trust was 
declined as already done by Hengstler et al. [35] who distinguished between trust in technology and 
trust in those who produce it (i.e., the source of innovation). Trust in technology is further divided into 
three dimensions: trust in performance, focusing on the accuracy and consistency of the output; trust in 
process, concerning the understanding of the reasoning behind a given output, and trust in the purpose 
of the innovation to be implemented [16], [46]. Concordance significantly influences trust in 
performance: the greater the difference between human judgment and machine recommendation, the 
lower the level of trust in the recommendation [46], [49], [60]. Similarly, recommendations that did not 
arrive in a timely or adequate manner negatively influenced performance trust [39], [46]. Additionally, 
trust in performance could be fueled by experience, the application’s ability to identify cases missed by 
humans, and the consistency over time of recommendations [49]. 
Third, innovation complexity highlighted the concepts of explainability and opacity as distinctive 
features of ML models. Many studies agreed in identifying algorithm complexity as the primary barrier 
to trust in the process underlying the generation of an ML output. This is even more true when non-
medical professionals (e.g., nurses) interact directly with the ML application [47]. Facilitating 
interpretability, explainability or cognitive compatibility were mentioned as ways to promote 
transparency, HCPs’ trust, and professional buy-in [51], [57], [58], [60], [61], [67].  
 

Implementation Process 
Reviewed articles often mentioned the characteristics of the implementation process (22/34, 65%), with 
a particular emphasis on the constructs of stakeholders engaging (12/34, 35%), reflecting and evaluating 
(11/34, 32%), and tailoring strategies (9/34, 26%).  
Attracting and encouraging the participation of different stakeholders in the implementation process 
emerged as a recurring theme. The practice of early involvement of end-users was frequently cited, not 
only during the implementation process but also throughout the development phase [35], [40], [47], 
[48], [60], [63], [65].  This was positively associated with trust in the innovation’s purpose [48], the 
application’s functioning [60], [63], [64], and the ease of use of its design [47]. During the 
implementation phase, stakeholder engagement was linked to evident benefits, such as improvement in 
the implementation climate [48], greater willingness to adopt the role of implementation leader [40], 
greater professional buy-in [53], [57], and better iterative collection of information and feedback [62]. 
Conversely, the absence of engagement was seen as a barrier to successful implementation, potentially 
leading to increased resistance toward the innovation among end-users [64]. 
In the construct of reflecting and evaluating, feedback and feedback loops emerged as recurring topics, 
with many studies underscoring the importance for both ML developers and the implementation teams 
to incorporate end-users’ feedback on either technical issues, system design, or clinical needs [36], [38], 



   
 

   
 

[40], [51], [64], [67]. Some studies noted that feedback collection extended beyond implementation, 
with structure feedback loop processes integrated into routine use [48], [50]. Regardless, feedback 
collection was described as an iterative activity [48], [50], [62], [63], which also positively influenced 
professional buy-in [49]. However, a critical point raised was that end-users may lack the necessary 
technical skills to provide feedback conducive to improvement [64]. 
Two additional recurring constructs were tailoring strategies and adapting. The former referred to 
actions addressing barriers and leveraging facilitators, while the latter involved modifying the 
innovation itself to best fit the context in which it was inserted.  
Among tailoring strategies, the importance of effectively communicating the implementation efforts 
was often highlighted. Some works referred to the need for clearly framing communication around the 
expected benefits, positively affecting trust in ML-based innovations [35], [40], [47], [48], [49], [56], 
trust in the innovation source [35], and fostering greater professional buy-in [57]. Another aspect of 
framing was related to the terminology used, asserting that using terms supporting concepts such as 
"assistant" or "support" had a favorable impact on end-users’ trust toward ML-based innovations [48], 
[49] and the innovation source [35].  
In terms of adapting, the first theme involved the need for collected feedback to be effectively 
incorporated in the application, adapting systems to the local context of implementation [38], [60]. The 
second involves the issue of data, emphasizing the importance that the model is effectively trained and 
adapted to the cases treated in the clinical context in which the application will be used before 
deployment. The absence of this aspect was perceived as a barrier to trust in the ML application’s 
performance [41], [43], [46], [53]. 

Individuals: roles 
The sub-domain of roles was less frequently observed (11/34, 32%) and encompassed two constructs: 
implementation leads (9/34, 26%) and implementation teams (7/34, 21%). 
The former referred to the individual or group that guided and oversaw the implementation process, and 
their presence was generally considered a positive factor for implementation as it contributed to 
establishing a favorable implementation climate [49]. Individual implementation leaders were often 
referred to as champions. Although it may theoretically involve figures that emerge from bottom-up 
processes, all works referring to this role mentioned a top-down identification [47], [49], [64], [65]. 
Implementation teams were observed as well, in the form of quality improvement teams [36], AI 
governance committees [42], [48], [65], or interdisciplinary teams of HCPs, software engineers, 
developers, IT specialists, and other figures [48], [53], [57], [66]. 

Outer setting 
The outer setting domain emerged poorly in the revised studies (9/34, 26%), particularly in the form of 
three constructs: policy and laws (6/34, 18%), local attitudes (4/34, 12%), partnership and connections 
(4/34, 12%). 
In the policy and laws construct, three main themes emerged. The first concerned the medicolegal 
responsibility for decisions made using a ML application [41], [63]. The second pertained to regulatory 
and certification aspects, with recognition of the application as a medical device (MD) seen both as a 
factor positively influencing trust in the application [35] and as a barrier for utilization  [48]. Regulations 
on personal data protection were also considered implementation challenges [49]. Regarding policies, 
the only theme mentioned was the relevance of national policies and guidelines to create a common 
framework for the implementation of ML applications [52].  
Local attitudes were societal expectations and beliefs on the use of ML applications. Cultural aspects, 
innovation attitude, and public expectations could influence the acceptability of ML [37], [41], [52]. 
Equally relevant for acceptance was the visibility of the application, – i.e., how noticeable and 
observable an innovation is to the public – that influences how organizations foster innovation trust 
[35], [70].  



   
 

   
 

Within the partnership and connections construct, building partnerships with scientific societies and 
professional communities was considered a facilitator for implementation, as these can act as 
knowledge platforms/hubs [44], [49]. Professional communities and peers could also trigger external 
pressure that may positively impact the willingness to implement ML applications [56]. Establishing 
development networks across hospitals and healthcare facilities was a relevant factor for the increased 
reliability of the application, providing the opportunity to leverage larger datasets which are known to 
end-users [63]. Moreover, forging public-private partnerships was deemed a useful step for 
implementation, to leverage expertise not always available within (public) healthcare organizations 
[52], [63]. 

Discussion 
Review of the main findings 
This work aimed at synthetizing extant academic knowledge on the implementation of ML-based 
applications in clinical practice, focusing specifically on the characteristics of the innovation and on the 
processes and strategies employed by healthcare organizations to ensure their successful 
implementation. 
We identified 34 studies reporting on the implementation process of as many ML applications, all of 
which were CDSS frequently based on supervised learning models in the form of predictive algorithms, 
visualization and alert-delivering tools. Overall, half of the observed applications were integrated in 
hospital information systems as add-ons to the EHR infrastructure. ML-based applications were mainly 
implemented in hospital settings and supported prognostic activities, although a relevant portion was 
intended for diagnosis. Among the diagnostic applications, those based on computer vision were either 
standalone software or embedded in the hospital hardware technology. Algorithms could be clustered 
in two groups: those internally developed, prevalently by university hospitals and academic medical 
centers and typically with a prognostic purpose, and those purchased from commercial vendors, more 
heterogeneous in terms of purposes and functions. 
Furthermore, our analysis enabled us to scrutinize the characteristics of the implementation processes 
of ML-based applications, gathering pertinent insights relevant for their successful integration within 
healthcare organizations. Through the theoretical lens of the CFIR, we identified a predominant 
emphasis on three key domains: the inner setting, innovation characteristics and the process dimension. 
First, evidence from the inner setting domain highlighted the importance of addressing IT infrastructure 
and data management challenges, as well as the necessity of fostering an organizational culture that 
favors the implementation of ML-based applications. Second, in terms of innovation design, the concept 
of human-machine complementarity was recurrent, highlighting the importance of integrating ML-
based applications into existing workflows to enhance overall benefits and foster trust by ensuring HCPs 
maintain a sense of overall control. In the process domain, studies emphasized the importance of 
fostering early stakeholder engagement during the development and pre-implementation phases, 
adapting strategies to local contexts, and initiating reflection and evaluation activities to support 
continuous improvement based on feedback loops. Conversely, while the complexity inherent in ML 
models in terms of algorithm opacity was largely acknowledged, we found limited investigation into 
effective mitigation strategies to tackle these challenges. 
 
Comparison with prior work 
Differently from prior work encompassing also logic-based and rule-based applications [10], [71], [72], 
our study focused exclusively on ML-based applications. While the frequency and relative significance 
of the various application types are not directly comparable with those observed in the cited works, 
other recent reviews have adopted a similar approach to ours. In their scoping review, Chomutare et al. 
identified 19 studies on the implementation of AI applications powered by ML, highlighting a variety 
of solutions across medical fields and tasks within the clinical workflow [21]. Similarly, Tricco et al. 
explored how implementation science strategies can facilitate the implementation of ML tools [22], but 
their work also included studies with effectiveness research designs, thereby adopting a partially 



   
 

   
 

different approach from that of this work. Our review expanded the number of included studies, 
confirming the multitude of diverse applications of ML in clinical practice. The only condition for 
which we observed a conspicuous number of studies was sepsis, a dysfunction accounting for around 
20% of deaths worldwide [73], for which ML-based applications are proliferating [74], although no 
definitive causal link with reduced mortality has been demonstrated to date [75]. Our search identified 
eight studies on sepsis, showcasing the potential attributed to ML-based applications in supporting the 
timely identification of hospital-acquired conditions. On a similar note, a recent review encompassing 
over 10,000 ML applications in healthcare settings corroborates the relevance of prognostic algorithms 
among those in use [76].  
Consistently with previous research [21], [71], most of the included papers presented cases of real-
world implementation rather than being proper implementation studies on the later phases of roll-out, 
often covering only a few aspects of the implementation process. 
While we hypothesized that distinct implementation strategies would be prevalent based on the 
characteristics of the ML-based application, we only observed limited distinctions based on the type of 
clinical applications (prognostic, diagnostic, or therapeutic purposes), or their development process 
(internal development vis-à-vis external acquisition and adaptation).  
For instance, the integration with existing IT infrastructures introduced ambiguity in the context of 
diagnostic applications, where such integration may be perceived as a risk with medicolegal 
implications [52], [61]. On the other hand, for applications with non-diagnostic purposes, integration 
with existing IT systems was viewed as a positive factor for ease of use [49], [64]. 
Other elements appeared relatively more pronounced in applications provided by external providers. 
This includes perceived risks associated with application design (e.g., overreliance, automation, bias) 
[41], [56], [61], considerations regarding complementarity with HCPs [35], [55], [56], [58], and aspects 
related to explainability. As such, exploring whether and how different application types entail different 
implications for their effective integration into clinical practice might be a valuable suggestion for future 
research. 
Just like Chomutare et al. [21], our work confirmed that the outer setting domain was largely 
overlooked, although prior studies have highlighted the importance of external factors such as data 
privacy and security laws, ethical issues, regulatory frameworks, and medical liability in implementing 
ML applications in clinical practice [5], [77], [78], [79]. The limited relevance of such domain in our 
sample may stem from two reasons. First, due to the nature of the included studies, only a few used 
frameworks accounted for elements beyond the organizational setting in which the implementation 
occurred. Factors associated with the outer setting may be more frequently highlighted in 
implementation processes perceived as unsuccessful, which are less often reported in the scientific 
literature. Second, since the primary studies predominantly involved HCPs, they did not incorporate 
managerial and policymaker perspectives. In fact, when the outer domain perspective was explored, 
non-clinical stakeholders were often involved [41], [49], [63]. Furthermore, Hogg et al. suggested 
prioritizing the perspective of non-HCP stakeholders in primary studies to enhance understanding of 
implementation processes at a broader level [10], which may serve as further valuable suggestion for 
future studies. 
 
Implications for the implementation of ML-based applications: a focus on trust 
The importance of trust, particularly within the physician-patient relationship, has been heightened by 
the advent of digital health, especially with innovations such as ML applications that heavily rely on 
data [80]. ML applications based on computational models are often characterized as opaque (i.e., black 
boxes), introducing an extra layer of complexity to the trust relationship between end-users and 
technological innovations [81]. A recent review by Adjekum et al. categorized factors influencing trust 
in digital health systems into personal, technological, and institutional elements [80]. Building upon the 
concept of trust as articulated by Hengstler et al. [35], our work contributes to understanding the 
determinants of trust in facilitating the implementation of ML-based applications in healthcare 
organizations. 



   
 

   
 

We observed that the characteristics of the innovation itself significantly challenge trust in the 
performance of ML-based applications. The complexity and opacity of the underlying models constitute 
primary barriers to trust, with trust in performance further influenced by system design elements such 
as ease of use, the nature of HCP-machine interaction, and the timeliness and consistency over time of 
recommendations. Additionally, considerations regarding data governance for internally-developed 
applications and the reputation of the technology provider for procured solutions further influence trust 
in the performance of these applications. However, as trust primarily remains a human-led process, 
factors beyond mere technical and mechanical characteristics influence trust in ML. 
While most of the observed implementation strategies were essentially ML-agnostic, addressing the 
issue of clinician trust should theoretically require dedicated, ML-specific processes. Our review 
highlights potential ways to enhance the application perceived reliability of ML applications. On the 
one hand, tailoring and adaptation strategies, early end-user engagement, and appropriate framing of 
ML-based applications as decision-support tools might favor HCP trust in both the application’s 
performance and its purpose [21]. On the other, specific tailoring strategies should be adopted to 
increase the explainability of the non-totally interpretable models [13]. For instance, Jauk et al. 
enhanced clinical reasoning using a web application presenting relevant features from ML-modelling 
[51], Davis et al. allowed radiologists to interact with the ML system by showing the types and locations 
of the abnormalities identified by the algorithm [55], and Henry et al. decided to delay alerts until the 
first verifiable symptoms were present in an attempt to increase acceptance [56]. 
However, these tailoring strategies may not be practicable when ML systems reach opacity levels that 
render the interpretation of their outputs impracticable. In such cases, other contributions have 
emphasized the need to highlight the level of actionability of ML models, in terms of their ability to 
enhance medical decision-making compared to clinical judgement alone, to power trust [82]. 
An additional contribution to enhancing trust may be achieved through continuous HCPs’ involvement. 
This involvement, which generates engagement and professional buy-in, is equally significant for the 
successful implementation of these innovations. In the realm of digital health interventions, while there 
is frequent emphasis on patient engagement in the design of solutions, the empowerment of HCPs is 
often overlooked [83], [84]. Active involvement of HCPs and frequent communications to raise 
awareness have been unambiguously identified among the most common enablers of trust in previous 
reviews on the implementation of ML applications [21], [22], [75]. This may facilitate the 
implementation of innovations by improving the implementation climate reducing resistance to change, 
and mitigating specific barriers associated with the complexity of ML models and the reliability of the 
recommendations they produce. 
 
Limitations 
This study has some limitations that should be considered when interpreting our findings. Firstly, the 
rapidly evolving nature of the field of ML and the exponential growth of newly published studies posed 
a challenge in managing the vast volume of retrieved records. To address this, our search strategy 
incorporated a supplementary block of keywords focused on “study designs”, which may have excluded 
certain relevant articles. Additionally, our emphasis on peer-reviewed studies introduces a potential 
bias, as ML-based applications reported in the scientific literature may only represent a subset of 
implemented systems. This could impact the generalizability of our findings, as acknowledged in 
similar studies such as Sharma et al. [71]. Lastly, the decision to include only papers published in 
English might have led to the exclusion of valuable sources published in other languages, limiting the 
comprehensiveness of our review. 
 
Conclusions 
Despite a relative dearth of primary studies on the implementation of ML applications in healthcare 
organizations, the available evidence reveals the abundance and heterogeneity of factors involved when 
ML applications are introduced in routine clinical practice. While certain elements, such as complexity 



   
 

   
 

and trust, tend to emerge as distinctive factors for ML applications, many other aspects reflect what is 
already known about the implementation of digital technologies, particularly traditional CDSS. 
Further research is needed to bridge the gap between the theoretical potential of ML and its actual use 
in healthcare organizations. Identifying the distinctive factors that can facilitate its implementation will 
build theoretical and practical knowledge for healthcare practitioners, ultimately promoting the uptake 
of ML in routine clinical practice.  
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