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Abstract

In order to stress the large applicability of reinforced processes derived from urn

schemes, two different problems of survival analysis have been presented: the inference

for Markov renewal processes and the estimation of a bivariate survival function.

In the first, the so called product Dirichlet times beta-Stacy prior is characterized as

~ the mixing measure generated by a special case of Markov reinforced renewal process. -
Such prior is shown to be conjugate when the data are collected as a trajectory of a

Markov renewal process; the Bayes estimators are computed, too.

To solve the second problem, a bivariate reinforced process is defined starting from

the generalized Pélya urn schemes. So, a prior on the bivariate distributions on Ny

is obtained. Nevertheless this prior has a structure making overly complicated to

compute the posterior, the Bayesian estimator is computed as the predictive law of
the bivariate process and a Gibbs sampler procedure is developed. The support of
the prior is studied and a result on the weak consistency is achieved.

xi
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Introduction

Difficulties in the definition of the reinforced random processes arise from the absence .
of a thedry at general level. Nevertheless, from an informal point of view, we can think
at thése Processes as a; weakening of markovian property in Which the future depends
not oﬁly on the present state, but, in a particular way, on the ovefé;ll past history.
In other wofds, the processes collected in this category are characterized by the exis-
tence of a mechanism such that the transition probabilities at time n depend on the
empirical measure of the process up to time n, i.e. on a tally of past observations,
but not on the order in ﬁrhich they appear.

Pemantle (2001) offers a survey of recent works in the field of processes with rein-

forcement and provides an enumeration including:

1. Urn Schemes: a very rich class of models representing the probability of certain
events in terms of sampling and replacing balls in an urn. We shall say more

later;

2. Reinforced Random Walks: introduced by Coppersmith and Diaconis (1986),
they describe the attitude of a random walker in some space (possibly repre-

sented as a graph) reaching states already visited;

3. Stochastic Approzimation: first introduced by Robbins and Monro (1951), it can

1



be considered an anélytical tool related to previous class in drder to generalize °
Newton’s method for root finding when the values of the function have noise

added;

4. Continuous Time Negative Reinforced Processes related to physical model of
self avoiding random walks. |

Pemaﬁtle also asseﬁs that these reinforced models constitute a reasonable and ﬁseful
tool to describe several phenomena.as spatial exploration, learning behavior, evolution
~ and natural s_election, _Q¢£erminafion of location in industry, coc:;perat';ive interaction
and so _0[1." _ | |

To be honest most of the worké in this field privilege the probabili;ﬂ:.tic, though applied,
aspects of the problems and deal with statistics marginally. |
On the other hand, urn models (and, less, reinforced random walks) have found
fruitful applications in Bayesian statistics, hence it will be worth spending in the
next pages some words about them.
Our interest lies in emphasizing the possibilities of employment of the reinforced urn
processes and of models derived from them in statistics, particularly in the Bayesian
nonparametric approach. For this purpose, in the present work, models derived fiom
this methodology are applied to tackle two different problems in survival analysis:
the iﬁférence for Markov renewal processes and the estimation of bivariate survival
function.
This line of research in Bayesian nonparametric statistics has been opened by the
paper qf Blackwell and MacQueen (1973) in that it introduces, by the first time, the

idea of characterizing by a sequence of predictive distributions, made concrete in an



urn scheme, a measure on the space of distribution function (a Bayeéia.n nonpara-
metric prior) like the Dirichlet process. Given the complexity of a such mathematical
object, it is easily u-nderstood'the é,dva,ntage of a concrete representation in terms
both of intuition and of formal research of the relevant featﬁres. Such idea has also
found fruitful application in the techniques of computation and s-imulation of these
priors expressed as processes.

This work is prosecuted by Muliere et al. (2000) whosé Reinforced Urn Processes, a
generalization of the above cited urn scheme, are able to éh_éracterize other nonpara-
metric priors as beta-Stacy, Pélya trees and, more generaliy, neutral to the right and
tailfree. —

Chapter 1 includes a brief review of the fundém.enta.l concepts about all this matter:
the PéI}Ira Urn, the Blackwell and Mac Queen’s extension and the Reinforced Urn
Processes. As special example of theée last procésses, the scheme generating a beta-
Stacy process! for discrete distribution functions is i)roposed with a short digression
about the construction, the definition énd the properties Vt_)f this lnonparametric pfior.
Indeed, being conjugate with respect to right-censored obserVati-ons,. it enjoyed a great
success in survival analysis; furthermore, it constitutes also a starting point for both -
the modeis presented here. - |

The first problem consists in -the definition of a Bayesian nonbarametric prior to make
inference about Markov fenewal proéesses. |

Roughly speakiﬁg, fhis class of models describes thé evolution of a systerﬂ between
a countable number of étates. The system moves randomly from a state to another

like a Markov chain, but, unlike this, it stays inréach state a random length of time

1This scheme is quite similar to the so called generalized Pdlya urn scheme of Walker and Muliere
(1997). . ‘ - '



whose distribution functions may depend both on starting -and arrival state. These
processes found several applications in very different fields; particularly, in survival

analysis, they are used to study multilevel diseases. -

So, in chapter 2 the basic theorj} of renewal, Markov renewal and semi-Markov pro-
cesses is sketched: definitions, properties .land.' relations between the three classes are
clarified. Some papers, classical and Bayesian, on the problem of the estimation of the
transition distributions of a Markov renewal processes are summarized, too. Fin.ally,
a result about the chafacteriza_tion of the mixtures of semi-Markov processes, useful

for the remainder of the work, is recé.lled.

The following chapter illustrates the construction of two categories of processes with-
reinforcement in continuous time, the reinforced renewal processes and the reinforced

Markov renewal processes (see Muliere et al. (2003)).

Some prop‘érti_es of these processes are considered. In particular the interarrival times
of a reinforced renewal processes are studied and, exploiting the product integral rep-
resentation (see Gill and Johansen {1990)), an explicit computation of the predictive

distributions is achieved.

By consequence 6f backward equation for product integral and continuous time Markov
~ processes, the conditional denéity function of the interarrival time T,, | given T, ... '. T,
is obtained as well the density of the vector (T1, .- ,T.). These corﬁ?p.u'tations are use-
ful to give a new proof of the exchangeability of the sequence of reinforced renewal

processes interarrival times and to identify their mixing (de Finetti’s) measure.

Muliere et al. (2003), analyzing the array of sojourn times and successor states, showed
that a reinforced Markov renewal process is a mixture of semi-Markov processes, but

they did not specify the de Finetti's measure.



Nevertheless, assuming the sojourn times and the successor states to be independent
and the transitions from a givén state to be determined always by the same‘Pélya

urn, the mixing measure consists of a stochastic matrix having on each row a Dirichlet

distribution for trahsition probabilities and beta-Stacy procesées for each distribution

of the sojdﬁrh time in a given state.

Taking this measure as prior, a Bayesian nonparametric inference procedure for

Markov renewal procéss can be developed. It has also been shown that this prior

is conjugate and some results of estimation have been given.

Chapter 4 deals with a different problem, the estimation of a bivariate survival func-

tion.

Starting from generalized Pélya urn schemes (or the equivalent Reinforced Urn Pro-
cesses.for beta-Stacy procéss) a bivariate reinfog‘ced proéess is built in such a way as to
model couples of dependent lifetimes. More precisely, considered one of these couﬁles,
_each’ of the two elements is supposed to be the sum of a specific éomponent and of
another one common to both the lifetimes. Ea.ch of the three components needed to
build the couples is generated by a generalizéd Pélya urn. So this éonstruction Creat.es
a particular form of the dependence between the lifetimes as well the reinforcement
rule, specific of the generalized Pélya urn, introduces Bﬁyeéié.n learning ‘from the past

observations.-

The bivarigt_e reinforced process defines, via de Finetti’s representation theorem, a
prior on the space of bivariate distributions on NZ. Although this prior has a structure
which rhakes overly complicated to compute the posterior, an estimator for the bivari-
até su;ﬁ'ival function- (the bivariate I‘Jre.dictive- distribution) can be easily computed

by the Gibbs sampler exploiting the predictive distributions of the components. For



this reason, this approach may be considered as Bayesian predictive.

Indeed, something more about the structure of the‘prior can be said: the bivariate

distribution function sampled from it has a special form

TAY

nywy) ZPA(G)PB(SU—G)PC(@J—@) V(z,y) € N}
a=0 ’

and its marginals can be seen as convolutions of two distributions from beta-Stacy

Processes.

These remarks are useful to investigate some features of the prlor like the wndth of
the support and the consistency. Dealing w1th these problems, the strategy consists
in, by the first, facing the case of the beta-Stacy process and, then, trying. to find
somé extension holding for our prior. - o

In such a way, the result of proposition 3 of Ferguson (1973) about the wi&th of the
support with respect to the weak topology is adapted to the subset of the bivariate
distributions having the structure above described. A more detailed knowledge is
attained analysing the behaviour of the prior in the Kullback-Leibler neighborhoods.
Specifically, some conditions on the parameters of the generalized Pélya urn schéme
are Erovided in order the beta-Stacy. prior satisfy the Kullback-Leibler condition. As
before, such conditions can be translated quite easily to the éase of our prior on the
bivariate distributions with the usual structure. By consequence of a well known result
of Schwartz (1965)7, the Kullback-Leibler condition is sufficient to weak consistency,

so that our prior enjoys this properties.
So, the parameters of our prior can be chosen to obtain the Consistency of the es-
timated bivariate function. On the other hand, when the concern is not to get the

property of consistency, but just to center the prior in according to some researcher’s



g‘uess, there is an alternative way to fix the paramet-ers. It'doés not need any combli—
cated idea about the structure of the bivariate distribution, but only some opinions
as regards the dependence between the variables and the marginal distributions.

Finally, to illustrate how this method works an example is proposed. Two cases are
presented: the first replicates the classical Kaplan-Meier estimators when the_lifetimes
are supposed to be indepehdent, the second, instead, is a ” proper” situétion in which

the bivariate prior expresses some degree of dependence.



Chapt'er. 1
Some 'examples' of Reinforced Urn

Processes

The very large family of probabilistic modeisléollecfed under tile name of urn processes
(or equivalently urn schemesj represents the probability of certain events in terms of
sampling and reﬁlacing balls in a urn. ‘

Their most éttractive property consists of making intuitive and cbncfeté the prob-
abilistic ideas charaéterizing the model, yet keeping the level of reasoning abstract
enough to find general results.

The simplest urn process is the celebrated Pélya urﬁr, originally employed to study
the diffusion of infectious diseases. | |

Starting from this prototype, a great number of éxtensions and variations has been
sﬁggested. | -

The structure of the chapter is the following. Section 1.1 presents the basic facts about

Pélya urn; the work of Black*;vell and MacQueen (1973) describing a generalization

of great moment in Bayesian nonparametric statistics is summarized in section 1.2.

9'.
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Section 1.3 prosecutes this approach iﬁtroducing Reinforced Urn Processes for the
construction of a different type of nénpara._metric priors.l |

A short digressioil around the beta-Stacy process is in section 1.4 in order-to clarify
the specific examnple of Reinforced Urn Process-gerier'ating such nonparametric prior

distribution (éection 1.5).

1.1 Pélya urn

Bayesian statistics devoted considerable attention to Pélya urn both for its original
character and as a scheme implementing the classical statistical mode! for infinite
sequences of Bernoulli random variables, conditionally independent and identically
distributed given the probability of success assigned by‘a Beta distribution.
Consider an urn with Wy balls of color 0 andiBo of color 1. At each successive
ti?ne‘n >0,aballis randorﬁly sampled_ from the ufn and, a,fterrobs.erving the color,
replaced in it with m balls of the same color. ‘

By this way, a random sequence X = {Xun 2 1} describing the resuits of the ‘
successive drafts is defined; let W, and B, -indicate the number of 0 and 1 balls and
Zn = w5 + 5 be the proportion of 1 balls in the urn after the n-th draft

This scheme is said reinforced because the rule, stating the introduction of new balls
accérding with the color of the saﬁlpled ones, increases the probability of extracting.

a ball of the same color at next stage. Formally, we have

. o 'Bo+mzr'l— X
P =1 X X :Z = i=1 .
[Xn.-H ‘ | Ly ' n] " By + Wy +mn

- {1.1.1)

The theorem below summarizes the foremost results about Pélya urn.
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Theorem 1.1.1. The sequence X = {X,, n > 1} generated by a Pdlya urn is
exchangeable and its de Finetti’s measure fs a Beta distribution with.pa,rameters
(B, %).

As n grows to infinity, Z, converges almost surely to a random limit. Moreover, the -
distribution of the limii-; is a Beta wit.:h parameters (%’-, -‘;%Q)

It is straightforward that a Pélya urn with balls of n different colors generates a n
- dimensional Dirichlet distributior-l-i-nstead of a Beta.

A number of urn schemes are ge-nera.lizations o.f the above described, for example
among the others Friedman (1949), Freedman (1965), Hiil e£ al. (1987); Kotz and
Johnson (1977) is a thorough reference book on this topic.

The prominence of Beta and Dirichlet distributions in the Bayesian framework can

help us to understand why urn processes, as alréa.dy said, have found an interesting

application in Bayesian nonparametric statistics.

1.2 Polya sequences and Dirichlet process

A seminal paper of Blackwell and MacQuéen (1973) on Dirichlet process (Ferguson :
(1973)) has introduced, by means of a generalization of the Pélya urn, a novel per-
spective in the construction of nonparé,nietric prior distributions.

They extend the'classical Pélya urn scheme considering a Polish space X endowed
wifh its Borel o-field A" and a finite ineésure-a on it.

Once again, X can be seen as a si)ace of colors labeling balls of different type in an
urn with unitary reinforcement.

Forn > 1, let X, = z, if = is the color sampled at n-th stage; the sequence X =
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{Xnp, n > 1} is called Pdlya sequence when we have the initial distribution given by

P[X, € B] = %% =my(B), VBeEX (1.2.1)

and, for n > 1, the predictive of X,,;; conditioned on X,..., X, is

P[Xn1 € B| Xy,. ,kn] = ofB) + 30, 0x,(B) _a(B)

aX)+n | an(X) —mn(B). (1.2.2)

Therefore, it is possible to state the following. -

Theorem 1.2.1. [Blackwell and MacQueen (1973)]

Let X = {X,, n > 1} be a Pélya sequence on X with measure «. Then:

1. asn grows to infinity, almost surely the random probability distribution m,

weakly converges to a discrete random probability distribution a*;
2. the distribution of a* is D,, a Dirichlet process with parameter «;

3. the Pélya sequence is exchangeable and its de Finetti’s measure is D,

The importance of this result lies in the fact that it gives a simple and concrete
proéédure for cdnstructing an infinite exchangeable sequence of random variables
with Dirichlet process as de Finetti’s measure.

Moreover, by this way, some of the properties of Dirichlet process, a rather complicate
mathematical object, afe made more intuitive, for instance conjugacy propert;y of

predictive distributions. °



13

1.3 Reinforced Urn Processes

The paper of Muliere et al. (2000) blends the two ideas of urn schemes and reinforced
random walk. Indeed, they define fhe Reinforced Urn Processes as a.lreinfdrced ran-
. dom walk on a st'ate space of urns and, thrbugh an analysis of their fundamental
rproperties,‘ illustrate how the notions of reinforqement and partial exchangeability
are decisive for construéting prior distributions. Also, Cifarelli et al. (2000) provides
a éurvey of several schemes based on Reinforced Urn Processes for the construction
of general classes of pridrs commonly used in Bayesian nonparametric statistics like
Pélya .tree, beta-“Stacy,‘ neutral to the right and tailfree.

Each Reinforced Urn Process is defined by four elements.

Déﬁnition 1.3.1. Let
1. S be a countable state space;
2. E={cy,...,ck} a finite set of colors of cardinality k > 1;

3. U(z) = (nz(c1), .- ., na(cr)) an urn composition function which maps S into the

set of k-tuples of nonnega.tivé numbers whose sum is a strictly positive number;

4. ¢:5x £ — § alaw of motion such that for every z,y € S, there is at most

6he color ¢(z,y) € E such that g(z,c(z,y)) = §.

Fixed X, = d:o €S, if fbr n>21X,_1=z aballis sampled from the urn associated

" with z and if ¢ is its color we set

X.=q(z,c).
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Finally the ball is replaced in the urn along with one of the same color.

The sequence X = {X,, n > 0} is said to be a Reinforced Urn Process with initial

state xo and parameters S, E, U, q.

.Obviously, the traditional Pdlya’s scheme represents an oversimplified example of
- Reinforced Urn Processes.

~Forallze S, let
R, = {y € S:n(c(z,y)) > 0} and R = {ao}

be the set of all states _a,ttainéble from the state z in one step.

Then define for n > 1

R = U R,

T ER(N—I)
and -
. o0 ,
R=|JRM.
n=0

the set of all sté.tes visited by the Reinforced Urn Process.

Recall that, according to Diaconis and Freedman (1980), two finite sequences & and
7 of elerﬂents of S are équivalent if they begin with the same element and, for every
£,y € S, the number of transitions from x to y is the saime in both sequences.

In addition, a process Y = {Y,, n 2 1} on S is partially exchangeable if, for all n 20

and all equivalent sequences o = (So,--.,5a) and 7= (to, .- tn)
PlYo=50,..,Ya=5.]=P[Yo=to,...,Yn = tu). T (13.1)

It possible to show that a Reinforced Urn Process X = {X,, n >0} is partially

exchangeable. Moreover, if X is also recurrent, a representation theorem of Diaconis
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and Freedman (1980) states that it is a mixture of Markov chains, that is there exists
a probability measure u on the set P of stochastic matrix on R x R such that for all

n 21 and (21, ,Tn),
- P[Xo=ap,- , Xn=Ta| = / H?T(.’L‘j, zivp(dr) (1.3.2)
: , » 7 A |

Now, given a random matrix II of P with dist_ribﬁtion t, let, for all z € R, II(z) be-
the z-th row of IT and a(z) the measure on R which assigns mass nz(c) to q(:r, c) for
each ¢ € E such that n,{c) > 0 and mass O to all other elements or R.

Hence, it is possible to show that the following theorem holds.

Theorem 1.3.1. [Muliere et al. (2000)]
If the Reinforced Urn Process X = {X,, n>1} is recurrent, the rows of II are
mutually independent random probablhty distributions on R and, for a,ll z € R, the

law [I(z) is that of a Dirichlet process with parameter a(m)

Again, follewing Diaconis and Freedman (1986), _fof a process Y on S, a yo-block is
defined to be a finite sequence of states which begins by 3, and contains no further
#o- Let S* be the countable space of all finite sequences of elements of S endowed
- with the discrete topology. | |

When Y = {Y;, n > 0} is recurrent, let B; € S B2 € S . be the sequence of the
 successive Yo~ blocks in Y. ' )

Itis quite stra.ightforward_that if Y is recurrent and partially exchangeable with initial
state yo, the sequence {B,, n > 1} of its yg-blocks is exchangeable.

It follows that the sequence of zp-blocks of a recurrent Reinforced Urn Process X

is exchangeable. This implies that if  is a measurable function from S* to another
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space, the sequence {(B,), n > 1} is exchangeable as well.

Often the de Finetti’s measure of this seque.nce is simply characterized by fhe .prop-
erties of the Reinférced Urn Process. This is the case, for instance, of the beta-Stacy
and Pélya tree priors. By this way, these prior are constructéd very simply and many
of their characteristics become intuitively clear.

At this point, in order to understand how the construction of a_nqn-para.metric prior
‘works, we present, the' specific Reinforced Urn Procesé for the beta-Stacy. Indeed,

besides being' a clear example, it will be useful also for the following.

However, for the same reason, it is convenient, before, a short digression recalling the .

definition and the main properties of this prior.

1.4 The beta-Stacy process

The beta-Stacy process, introduced by Walker and Muliere (1997), provides a prior
for the cumulative distribution function with the attractive feature of being conju-
gate with respect to eventually right-censored observations and, therefore, it finds its

application in nonparametric survival studies.

Let us start describing the simpler case of discrete time beta-Stacy process. Suppose
a partition of‘th;a time axis [0, 00) is given by 0 = £ < t; <.t2 <...,a countable
sequence of time points ilndexed-by k=1,2,... |

By méans 6f fhis dicretization, the survival model assumes that if an ob ject is cen-

‘sored in the interval [tx,tx+1) and then dies before ¢, the information will becomes

available just after x,;.
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Let consider a random sequence ¥ = .{Yk,k > 1} defined as follows:

Yl ~ C_(al,ﬁla 1)

1/2|Y'1 ~ C(QQ: ﬁ%l_}fl)

Y;clxll;"':y;c-—l ~ C(_CY];, ﬁk: I_Fk—ll)
(1.4.1)
with each oy, B positive, C denoting the beta—Sta.cy"distribution (see Connor and -

Mosimann (1969)) and Fy_; = Zf;ll Y;.
If F, = 0 and

o - | o .
1- — =0 , 142
kl;‘[ ( a + ﬁk) ' (1:42)
F = {Fi,k € Ny} is a random discrete cumulative distribution function and it is

called discrete beta—Stacy process with parameters {ay, G, k€ Np}. .

Moreover, it follows that, for m > 1,
LYi ... Yu) =G (a5, B, Cm, Bm) (1.4.3)

where G is a generalized Dirichlet distribution {see Walker and Muliere (1997)).
This distribution is neutral to the right; indeed, considering the random variables

Yi
=TT
such that-1 — Vj, represents the randoﬁ;‘probability of survive in [tg, tyy1) conditioned
on the fact of being alive at the beginning rof the interval, foranym > 1, Vi,..., V;, are
independént. Moreover, being & beta-Stacy process, each Vi ~ Be(ay, fx) marginally.

The general deﬁnirtion', holding also for continuous random cumulative distributions,

.based on Lévy processes, is given below.
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Definition 1.4.1. Let c() be a positive function, let.G € F be right continuous
and let {¢x, £ > 1} be the countable set of points of discontinuity of G, tha;: is,-
G ({t}) = G (t) - G (1) > 0. o

Furthermore, put G. () = G (t) — 2, <, G ({tc}), the continuous part of G.

We say that F is -a-beta.—Sta'cy pI“OCE.‘SS on ([0,00),.A} with parameters ¢{-) and G,-
written F ~ 8 (¢(-), G), if, for t > 0 | |

F(f) =1 - exp (~Z(t))

where Z is a Lévy process with Lévy measure for Z{t) given, for v > 0, by

t
/e—vc(s)G(S.OO)dGc(s) (1.4.4) :

]..-'6—” 0

and moment generating function given by

log Ee~%%) = Zlc’)g Ee™ %5 4 / (e7% — 1) dN,(v) (1.4.5)
o :

i <t

where 1 — e ~ Be(c(ty)G ({t}) , c(te)Gltr, 00)).
This definition corresponds to the assumption that, infinitesimally,

dF(t)|F(t) ~ C (c(t)dG(t), c(t)Gt,00), 1 = F(£)).  (L46)
and, for a point of positive mass,

FEDIPE) ~ C (G, BBl 00), 1-FE). (147)

The beta-Stacy process results conjugate with respect to right censored observations.

The following theorem indicates how to update the parameters.
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Theorem 1.4.1. [Walicer and Muliere (1997)]

Let T1,...,7, be an independent _al;d idéntically distributed sample, possibly with
right censoring, from an unknown cumulative distribution function F on [0, c0) and
F ~ 8(c,G).

- Then, given the data, F' is a beta—Staéy process with parameters ¢* and G*, where

o - e(s)dG(s) +dN(s)
G*(t) = 1_—[& [1 - c(s)G[s,00) + M(s)]

c(t)Glt, o00) + M(t) — N{t}
G*[t, o0)

and N(-} is the counting process for uncensored observations and M(t) = 3_°-, Ly

(148)

¢ (t) =

- By consequence, if F is-a.beta-Stacy process with pa,rameters c and G, given an
independent and identically distributed sample with possible right censoring, the
" Bayes estimator of F(t), with quadratic loss function, is the predictive distribution

of Tpy1 given the data

c(s)dG(s) + dN(s)
[1 T o5)C[5,00) + M(S)} ' (1.4.9)

Pty = E[F(t) data] = 1- ][
' [0,t]

This is the same nonparametric estimator of F' as that obtained from the beta process
(see Hjort (1990)).

Note finally that when c(t)' — 0V¢, the Kaplan-Meier estimate is obtained.
1.5 A Reinforced Urn Process for discrete beta-

Stacy process

To define a Reinforced Urn Process enerating a discrete beta-Stacy process means

to identify its four characterizing elements. .
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Let § = Ny and £ = {w, b}, where w is for white and b for black. Assume as inﬁitia.l
state zg = 0 and ng(w) =0, v;rhereas ni{w) > 0,Vj > 1.
So, the Reinforced Urn Procesé X starts at 0 and, given that, at-stage n > 0, it is -
at state '€ S, it moves to z + 1 if the ball sampled from U(z) is black, otherwise it
goes back to 0.
Hence, the law of motion is

g(z,c) = { zle=b - 151)

' 0 c=w '

Urn comnpositions are updated according the usual Pélyg rule.
An alternative, but quite similar urn scheme, named generalized Pélya urn, always
generating a beta-Stacy process is presented in Walker and Muliere (1997).
 Ifn;(b) = 0 for some j > 1, let N = min {7 = 1:n;(b) = 0}; the process will visit
just the states {0,...,N}. ) | '
For an admissible finite sequence (zy, . .., Z,) of elements of S, the probability of the

trajectory is

PlXo=g0, Xa =] = Hl B(n;(w) +§é;f&;;:-$)($)t(j,j +1))

where 'B(a,b) is the usual beta function of parameters ¢ and &, while t(i, §) is the

(15.2)

number of transitions from i to 7 in the sequence (o, ..., T,).
For all n > 1, let T}, = X,,_; where the sequence of stopping times {7,, n > 1} is
~ defined by (75 = 0), for n > 1,

Tn:inf{j>fn_1ZXj=0}.

When X is recurrent, T,, = £(B,,) is the last state of the block B,, or equivalently its

‘length (in both cases a measurable function from S* to nonnegative integers).
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A necessary and sufficient condition for the recurrence of X is

oy by | |
nh—l;lgo]:—[ n:(b) + nq, =0 | ‘ (15.3) .

As the sequence {T,,, n > 1} is exchangea.ble, for the de Finetti's representation the-
orem,‘ there exist a random distribution function F' such that, conditioned on it,
the random variables T,, are independent and identically distributed according to F.

Finally, we can state

Theorem 1.5.1. [Walker and Muliere (1997)]
The random distribution function F is distributed according to a beta-Stacy process

on Ny with parameters {n;(w),n;(b}, 7 € No}. -

The Reinforced Urn Process above described 1s su:i.table only to charécte'riz-e. a random
cumulative distribution sa.rnpled from a discrete beta-Stacy. |

The well-known definition of this prior also for béntinuous distribution functions im-
plies the natural question of searching a rejﬁforcéd urn scheme for the general version
of the procesé with a non-null continuous part. -

In the following, we shall present the reinforced renewal process (Mulieré et al. (2003))
so]ving this problem and we shall show how to use in in the problem of iri_fei‘ence for

Markov renewal and semi-Markov processes.



: ‘Chapter 2

Markov renewal and semi—MarkOV

Processes

Markov renewal processes and the equivalent farﬁily Qf semi—Mafkév Iﬁrdcesses repré—
sent the fusion bretween :enewa.lé and Markov chains theories; hence, they provide a
suitable tool to model a system moving from one state to another and sojourning in
each of these a random amount of time with a distribution that may depend both on
starting and arrival states. |
The importance of Ma.r_kov fenewal processes lies in its large domain of applicability
father than its inner riéhness. |
Introduced by Lévy (1954a), Lévy (1954b) and Smith (1955), they were deeply studied
in Pyke (1961a), Pyke (1961b) and Pyke and Schaufele (1964) and énjoyed a great
_ success because of many applications in different fields. (A review can be found in
Cinlar (1975)). | | _

For inference prbcedufe for s‘uch processes see Jain §1990); we cité onI}f some classical

works: Moore and Pyke (1968) develops maximum likelihood estimation of transition

23
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distributions under certain restrictions; Lagakos et al. (1978), Gill (1980), Voelkel
and Crowley (1984) and Phelan (1990b) discuss the problem of right-censoring and
asymptotic propertieé of estimators; also Greenwood and Wefelmeyer (1996) gilves
asymptotic results in classical framewprk; while Brock (1973), Phelan (1990a) and

Duncan (1990) are Bayesian works.
&
The first section of the current chapter offers a survey of the definitions of renewal,

Markov renewal and sémi—Markov processes and their main properties: thé relations
between them are illustrated as well. -

In section 2.2 the problem of the éstimation of the transition digtributions_of a Markov
. renewal process is faced recalling some works among the above cited, both .classica.l
(Moore and Pyke (1968) and ‘Gill (1980)) and Bayesian {Brock (1973) and Phelan
(1990a)).

Finally, the last section introduces some results abéut the characterization of mixtures
of semi-Markov processes- whose interest by a Bayesian point of view will be clear in

the next chapter.

2.1 Renewal and Markov renewal processes

Renewal processes investigate the properties of the successive occurrences Qf a fixed
phenorﬁenoh repeating itself in time.

" Let {Tn, n > 1} be the sequence of times between the occurrences and define

. o nyl o

S() = To =0 and 'Sn+1 = Sn +Tn.;_1 = ZT" n > 0. . - (211)

i=1

Definition 2.1.1. Let £ [0, 00) — [0, 1] be a distribution function and {Tuym > 1}
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an infinite chuence of non-negative independeht random variables on a complete
~ probability space (Q, F, P), distributed according to F.

The sequence {Sy; n € N} is called an ordinary renewal process; the times T,, are the
interarrival times, while the S, the renewal (of waiting) times. |

The name renewal process is often referred to the counting process

i=1

‘ N(t)zsuc{nzﬂz'zn:ﬂ-St} t>0. (2.1.2)

The fundamental characteristic of rencwal processes is the independence and identical
distribution cf interarrival times, so that an event taking place in a given time does
~not influence the successive occurrences. |

‘The sircplest renewal process i-s the homogeneous Poisson procecs for which the dis-
tribution function # is exp(,\) and N(t) has a Poisson distribution, Po(At). -
-Markov renewal and semi-Markov processés -ccnstit;ute a generalization ‘cf renewal
processes describing the repeated occurrences of differlent types. In order to clarify, it
is possible to think at a system moving betwecn different states and. staying in ea}ch
. of these a random length of time {the distribution functioﬁ of which depends both on

present and next states).

Definition 2.1.2. Let E be an arbitrary set with £ a countably .gcnerated o-field.
Let (J,T) =. {(Ja To), n > 0}‘.be a Markov chain with valueé in E x [0,00), with
transition distributions Q(%, dj, dt) and initial distribution a(di)eq(dt). This process
is called Markov renewal process.' . - ‘

In particular, set Tp =0, S, =Y , Tk, 2 0and N(t) =max{: > 0:T; < £}, t >

0.
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Then
Yi=Jdngy t20

is called a semi-Markov process.

- Consider, now, the marginal distributions

Quiid)) = QUidix [0,00)) (213

Qaidt) = QU E xdt). - 219

If the state space E is finite (or countable), let

Py = Quli, () ey

be the transition probabilities for some Markov chain with state space E. It follows
that :

| P [Jn+1‘= ildos s Tos - T = paje A' (2.1.6)

Le;; indicate Q;;(t) = Q(¢, {4} x [0,t]); if p;; = O for some pair (3,7}, then Q;(¢) =

0, vt 2 0 and we set the ratio (;;(t)/p;; to be the unity.

With this convention we define

it

Fy(t) = @ (2.1.7)
Dij _

that is the conditional distribution of the sojourn time in the state 4 given the next

equal to j.

Finally, we have o ‘ o

Hit) = Quli, [0,8) = > pi Fiy() (2.1.8)
: JEE

is the distribution function of the sojourn time in state .

So, in this special case, we can adopt the definition of Pyke (1961b).
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Definition 2.1.3. Let £ = {0,1,...,m}, m > 1, Q(f) = {Q;(t) : 4,5 € E, t > 0}

be the matrix of transition distributions-such that
(i) Qu(t)=0 t<0,
(il) Yoo Qus(+o0) =1,
and A = (ap,... , em) be the Yector of initial probabilities silch that
(i) a; >0,
(iv) ZJ =0 @ = 1.

The process (J,T) = {(J,,,Tn)‘; n > 1}}, defined on a complete proBability space
(Q, F, P), satisfying Ty = 0 a.s., o .

Plhh=k =a; as R | (2.1.9)
and Vn >0

CPJair =5, Tant S U0, Ju Ty oy o, Tl =
= P[Jns1 = 5, Tnp1 <t Ju) = |
= Q) as, R L (2100)
is called \iIa.rkov renewal process determined by (m AQ).
We can consider the counting processes {N(f); t > 0} and {N (t) t >0} deﬁned by
Nt =sup{n20'8 <t}
N;(t) =i{k=1,.. N(t) Je=3j}.

Sometimes also N(t) = (Ni(t), co 5 Np(8) is called Markov renewal process, while

N(t) is the counting Markov renewal process.;
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The following propositions are quite natural and can help us to better understand

the structure of the processes.

Proposition 2.1.1. If E consists of a single boint, then {7, n > 1} is a renewal

process.

Proposition 2.1.2. For any integer n > 1 and u,,...,u, € R,
PITiSuy o, T Sl Joy oo Jl = [[ Holn () (21.13)
. k=1 :

i.e. the sojourn times 73,73, ... are conditionally independenf given the Markov chain

Jo, 1, . -

A usual hypothesis made in all the models derived from Markov renewal processes
is the conditional independence between the sojourn time and the next';_ state given
~ the present one. Some authors claim that such assumptién ddes notl imply é lossli of
.“generality and, even, constitutes a nice feature since, iéola,ting the role of v.r:aiting' time
distributions and transition probabilities, it reproduces the attitudé of the analysts
in many applications (Duncan (1990}).

Hence, under this assumption, Fj;(t) does not depend onj and we have -

Fy() = H() e
Q) = pyH(O. . (2113)

The following propbsition in Cirﬂar (1975) explains the reasons of the name of such

processes.
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Proposition 2.1.3. Let j € £ be fixed and define Sg, S{, ... to be the successive S,
for which J, = j. o

Then, $7 = {S7; n € N} is a (possibly delayed) renewal process.

So a Markov renewal process can be viewed as a superposition of these ijenewal pro-
cesses; the renewal process which contributed the point S, is the jth if and only if .
Jn = g- -

A realization jof a semi-Markov procegs_ fnay be obtained in two different ways.

By the first, suppose a matrix of transition probabilities p;; is giveli and the initial

state is <. ' o .

The next state is sampled from the distribﬁtidn p;.; if the outcome is j, thén the
sojourn time u is sampled from the distributioﬁ F;;(-). So the process is set to be 1

for ¢ < w and jumps to j_in u. | ‘A

The second step starts sampling‘ from p;.; if the outcome is &, then a sojourn time

is sampled from Fy(-), sa;y v; the process is set fo be equal to 7 in .[u,u +v) and a

jump to k is given in u + v. | |

.

The followihg steps are analogous. The procéss turns out to have a kernel Qij(f) =
PP (1) |

An alternative approach requires, for'eaqh 1€ E, ‘_a--distribution function H;(f) on R, -
and, for each ¢ € £ and t € Ry, probabilities K;(t) such that 3, Ky;(t) = 1.
Suppose thé ;;rocess starts from the state ; a sojourn time is sampled from Hi(). 1If
the outcome is u, the process is set to be équa.l' to 7 for all ¢ < u. The next state is
chosen by sampling froﬁ K (u). If it is j, the Sucéessive sojourn time is from H J()

and so on.
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In this case the kernel is given by Qy;(t) = fcf H,:(du)Kij(u).

If a semi-Markov kernel ¢ have the form
| Qi) = py; (1 = e B (2119
one can show that |
P{Yi. =jlY., .ust]:P[Yt+3:j]Yt] C(21.15)

for all t,s € R, and j € E; furthermore, P([Y;., = j| Y; = 4] in independent of ¢.
The semi-Markov process becomes an homogeneous Markov process.

Thus, with respect to Markov processes, the novel feature of semi-Markov process is
the freedom allowed in the choice of the distributions of sojourn times; this freedom is

achieved at the expenses of the Markov ‘pro;ﬁérty that holds only for the jump times.

2.2 Estimation of the transition distributions of a

Markov renewal process

Moore and Pyke (1968) is concerned with the estimation of the transition distribu.tions
of a Markov renewal procéss with a finite number of state; a natural estimator is shown
to be consistent and its limifiﬁg distribution is derived. - |

It is assumed the Mérkov renéwa.l process is irreducible, reéu_rre_nt and that (2.1.12)
holds. | |

Estimators are defined on sample function of the Markov renewal process over a time

interval [0, ¢] or equivalently on (Jg, Ji, oo dves T T, . ,TN@)).
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Remember
N(t) = sup {nzo : iT, gt} (2.2.1)
i=0 - . .
Niit)=#{k: k=35 0<k <N(t)} - {(2.2.2)
N,J(t) = ﬁ{k Jp= 1, Jp_1 = 3, 0< k< N(t)} (223)

and let T;; denote the sojourn time of the j-th visit o state 7, so that we can consider
{Ti;;1<i<m,1<j<N;i(t)} as a simple relabeling of {T;;1<i < N(t)}

Consider the estimator defined 'by

| Qz‘j(ﬂ»'_;_t)_ = P (t) Hi(2; ) | - (224)
where £,z > 0
Di(t) = N ((:)) (2.2.5)
) 1 Ni(t) .
Hi(z;t) = NGO Y Litusal (2.2.6)
' B k=1

Hence, ff,-(:c; t) is the ordiflary'empirical distribution function determined from the
sample, of random size N;(t), of the sojourn times in state 7. Set Q,-j(:c;t) =0, if -
Ni(ty=0. |

Theorem 2.2.1. [Moore and Pyke (1968)]

The estimator in (2.2.4) is uniformly strongly consistent as ¢ — co in the sense that

3,7 T

ma‘xsup' Qus(z;t) --Q,J(:n) —0 N (2.2.7)

with probability one.
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.The limiting distributions of the estimators are obtained exploiting the central limit

theorem for Makov renewal process.

Theorem 2.2.2. [Moore and Pyke (1968)]
For ﬁxed 1,7 and x,

_—_ Bs(t) =il LN0,3), t—oo - (228)
/2 | Ai(a; ) — Hi(s)]

where the covariance matrix is given by

Y = aipiz(1 — pig)
Yo = piuHi(1 — H;)

Yig = 221 = 0 o . : (229)

where f1;; denote the mean first paésage times from state ¢ to § in the Markov renewal

process.

The null correlation between p;;(t) and b (z;t) implies that they are asymptotically

independent.

Corollary 2.2.3. l{Moore and Pyke (1968)]

For fixed ¢, § and =z, p;;(t} and 24 (z;t) are asymptotically independent.

The asymptotic norhlality can be used to obtain the limiting distribution of Q(:z:, t).

Corollary 2.2.4. [Moore and Pyke (1968)] -
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For fixed ¢, 7 and z,
£ [Qij(x;t) - Qij(x)] LN(©0,062), t—oo (2.2.10)

where O'?j = ,u,;iHi(:c)p,;j_[H.,-(m) - 2H,-($)p,-jr+p@j].

Lét Wijk(t) = Qij(zk;t) - Qij(fb'k) for 1 < i,j <m and 1 < k < S:
Theorem 2.2.5. [Moore and Pyke (1968)]

For fixed s, ‘the distribution of {t!/2Wy(t); 1 <4,5 <m, 1 <k < s} converges in
law as t —- 00 to a m2s-dimensional normal random variable with zero mean and

covariance matrix X whose generic element is

Siikuve = Bi0uDij [Hi (min [z, 2]) Piv + Hi(fﬂk)Hi(i?w) (850 — 2p)].  (2.2.11)

This reéult implies that the finite dimensioiiél distributions of the stochastic procésses
{tl/ 2 (Qij(a:; t) — Qij (a:)) , T > 0} converge to those of a gaussian process. It is also
p.os'sible to‘prove that: th.ese prlocesses- convérge weakly. o |
In particular, a consequence of the weak convergence of empirical processes with
randoiri sample size is that {N,-(t)l/ 2 (Q,;j(z; t) — Qij(:c)) , T > 0} converges weakly
to a tied-down Wiener process. ' '

Lagakos et al. (1978), working with right censored obsériratibns, proposes to estimate
tbe.d.istribution functions on the basis of some maximum likelibood cdnsiblerations
by maximizing the probabiiity of n realizations c_)f the process observed on fixed finite
time intervals over all discrete transition probabilities. '

Gill (1980) gives rigorous derivations of consistency and weak convergence properties

of these estimators.
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Consider the counting processes

Ny(t) =1 {n >1: Zn:n <t dyy =i, J, = j} (2212
fori,js'm,te[o,oo],ﬁéN. -
Define also |
Ne(t) =" Nyle) 7. h (2.2.13) |
N,(t) = i N,-,-G) ' i (2.2.14)
N(t) = Z N (8). | (2.2.15)

Let suppose the following assumptions hold:
- al. There exist random variables T, such that a.s.

Sn < Tn < Sn-}-l Vn and K(t) = Z]]'(Sn,Tn]Vt

a2. There exists a sub-o-algebra A of F containing all P-null set of F, conditionally
independent of o {Nij (s); 4,7 <m, s€|0, oo)} gi{ren Jo, and such that, for each
n, T is a stopping time with respect to the family of o-algebras {F¢; ¢ € [0, 00)}
defined by |
Fi= Ava{Jo, Ni(s)i 4, <m, s € [O,t]} .

a3. E[f{Tn > Sn}] < .

a3*. E [{{Tn > Sa )] <‘oq.

The first assumption restricts the model to consider only right-censorship, meanwhile

a2. implies that the process K(¢), signaling the censorship, is predictable.
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For a3. and a3* the number of at least pa.rtlally observed SOJourn times is certainly
almost sure]y finite. The ﬁrst is sufficient to prove consistency, the second is needed
for weak convergence.

Moreover define

}’;('U.) = | ﬁ{n 2 1: Jn—l = ?:,Tn > @,K(Sn_l +U)= 1} (2216)
vo) = vieh, (3217
Y = 3 ¥ N R (2.2.18)

note that Y(0) =f{n: T > Su}.
If n independent identically distributed bbservations of N;; and Y; are given, let
N7, Y" N7 denote the sums of the: n reahza.tlons of Nw, Y, ..

The estimators are the followmg

Ff;‘(t).= 1-1] (1 - AYN“—(S))

- _-:/0: (1 i) dﬁfn((f)) @2
| "l}(t_)=/0 (1—3p(s )) d}f/\;(())_ e

The properties of the estimators are exposed in the theorem below.

Theorem 2.2.6. [Gill (1980)]
Let 7 = sup {t : £ [Yi(t)] > 0}. Then, as n — oo,

. sup ﬁg(tj—H,»(i)‘ Lo - . "(2.2.21) '.
te[0,5) . : -
sup Qu() =0 o 2

Ctefom)
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unless E (Y (r)] = 0 and AHi(r;) or AQ;;(m) > 0, in which case [0,7;] must be

replaced by [0, ;) in the corresponding supremum.
A further result is the following.

Theorem 2.2.7. [Gill {1980)] 7
Suppose condition a3*. holds and chdose T, t < m, such that FE{Yi(n)} > 0.

Then, considered s a random element of [[; (Do, 1'1])m+1
{n (Qy - Q) n¥? (H: - 7). <m}

is asymptotically distributed as

{/ 1;{;{]; dWi; — Qy /— 11 _H;_ BT dw; + f Qs 1 _I;;. E[ly] dw;,
(2 —H,-)/ 1- H‘_ E[Y] ’ } o —

Relatively less work has been done in the Ba.yesian‘approach both parametric and
nonparametric.
Brock (1973) considers a Markov renewal process with a finite states space £ =
{1,‘.‘. . ,m} such that | )

Qi) = pi; F;(t)
with initial distribution A = (ay,...,an) where a, = P[Jy = k] and studies the
distribution of N(t) = {N;;(t), 7,7 € E} for ¢ > 0, where ‘N,-J- is the number of direct
transitions from ¢ to j in the interval (0, ). |

Define the Laplac;z—Stiltjes transform of ¢;;

‘Qij(S)Z/OO?.e_‘Stinj(t).: t>0 (2.2.24)
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and denote by Py, F(t), Q(¢), f(¢) and q(s) the matrices whose (2, 7)-th elements are,
i, Fij(t), Qu;(t), fi;(t) and gi;(s)- | |
Exploiting Somg earlier results, some distributions interesting for the Bayesian anal-
ysis are computed in terms of Laplace-Stieltijes transform and probability generatihg
function.

In particular, the prior posterior and the preposterior analyses are carried out using
the matrix beta distributiron as _priqr for the matrix of transition probabilities Py.
This distribution may be characterized by the density function

JJ [15, Ba(v5) ﬁ-‘j)"?i-'l if P is a (K, m)-stdcﬁaétic matrix
(K m)(P N)

0 . . .- otherwise -
L ' (2.2.25)

P = [pf] is a matrix o_f- the type of Py. The parameter N is. a {K,m)-matrix such
that u,’j >0,k=1, . , K, i;j =1,....m ahd v*, is the generic row of N. The total
number of réws of both P and N is K = 31", K; and B,,(v*,) is the generalized
beta function \ |

Bulhy) = - (Z504)

VT T (UkY - {2.2.26)
HJ=1_F (VE)
Its moments are
‘ ” ‘
Blpgl =55 ti=loom 00 - 2.2.27
[p.?] ZJ V;‘j | - | ( )
i = e L . (2228)
[ZJ u] [1 + Z VzJ] ' :

_— - Unﬁ”nd" =: - . _ .

. [, vas| 1+, vas] =" _1,...,m,ﬁ,6 1"""_'"."57&"-
Covlpesul =1 o (2.2.29)

0 o | a#Fy
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It is possible to compute the distribution of the transition counts, given that Py obeys

a matrix beta distribution and 1 as initial state ¢ and

Jo. wi(N, ) FME (Py; N)APy N € @, (i)

(m.m) o |
P[N(t) =N|4N] = : (2.2.30)
- ' ' | 0 A otherwise
where S,, is the set of (m, m)-stochastic matrices, ®, (i) the set of all possible tran-
sitions counts é.rising from a Marko§ renewal process with initial state and w;(E, s)
the i-th row of _
w(E,s) = [1-q(s)05] " - a(s)]e L (2.2.31)
the Laplace-Stiltjes tfansform of N(t) cc;nditi_onal on Jy = 7 (note that O denotes the
Hadamard métrix product and e a vector of ones). |

As example consider the case of a two-state Markov renewal process having probability

madtrix
‘ l-z =z
Py = ] , 0<z,y<1 (2.2.32)
vy, l-y
distributed according to a matrix beta prior distribution with parameters
vip v '
. N= [ o2 ] _ | (2.2.33)
L L Va2
- Then the density of Py is

. . _ 7

729 (Py;N) = g (] - g)u-lymU(] gl (2.2.34)

B(Vu, U12)B(V21, V22)

The Markov renewal process is observed for a fixed interval of time (0,¢) and two

things may happen: _

- the system may not make any transition at all, staying in the initial state, say

i. If v indicate the sarhple, we denote this v = i;
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- the system makes some tré,nsitions: v ={Jo, It - - - ,‘jn;ccl,mg; ooy Tp) = (3,%)-

‘Hence the likelihood of a trajectory is -
[ il - (1)) | ify=1i
L(v|Py) = { o S (223))

az[l - F; (”Urc ]Hk:ﬂ fn(mkﬂ) = {G,x)
le(t)(l _ E)Nu(t)yNn(t) (1 _ y)NQZ(t) 71

\

and the marginal distribution of v is

(@l - Fi(t)] S ifw=i
Lv) = 5 ai[1=-Fy(ue) TIR2g S, (Zh4) (2.2.36)
: 3(011,1’12),3(1121,?22) if vy = (.,X):‘
| -B1112[N(t), N| By 22[N(t), N]
Finally the posterior distribution of Py given v
a - N - vl -
B(v1_1.u12)lB_(V21,U22) lez_ 1(1 ) ! lyr-m 1(1 ) =7 if U_= ¢
L(POIV) = 4 1 xN;z(t)+v12—l(1 _ x)N11(t)+V11—l .
Bi1,12[N{2), N[ B2y, 22 [N (£}, N] ‘ if v = (§,x).
\ yNzl(t)+U21-1(1 _ y)sz(th-l !
(2 2.37)

A more complete Bayesian study of Markov renewal processes is carrled through by -

Phelan (1990a). This approach can be seen as a considerable gene;allzatlon of the
previous one and 1t is based on the parametriéation of the transition distributions in
terms of transition probabilities of ‘a Markov chain and cumulative ha;zafd functions
of life dlstrlbutlons |

Following Pyke and Schaufele (1964) it is assumed

Qu(t) =psH:lt), t20 - (2239)



0

and representing the distribution function by the product ini:egral (see Gill and Jo-

hansen (1990))

Qi;(t) = Pijﬂ [1 —dbi(s)], t = 0. - (2.2.39)
[0, . : , '

Moreover,‘ a trajectory of a Markov renewal process in the interval {0, t] can be written

as (N(t), R(t)) where N(t) = Y n>1 Lisage and R(t) = (Jo, ..., I T1, -, Tnvgeys B —

SN(t)) S0 fhat

P[IN{t)=n,R(t) €G] = / dP(n;T), | - (2.2.40)
G

where

4P ) = 930 J{ 11 = oy [T T 1= i) i) (2240

{0,ue] _ k=0 (0t541)

A procedure for the inference in for Markov renewal processes can be defined as

il
follows.

Let M be a stochastic Markov transition matrix having each row M i independent
and distributed according to a Dirichlet distribution of parameter 3;, so that we say
M to have a product Dirichlet distribution with the matrix B = (}30, : ,'ﬁm)’ as
parameter; let also A be a vector of cumﬁlative hazards independentranrd distributed

as a Beta process (ci, b:) (a vector Beta distribution).

* As the following theorem claims, this prior is conjugate.

Theorem 2.2.8. [Phelan (1990a)] -
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Define-
N(t) . |
) NlJ = Z]]'[Jk_1=i,.];¢=j]: I’:J S E: l (2242)
k=1 ' . '
N(0t) , o _
Ni(s)= > Ly,_,=im<d, $>0,4€B, (2.2.43)
k=1 ' o : ‘

_ N(2)
Yils) = Uy cin-spinze] + > 1y me) s204i€BE  (22.44)
. k=1

Let 3, ¢ and b be the parameters of the above described prior.

Finally, fori € EF ans s > 0

B = Bij + Nyj, o : (2.2.45)
Ge)=cals)+Yi(s), - (2246)
vy [fedbiHdN;

bi(s).—fo L e

Consider the probability rmlo.del from a Markov fenewal process with the barametriza—
tion above described and let (N(t), R(t)) be an observation of this process in [0, ¢].

Then M and A are conditionally independent'_ givéﬁ (N (t), R(t)) with conditional -
distributions given by ‘a product Dirichlet with parameter 3* and a vector Beta with

parameters ¢* and b*,

This prior wiﬂ be important in our work. Indeed, in the‘ neﬁct cha.ptef we will present *
an urn scheme to characterize a prior for inference in Markov renewal processes arisen -
from a different parametrization focusin not on cumulative hazards, but on distribu-
tion functions. By the way, the relation between the two priors can be brbught back

to the well relation between Beta and beta-Stacy processes.
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2.3 Mixtures of semi—Markov-processes

Following Epifani et al. (2002), we consider a minimal chain ¥ = (Y;, t > 0) with a
countable state space £, i.e. processes whose trajectories are right-continuous step
functions that may have infinitely many jumps in a finite time interval and get stuck
in an extra state not belonging to E. In‘ this case, after the explosion time, the
behavior of the process is not studied. .
The law of Y is a mixture of recurrent minimél sémi—Markov proqesseé if and only if
row-wise partial exchaﬂgeability of the matrix of the SUCCEssOT states and the sojourn
times holds. _ _
Without losé,of generality, it is péssible t.oltake E=N; 1et,intro'dﬁce apoint d ¢ E
- and put E* = EU {8}. '
More fofma.lly, let €2 be the set of generalﬁed right-continuous step functions from
. [0, 00) into £*: a function w'€ {1 is a right .continu(.)us step function with values in-
E* up to explosion time, with & an absorbing state, and it remains éqﬁal to O after
an éxplosion. | _
Let 0 = Sp(w) < Si(w) < Sa(w) < ... be the discontinuities of w. If S, (w) < +00, let

Ja(w) be the value of w in the interval [S,(w), Sp—1(w)) and T, (w) = Spy1(w) — Sp(w)

be the sojourn times of w in Jnw).
If w has just n discontinuities, set Si(w) = +oo for k 2 n and Tn(.w) = +00.

Finally, ((w) = 3220, T (w). is the explosioﬁ time of w. |

Introducel the canonical process Y = (¥}, t > 0) ron 2 such that Y;(w) = w; and endow |
2 with the smallest o-field F with respect to which all Y; are measurable. Also. J,
a{ld T, are F-measurable for every n > 0 A |

Let define the array of successor states and sojourn times of Y.
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Definition 2.3.1. For any ¢ € E*, let v, be the m-th visiting time to i (v =
—1, inf @ = +o0): ' -

Vi = inf {n > Vim-1 o =1} (2.3.1)

the successor state of the m-th visit.of ¥ to i is }
Tirn = Juimgq - (232)
and the sojourn time of Y in the state i after the m-th visit is

Tom =T, (2.3.3)

Vim

with the convention that J,o = @ and T, = +00. We have also 0g,n = @ and
Tom = +00, ¥m > 1.
The elements of the array [o, 7] = {(0im, Tim), ¢ € E*,m 2'1} are said row-wise P-

partially exchangeable if

m ﬂ {Uim S Aiﬂitm):Tim S Oifri(m)}
i€k m=1 ‘

(2.3.4)
for all K = {8,1,...,k}, Ajm € P(E*), Cim € B((0, +00]) for each 7; varying on the

P ﬂ ﬂ {&im EJ Aim,"r,-m'er Ctm}] =p

ek m=1

permutations of {1,...,n} with k,;n > 1.

If H indicates the set of all probability measures on (E* % (0, +o0], P(E*)®@B((0, + o))
with the topology of the weak convergence, then there exists a sequence of random
probability measures H = (ﬁ,) E from (Q,.?-" ) into H* such that

1 n . ) . ' .
EZJ(Oim‘T‘.m):H,- as.—P (2.3.5)
m=1 - o

fori € F* and n — +c0.
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Mo_réover, if Pﬁ denoté the ébnditiona.l probability on (Q,}' ) given H, the condition
(2.3.4) is equivalent to |

Py n m {oin € Aim, Tim € Cin;} = H H lff.;(A,-m,C',-m) a.s. - P (2.3.6)

icK m=1 iek m=1

See de Finetti’s representation theorem for partiall;yl éxchangeél_)le é.rra.ys.
The theorem below provides a characterization of tile mixturéé of semi-Markov dis-
tributions in terms of partial exchangeability by rows of the bidimensional random
variables (0i,, Tin, % € E*, n > 1). The mixing measure is a prdbability on a class of

transition kernels.

Theorem 2.3.1. Let E* = N U {0}. .The elements of the array (o, 7} are P-

partially exchangeable by rows if and only if there exists a probability measure g on

(H*>, B(H")} such that
1. p(Ho) =1
2. p{H eHp: 4 is fecurrent for S(ip, H)} =1
3. forany é1,...,%, in I, Cy, ..., Ch-1 in B((0, +o0]) and n > L:

P{hi=i..,Jn=inTo € Co,...,Tuet € Coui}

= /m 1:[ Q(%s, 451, Cs) u(dQ). (2.3.7)

5=0

Furthermore, the mixing measure u is uniquely determined.

The last condition of the theorem is equivalently expressed by saying that there exists
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a random transition kernel Q such that
P"{J].:(i’l: J =in,T0€CO,..-,Tn_1EC_]_}

= H Q("fs: 541, C ) a.s. — P. ) ' (238)

=0

This can be rewritten as
Py {Ji = -n, ,J_—zn,To € oo, Tt € Gt}
e sz,, fapl ‘ts,h+1 C ) as - P ’ - (239)
The propoéitien states the equivalence between-(2.3.'4) and a bartial. exchangeebility
condition involving the sojourn times in ¢ when the process next makes a jump into
the state 7, for all ¢, 5. |
Let consider the m-th visit of Y to the string (4, 7) (140 := —1, inf § = 4-00):’

Wigm =10 {0 > Uy Sy =6 Ju =} m21 - (2.3.10)
and 7 = [ijm, 1,7 € B*,m > 1] the array of sojourn time in the state ¢ when the next
is j.

The followmg condltlon is equlvalent to (2 3.4):

l n ﬂ {013 :I:IW‘(m)!T’ljm € Csz,,(m)}

Jenm_‘
— (2.3.11)

m m {Uzm = ZTim,; Tijm = C‘ljm}

for all K, i € E*, Cijm € B((0, +o0]) and for each w; and ,bij varying permutations

of {1,...,n}.

From this equivalence, it turns out that the representation of the law of (Jy,, T,—1)
holds under A(2.3.11) as well. |

Moreover, for every i,j € E*,-a.s. — P:
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2 Z Ogim = Pi o (23.12)
n m=1 .
) 1 n I . . .
=D g = Fy(). (2.3.13)
n m=1 . .

The reason of this short digréssion about the mixture of semi-Markov processes lies
in the fact that these results will be used in the next chapter. More precisely, a multi-
- state reinforced will be defined and the study of the property of paftial exchaﬁgeability
for .the matrix of its sﬁccessor states and sojourn l_;imes will assure, oﬁ_ the basis of

these considerations, the existence of a de Finetti's measure useful as prior.



Chapter 3

Reinforced Markov renewal

processes

At the end of the first chapter, the problem of looking for an urn scheme able to gen-
erate the beta-Stacy process in its version also for continuous distribution functions
has been left unanswered. -

_To this purpose Muliere et al. (2003) have introduced a so called reinforced renewal
pfocess wﬁose name points out_its derivatioﬁ‘frbm reinfor'ceci processes presented in

the previous chapter.

In the light of the same relation between reinforced processes and Markov renewal
' '

processes, the reinforced renewal processes are exploited to build another class of

processes with reinforcement in continuous time, the reinforced Markov renewal pro-

cesses,

As usual the reinforcement mechanism yields the property of exchangeability. In

such a way a Bayesian nonparametric estimation procedure has been developed. In

47
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particular, via exchangeability of interarrival times and independence between.so-
journ times and successor states a prior for Markov renewal processes is naturally
characterized.

More precisely, it consists of a stochasﬁc matrix having on each row a Dirichlet
distribution for transition probabilities and a beta-Stacy process for each distribuﬁion
of the sojourn time in a fixed state.

Section 3.1 and séction 3.2 deal with the definitions of the processes, their properties
and the existence and identiﬁéation of the mixing measure. | _

In section 3.3 the prior distribut'ion'is'.thoroughly studied; the conjugacy property
is proved and the posterior distribution is computed. Also predict.ives and Bayesiaﬁ
~ estimators are obtained; the relation of this prior with Phelan (1990a)’s one is cleared’

up.

3.1 Reinforced renewal processes

" In this section a reinforced process in continuous time is Ideﬁned following Muliere
et al. (2003). |

Suppose to have a usual renewal process and drop the essential assumption of inde-
pendence and identical distribution of interarrival time T,.’s in such a way as to allow
a particular form of dependencel between them in ordef to make possible a kind olf
Bayesian learning from the past observations.

The formal definition is the following.

Definition 3.1.1. Let o be a positive measure on B[0, 00) such that a({0}) =0 and

b<di<da<---<d, < ... are the points in which o concentrates positive mass.
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Let D = {d;, ¢ > 1} and ¢ be the continuous (with respect to Lebesgue measure)

part of o defined as follows
(0,6 = (0,8 = > a({d})
: N L di<t
Let 8: [0,00) — (0, 00) be a positive and measurable function.

The function

_ : — —a({dip)
1-Tyg [1 a({da})w(d,-)]e

- t>0

Fas(®) = R
0 S | — t<0

is nondecreasing and';ight—continuous, aﬁd if a; and 8 are such that

T al(dd) ] g
1 [1 a({di})+ﬁ(d,-)]e v =0

then, Fy 5(t) is a prdpe; distribution function.

di<oo

(3.1.1)

(3.1.2)

(3.1.3)

Consider a random variable T} on [0, 00) with distribution function Fu,[; and define

recursively a sequericé of interarrival times, for n > 1, such that the conditional

distribution of Tpy| Ty, .., T, is equal to F,, g, with
(0,8 = a0,8] + > Ainey
Ci=1 .

Ba(t) = Bt} + Z Limisy

for t > 0.

The sequence of times {T};; n € N} or, equivalently, the point process
| ,N(t):sup{nzo:Znst}, 120,
. . Taml '

is said a reinforced renewal process with parameters («, ).

(3.1.4)

(3.1.5)



- Note that if o and § satisfy (3.1.3), then, for n > 1, @, and f, satisfy the same

condition a.s. and {T,; n € N} is well defined.

For the following, it is useful to introduce the product integral representation (see
Gill and Johansen (1990)). The cumulative hazard function of a random variable

distributed according to F, 5 is equal to !

[ day(s) a({d:}) |

At) = / — - . 3.16
0= |, aToD + 66 * 2 T + @) (318 .
So, by means of the (3.1.2), the first interarrival timme T} of a reinforced renewal

process with parameters (o, B) has a survival function, using product integral, equal

to

E S-(t)'- - PTi>i= |
S _ a({d;}) ~ fy daka)
E[l T L)
o : da s) 7
B TO[[ a({s}) +ﬁ(s}
= Tl-dae) |
0
(3.1.7)

Denoting T" = (Tl, .., Ty), the vector of the n previous interarrival times, from

'In the notation we drop the dependence on a and 8.
2Let
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(3.1.4), it is possible to compute the cumulative hazard function of Thy1.given T .

oy ‘ do,(s)
A(5TY) = f PO ET RO
- — /t ' dac('s) + Z?:l JT:' (3)
o o{sh)+8(s)+ i lmsa
: ol{d;}) + 21 0r,(dy)
*Z (D) + B1&) + o Tmze)

- (3.1.8)
So the survival function of Ty41 given T" (the predictive distribution) is, from the

prdduct integral representation,

PTu1>t|TY = T[[1-dA (s )]

t

0 _ .

t

T[ [ dan(s) ]

o L+ an({s}) +Buls) |
(3.1.9)

Muliere et al. (2003) provides an interpretation based on Pélya urns clarifying the

meaning of the name of these processes and how the mechanism of learﬁing works.

It is possible to think at T,’s as sequentially observed. Becqusé of reinforcement

mechanisms of {3.1.4), the conditional hazard function is constructed in such a way

as the probability of surviving in a given infinitesimal interval (¢, + dt) increases if

the previous observations have done so.

By mean of this definition, the interarrival times of a reinforced renewal process turn

out to be exchanceable

Exchangeability is a key concept in Bayesian statistics and in this context reveals that

the occurrences, nevertheless each of these gives an additi_ohal contribution through

the reinforcement mechanism, can be considered similar with respect to the state of

information.
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This idea is mathematically developed via de Finetti’s representation theorem.

Now, we show that the interarrival times are exchangeable and their de Finetti’s

measure is a beta-Stacy process.

First of all, we compute explicitly the value of the product integral in (3.1.9) that is

f[[l *_dAn(S;T;‘)] =

| Tw : .
"H‘ J-[ - da(s) o ({T(y ) +B(T 1+ (=)
1 a({sh+a(s)+(n—j+1) | | a({T) H+B(TG) H{n—j+1)
7= T
-
, 7 _ ,
Tl - aretes]
a({s})+8(s)+{n—k+1)
Tpe—1) ' '
if Teny <t<Tgy, k=12,...,n
. o
a | Ta : S
I [1 _ da(s) ] [ a{{T(j N +8{Tey )+ (n—4)
ok a{{sh)+8(s)+H(n-s+1} | | a({T; DHB(T 5 )+ (n—j+1)
7= 1o '
t .
a{{s})+68(s)
Tin)
| T 12T

where (Tiy, Tiz), - - - ,T(n)) is the vector obtained By the increasingly ordered permu-
tation of T*, Ty = 0 and []%- = 1. | | |

It is possible to rs.ee.that‘the distribution of T, given T" is the same for any pér~
mutation of (T, ...,T,). | |

Following Gill (1994) we obtain, as a consequence of the backward equation for pro-d-

uct integral and Markov processes

raen e .__ da(s) ' do(t)
F(‘“)‘To[[l a({s})+ﬁ(s)] IO EY0 (3.110)
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and, therefore, the density function of T is

) {1} e -
fn(t) = [ Ljpgp) + WI[:Q)]] J;[ 1 fdA (3.1.11)

where ac(t) is the Radon-Nykodim derivative of o, with respect to Lebesgue measure
A on [0, 00). | |
In general, the equation (3.1.11) is the Radon-Nykodim derivative of the distribution

of T} with respect to the measure

n()—Zme]H) RN CPET)
dieD : _

that is the sum of the counting measure on positive mass point of a and the Lebesgue
measure. |

If, for simplicity, we set
o(t) = ac()lpgp) + o({tH1en),

we can write

fr(t) = WH 1-dAE). (3.1.13)
Similarly, the conditional density of Tn+1 given T™ results
_ o [eu®) + 200 6n () a({th + T0, on(t)
o) =[S o+ 50 + z prvhiy
]'[ [1- dA (s;T™)] = S | g

YO+ T
(el + 50 i3 e et | it CROY)

(3.1.14)
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and the density of T** computed in t**! = (¢;,...,t,.1) is

n

an+L (tn+1) = l_[ al(ti"‘l) + Z-;Ll 6ti(_ti+1) T
oo | @& ) + B() + 200 Yzl 7o

[1 - dA;(s; )]

(3.1.15)

Now, we can state the following.

Theorem 3.1.1. In a reinforced renewal process, the sequence of the interarrival

times T = {T,,,n > 1} is exchangeable.

Proof. We have to show that fre+i(ti,...,thi1) = fTr;+1(O'(t]_,...,tn+1)) for any

o(ty,---,tase1) permutation of (¢, ..., ¢.41)-

As one can obtain a given permutation by a finite number of permutations of con-

tiguous elements, it suffices to show

an+1 (tl, cex N fk, tk+l} e tn-l—l) =‘an+L (tlr ces ,‘tk+1, tk, .. -tn+l)- (31]6)

Note that the conditional densities depend only on the ordered conditioning random

variables and so we have to verify the following:

karrk-l(tkltkhl)fnmfrk(tk+1ltk_1,tk) = kalTk—l(tk+1ltk_l)fTHﬂTk(tdtk_l, tri1)-

(3.1.17)

The case ty, = tx41 is obvious.

Now, take the vector (ti,...,tk—1,%, tk+1) and its increasing ordered permutation

(tys -« - b1, Ly E(ka1y). Moreover, suppose £y = tg) and trt1 = f(m) for L ¥ m.



%)

Consider the case t; < ey (I < m), we have

k=1

o
Z Litioey = Z 1[*-‘2*(:)] =k—1.-
i=1 =t S :
- 7 . .
' Z ]l[te'ZﬁkH] 2'211[:,-24&(,")],: k- (m -1
i=1 . . i=1

k=1 " - -k -
Z Lot = z Leosters] = Dpgedtppa) = 5 — (m—1)
i=1 .

i=1

1 [te41286) = 1

.We can also compute the product integrals and obtain the fbllowing relations .

o1

TU L - dAec(ss 7)) =
T i an ey T [ dal)
= TO[ [1 dAr-a(s;t )] 2} [1 a({s}) +8(s) +k — I]

o({ta}) + Bligen) +h— -1
a({tern}) + Blury) + k=1

g RN L da(s) | _ ,a({tu)})+ﬁ(t(j)).+k—j
11 {T( [1 : a({s})fﬁ(S)%k*jﬁ%l]'[a({tu)})+ﬁ(tu))+k—j+l}

J=42 |ty

tm-1)

. ) : : da(s) : B
It [lfa({s})+ﬁ(s)+k—m+1] -
- | - (3.1.18)
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and

b

T[ [1 - dAk(S;tk_l,tk)] =
0 .

Lt _ S o
= — dAx(s th! af{tw}) + Bltw) + k=1
= J;( [1 ,dAk( it ,tk+1)]. [a({t(g)}) F Bty +hk— 1+ 1]

e R _ da(s) | @({t(j)}) + b(tu)) +k-j
H T[ {1 a({s})+B(s)+ k-3 + 1] [a({fm}) +B8(tH) +k-7+1

F=iH1 { b5

timy

' ' da(s) :
t(,],:_(l) [1 Ca{sh+B(s)+k-—m+ 1]

(3.1.19)

Using (3.1.14) and these relations in (3.1.17), after some simplifications, we obtain

iy

ml:Il [1 —_ __dos) ] [ a({tn B H-k—j ]
i a((s+B0s)tk—3+1 | | al{t;) N+BleG) ) +k—F+1
= G-y ' ‘

L) ‘ '

T[ [1 — dafs) ] a{tuyny DO uy ) +HE—1-1

a({s}+8(s)+k—1]  a({tg+y D+8(Er1))Hh—1

tw ‘

“m—1 tiiy _
11 j[ [1 _ das) ] [ a{{ti D+B(tey)+h— ]
=2 |, a({sh+0(a)+h=j+1 ) | a({t) D+ +e—j+1
(-1

showing that the condition (3.1.17) holds.

" Similarly in the case t;, > tpq ). '_ . O

So, the sequence l{Tn, n > 1} is exchangeable and, from de Finetti’s representation
theorem, there exists a random distribution F' conditionally on which the T,’s are -
independent and. identically distributed from F: that is, there exists a probability {or = -

de Finetti’s) measure defined on the space F of probability measures on [0, c0) such
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that, Vn, the joint distribution of 17,75, ...,T, can be written as:
Pie AL Th €A, ..., T € A= fHF('Af)u(dF) : (3.1.20)
. o . -

where 4 is the de Finetti-(or prior) measure. -Th_e problem is how to identify the

prior, but the following theorem give us the solution.

Theorem 3.1.2. The de Finetfi’s measure of the infinite exchangeable sequence

{Tn,n 21} is a beta—Stacy'process.

Proof. For the first two interarrival time of a reinforced renewal process, we can

compute

P[Tl > t]_,TQ > tz] =

ta .
= Er, [1mou J{ [L - du(s; T1)]
L 0 '

T | '*2, | d&(s)“ |

_ (s) (i) + AT dafs)
]lmqu[ { T, .,.ﬁ( )+ J o({T1}) +ﬁT1)+1 [ a({s}) + A(s )”J
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= E’n []]-[T1>t1\"tz]];[ [1 - a({s}fi(;)(t) + 1” + ]I-[t1<tzlET1 I:l[tm'nstﬂ
Tl dals) ] _alnp+A@) il dals) ] _
I - S AT st A JT R +ﬁ(s)H -
~ t2 B da(s) £ Vg 3 ﬂ_
=l - s ) H[l S L] T

) da(s)
]l[n<t2]H [1 - m] .

o

e . do(s) da(t)
/n 7[[1 a({s})+.@(s)+1] a({e)) + BO) + 1 |
' ' (3.1.21)

By backward equation for product integral, (3.1.21) is equal to
A aus}ff'i(?(s) : J T [1 o)
- a({s}ff;is> I o

: 70( - é({s})d o To( - ﬁ?@] |

. (3.1.22)

Now, to prove the theorem we consider a sequence of random variables {7, n > 0}
independent a,ﬁd idéntica,lly distributed having as distribution function F(t), ss;rnpled- '
according to a beta-Stacy process of param.meters o and f.

We compute for these random variables P[T{ > t), T} > t5] and we show that this
coincides with what we have found for {T, n > 0}. |

‘Then, the uniqueness of de Finetti’s measure implies the thesis.
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So, let 'S(t) = 1 — F(¢) be the survival function and Z(t) thgrcorresponding log-beta
process (see Walker and Muliere (1997)).

By Lévy formula for log-beta process, for t > 0,

t

- t _da_L
_ - {3.1.23

and, for ¢, < ta, |
E [é—(z(tz)'—z(n)J] = f[ [1 - ————a({j}t;(j)ﬂ(s)] . | . (3.1.24)

So that

PI] > tl,T; > ty] =

= E[P[Ty > t,|F| P[Ty > &5 F]] =

= E{S(.)S(t2)] =

= E[S(ti At2)S(t1 V)] =

=B 6-2Z{t1:'\¢2)]l E [e—(Z(nvtz)-Z (tmtz))‘] =

tiAty *

_ B dafs) tlw? _ da(s)
N J;( [1 a({s})+ﬁ(s)+1] 0 {1 a({s})+ﬁ(s)]'

FAWAY )

(3.1.25)

O

ThlS result seems to provide a natuml ]ushﬁcatmn to make nonparametrlc Ba.yesmn
inference on d1str1but10n functlon of the- 1nterarr1val tlmes in the case of exchange-

ability, of a renewal processes setting a beta—Stacy as prior.
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3.2 Reinforced Markov renewal processes

In Muliere et al. (2003) a reinforced random process in continuous time with a finite
number of states is introduced and its properties are studied.

This process can be considered as a superposition of the basic b-uilding. blocks repre-
sented by the reinforced renewal processes.- ‘

So, lét consider‘ a finite ‘state': space E = {0,. ,m} and associate to each i € F a
reinforced renewal process {T%; n € N} with parameters of and £,

The transitions between the states are regulated by a class of Pélya urns; more
speciﬁcally, for each state i € E and time ¢ > 0, let U(t) be a Pdlya urn, with a.ﬁ
initial composition C*(t) = (cj(¢), .. oy ¢ (t)) of balls labelled by the states of E. Let
 consider, for each i € E, also a function ¥i(t) : [0,00) — [0, 00).

For each i € E, conditionally on {T%, n > 1} and provided 7i(tj, the sequence of the
successors of the sta.té i (s, n> 1} is generatéd as follows.

Given T}, a ball is sampled from the urn associated to the state i and the time +(TH),
U*(v*(T1)); the first successor of 4, si, is the state labeling this ball. Similarly for
n>1,givenT}, sy, ..., Ti, s, Ty, let 84, is the state marking the ball sampled from
the urn U*(y*(T%,,)) updated according to the Pélya rule: Now, it is possible to state
the definition below merging the diﬂ"ereﬁt_ reinforced renewal processes to constitute

processes whose structure recalls Markov renewal and semi-Markov processes.

Definition 3.2.1. Foreach? € E, consider the reinforced renewal processes {17, 1,n >
1} and the sequences {s},, n > 1} of successor states generated according the descrip-

tion above.

Let Lo = sy € E be the initial state and Sy = 0. For n > 1, given Ly, - v Lnot €E
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and Sp,---,5u-1 € [0, 00), let {(Lp, - - - , Ln_1) indicaté the number of times the state

Ln_y appears in (Lo, -, Ln—1) and set:

L= siio, o (32
T, = Th  (322)
and S, = S.n_ll +T,.
For t > b, definie _ N = |
N(t) = sup {nz 0:5, < t}_, t>0 (323) -_
and - - _ .
J. = Ly S (3.2.4)

The process (L, T) = {Ls,Ta, n > 0} is called reinforced Markov renewal process,

while J = {J;, t > 0} is said reinforced semi-Markov process.

For these two ﬁew processes the .sojourn times in; eéch state are given by the reinforced
renewal processes in such a way as we can think aﬁ a clock measuring the time spent
in that state. At each return, the clorck is reset to 0 and the reinforcements are done.
We note that it is possible ﬁo modify the definition of the processes esrta.blishing |
different resetting and reinforcement rules (for inst_émce, all the clocks are reset only
if a given recﬁrrent state ié visited), But, in thé.t case, the situation is more cotnplicafed
and all the following does not hold. .l

The propositions clarify the strqcturé of the a.bove-déﬁned -processes and their rela—
tions with reinforced renewal a_nd' semi—Méerov prdcésées. _

Following Muliere et al. (2-003)',‘ we state

Proposition 3.2.1. [Muliere et al. (2003)] - B
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For every i € E, the sequence (1%, ') = {(T%, s* )} is exchangeable.

Moreover, the sequences (10,59, (T, sY),...,(T™,s™) are independent.

Studying the double array {ain, i € E, n > 1} with a;, = (T%, st), it is possible
to show, by de Finetti’s representation theorem for partially exchangeable array or
following Epifani et al. (2002); that there exist Q... Qnm ré.ndom and independent
transition kernels on [0, c0) x E such that, for any 1 € F, the random elements of the

sequences (T%, 5') are independent with probability distribution Q;.

Alternatively, stating -

pi = Qi (-, (0, +00)) . (3.2.5)
()= Qf ) (3.2.6)

it is possible to claim the existence , for any ¢ € E, of a random probability distri-
bution on £ and, for ¢, € E, of a random distribution on [0, c0) such that théy

generate the kernels ;.

So, the sense of the following is clear. =~

Proposition 3.2.2. [Muliere et al. (2003)]

The process J = {J;, t > 0} is a mixture of semi-Markov processes.

An equivalent reformulation of the previous proposition referring to (L, S, — Sn_1)
as a mixture of Markov renewal processes is possible.
Generally, the de Finetti’'s measure of the mixture of semi-Markov processes is not

known, but, in the following special case, we are able to determine it.
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T =7 €, oo) Vit € [0, 00), (327

we have that, if the process is in the state ¢, the transitions to the next state are always
generated by the same Pélya urn U*(y') = U* with initial composition (¢, . ..,ch,)

independently of time spent in this state. In other words, the sequences {st, n > 1}-

. and {T%, n > 1} are independent so that

P(sig =k, T, 50T Ton] = ' P [Sher =K st, .. :3:;]
‘ ' C?c + Z?:l ]l[sj-=k]
G tn

(3.2.8)

- This case corresponds to the assumption about the structure of a Markov renewal

process of conditionally independence between sojourn times and successor states.
If the urns U/* are such that each state 4 is recurrent (for conditions, see Muliere ot al.
(2000)), then, for'i € E, the seqﬁences {si, n > 1} are infinite and exchangeable.
Therefore, the sequence {L,, n > 1} is a recurrent Reinforced Urn Process &nd; heﬁce,
there exists a random transition matrix M conditionally on which {L,, n >1}is a '
Markov chain. | o |
Fﬁrthermére, M is distribﬁfed in such a way as the rows M; are mutually inde-
pendent prdba.bility distributions on £ and, for each i, the law of M i is £hat of a
Dirichlet process with parameter p; being the measure_that _assigns a mass c} to each
state 7 € E ‘ . _ - . -
Note that the law. of vector of probability measure (Mo, ... , M m)_ is a product of

Dirichlet processes.‘

‘Because of conditionally independence between sojourn times and successor states, -

proposition 3.2.1 and theorem 3.1.2, the de Finetti’s measure for the mixture of
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Markov renewal process is structured as the product of:

- beta-Stacy processes for the cumulative distribution function of soljourn times

in each state : € E, -

- Dirichlet distributions for each row of transition matrix (as inﬁeresting events
are {s', = j}, j € E, Dirichlet process reduces to Dirichlet distribution of pd— )

rameters (Chr-- - Ch))-

The next section will state more precisely these ideas.

3.3 Bayesian estimation

The special kind of reinforced Markov renewal processes at the end of last section
provides a justification to fnake non-parametric Bayesian inference setting as prior
beta-Stacy processes for distribution functions and a stochastic matrix, haviﬂg inde-
peﬁdent rows with Dirichlet distribqtion, on transition probabilities.

Indeed, the previous construction characterizes, via .exchangeability, our prior: This
choice represents an alternative to the family of conjugate priérs for Markov renewal
processes prOposed by Phelan (lﬂégl()a): Dirichlét on transitions, as above, and beta
processes (see Hjort (1990)) for cumulative hazards.

We show that also the prior in exam is conjugate.

3.3.1 The‘prior

Now, we formalize the structure of the prior distribution.

Let recall the state space E = {0,1,...,m} :and define, for n > 0,
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- L, = (B x Ry)™,

- II, the Borel o-field on I1,,

No = {0,1,...},

o

N the class of all subsets of Ny,

D=1, and IT = \/7_, II,,,

NE)=3>7, 1{5,.91; ¢t > 0, the counting process of all jumps.

Almost all éample functions can be represented by a point in the sample space

- (N x II, NV @ IT) given by a finite-tuple (N (t), R(t)), with

R(®) = (Jo,- -, Ine, Thy oo Ty £ — Svey)- (3.3.1)

Because of assumption (3.2.7) implying conditionally independence between sojourn

times and successor states, we can write the parameter spacé as .
6 =M, x Fi! i {(3.3.2)

where M, is the space of random Markov matfices of dimension m+ 1 and F7+1
the 7 + 1-product of F; the space of random ditribution functions on [0, +00).
Let ©® ='Sm.”‘+1 ® §™*! be the corresponding Borel o-field. o
Now we give the deﬁﬁitions of the distributions of interest: product Dirichlet ana

vector beta-Stacy.

Definition 3.3.1. Let 8 = ()i ez denote a matrix of nonnegative quantities.
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Let M = (i\f{ij),:,je g denote a random matrix defined on (2, F,P). The rows of M
are independent random vectors such that, for each i € E,

]

Mi = (A/I'iﬂ; A/‘[ill sy ﬂ/fim) ~ Dir(ﬁio: tB'iIJ .. Hgim)'
We say that M is the product of Dirichlet distributions and write

M ~ TIDir(B).

Definition 3.3.2. Foreachi € E, let ¢;(-) denote a positive function and let Gi(-) e F
be right continuous with a countable set of points of discontinﬁity. |
Let F = (F1,..., F™) denote a vector valued process defined on (Q,F,P).

The F*s are independent and

F' ~ S(c(), Gi().

F is a vector beta-Stacy process with parameter (¢, G) = ((c1, ..., tm), (G1,-..,Gmn))
and we write F' ~ S(c, G).

Hence, we write the parameters as § = (M, F').

A mixture of Markov renewal processes with de Finetti’s measure IIDir times beta-

Stacy can be written as

PIN(t) = ﬁ, R(t)‘ € Al = /a {/A dP(n;ﬂ'IB)] dQ(8) o (3.3.3)
forn>0, AeIl,, with"
4P 718) = pio(1 ~ F(u) | MygndFo(ti)  (334)

k=0
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where 7 = (Jo,J1s- -1 Jns b1y - -y bny U2, us =t — >0t and p;, = PlJo = Jo] (in
general, we assume P [Jp = jp] = 1) and @ is the prior on (©, ©) defined by definitions

3.3.1 and 3.3.2.

We can also write

PlJair =7, Snir = Sa <t Jp =i, M, F| = M F'(t) (3.3.5).

Remark 3.3.1. This prior has an intima.te; relation with Pﬁélan (1990a)’s one.
Indeed, the remark 2 in Walker and Muliere (1997) clariﬁeé the connection between
' beta and beta-Stacy processes: if A is a beta process and dZ = —log(1 ~ dA), then
F(t)= —exp{-2(t)} isa béta-Stacy.. o ' -
Nevertheless, in our case I Dir tz’mes_betd-Stacy pl_'ior_ is not an arbitrary choice,
but it is shown to enjéy the good featufe of directly deriving of exchangeaBility
propertiéé of reinforceﬂ Markov renewal processés: hence, if the data reveal astructure
characterized by exchangeability of interarrival times and successor states featuring
the independence between these; thisrprior' appears hatural.,

Moreover, as pointed out in Walker and Muliere (1997)', to.elicit a prior guess for a
beta-Stacy process, dealing with cumulati&é distribution function instead of cumula-

tive hazard, is easier than working with beta pf_ocess.

'3.3.2 Soine estimation results *

We compute the posterior distribution corresponding to prior described in the last
subsection. We show that the property of conjugacy holds.

Define:
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- the observed transition counts
N{2)

Niy = Z]liJk_1=i,Jk=j1 i,J € E;
k=1 -

- N(i) = {Ni(s); s = 0} the cpuhting'; processes defined over the completed so-
journ times in sfa.te i |

NG
N‘l('s) = Z]I[Jk,1=i,TkSSl 5 __>_ 0, '& e E;

k=1

- the risk processes Y (i) = {Yi(s); s = 0}

N(2) _
Yi(s) = ]l[JN(tFi,t—SN(cJ >s] + Z]l[".k—i:"'TkZ"’] s20,1€E.
k=1 '
The following proposition presents a fundamental result: the conditioned indepen-
dence between (T, ..., Taw, F) and M given (Jo, .+, Ingy: N(B)), so that it will be

possible to compute the posterior distributions sepafately.

Probosition 3.3.1. Let (N(t), R(t), M, F) denote the random element in (N x T x
O,NILg O, P), where P is given, accordiﬁg to (3.3.3), by

P[N(t) =n, R(t) € A, (M, F) e_B]:/
v, E) & A

LAdPUMWWﬂdQWj (3.3.6)

forn>0,A€ll,, BeO. _ o

Then (T4, ..., TN, F) and M are conditionally independent given {Jp, . .. , J n, N(t)).

Proof. As © = M1 x F™* and [T, = (E x Ry )"t let 6 = (6, 6,) such that
0o = (psj, 4,5 € B) € Muip

B, = F = (FO, F!,... F™+) € Fmh
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and 7 = (g, T;)

7o = (Jo, J1, - - - ) € B}
™ = (t1s .- tny ) € REFL
Moreover, define
| dP (n; 7r0|90 :I—I;g;»:,,dk+1 ) _ | .- - (3.3.7)
and dP (n; | 6, 7o) 51.1'ch that |
4P (ns10) = 4P (sl o ap (mmlf). (3389

As N(t) is a.s. finite, it is sufficient to prove the conditional independence on the set
{N(t) =n}, ¥n > 0.

Fix n and define the £ l-measurable function
f(n,‘.)'l'o) = / dP(n, ﬂ'll Wo,al)dQ’(gl), o = En+1
FmiiyxR™+H1

where @' is the distribution of F' and £€™*! is the class of all subsets of E"*1.
Observe that |

P[N@ =n,(h,..., nw) € A, M € B] [ f, 70)dP(m; 71| 70, 61)dQo(fo)

(3.3.9)

for Ac 8”“ Be mtm+1
So, on (E™! x Mppq, £771 x 9ﬁm+1) we have defined a measure p, the restriction of

distribution of (N( ), Joy -, JN(t), M) to the set {N(t) =n}.
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Moreo;fer, for all G € 8“’:“ ® D1, we have

P[N(@#)=n,(T1,....Tng) € A, F € K,(J, ..., Ing, M) € B]
= [ 1omaptmine 604060 ] dutms, 0
/B L/KxA _
' ‘ ' (3.3.10)

where A € B(R%), K € F**! and

' fo - fHaff>0 ‘
' 0 iff=0
For each n, the term in brackets is a measurable function of 7y and, for 7y outside a set

of y-measure zero, defines a probability distribution over (R} x F™*!, B(R?)®@F™*1).

Hence this term determines a regular conditional distribution of (T1,..., Ty, F)

given (N(t), Jo, . .. Jng, M) on {N(t) = n} and is independent of M. o

Consider that the distribution functions F¥ ~ & (¢, G:) and define, Vi € E, @; as the

probability measure on (F, %) induced by the mapping F*.

For a given realization of a Markov renewal process with T1,...,T,41 and Jy, ..., Jn,

set, Vi e F,

T = {T: Jier=14,k=1,...,n}.
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We know that, F [ T* ~ S(c;, G;) with 3

1!

1 _ a(s)dGi(s) + dN(s)
G =11 S Etreatar e (33.13)
Ci*(t) _ C-i(t)Gi[t) OE;)*;; i()t) - N; {t} (3314)

Let Q; be the probability measure induced on (F,F) by F*|T* (the posterior).
Following Phelan (1990a), now we_s_tai:e some propositioﬁs with some interesting '

results preliminary to the computatif:m of posterior disitributions.

Proposition 3.3.2. Fixn >0 and let
T= (Tg,Tl,r. -y Tn) with Tp = 0,
| Yz'l(Jon, S J)and
o w=(0,71,...,5.) € B

Consider the event B(w) = {Y =} and define the o-algebra A = o(T,Y) V
o(B(x)). | |
m+1 Lo
Let 7 > 0and A= X A; € ™! and suppose P[B(mw)] > 0.
. . 1
Then on B(w) we have '

P[Tp >1,F € AJA = [] QiA)E;, [(1-= F&(r)) Upmen, ) (3.3.15)
: t#in . ) ' )

31 we pa.ramétrize the beta-Stacy’s (and related log-beta processes) using the measures o; and
the nonnegative functions &; (see Walker and Muliere (1997)), these parameters are updated as
follows ' '

des(t) + dN:(t) : (3.3.11)
b (t) + Yi(t) — Ni{t}. - (3.3.12)

da(t)
08
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~ where Ej,; is the expectation operator defined by the random measure QJ—“.

‘ —~
Hence the F; give the regular conditional distributions of the F; given A.

Proof.

PiTun >, F € AAl = E[lgorliren| A]
= F [E(]L[Tn+x>r]]1[FeA]|0(T Y, F)vo(B(w))) IA]
= E{Upen (I~ F(r)] A] |
(3.3.16)

By hypothesis, T3, . . . ,Tn+1 are eonditidnally independent given B{m) and F. More-
~ over, the sojourn times in state 4, belonging to sets T* for i # j, and {T,4,} UT™
ha#e conditionel distributiens determined by F*',i€ E. |

By independence of M and F and independence of the F* | the random variables .
(T*, F%), 4 # jn, and ({Tns1} U T, Fo) are condltlonally independent gwen B(1r)
' Hence, (3.3.16) is equal to

I1EL ]I[F.EA]|.A] E { [1 = Fi(r)] L{pinea,,1] A} - - (3.3.17)
iin
'Tf;e expectations are equivalent to compute the posterior laws of beta-Stacy processes
F® given a eanibie of size n' = | {k'=0,1,...,n = 1 : j, = i} and lifetimes in the set
T (the above defined measures Q.. |
So the (3.3.17) becomes

H Q* EJn {[1- FJ‘(”“)] ]]-[F'JneA,,,]} - (3.3.18)

i#jn
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Remark 3.3.2.

P[Tyu>rlA] = P [Tapr > 7, F € F™+1| A]

- 186 B -0 e
i#n
= E; [1- Fj"(r)] .

n

(3.3.19)

L3

Note that the above expression corresponds to the predictive distribution of sojourn
time 7,41 of a reinforced Markov renewal process given all its paSt‘ history.

As F¥s are distributed according to independent beta-Stacy processes and by defini-

tion of @, and E;,,
o jﬂ' o c.-,f. $)dG;.(s) + dN;, (s)
E;, [1.—.F (r)] g Z[ [ NOEAD 00} + Y. ( )}

- _ o dei(s) -
= l](;gl:l a;n({S}.)_‘f'b}n(_S)} (3-3.20).

where last relation is obtained taking e;, and b;, correspondmg to ¢;, and Gj, and

=

updating according to (3.3. 11) and {3.3.12).
This is coherent with the constructmn of remforced Markov renewal process and what

exposed in Muliere et al. (2003).
Remark 3.3.3. If F is a random distribution function and Y | F ~ F, define
Qr(A) = P[F € AlY >7].

Note that -

. _ Ep [(1—F(*))1[F5A]]-
rl4) = Ep[1-F(r)]

(3.3.21)
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Proposition 3.3.3. Fix n > 0 and let B(r), A and A€ g be defined as above.

Let r > 0 and suppose P [B(w) N {T41 > 1} > 0.
Then, on B(ﬂ‘) N {Th41 > 1}, we have:
PIF € Al AV o ({Tuni})] = [T GuANT;, (45).
. i#dn
Sécond, define Q. = {N{(t) = n} and suppose P [B(w) n ,] > 0.
Then, on B(mw) N Q,, we have: .

PIF e AlAVa(Q 1—1'[@,(«4)@ ‘(4;,)
o i#jn

where u; —t—zlt >0for Ni{w)=t,..., T( ) = tp.
Proof. For A € ™!, consider

(A) . p [F € Al Turi > r]

Let compute

PIF € AlAV {Tuu > 1] = p(AlA). |

m+l -
Qutside a set of y-measure zero, for A = X 4;, we have
. 1 E .

P[F € A,Tn+1 >T]A] _
P Xpn>rlA

TLig, @i (A) B {11 = F7(r)] Ljpinea,, }

W(ALA) =

EJn [1—FJ“( )]
HQ,A) 7 (45)

L ¥ Jn
where the last equation holds for (3.3.21).

For the second part, take A € F**! and let

V(A)“ = P[F € A|Q)].

(3.3.22)

(3.3.23)
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QOutside a set of v-measure zero, we have

P[F € A N(t)=n|A]
_ PING =l A
Noting that Vw € @, Ty(w) = t1, . .., Ta(w) = t,, N(t, w) = n is equivalent to Ty (w) =

m+1
t1,..., Tulw) = tn,TnH(w) > Uy, for A= X A; and on B(‘rr) (3 3. 24) is equal to

P[F € Al AV 0(S0)] Lin(ty=n) =

(3.3.24)

P[FGATn+1>UtlA] ‘
(A D™ (A, (3.3.25
-+ P[Thy1 > wl A zl?;[ Qi ) “( '7 ) ( )

0

Finally, we can compute the posterior distributions of M and F.

Theoretﬁ 3.3.4. For fixed 3, ¢ and G, suppose M and F' are independent with
M ~ TIDir(B) and F ~ S(c, G). | |

~Consider the probability model above defined. - .

For t > 0, let (N(t), R(t)) denote an observation on the process (J, 5) on [0,1].
‘Then M and F are conditionally independent given {N(t), R(t)) with posterior dis-

tributions given resﬁectively by (IDir(8") and S (c*, G*) where

By = B+ Ny : (3.3.26)

o a(8)dGi(s) +dNi(s)]
G = 1'{[{}[“@.(3)-@.[3 oo)w(s)] (3321)

'Proof. We have shown that M and F are conditionally independent given (N (¢), R(t)).
To compute the conditional law of M, it suffices tb consider M|(N (t),' Jo, - Ing)-
Recall 2, = {N(t) = n} and since N(t) is a.s. finite

P[Me Alo (N(©), Jo, - - , Jm))]l = ZP;[M € Ao (Jo,..., Jol 1o,

n>0
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CforAe M.
By hypothesis Jy,...,J, are observations from a Markov chaiﬂ having transition
probabilities M ~ IIDir(3); hence P[M € A| Jo,...,.J,,] g, is computed from
HDir'(ﬂ"jlwith - '

By = B+ Ny
where N(t) = n.

To compute the conditional law of F|(N(t), R(t)) define
Av=aldore o dnToye e T V (@), n> 0

then

P[F € Alo(N(t),R(t)] = Y P[F € Al AJ1la, A€3™
‘ n20
m+1 )
If A= X A;, from previous proposition
1 .

P[F € Al A, 11§zn =[] Qi(A)NQY: (As,)
C ik

where U, =t — > 1 T; and @i is the posterior of beta-Stacy dAef'med as above. [

At last, we provide the Bayes estimators in the case of squaired—error loss:

B(My| N, RO = =25 (3329)
) , ZkEE ik ! ‘
E[F(t)| N(t), R(t)] = Gi=1- it {1 - zgggﬁs(s;ﬁﬁiﬂ (3.3.30)

(0.¢]

| _ _ g . ci(s)dGi(s) + dN;(s)
E[MjF(®)|N(@), R(t)] = e i {1— []O“g [1 G0 T }1(3)] }

“' (3.3.31)
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3.4 A different perspective and possible develop-
ments |

As we have a.lréady pointed out, a key assumption in the construction of reinforced
Markov renewal processes is résetting the measurement of time spent at each change
of state. As many examples show, it is possible to think to modify the definition of
the pro,_ces;s e‘sta.blishing different resetting and reinforcement rules.

. An interesting case is that where all the clocks are reset only when a given recurrent

state (for instance the state 0) is visited; figure 3.1 makes an illustration to better

understand.
3
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Figure 3.1: Two different resetting rules.

In the left picture, when the process, started from the state 0 at time 0, attains the
time T, it makes a jump to the state 2 and the clock is reset so that the couple
time-state (0,2) is reached. The model has the same behaviour in 7§ and 7}. After

3, the trajectory goes back to (0,0).
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Establishing the second resetting rule, at the moment 7 when the process passes
from 0 to 2, the process does not go back to (0,2), but it reaches (77,2) and so forth.

Once again, only after 77 it turn to the origin (0, 0).

When this last rule is takén,' it is possible to model the lifetime of an individual with a
multi-state disease, focusing the attention on the successive epochs when the changes

of states happen.

Searching for a Bayesian procedure for inference in such models via reinforcement, as
hinted in Muliere et al. (2003), could constitute a challenging matter. Here, we sketch
sowe ideas concerning the definition of another reinforced process in continuous time

in order to solve this problem.

Recall E = {0,...,m} be a finite set of states and consider Vi € E:

- a positive measure on B{0, oo} oy, finite on bounded sets, with a countable set of

points of positive mass D; and continuous part (w.r.t. the Lebesgue measure)

(0, 8]) = aa((0,8]) ~ Ly, ul{ts});
- a measurable function §; : [0, 00) — (0, c0);

- a vector describing an urn composition ¢;(t) = (ca(t),...,com(f)) st ¢;(E) >

04, V5, Vt and ci(t) = 0 Vi, V.



Define an intensity measure A on the measurable space ([0, 00), B[0, 00)) as a matrix-

valued measure (additive interval function) by
doy(t) ci;(t)

ROt wres ZJ 1%(t) i#i (3.4.71)
CdA) = -y dAy =
‘ . JAi | | B

T Ta{mEsm | (3'4?)

- Note that the properties of oy, 3 and ¢; imply that A is finite on bounded sets and

Auls, 1) <0 €L, s<t . (3.4.3)

,,(s >0 i#j, s<t o (3.4.4)
ZA,,(S t)—O i€l s<t B (3.4.5)

J:({t}) > >-1 icL, Vt g : N (3.4.6)

Furthermore, the measure A is dominated by thé real measure -
Ao(s,t) = —2trace A(s,t) (3.4.7)

bounded on final intervals.”

Fmally, by mean of the product 1nteg1’a1 define

PA(s £) ]"[ [1+dA]. (3.4.8)
(.9 t] ' . . :
Theorem 12 of Gill and Johansen (1990) assures that Px(s, t) is a stochastlc matrix

and satlsfies
Pa(s,t) = Pa(s,u) Pa(u,t) 0<s<u<t<oo . . (3.4.9)
Pa(s,s)=1 s>0 ' : - (3.4,10)

‘—PA(s;t)—%»l'tls . o (34.1D)
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So, by this way, a Markov non-homogeneous process in continuous time X = {X;, ¢t >
0} with transition matrix P, is defined on the finite state space E. |

Moreover, this procesé turns out to have piecewise constant sample paths which are

right-continuous and have finitely many jumps on finite intervals.

In this sense the process is well defined, starting from any given state in £ at any

given time.point.
Assume X, =1y € ‘E, being [y a recurrent state for the process X.

Now we dcﬁne a sequencc of Markov non-homogeneous processes in continuous time
in the followmg way. When the process X returns for the first time in the state [, it

stops and the measurement of time is reset to 0.

Given the realization of the process X, a new process X (2 = -{Xt(2),t > 0} starts

from X{? = Iy and so on for X,

These processes are characterized by the intensities measures A® through the fol-

lowing (note X = X) for n > 1:

o™(0,8] = a,Ot]+Zﬁ{te(Ot [ X® =4, xP #i} (3412
- |

A= B+ Zl[xf’_‘)m-, o] (3:4.13)
k=1 . " - : .

Egn) -Cij (t) + Z 1 [x® =i, x(0=] ' (3.4.14)
k=1 : :
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s0 that we have

dog(t) + Z::ll ]1[ (k) X(")#i] B

AP () =
o ({th) + Bilt) + T2 [x('“’—;]
cfi(t) + Z;c:l ]l[xff’=i, x{8=j] 27 (3415
, : 4.15
ZJ#; Gij (t) + Z:;: I [X‘(E)=1:,X;(k)?ﬁ] B ( )
dos(t) + hoy Dy, ., .
dAP (t) = o Lt e (3.4.16)

_i .

Co{t) A + T 1 (x4
hat

and the matrices of transition probabilities conditioned on the trajectories of the

previous processes . _ _ _ _

PP(s1) =T [1 + dA(“)] . (3.4.17)
(sit] - C

_ Remark 3.4.1. It has already been emphasized that ¢, 8 and ¢ with the above prop-

erties determine A such that the continuous time Markov process X = X 1) is well
defined.

Since, conditionally on X .. X(®-1 A("') enjoys, by construction, properties like
(3.4.3)-(3.4.6) a.s., the process X o) is well defined a.s. So all the processes of the

sequence are wel] defined a.s.

More precisely, the transitions probabilities result to be -

P[Xt=j|Xs.=é]=T[[ ' do(v) ] dog(t) ~~  eylt) (3-.4.18)-

by U allvD) +8,0)] ai{eh) + B,0) 1) _, e5(0)
o | .
PIxX™ =4 xv, . X(k 1) (kJ =il = 3 do; (v)
i - ] @QP " ({v}) + 6 (w)
def®(t) i’

k>1

‘W&n+ﬁ%azﬁtw’
- (3.419)
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and if T indicates the time the process X*) is in state i

: '_ da,(v) |
PIT>HT:> o] = (]'[t] [1— ai({v})+ﬁi(v)] | (3.4.20)
: ' )
(k) DD (I 4 N _ dog ' (v) :
Plm s o R | (7[][1 oo + 67 @)
(3.4.21)

As A® does not depend on the order of X, ..., X%} these predictive distributions

are the same for all permutation of X, ... X%,
Proposition 3.4.1. The sequence of blocks {X ™, n > 1} is exchangeable. .

Proof. As any finite permutation can be obtained by a finite sequence of simpler

permutations resulting by inversion of contiguous elements, it is sufficient _fo show:
L(XO,. . x® &0 X)) o f (x® - x® x® X)) (34.22)

Since (3.4.19) does not depend on the order of XM, ..., X%~1, (3.4.22) can be re-
duced to

L (X@), XA XM XW) = £ (xED x®) x0 L x®) - (3.4.23)

Now, given X m,.r..,X (k=1)  two realizations (i.e. sequences of couples of visited
states ad jump times) of X% and X(E+1), _ |

Let {t1,t2,...,t,} the set of jump times of X*) and X“‘“i withl0<t, €t, <--- <
tn. We can decompose the interval [0,,] in the union of 0,4, (¢1,t2),. .., (tn-1, ta]
and compute the probability of the two realizations as product of ‘the elements on
this partition.

These intervals result to be of two different types:
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- the ones in which X*) # X+ except in the last point,

* - the ones in which X%} = X*+1)_ except in the last point.

In the first kind of sub-mtervals we have X k) £ X(E+1) o X&) and X *+1) visiting
different states, excapt in the last point.

Hence, given 7 and X, ..., X%*~1) in such intervals X(*) and X 4+ 4o not affect
each other with reinforcement: so, they are independent (ébhditionally on 7; and
XM, ., X&) and, hence, é}.cchangeable. |

In the second kind of intervéls, say (o, 7], we cé,;l show by direct calculaﬁion the
exchangeability. The two trajectorieé may ha.ve different behaviors in the last point:
one rhay jump to another state, while the other may stay in the present state or both
may jump. . |

We consider just. the case in which one trajectory jump i.e.
- X(k)—z 't € {o,T];.

X(k“)—z t € (o, T) X{kH) J

and viceversa.

. Given X¢*-D = (x| X(k‘l)), we compute

[ L do-zi('u)”+ n(v,i,k —1)
a:’({v}) + ﬂi(v) + ?‘(‘U, i, k— 1’)
(3.4.24)

PIX =i]x4, X1 = = [

(a:7]



&4

P [X(k+1) _jl X k-1, X(k) =i, t € (o,7]; Xc(,k“) = z} =

- doy(v) +n(v, i,k ~ 1)
a _(ZE)[ ({+}) +6,(v)+'r(vzk )+1]
dai(’r) +n{r,i,k—1) i (7) + S(T, i,k —1)
ai({T}) + tBi(T) + T(Tl i) k — 1) +1 ngéi(cij("r) + S(T: i!j: k — 1))
| (3.4.25)
(k) _ (; D x® =] = _ do(v) + (v, 3, k = 1)
Pl 3" XE =i = JU R oE coxv=
_ dai(T) +n{r,i,k—1) ci;(T) + s(r,i,5,k—1)
o, {{TH + B} + {1, i,k — 1) 3=, (i (7) + s(7,4, 4,k — 1))
(34.26)
P [xym) =i X* D, X® =4, te (0,7), X® = i XD = z] =
. dog(v) + n(v;i,k -1) | |
Zg)[ ({v}) + Bi(v )+’r‘(v,i,k—1)+1]
[1_ dog(r) +nir, 6,k —1) + 1 ]
o;({TH+ Bi(r) +r(r,i,k—-1)+1
(3.4.27)
‘ where
k
n(v L k Z 1 X(m) X(m)¢] ‘ (3428)
r(v,i, k) = Z n[x'(;.)ﬂ] - (3.4.29)
k ' :
s(wigk) = Z Uyim s x.&l""=j] | | (3.4.30)

Recalling that

dai(t) = dai‘C(t)]]'[tébi] + ai({t})l[tEDi]: o _ (3431)
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it results that (3.4.24)(3.4.25)=(3.4.26)(3.4.27).

The case both the processés have jumps in 7 to different lis qﬁite similar.

.So., X®) and X*+1 are exchangeable on all the intervals like (o,7].

: Co.nsidering' the product over all the intervals, we obtain thé exchangeability of X

and X®+1 on all their definition interval. . B ' O

These ideas are a p0551b1e development of the last sectlon of Muhere et al. (2003)
Indeed it is p0551ble to consider the special case in Whlch E = {0,1} and pu:(t) =
pwo(t) =1 V't, so that the successor states of 0 and 1 are deterministic and respectlvely
1 and 0. |

Following our constructlon startmg from @l and g; for i= 0 1, after n exchangeable

reahzatlons we obtam

daO(t) + Z?=1 ]l[xf._ =0, kf:ll

dA () = - 3.4.32
R (Y RN IOES S (3432
da1(t) + Zn 1 ko k—
dAP () = =1 7 X = xi=) *(3.4.33)
o, ({t}) + ﬂl(t) + EJ =1 1[x§_=1]
Note that X7 can be represented as a couple of jump times (Tg, Tf } and
(X} =0, X = 1} {T=1} (3.4.34)
{x{_ =0}= {Tg >t} | (3.4.35)
{X.=1,Xx] =0} ={1T] =t} - (3.4.36) .
{x] =1}={T0 <t<T}} S (3.4.37)
Therefore, ‘
| dovg(v + m 8l : '
P[T““ >t X', X" zT[ 1— 00) F 2 0y (¥) - (3.4.38)

(0.2}

2ol To)  BolD) + S Ty
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a.nd'

don(®) + S 6 (v
P[IT" >t XY, X" T3t = ]’[ _ 1(v) Zg_ln 7 (V) '
aigl AN FAOF T e
e T . .

' - ' . : (3'.4.39)_
A good unde.rstanding bf how the new rel‘in_forcemenltl and resetting rules work sﬁong
‘with the Marf«;vian structure of the trajeétorieé could ﬁonstituté ‘the objéctive of
future studies. Following this approach, it would be poé_sible to deal-with-other"prob-
lems of the survival analysis like infervﬁl censore:d data and truﬁcated observatjlons -
' as in the models of Frydman (1992), Frydman (1994), Frydman (1995) and Lagakos |
et al. (1988) whose intimate structure is a two or three state Markov or semi-Markov

" continuous time process.



Chapter 4

Bayesian nonparametric estimation

of a bivariate survival function

In this chaptef, using a reinforcement scheme, we deal with a difficult prdb]em of
survival and reliability analysis ariéing in studies whel;e the ekpérimental unitl consists
of couples of components (for exa._mplg, twins, eyes, kidneys ...)'or pairs of lifetimes
for the same individual ('for example, reSponSé times for sucéessi\}é coﬁrses of a medical
treatment): the estimation of al bivariate survival function for lifetimes subjected to
censdring_.

We define a bivariate reinforced process, derived from a generalized Pélya urn scheme,
to model coupled survival in sﬁch a weiy as the observations .are assumed to be ex-
changeable and, hence, define, by de Finetti’s representation‘ theorem, a prior on the
space of bivariate distributions. We shail work exclﬁsively with discrete observatioﬁé
and so shall be working with observation space N3 = {0, 1,...} x {0, 1,.. 3
Although this prior hés a sfructure makiﬁg the éomputation of the- posterior in-

tractable, a Bayesian nonparametric predictive estimator for the bivariate survival

87
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function may be obtained qui'te: easily by mean of the reinforcemenc rule. The ex-
plicit computation can be carried through via an implementation of a Gibbs sampler.
Moreover, since the bivariate prior is constructed on argeneralilzed Pélya urn scheme,
_ producing a discrete beta-Stacy prior, it is possible to exploit eome good feature of this
prior for univariate survival functxon to obtain some knowledge about the topological
Support of the bivariate prior. |

" Let us descrlbe briefly the layout of t.hlS chapter Section 4.1 recalls the definition and
some features of generalized Pdlya urn scheme. In Section 4.2 the constructlon of a
bivariate reinforced process is done and a pﬁor on the space of distribution. functions
on Ngi's derived and some propertieS are pointed out, '\_vith particula.r‘ attention to ite
" support and consistency. 'Section 2.1.'3' shows how to use fhis prior to rnake inference
about a blvarlate Survwal function . with data eventually Subjected to censorshlp

Finally, in Section 4. 4 an example is gwen

‘4.1 Preliminaries
" The Basic building block of the. model is the. genefalized Pélya urn scheme. As we

have already pointed out, this scheme is related with both Reinforced Urn Processes

and discrete beta-Stacy. Here we recall the definition of Walker and Muliere (1997).

Definition 4.1.1. Consider a sequen_ce of random Variables {T,; n > 1} with values

| on the non-negative integers'Ng ={0,1,2,...} and let ;, ; > 0 for j € Ng. The

' sequence {Ty; n > 1} is said to come from a generalized Pélya urn scheme if
4

o + ,Bt CEJ + ,BJ :

P =t = | (4.1.1)
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and
. t—1 :
' : G + My (tn) ﬁj + T (tn)
PT,=t|Ta=t,]= 4.1.2
[ + | : ] o + B + 5t (tn) 0 T B+ 55 (ta) ( )
| where
S mj (Zn) = Y L=y - (4.1.3)
' k=1 ] , . ‘ ’
1 (22) = Y Loy : (414)
k=1 '
5i(2n) = m;(2a) +7;(2n) ' (4.1.5)
(henceforwé.rd bold letters will indicate vectors, for example T, = (TIV, ..., T,}; rela-

- tions and operations between them will be done componentwise).

The generalized 'Pélya urn scheme translates the idea of Bayesian learning in follow-up

studies where survival times of different subjects are observed.

AS we have seen, Walker and Mu.liere (1997) and Muliere et al. (2000) show that the
sequence {1}, n > 1} is exchangeable and, by de Finetti's representation theorem,
there exists a random distribution functicm F', such that, given F, the rahdom vari-
ables T, are independent and identically distributed wi;h distribution F. Moreover,
F is distributed according to a beta-Stacy process on‘the integers with parameters ‘
{e;, B;, j€ N[)}f The beta-Stacy process is neutral to the right and, so, conjugate to

right censored observations.

Let 73, ..., T, be independent .and identically distributed and subjected to right cen-

~ soring, therefore what is observed is represented by the couples (7, 41),..., (T2, 68,)
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where

1 =‘t, d4; =0 < a censoring took placeﬁ T, >t
- T'=t4=1 < adeath happened: T; =¢.

(4.1.6) |

With a quadratic loss funétion, the predictive distribution of T, given (T, d,) is
the Bayes estimator for the random distribution function.

So, analogously, for the survival function and under a beta-Stacy prior, we have

8(t) = P[Thy1 > t|Th=tn,dn=d] -
: ] =.:t'ﬂ.)dn. ‘ |
_ H[1 o +m; { )] L 4LT)

-_.aj- + B; + 55 (tn)

=0
~ where d, € {0,1}" and m} (tn, dn) = 30 Lip=jde=11-

F inaﬂy, note that:

1. without censoring, the expression in (4.1.7) reduces to

S — T Batri(a)
8(t) = P (T > t] T = t.] gaj+ Bt () (4.1.8)

2. ifay, 3, — 0, V7, S (t) reduces to classical Kaplan-Meier estimator. -

4,2 = A bivariate reinforced random process

" 4.2.1 Definition

Our aim is to construct a bivariate random process {(X4,Ys) ,n > 1} providing a

model for coupled lifetimes and incorporating the basic principle of reinforcement
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similar to generalized Pélya urn. The idea underljing this scheme is thaf of feinforcing
the path from the origin to the point T;, = ¢, before glenerating. T.+1, sequentially for
n > 1. .

It is relatively easy because the random variables Tn' can be reeresented as a point
Aon t'he non-negative line. On the other hand, e'couple (Xn,Ys) i3 a point in the
non;negative orthant and unfortunately thefe is no enique path from (0, 0) to (z,y).
So, thé reinforcement procedure must be idtroduced in an alternative way. _
Let {A,,n > 1}, {Bn,n > 1} and {Cp,n 2 1} be independent sequences from gener- -

alized Pélya urns with parameters (o ( 4, ﬁB) (af,BF) and (of, BY), 5 E Ny, respec-
tively. - | | o | -
Now, let us define a bivariate random process {(Xn, Ya), n > 1} by

Xn A + B, |

Yo= AntCu n2l O @2))
The relations above postula.te a particular and Very 51mple form of dependence be-
tween Xn and Yy: for a _given couple, each element is supposed to have a common
component (A,) and a specific one (B, and C’n). In many lifetime studies this as-
sumption appears sensible. _
By this coestructic;n, it turns out, conditiondlly_ on An, 'thet'Xn and Y, are indepen-

dent. Moreover, o (A,,B,,C,) =0 (An, X,, Y,).

The structure of the dependence is described by the folloWing relationships,

Cov (X1, Y1) = Var(4)20 C (422)

‘COV (X‘n+1: Y;H-ll A-m Bm Cn) = Va'r (An+1| A-n) 1 n 2 1 (423) ‘.

The predictive distribution of this bivariate process can be easily computed in terms
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of those of the three generalized Pdlya urn schemes.

Indeed, P(Xn41 > 2, Yasr > 4| Xn = Xn, Y, = ¥y is nothing but the ratio

P[Xn-i-l >z, Yo >yl Xn= Xn, Yy = ¥Yn] =

P[Xn+l > -'E;Yn-{-l > y:xn = men = Yn]

. © (4.24
P[Xn=xn:Yn=Yn] ’ ( . )

Therefore, it is enough to compute the numerator and the denominator separately

The first is equal to

P Xni1 > 2, Yo > 4, Xn = X5, Yo

=y =
ZAY  TnAlYn T1AY1
Y Y X [Plan = el A, anl
an1=0 an=0 ai=0
'P[Byy1 > — an+1| B,=x,—a,|P [Cn+1 >y — a.n+1| C.=y.—a,)
n—1

[ (PlAw1 = ai) Ai = i) P[Biyr = 2 — aisi|Bi = x; - a)
i=1

P [CH-I = Yiv1 — Gi+1| Ci=yi— a1])

P[Bi =1 —a] P[Ci =91 — 1] P[A, = al]” ' (4.2.5)

and the second

P[X, —'xn,Y =y =

EnAlYn z1An _n-1
T Z[H(P[A;H cint A =2
Van—O a1=0 i=1

P[Ci+1 =Yipr — ain|Ci=yi — 34] P[Bi+1 =Ty = ai+l| B:.=x; - a«])

P[Bi=2,—a)P[CL =1 — ] PlA = ai] ] (4.2.6)

Substituting the predictive distributions, in the previous, with their own expressions
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we obtain for the numerator

P[X,,,+1 >, Yn+1 > y,X =Xn, Yn =¥a| =

T T N\Yn T angr—1

f me . §1 a ntl + Mapss (8n) ﬁ tBA trj (aa) '
Any1=0 an=D ay=0 a"’“‘ + a'“+1 + San+1 aﬂ) . a + ﬂ + SJ (an)

[ S tnbe—a) "7y BCHJ(yn— 2.)
o O TB7 +si(n—an) 5 of + 57+ (ya—an)

T=0nt]

J=0

oty a.H_; + mm+1 (a't) ot ﬁ;,-A + T_‘.T: (al)
11z i f

ﬂ;+1 + ﬁﬂs-ﬁ-l T Sagys (aﬂ') 3=0 af +’8;1 +$; (a“‘)

i=1

Ti41—aip1—1 7
afi-bl—ai-i-l + Meiy1~ain (xi - ai) . HHH ﬁJB + 7 (x't - a'i)
B B
afﬂﬂ—ﬂiﬂ + ﬁ£+l—ai+l + Sripy—ain (xi - a") j=n a; + ﬁj + 35 (X,— - ai)
c ) : Yit1—aig1—1 Cl
ay1+1—a,+l + My 1 -0 (Yi - a‘!) H ﬁ + L (y' - a’i)
C
y1+1—a-+-1 + ﬁ!h-}-l —Git1 + Syi+1—“1‘+1 (Yi - a‘) 7=0 CZ + 6 + SJ ( a’l)
A a1—1 A B 1 —ay—1 B )
&g, r B g, - 61 H ﬁ
A A . B | aB
af + 84 i 9 T8 0p g + B -a 0 af + p
C y1—a1—1 C : ‘
Gy ~a; H ﬂj ‘ ' (4 9 7)
[#) [ C C |- ) - ' e
Qy—a, T ﬁyl—ﬂl_ =0 _ai + ﬂj o . ) '

Similarly, for the denominator

PX,= xn,Yn.= yn] =

Iniilin . 1 :
i 1'12*'\’9'1 ﬁ Gri-l + m“s+1 (a‘ alﬁ ﬁA + Ty (a‘t)
€h+1 + ﬁa 41 + Sai4 (a1) . aA + 'BJA + Sj (a“i)

an=0 a1=0 [ i=1

Tip1—aip1—1 : :
af-+1—0:+1 -+ Mg,y ~ai (xi —_ 31) i+l l_fl ﬁf + T (X§ - aq)
B

Qi —@it1 + I‘+1 Tit1 + sti+1—Qi+1 (X,‘ - a"l) =0 aJB + ﬁJB + 85 (X,— - 34)

- - . . . N —a; -1 B . ‘
ooy T e G220 T - a)
agﬂ““iﬂ + y,+1—a.+1 + Syiv1—aipr (y;— - 34) j=0 a_:rc') + ﬁ;fC + 8y (yi - a*:)
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@] — 1 . B 3:1-;(11—1 ﬁB

o“’-'l:l"c'-l J
aA+A_1:[a +ﬁ”‘ ab _ 11 af + 7

a1 + 11'.'1 —a) Jzo

c yr—a1—1 Yol
ayl-al 18

C C
yl ay + y1—a1 §=0 Qy +ﬁj

(4.2.8)

These expressions are relatively simple to obtain theoretically, but they may be rather
cumbersome to compute.
From a statistical point of view, the most interesting feature of this bivariate process -

is illustrated in the following _.s'tljaightforwar'd proposition.
Proposition 4.2.1. The sequence of couples {(X,,Y,),n > 1} is exchangeable.

Proof. Note that {X,,Y,) is a mea.éurable function of (A,, B,,C,). This is an ex-

changeable sequence and hence so is {(Xn, Y,),n>1}

Obviously, then {X,, n > 1} and {Yn, n > 1} are exchanveable -0

Hence, the de Finetti’s Representation Theorem assures the existence of a bivariate
random distribution function. Fxy conditionally on which the couples (X,,Y;,) are
indépeindent and identically distributed énd have as distribution Fxy.

Fq, Fé and F¢ are likewise the random distribut.ion..functions correspondi;lg t-o gen-
eralized Pélya urn scheme {A,, n 2 1}, {Bn,n > 1} and {C,,n > 1}; moreover, they - -
are distributed according to beta-Stacy prbcesses with parameters (o', 871), (@, B7)
and (af, 85}, j € Ny, respectively.

Instéad, the de Finetti's measure of {(Xn,Yﬂ), n > 1}, that is the distribution of
the bivariate distribution function ny is not explicitly knox\fn. Nevertheless,r it is

possible to make some further consideration on it.



First of all, if Fx and Fy are the two marginal distributions of X and Y, glven

Fy, Fg a.nd Fe, then (4.2.1) implies

FX = FA*FB

. Fy = FA*FG.- o (429)

‘Therefore, each of the two marginals is a convolution of two beta-Stacy processes.

- In terms of probability functions, we can write

TAY

Pxy(z,y) = Y _ Pa(a) Palz - a)Pc( —a) V(zy) Ny (42.10)

a=0
‘where P is the ‘prébability function corresponding to the distribution F. For the-
marginéls we get the usual expression for the convolution.
Moreover, given Fxy, Fa, Fg and Fg, if 0% = Varp, (4), the dependence between X

and Y can be described by the covariance .
Covpy, (X,Y) =02, ' (4.2.11)

Thus, assuming fbr coupled lifetimes data, a model represented by the bivariate pro-
" cess built on the basis of generalized Pélya urn scheme and the equations (4.2.1) is
' ecjuiva.lent, in a Bayesian point of view, to defining a probabﬂity measure on the space
of the bivariate distribution func.tions on N2. Let us indicate by II, such a probabili-ty

measure.

-4.2.2 The supi)ort of Ti,

Before e::cploriné,r the properties of the support of Ily, it is worth to i'ecall'explicitly

some general definition about the topology on spaces of probability measures.
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Given (X, B(X )} a measuré,ble space, where X is a Polish soaee and B(X) ite Borel o-
‘algebra, let M denote the space of all probaoility measores' on (X, B(X)) and B(M)
a sultable Borel o-algebra. | . _'
If, for a randorn element P of (M, B(M)), II is the prior and H( tX,) the posterlor
© given a vector of observations X,, = (X PR Xn) € X" independent and identically
7 . dlstnbuted accordlng to P, the definition of a su1table topology on (M, B(M)) allows
us to deal with some 1ntere5t1ng problems
First of all, we can point out which probability measures‘oelong to the support_ of
IT and, secondly, we can descfibe_the asymptotio behaviour of the posterior, when
the number of observations Erows. 'fh_is is the meaning of the following deﬁnifion,

presenting one of the possibilities.

Definition 4.2.1. A subset U of M is said to be a weak ne1ghborhood of P[, if
it conta.ms a set of the form {P: |P(A) .Po(Ai_)l <e,i=1,.. .,k} where A; are
‘Pg-c'ontmuous sets and g; > 0. ' o |

The sequence {II (- |X,), n 2 1} is said to be weak consist'eot e.t Po, if for every weak

neighborhood U of R, o
M{U|X,) — 1, n— +o0 as. — P (4.2.12)

~-So this corresponds intuitively to say tha,i:, when the number of observations grows,

the posterior approaches a measure degenerate in Fy.

Definition 4.2.2. Let L{u) the set of all densities with respect to a o-finite measure .

f.



For f, fo € L(u) the KullBack-Leibler divergence of f form fj is deﬁﬁed ‘
- . Jo, S
K(f, fo}= [ folog ?d#- S (4.2.13)

- Moreover, for € > 0, | : _
{f K(fo,f)<e} o (4.2.14)

is called Kullback-Leibler neighborhood of f with radius e.

The Kullback—Leibler divergénce is not a formal distancé; never-thelessl, the defini-
 tion of neighborhood makes rpossiblé to define Kullback-Leibler consistency, but we
' shall not deal With it. More importaﬁt for oul; aim is a coroliary of a classical and
“well-known result of Schwartz (1965)‘providing a sufficient conditiqn for the weak

~ consistency.

Proposition 4.2.2. [Schwartz (1965)] -
Given fy € L{p), if Ve >0, |

l’I(f:K(fo,f)<.s)>0,g o (4.2.15)

" then the posterior is weakly consistent at fo.

| Exblbiting the properties of the _i)eta«Stacy process, we can obtain some knowledge
* about the width of the support of II; with respect to the weé.lg topology. We denote |
,ny(i? 7) = py, (i, 5) € Nj. Moreover, for a distribution (or more genérally for a
measure) u, let &, indicate its support.” |

Define P, the set of the probabiiity distributions 611 N2 such that there exist three

. probability distributions on Ny such that (4:2.10) is satisfied. -
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The above proposmon transfers a wéll-known result for the Dmchlet process, easily

proved also for dlscrete beta—Stacy, to Pea, subset of blvarlate probablhty distribu- .

tions.

Prop051t10n 4 2.3. If 1'12 is the prlor on the space of the b1var1ate dlStl‘lbutIOI] on

Nj determined by the parameters o ,ﬁf, 7, 5,05, 89 > 0 Vj € No, then
Sm, 2P A (4.2.16)

‘Proof. As Nj is discrete we only need to show .
0 [Py, —p;iyil <ei=1l.., k] >0 C(a217)

for each;p G'ch,Vs >0,k21, V(-’Et;yz (mk:yk) €N2

Now, Vi (m; = z; Ay}

mi ' V . l . . e
O 0.8,
P — Pl = |2 (PRPE S — 2 pz.iapy,_a) (42.18)
. a—O
< leap,,.l - pf °pE apy,_a+pf °pf’.-apy._a
a=0 :
0. B.o 0. B.o B
pf p.f. WP +pf} jod apy,_a plepBe ple |l (4.2.19)
. my C’o .
S lea |+Z pz‘-a_p:c‘—a +Z‘py-.-*a pyi_a
a=0 . a-—O . a=0 .
T ’ ¥ ' .
C,
= Zh’f- ]+ Z ‘1": p} 1D -] as T
a=0 T j=zi—my o J=yi—m; . .-
|  (42.20)

as pi°, p2°, p8° € [0, 1] and pi",p?,p? S [0 11 as. Hz,Vz

So tha,t since the sequences {p,, i € No}, {p‘ b € Ng} and {;o1 1€ Ng} are, by
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construction, independent beta-Stacy processes on Ny

s
T .
H2Hpm‘.y‘.'—p;‘.yi.<€,‘L=1,...,l€]2].—.[2 Zp;l_p;l,a <§,3=1,--.,k
L =0 J
o . Z
B .
I, P —p; <§,z=1,...,k
| =0 . ‘ ]

<-,z-=1,...,k].

. [z b o5
‘ (4.2.21)
Consider, for instance, the first element of the product. (But it is analogous for the -

others).

 Let M = V& my, if

A Ao E . -
A_phol o S e §=01,...,M 4222
R I Tr vy A o um
“then ‘ _ ‘
o A A,O : 3 . N
Z P} ¥} <gii=l.ook (4.2.23)
. . o
so that
Hy |p3‘-* B <3is 1,...,k| 211, pr —pf‘°| <&, j=0,1,..., M] :
) h | | (4.2.24)
Since (pdl,...,p4) has gener'ali\zed Dirichlet distribution with parameters &3-4, ﬁf >

0, j =0,1,...,M (see Walker and Muliere (1997)), for the full ‘support of this
distribution, the result in Proposition'3 of Ferguson (1973) can be geheralized to

. discrete be-ta-Stacy process, and the last probability in (4.2.24) is st-:-rictly positive. O

Remark 4.2.1. As it will be pointed out in the next section, it is possible to center

I, with respect to three distributions on Ny, & A; Rg and Q¢; in that way, some of
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the parameters could be null, and instead of (4.2.16) we have -

Sn, 2 {Pxys.t. 3P4, Pp, P. satisfying (4.2.10) and
SPA - SQA?SPB - 'SQB:SPQ - SQc} (4'2-25) .
-where the set on the right-hand side is just a subset of P,,.

A more detailed knowledge of the support of I, is prévided énalg}sing the behaviour
of the prior in the Kullback-Leibler neighborhoods.
As in the previous case, the best strategy is to extend to P2 the properties of beta-

Stacy process on Ng.

Before we need to prove a lemma stating a useful result for the expected value of the

logarithm of a variable with beta distribution.

Lemma 4.2.4. If X ~ Beta(c,5), o > 0,8 > 0, then

gl 1 = 1 1 | -'
—logX|== | —— < . 4.2.26
- El-log X] o a+ﬁ+a§a+n+la+ﬂ+n+l oo ( )

Proof. Let us denote

Bz, 0,0) = /0 mta-}(1-t)ﬁ-1dt - (4.2.27)
the incomplete beta function and |
| | B(a, 8) = 3(1;a,ﬁ):{%i%) (4._228_)
I(z;0,8) = '%)- (4.2.29)
Now"
i . .
s - [

- |{ldng($;a;ﬁ)|é + [1-%‘I(m;a,ﬁ) dz. (4.2.30) .
. ) |
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The first term is 0 as

logx
hmlo  B(z; a0, f) = hﬂ% B(z;a, 8)7!

. l V | :

i 1 | 4.2.31
lim —B(z;a, B)~ 221 — z)7} o

. 2
z—0 <
. a-1(1 — g)f!

o 2B f)e f z)f —0 (4.2.32)

200 Qe

(4.2.31) and (4.2.32) by application of De I’'Hépital theorem.
So, considering the following expansion for I(z;a, 8) (see Abram@witz and Stegun

(1964))

I{z;a, 8) =

2%(1 — z)P [ = Bla+1,n+1) n+1} . (4.2.33)

aB(a, B) ~Blatfn+l)

" the term in (4.2.30) reduces to

: o1 - z)? o0 Bla+1l,n+1) ..,
_/; aB(aﬁ [ ZBa+ﬁ,n+1)$+_j|d$

1 [Ble,8+1) | & (a+1,n+1) /1w; .
- = "(1-z)°d
> B(aﬁ +§Ba+ﬁ,n+1) Blap) y = O TEE
1 +§:B(a+ln+l)8(a+n+lﬁ+l)
o a—i—ﬁ B{a+ 8,n+ 1)B(a, 5)
1| B = g
= —_ 4.2.34
o a+ﬁ+'nz=;a+n+la+ﬁ+n+l ( )
Stnce it is straightforward
‘ N , o
) 1 - < +00, (4.2.35)
—atn+la+f+n+l . :
we get the thesis. ‘ ' : a

The previous lemma helps to find constraints on the parameters of beta-Stacy process

to assure that the Kullback-Leibler condition holds.
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Proposition 4.2.5. Let II the measure induced by a beta-Stacy process on Ny with

parameters oy, 3;, § € Ny, on the space of distribution function on Ny with p® =

{r9, 7 € No} being one of them.

If oy, B;, j € Ny are such that
. ZP} [ i ﬁ+ﬁj) + B (aj:ﬁj):l < +c0

Zps [ﬁ;( o +ﬂ;) +oy (ﬁjaaj)]k +00

where p? = 37, . p} and

+o0

T(@,f) = —— ! <400 @f>0,

—oet+tnt+le+B+n+l
then, Ve > 0,

ijlog <£] > 0.

Proof. As, under II, for j € N

i-1

Py = [ 11— wl

k=0

where u; ~ Beta(ag, Gx) and independent, we can compute

o
-7 logpj} ZP?E ~logp;]
j=0 4

+co +oo.7 -1
=Z E[—loguj -I-ZZ SE [~ log(l—uk)]
j=0 7=0 k=0

=2 MBI logul + ZE’ZE ~log (1 - w)]

(4.2.36)

(4.2.37)

(4.2.38)

(4.2.39) -

(4.2.40)

_Z‘”’{ B A (“”5’]+Z”J ey e
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by lemma 4.2.4.
The conditions (4.2.36) and (4.2.37) imply the finiteness of the expected value.and

also
+o0

=3 " pelogp; < +oo as. — I, : (4.2.41)
J=0 . . )
hence Ve > 0 M s.t.

— Zp}’logpj <S as -1

_ i>M 2
Considering
O
Zp_, log ij log p§ — ij logp; <¢, . _ (4.2.42)
. J' J-—U . .
it is sufficient to enquire the event o
‘ M e .
ij logp} ~ Zp}’ logp; < 2 (4.2.43)
. -_D N i - R

given that (py, ..., par), under I, has a generalized Diricﬁiet distribution with param-

eters o, 05, 4 =0,..., M. |

Since this distribution has full support on the M + l-dimensional sub-simplex, and
: the event above is 1mphed by {pJ E ,i=0,...,M }, (4.2.43) has strictly positive -

probability. - | o O

The previous proposition gives sufficient conditions indicating how to choose the

parameters to have positive probability in each Kullback-Leibler neighborhood of p°;

straightforwardly, from Schwartz’ result, we get the weak consxstency at p°.

An easy condition for consistency when p° is unknown is, for instance,
O<a<o;<aVieNy L (4.2.44)

0<p<f<BYieN. | (4.2.45)

For the bivariate prior II,, the following holds.
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Proposition 4.2.6. Let II, indicate the prior on the space of bivariate distribution

func.tion on Nj with parameters of, J, ;] ,ﬁ , O ,ﬁc > 0,7 € Ng and p° € Py,

with marginals p% = {pf_, i € Np} and Py = {p%, 7 € No} where p? = j=0 o ps; and
El_o Py .

If cz ﬁB and a ,BC for 7 €Ny satlsfy conditions hke (4 2.36) and (42 37) with

respect to p% and pi., then Ve > 0

+o0 +o0

Py pylog S : < e} > 0. (4.2.46)

B .C
i=0 j=0 a-Dpapz—apJ —a

Proof. Let compute

+oo +oo ing oo oo . '“".'l‘
[Z > —pflogd  pitpE p5 ] =3 "3 pyE |-log Z pfpi’lapfla}
i=0 j=0 a=0 i—=0 j=0
+00 +00 -
<D D HE[- log ripPs) S | (4.2.47)
=0 j=0 : .
+o0 :—oo 400 +oa +00 +oo A
=Y pyE[-logpd]+ D D p4E [~logpf] + 3% pE [~ logsf]
i=0 j=0 =0 j=0 - i=0 j=0
+oo +co _ . o :
= B[-logpg] + ) pE[~logpl] + ) p5E [-logsf], = (4248)

i=0 j=0
hence if o, 37 and of , B satisfy the above hypotheses this expected value is finite.

Thus

+0o oo ing

=35 "pilog prpf’ S <00 as—Th  (4.249)
i=0 j=0
and Ve > 0 3M s.t. _
S ng
o E .
- Z ZP;‘;‘ log Zpﬁpia}”f a <3 - (4.2.50)
CisMi>M =0 o :

So that to prove the thesis we can just show

M M TOdAG

ZZP,J logp? -3 o5 log > pipf oS, §=s’ (4:251)

i=0 3-0 i=0 j=0 a=0
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has positive probability.

Now, as pg; = Sud pioplops,  ¥i,j € N the event above is implied by

p;“>p=T i=0,...,M . (4.2.52)
) p{i‘,o ‘
pB > = i=0,... M ~ (4.253)
e | o L
pf>‘T i=0,....M o (d.254)

where § = exp (3¢') > 1, but, under II, (p{;‘,‘. )y (08, P) and (#§,....0%)
have independent generalized Dirichlet dist‘ributio.n. with parameters of, 87, of, BF,
laf,ﬁf >05=0,..., M, respectively. | |

~ The independent events in (4.2.52), (4.2.53) and (4.2.54) define subsets of the M + 1-

dimensional sub—'simﬂek (the support of the above distribution), so that they have

positive probability under I, as well the (4.2.51). - O

Therefore, provided (27) holds, the crucial conditions must be satisfied just for of, BF
and af, ﬁjc with respect to the marginals. Pﬁtting these parameters as suggested, for
instance, in (4.2.44) and (4.2.45), we obtain that II, (- |X,, Y,) is consistent .at every
P° E Pea. | | ' |

The next section shows how to make inference about ﬁhe bivariate sufvival function

when II, is the prior.

4.3 Estimation of a bivariate survival function

Though the lack of a well-determined form prevents the direct computation of the

posterior, it is possible to obtain an estimate of the survival function.



106

More precisely, let

Sz, y)=P[X >z,Y>y] - ' - (4.3.1) o

be a bivariate survival function on N2 and (X,,Y,) be an independent and identically.
distributed sample from S where each of the two co:ﬁponents is subject to independent
right censoring, so that the data take form (X3, 4,, Y, &,.).

Assuming the above described 1I, as pfior and a quadratic ‘_los.s function; as usual in

a Bayesian framework, we have
S(z,y) = P[Xps1 > 2, Yo > ¥ X5, 0., Y2,6,]. (4.3.2)

As the censorings are independent,'we- assume, referring to (4.2.1), that B, and C,
can be censored, but not A,. Ther_eforé, the predictive distributions of B, and C.
are analogous to (4.1.7), with thé respéctive parameters.

Before any inference, an interpretation of the parameters of the model must be pro- 7
vided. This coincides, in the Bayesian perspective, with specifying the initial distri-
bution centering it in accordance_with some prior choice.

Recall that a random distribution function F, distributed acéording to-a discrete beta-

Stacy process, can be centered on a given discrete distribution G putting, Vj,¢; > 0

and -
a5 = oG
= ¢ [1—~ZG({-;‘})],
: B (43.3)
so that

BE(GNI=6WYH (@34
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(see Walker and Muliere (1997)).

Furthermore, if ¢; = ¢ Vj, then.a; + f; = f;—, and the beta-Stacy reducés i;o a
discrete Dirichlet process.

Henée, to determine the parametersl of our model we do not need any complicated
idea about the bivariate distribution of the lifetimes, but just some a priori guesses

on the covariance between X and Y, Cov(X,Y), and on their marginal distributions.

In fact, (4.2.9) and (4.2.11) suggest how to proceed:

1. choose an initial distribution for A, F having the variance equal to the desired

Cov(X,Y) and determine «f!, B%;

2. given the prior guess FY, FQ an.d_Fﬁ solve (4.2.9) to obtain F3 and F2 and

consequently compute af, 67, af, 5.

Noté, in absenc.:elof further information about Fj, the choice of ﬁhe distribution for A
is free, exceptr for the variance; hence, it c.ould be convenient to choose a diétribution
making easier the procedure at point 2.

For partiéular values of the parameters it is possible to abandon the hypothesis of
- dependence between X and Y. | |

Indeed, takiné

(4.3.5)
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we obtain A, =0, X,, = B,, Y, =C,, Vn,a.s. and

P[Xn+1 > m:Yn+1 > le; :xn,‘sn = dn:Y:Z Ynagn = en] =
P[Bpi1 > 2|Bl, =x%,4,8,=d,]P[Cry1 >y |Cl =yn, &, =€ =
CP[Xap1 > 2| X =%0,8, =da) P[Yar1 > ¥ | Y. = yn, &, =€)

(4.’3.6)

This corresponds to assuming as prior for F4 a Dirichlet process centered in a distri-

bution degenerate in 0.

If, in addition, of, 82, aP,8F — 0 Vj, the result is the product of Kaplan-Meier

estimators for X and Y.

When the parameters are 'ﬁxed, the right hand side element of (4.3.2) can be directly
expressed in terms of the predictives of A, B, and C,, as in the previous section.
The practice computation may be, yet, cumbersome and laborious,

A Markov Chain Monte Carlo estimation ﬁrocedure can be achieved without any

difficulty by the following steps:

1. given the observations-(X;, 0,,Y:, €., A, is generated via a Gibbs sampler.

So the full conditional of A,, Pa,, A“-hx;‘,amy;‘,gn , is

PlA, =an[An = an-1, X5 = Xn, 60 =dn, Y}, = yn, &, = €4
x P[B, =1,— a6, - dn |B;—1 = Xp-1 ~ 331, On1 =_‘dn_11] |
P [C; =-Yn — ln, én =-6’n |C;‘1_1 =¥n-1~a-1,€n1 = eﬁ—l]

PlAn = an{Anci = a5-1]

(4.3.7) .
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where

P [B; = b: 61‘-'- = dlB;—l = bn-—l: 6n—1 = dn—l] =
P [-Bn Z b IB:;_l = bn—i: '511—1 = dn-—l] ) d=0
S S (438)
P [Bn = b]B;_l = bn_]_,(sn_l = dn—l] 5 d. =1
and similarly for P [C‘; = Yo~ én =dp |C*;1 =cCp-1,€,1 = e,,;l]. -
On the other hand, for the exchangeability of {A,, n > 1}, the other full con-
ditionals Pa,a_, X268, Y56, ¢ = 1,...,7 — 1 have an analogous form. (Let

. A—i = (AI; e :Ai—laAH-lx R :An))-
B, =X;-A, and-C-; =Y — A, are computed.
2. Apy1, Buyy and C,y; are sampled by the predictive distributions Py ilan
P3n+1lBFu5n and PCn+1ICa,£n-

3. Finally, Xop1 = App1 + Ba and Yo = Any + G

This will be straightforward to implement in practice.

4.4 An exémple

This. section pr'esent;s an illustration ihvolving a real data set.' The following table
presents the data (Woolson and Lachenbruch (1980) and Lin and Ying (1993)) con-
sisting of survivalltinies of two kinds of skin grafts on the same burn patient; more
precisely, X is referred to closely matched grafts, while ¥ to poorly matched ones in

relation to HL-A antigen system between donor and recipient.
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Patient 112 3. 4 5 6 7T 8 § 10 11

Close match (X) {37 19 57+ 93 16 22 20 18 63 29 60

Poor match (Y) [29 13 15 26 .11 17 26 21 43 15 40

Table 4.1: Dayé of survival of skin grafts on burn patients

First of all we try to reproduce the Kaplan-Meier (“empirical”) estimator. Using well
understood ideas connecting Bayes nonparametric estimators and empirical estima-

tors, we allow F4 to be the distribution degenerate at 0. Hence, we take

aff =1000, a; =0Vj >1
Bl=0vjz0,

(441)

while a?, 87, o€, 57 are all taken close to 0. The marginal estimators are presented
in Figure 4.1 and compare very well with the Kaplan-Meier estimates, which are -
proﬁided with their standard associated confidence bounds. In Figure 4.1 (and also
Figﬁre 4.3) the circle line represents our estimates, the bold line represents thé Kaplan_— :
Meiér estimate and the dotted line the confidence boﬁnds. Figure 4.2 presents the
joint estimator. We know in this case that the estimators are independent; that is we-
have lost any dependence bétween the pairs in order to o_btaih the efnpirica.l marginal

estimates.

Here we present a “smooth” case when the prior choice embodies some knowledge
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about the dependence between X and Y. This will carry through, and be updated,
into the posterior. We choose to center the priors on Poisson (Po) distributions, to
exploit some of their properties of closure uncie; the convolufion operation. For il-
lustrative purposes, we center F4 on fhe Po(10) distribution, which corresponds to
Cov(X,Y) = 10 and center Fx and Fy on Po(40) and Po(25) distributions, respec-
tively. Solving the equations in (4.2.9), we obtaiﬁ a Po(40j distribution for Fg and
for Fo a Po(15) distribution. Finally, we put all the parameters relaj;ed to the degree
of belief c;fl, cf and cf equal to 1,Vj € No. '

The estimates are presented in Figures 4.3 and 4.4. As can bé seen thé marginal
estimators are smoothed versions of the Kaplan-Meier éstimétors. The joint survival

~ function is now also a smoothed version of Figure 4.2.
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Figure 4.2: Empirical independent case, estimate of the bivariate survival function.
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Figure 4.4: Smooth case, estimate of the bivariate survival function.
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Conclusion

The interest of Bé._yesi‘a,n nonparametric statistics in reinforced processes derived ffom
urn schemes dates back to the wdrk of Blackwell and MacQueen (1973).

Since this starting point a number of contributions has been given,‘ espet:ially in
the construction of nonparametric priors (see, for instance, Muliere et al. (2000) and
Cifarelli et al. (2000)). Indeed, the translation of a such complex mathematical object
in terms of a concrete sequence of sampling and replacement of balls in an urn makes
easier the research and the proof of its desirable properties.

In order to stress the large applicability of a such approach, two different problemus
of survival analysis have been presented: ﬂ_le inference for Markov renewal processes
and the estimation of bivariate survival function. | |

To deal with .the first problem we studied two types of reinforced processes in contin-
uous time introduced by Muliere et al. (2-00{.3):' the reinforced renewal and the Markov
_ reinforced renewal processes. |

ADetermining the conditional density of the (n+ 1)-th so jourfl time given the previous
7, We gave a new .and computational proof of the property of exchangeability of these
times and identified their de Finetti’s measure with a beta-Stacy process.

The Markov renewal Iprocesses, too, enjoy of a propert& of partial exchangeability of

array of the successor states and the sojourn times and, in a special case, we noticed
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that its mixing measure coﬁsists in a so called product Dirichlet times 5eta-Stacy,
that is a stochastic transition matrix, ruling the probability to reach a particular
state given the present one, such that the rows are independent Dirichlet distributions
and independent 'beta—Stacy processes for the cumulative distributions of the sojourn

times in each state.

So, it is natural to propose this distribution as a prior when the data are supposed to
come from exchangeable observations of a Markov renewal process. We showed that -
this distribution results to be conjugate and we computed the corfesponding Bayes

estimators.

Because of the well-known relation between Beta and Beta—Stacy Processes, our prior
is strictly related with Phelan {1990a)’s one and the reinforced process in exam char-

acterizes the last, as well.

" Future works could be developed adopting an alternative perspective that we briefly
sketched at the end of the Chapter 3. The key assumption in the construction of
reinforced Markov renewal processes of resetting the measurement of the time spent
at each change of state can be substituted supposing that the time is reset to 0 only
when a given recurrent state is reached and assuming a consequent reinforcement
rule. By this way, we proved the‘ exchangeability of the Blocks between successive
visits to the sérﬁe recurrent state, so it would be possible to make Bayesian predictive
inference, for instance, for the lifetimes of individuals subjected to multi-state disease.
Following this approach it would be worth to try to tackle other problems of survival
analysis like interval censofed data and truncated observations as in Frydman (1992),
Frydman (1994) and Frydman {1995) and Lagakos et al. (1988), models whose deep

* structure is a two or three state process in continuous time.
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Our contribution to the difficult problem of the estimation of a bivariate survival
function relied on the definition of a bivariate reinforced process built on the basis of
- the generalized urn processes in such a way as to model couples of dependent lifetimes:
each element is supposed to be the sum of a common component and. of a specific
one. At the same time, by the reinforcement_ rule a structure of dependence between

the couples has been introduced so that the Bayesian learning becomes possible.

As usual, the reinforced process defined, via exchangeability and de Finetti’s rep-
resentation Théorem, a prior on the space of bivariate_distributidns on Ny. This
prior distribution has a structure not cbmpletely known and that makes corﬁplicated
to compute the posterior, but we made some remarks on the form of the bivariate
distributions on which it put positive mass. | a
Hence, a Bayesian estimator (ther‘predictive- distribution) has_'been.obtained and, in
order to compute it, a Gibbé sampler procedure has been impiemented éxploiting the

predictive laws of the generalized urn processes.

On the other hand, the considerations on the fofm of the bivariate distriButions made
poséible to study the support of the prior, profiting by and adapting for our case séme
properties of beta-Stacy process. A result similar to p£0po;:>ition 3 of Ferguson (1973)
has been given; é.lso some constraints on the parameters of the prior in order to satisfy
the Kullback—Leibler. conditions has been obtainréd. As consequence, for a wéll-knbwn

result of Schwartz (1965), our prior enjoys the property of weak consistency.
An alternative Way. to choose the value of the prior parameters based on the researcher
guess has been illustrated via an example:

Once again it is worth underlining that, in the future works in the field of multi-state

processes as well in the estimation of the bivariate survival function, the reinforced
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processes do not cﬁaracteriie one of the usual Bayesian nonpa.rémetric priors. So,
the usefulness of this kind of approach do not reside only in making concrete priors
to betfer understand their properties_, but in an alternative method to define them
in such a way as to overcome techiﬂcal difficulties and to make possible inference at
least by a predictive point of view. For such reasons, we reckon this framework widely
applicable and, particulérly_, in éurviv&ﬂ a'-ﬁa.lysi.s also in consideration of the symmetfy
between the reinforced processes in the Bayesian approach and the éounting processes

largely employed in the field of the classical statistics (Andersen et al. {1995)).
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