Contents lists available at ScienceDirect

Journal of Econometrics

¥,

ELSEVIER journal homepage: www.elsevier.com/locate/jeconom

Extreme expectile estimation for short-tailed data

Abdelaati Daouia ®*, Simone A. Padoan , Gilles Stupfler

# Toulouse School of Economics, University of Toulouse Capitole, France
Y Department of Decision Sciences, Bocconi University, via Roentgen 1, 20136 Milano, Italy
€ Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France

ARTICLE INFO ABSTRACT

JEL classification: The use of expectiles in risk management has recently gathered remarkable momentum due
C13 to their excellent axiomatic and probabilistic properties. In particular, the class of elicitable
C14

law-invariant coherent risk measures only consists of expectiles. While the theory of expectile

€18 estimation at central levels is substantial, tail estimation at extreme levels has so far only been
2:2 considered when the tail of the underlying distribution is heavy. This article is the first work to

handle the short-tailed setting where the loss (e.g. negative log-returns) distribution of interest is
Keyw"'.ds bounded to the right and the corresponding extreme value index is negative. This is motivated
giﬁ;‘i‘: alues by the assessment of long-term market risk carried by low-frequency (e.g. weekly) returns of
Second-order condition equities that show evidence of being generated from short-tailed distributions. We derive an
Short tails asymptotic expansion of tail expectiles in this challenging context under a general second-
Weak dependence order extreme value condition, which allows to come up with two semiparametric estimators of

extreme expectiles, and with their asymptotic properties in a general model of strictly stationary
but weakly dependent observations. We also extend the applicability of the proposed method to
the regression setting. A simulation study and a real data analysis from a forecasting perspective
are performed to compare the proposed competing estimation procedures.

1. Introduction

The class of expectiles, introduced by Newey and Powell (1987), defines useful descriptors &, of the higher (z > %) and lower
(r< %) regions of the distribution of a random variable X through the asymmetric least squares minimization problem

¢, = argminE(n, (X - 0) — n.(X)), 1.1)
OeR

where 5,(x) = |7 — 1{x < 0}| x?, with 1{-} being the indicator function and = € (0, 1) the asymmetry level. Expectiles are well-defined,
finite and uniquely determined as soon the first moment of X is finite. They generalize the mean, found for r = 1/2, in the same
way quantiles generalize the median: Koenker and Bassett (1978) showed that the rth quantile g, of X solves the asymmetric L'
minimization problem
g, € argminE(p (X - 6) — 0,.(X)),
(153
where ¢.(x) = |r— 1{x <0}||x| is the so-called quantile check function. Expectiles have received renewed attention for their
ability to quantify tail risk in statistical decision theory at least since the contribution of Taylor (2008). They depend on the tail
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realizations of X and their probability, while quantiles only depend on the frequency of tail realizations, see Kuan et al. (2009).
Most importantly, Ziegel (2016) showed that expectiles are the only coherent law-invariant measure of risk which is also elicitable
in the sense of Gneiting (2011), meaning that they abide by the intuitive diversification principle (Bellini et al., 2014) and that their
prediction can be performed through a straightforward principled backtesting methodology. These merits and good properties have
motivated the development of procedures for expectile estimation and inference over the last decade. A key, but difficult, question
in any in risk management setup is the estimation of the expectile £, at extreme levels, which grow to 1 as the sample size increases.
This question was first tackled in Daouia et al. (2018, 2020) under the assumption that the underlying distribution is heavy-tailed,
that is, its distribution function tends to 1 algebraically fast. The latest developments under this assumption have focused on, among
others, bias reduction (Girard et al., 2022), accurate inference (Padoan and Stupfler, 2022), and handling more complex data in
regression (Girard et al., 2021, 2022) or time series (Davison et al., 2023) setups.

The problem of estimating extreme expectiles outside of the set of heavy-tailed models is substantially more complicated from
a statistical standpoint. The contribution of the present paper is precisely to build and analyze semiparametric extreme expectile
estimators in the challenging short-tail model, in which the extreme value index is known to be negative. This requires employing
a dedicated extrapolation relationship for population extreme expectiles. Only Mao et al. (2015) have initiated such a study at the
population level. Differently from Mao et al. (2015), we first derive an asymptotic expansion of extreme expectiles without resorting
to an unnecessary restriction about the link between the extreme value index and second-order parameter as in Mao et al. (2015).
Based on this asymptotic expansion, we present and study two different extreme value estimators of tail expectiles. The first one
builds upon the Least Asymmetrically Weighted Squares (LAWS) estimator of expectiles, namely the empirical counterpart of &,
in (1.1), obtained at intermediate levels 7 = 7, — 1 with n(1 — 7,,) » o as the sample size n — oo. The short-tail model assumption
allows then to come up with an expectile estimator extrapolated to the far tail at arbitrarily extreme levels r = 1 — p, such that
(1-1,)/p, = o as n — oo, in a semiparametric way. The second extrapolating estimator directly relies on the asymptotic expansion
of £, that involves the expectation of X, the endpoint of its distribution, the quantile analog ¢, and the extreme value index, by
plugging in the empirical mean and semiparametric Generalized Pareto (GP) quantile-based estimators of the tail quantities. We also
discuss the extension of our LAWS approach to the extremal expectile regression problem, whereby X is assumed to depend upon a
finite-dimensional covariate Z and an estimate of the extreme regression expectile £,(z) of the conditional distribution of X given
Z = z is sought. We prove the asymptotic normality of a two-step LAWS estimator built on residuals of location-scale regression
models under the assumption that the residuals are sufficiently close (in an appropriate sense) to the unobserved innovations of the
model.

Our estimation theory for the extreme expectiles of the marginal distribution of a stationary time series is valid in a general setting
of weakly dependent observations, covering very popular time series models such as ARMA models, a wide class of linear time series,
and (G)ARCH processes. We explore various theoretical and practical features of extreme expectile estimation for short-tailed data,
and explain why this statistical problem is more difficult than extreme quantile estimation. In particular, the extreme expectile &,
is intrinsically less spread than its quantile analog ¢,, even at asymmetry levels 7 ~ 1 where it remains much closer to the center
of the distribution than ¢,. This implies that any semiparametric extreme value procedure for extreme expectile estimation should
be expected to suffer at least from a worse bias than for extreme quantile estimation. In the extreme expectile regression setup, we
show that our residual-based approach is valid in reasonably well-behaved location-scale models such as linear regression models
whose error term has a continuously differentiable probability density function on its support. Importantly, this class of location-
scale models does not exclude popular time series, in the sense that the covariate vector is allowed to contain lagged values of the
response and/or of model error.

The problem of estimating extreme expectiles for bounded distributions appears naturally in the context of productivity analysis.
When analyzing the productivity of firms, one may define their economic efficiency in terms of their ability of operating close to
the geometric locus of the optimal production that can be viewed as an extreme expectile (Kokic et al., 1997). Another field of
application, that we explore here, is the use of extreme expectile estimation for the assessment of long-term market risk carried by
short-tailed financial data; long-term risk management makes a crucial use of low-frequency data, including in regulatory circles.!
Our approach is motivated by the surprising finding that weekly returns of equities, commodities, or cryptocurrencies may indeed
have short-tailed distributions, while standard models in both theoretical and empirical work assume heavy tails for any frequency
of financial data. This is illustrated in Section 4 where we argue that Bitcoin and Netflix weekly loss returns data may be considered
as short-tailed. It would thus be incorrect to assess their tail risk based on the traditional belief that the tail of losses is necessarily
heavy when the mathematical theory of extreme values does not allow to reject short or light-tailedness. It is therefore important,
both from a theoretical and a practical perspective, to construct an appropriate and fully data-driven estimation procedure for
short-tailed data. Our methods and data have been incorporated into the R package ExtremeRisks, freely available on CRAN.

The paper is organized as follows. In Section 2, we explain in detail the short tail distributional assumption on X, state our
asymptotic expansion linking extreme expectiles and quantiles, construct our two classes of extreme expectile estimators and study
their asymptotic properties. A simulation study examines their finite-sample performance in Section 3, and two time series of real
Bitcoin and Netflix data are analyzed in Section 4. Section A of the Appendix contains all necessary lemmas and mathematical proofs
and Section B gives further simulation results.

1 See, for example, the weekly financial statements of the European Central Bank at https://www.ecb.europa.eu/press/pr/wfs/html/index.en.html.
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2. Main results
2.1. Connection between extreme expectiles and quantiles

Let F : x » P(X < x) be the distribution function of the random variable of interest X and F =1 - F be its survival function.
Define the associated quantile function by ¢, = inf{x € R|F(x) > 7} and the tail quantile function U by U(s) = ¢;_¢1, s > 1.
Differently from existing literature on extreme expectile estimation, we focus on the case when the distribution of X is short-tailed,
or equivalently, when its extreme value index (EVI) y is negative. According to Theorem 1.1.6 on p. 10 of de Haan and Ferreira
(2006), this corresponds to assuming that there is a positive function a such that

- Y —
Vz>0, lim U(sz) - U(s) _z 1

, with y <0.
§—»00 a(s)

This assumption can be informally rewritten as

zr -1
Vz >0, U(sz) = U(s) + a(s)

when s is large. (2.1)

This means that extreme values of X at the far tail (represented by U(sz)) can be recovered by extrapolating in-sample large values
(represented by U(s)) if the scale function a(s) and the shape parameter y can be consistently estimated. The theory of the resulting
extreme value estimators is usually developed under the following second-order refinement of the short-tailed model assumption
above, which will be our main condition throughout (see de Haan and Ferreira, 2006, Equation (2.3.13) p. 45):

Condition C,(y,a,p, A) There exist y < 0, p < 0, a positive function a(-) and a measurable function A(-) having constant sign and
converging to 0 at infinity such that, for all z > 0,

lim L (U(’z)‘U“) _¥= 1) - /z or-1 (/Uul’—ldu> do.
s=oo A(S) a(s) Y 1 1

This condition enables one to control the bias incurred by using the approximation (2.1) and represented by the function A. Under
this condition, the right endpoint x* = sup{x € R | F(x) < 1} of X is necessarily finite (see de Haan and Ferreira, 2006, Theorem 1.2.1
p- 19), that is, X is bounded to the right. This justifies calling this model a short-tailed (or bounded) model.

Suppose now that E| min(X,0)| < co and that condition C,(y, a, p, A) is satisfied, so that E|X| < co and expectiles of X are well-
defined and finite. First, we motivate an asymptotic expansion of extreme expectiles that will be instrumental in our subsequent
theory of extreme expectile estimation. Recall that the rth expectile &, satisfies
27 -1
1

-7

& —EX) =

E((X -&)1{X > & ], (2.2)

see Equation (12) in Bellini et al. (2014). Writing E((X —x)1{X > x}) as an integral of the quantiles of X above x and using condition
C,(7,a, p, A) justifies the approximation

FEJal/FE)
1—
(see Lemma A.2(ii) in the Appendix for a rigorous statement), and therefore

. a(1/FE)F(E,)
m-—=

1l 1-7

E(X-&)H{Xx > D~ 11

x* =E@) - 7). (2.3)

The convergence a(s)/(x* — U(s)) - —y as s — oo (see de Haan and Ferreira, 2006, Lemma 1.2.9 p. 22) then suggests

im & EIF(E,)
m -—

lim —- =(x* -EQ))1 -7 2.9

The approximations F(¢,)/(1 — 7) ~ F(£,)/F(g,) % (x* — &)"V/7/(x* — ¢,)"'/* motivated by the regular variation property of
x - F(x* —1/x) (see de Haan and Ferreira, 2006, Theorem 1.2.1.2 p. 19) finally entail

x* =&,

lim v = (6~ B0 =y h e, (2.5)

Consequently, extreme expectiles can be extrapolated from their quantile analogs, in conjunction with endpoint and tail index
estimation. Analyzing the asymptotic properties of extreme expectile estimators built in this way will require quantifying the
difference between the ratio (x* — &,)/(x* — ¢,)!/!~?) and its limit in (2.5). This is the focus of our first main result below.

Proposition 1. Suppose that E| min(X, 0)| < co and condition C,(y, a, p, A) holds with p < 0, and let x* be the finite right endpoint of F.
Then

=g = [6F = EQO)(A =y TH TR - g )t

X (1 —[(x* =E@X)(1 =y )TV 6* — g )V (1 +0(1))
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rl* = EQO)1 =y~ )/
py +p)(1 =7y —p)

A1 =) (x* = g) 0 +o(1))>

as 7 t 1. In particular

x* =& = [(x* —EQ))(1 —y YT/ (x* — g )/ 0-n
X (1+0((1 = )71y + 0| A((1 = )~ /9))).

The additional condition p < 0 in Proposition 1 is very mild and satisfied in all standard short-tailed models, see Beirlant et al.
(2004, Table 2.2 p. 68). This result is an extension, tailored to our general semiparametric GP setting and extended second-order
regular variation assumption C,(y, a, p, A), of Proposition 3.4 in Mao et al. (2015). The latter result is formulated under a different,
nonstandard second-order regular variation condition on F when X belongs to the domain of attraction of a Generalized Extreme
Value distribution. It is readily checked by straightforward but tedious calculations that their quantities ¢, y, p and A(s) respectively
correspond to (with the notation of Lemma A.3 in Section A.1) C/7, —1/y, —p/y and —C~*/Y A(s""/")/(y(y + p)) of the present
paper. In particular, when their asymptotic expansion applies, it coincides with ours, but we lift an unnecessary restriction on the
second-order parameter p that features in their result.

An immediate consequence of Eq. (2.5) is that (x* — £,)/(x* — ¢,) — o0 as 7 1 1, that is, extreme quantiles are closer to the
endpoint of a short-tailed distribution than extreme expectiles. It is therefore unsurprising that the bias due to the approximation of
tail expectiles by their quantile analogs under the second-order framework, which is asymptotically proportional to A((1 —7)~!(x* —
g,)"/-1), converges more slowly to 0 than the corresponding bias term in the heavy-tailed setting, whose order is A((1 —7)™!), see
Proposition 1(i) in Daouia et al. (2020). As a second consequence, at least as far as handling bias is concerned, estimating extreme
expectiles under short-tailed models using a semiparametric extreme value methodology should be expected to be much harder than
under heavy-tailed models.

We conclude this section by drawing a useful corollary from Proposition 1; see Equation (A.15) in the proof of the latter result.

Corollary 1. Under the conditions of Proposition 1,
X =g = (K - BEQO)1 -y — g )

x* = gr 14

x(1=- ——mM> (1 +o(l)) + ———————

( (* —EQO)(1 -y plr+p)(1—y—p)

It should be noted that the quantity x* —E(X), which is a measure of the spread of the distribution tail, appears in the asymptotic

equivalent of (x* —¢,)/(x* —¢,) and in both of the remainder terms of the asymptotic expansion for x* —¢&_. By contrast, no measures

of spread appear in the asymptotic connection between extreme expectiles and quantiles of heavy-tailed distributions, although the

expectation E(X), which can be understood as a location parameter, appears in an error term proportional to 1/g,, as can be seen

from Proposition 1 in Daouia et al. (2020).

With Proposition 1 and Corollary 1 at our disposal, we can now construct and study two classes of extreme expectile estimators.

The first one, in Section 2.2 below, is built upon asymmetric least squares minimization, while the second one, in Section 2.3, is
directly obtained by plugging in Eq. (2.5) estimators of E(X) and of the tail quantities y, x* and g,.

A(L/FE)(1 + o(l))) .

2.2. Asymmetric least squares estimation

Suppose that the available data has been generated from the random variables X, ..., X, with common distribution function F,
and let 7, 1 1 (as n — o) be a high asymmetry level at which the target unknown expectile £, is to be estimated. A first solution is
to construct the estimator minimizing the empirical counterpart of problem (1.1). This produces the Least Asymmetrically Weighted
Squares (LAWS) estimator

n

2 .1 ¢ )
g, =argmin—~ Y 5, (X, - 0)—n, (X,) = argmin Y, (X, - 6). (2.6)
6eR N 3 (=S

Our theoretical analysis of this estimator hinges upon the following observation made by Jones (1994): the rth expectile of F is
actually the rth quantile of the distribution function E = 1 — E, where
E(|X —x|1{X > x})
E(X - x|)
This survival function can equivalently be rewritten as

E V)
Ex=— 2%
) 2¢M(x) + x — E(X)

E(x) =

with ¢®(x) = E(X — x)*1{X > x}).
Since E, is the rth expectile of the empirical distribution function f,, =1-F, defined as

Fy0 = 21X, > x),
=1
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it must therefore be the rth quantile of the distribution function E,, =1-E, defined as

A1) n
Am(p"i(x)—v where 500 = - ¥ (X, - 0" 1{X, > x},
29, (x)+x-X, n &

I

[}

n(x) =

with X, being the sample mean. Intuitively, to derive the asymptotic behavior of E," — &, it suffices to obtain the asymptotic

behavior of E,(x)/E(x) at a level x = x,, close to ¢, in an appropriate sense and to apply a suitable inversion argument.
We do so in a general framework of strictly stationary, weakly dependent random variables. Recall that a strictly stationary
sequence (X,),», is said to be a-mixing (or strongly mixing) if (/) = sup,,5; a,(/) = 0, where
Vi>1, a,()= sup |P(An B)—P(A)PB)|

AEF)
BEFmsl,00

with 7, ,, = (X, ..., X,,) and F,.,; o = 6(X 51> Xpns141. ---) denoting the past and future o-algebras. The a-mixing condition is one of

the weakest dependence assumptions in the mixing time series literature: more restrictive conditions include -, p-, ¢- and y-mixing,
see Bradley (2005). We make the following assumption about the mixing rate.

Condition M There exist sequences of positive integers (/,) and (r,), both tending to infinity, such that /, /r, - 0, r,/n — 0 and
na(l,)/r, = 0, as n - co.

The sequences (/) and (r,) are respectively interpreted as “small-block” and “big-block” sequences, and are used to develop a
big-block/small-block argument as a prerequisite to evaluating the asymptotic variance of £, . Condition M has already been used

in the literature on the extreme values of time series, see e.g. Rootzén et al. (1998, Equation (2.1)). We also require the following
tail dependence condition on the joint extreme behavior of (X,),,, at different time points.

Condition D For any integer ¢ > 1, there exists a function R, on [0, ]? \ {(c0, %)} such that
V(x,y) € (0,00 \ {(c0,00)}, lim sP(F(Xy) < x/5, F(X;41) < /) = Ri(x.y),
and there exist a constant K > 0 and a nonnegative summable sequence (p(1)),>; such that, for s large enough,

Vi > 1, Vx,y € (0,1], sP(F(X,) < x/s, F(X,51) < y/s) < pO)\/xy + %Xy_

The function R,, called the tail copula of (X, X,,,) (see Schmidt and Stadtmiiller, 2006), finely quantifies the degree of asymptotic
dependence between X, and X, ,. The first half of Condition D ensures that the probability of a joint extreme value of X, and X,
is at most of the same order of magnitude as the probability of an extreme value of X, meaning that clusters of extreme values
across time cannot form too often. The second half of Condition D guarantees that a variant of the dominated convergence theorem
can be applied in correlation calculations prior to using central limit theory for the asymptotic normality of our estimators. A similar
anti-clustering assumption is made in Drees (2003), see conditions (C2) and (C3) therein.

Under these temporal dependence assumptions and using our insight about the link between the LAWS estimator and the
empirical estimator of E, we can prove the following result on the joint asymptotic normality of the LAWS estimator and an
empirical quantile having the same order of magnitude, ie. an order statistic §, = X[, With f(.f,n)/(l -, — 1, where
X, <X,, < £X,,is the ordered version of (X|,..., X,).

Theorem 1. Assume that X satisfies condition C,(y,a,p, A). Let 7,,x, 1 1 be such that nf(é,") - 00, F(é,n)/(l -r,) — 1 and
VnEE)AL/FE, ) = O(D).

(1) Suppose that (X,),, is a strictly stationary sequence of copies of X, whose distribution function F is continuous, satisfying conditions
M and D. Assume that r,F (¢, ) — 0, and that there is 5 > 0 such that

b

E(| min(X,0)***) < 0, " 1/%a(l) < oo and r, | —2

21 VnFE,)

- 0.

Then

VnFE)

d
— (gr” - gr"a Zl\zn - q:rn) b N(O, V(Y) +2 C(r, R))
a(1/F(E,))

where the 2 x 2 symmetric matrices V (y) and C(y, R) are defined elementwise as V;,(y) = 2/[(1 — y)(1 = 2y)], Vi2(x) = 1/(1 =)
and I,22(7) = l;

1 - ~1/y -1
c (y.R)=—/ R(x77, y V") dxdy
11 }'2 (OJ]ZZ T

=1

l 5
1 _ —1/s
Cal R =-5 /0 DRG0 + R, x717)] dx
=1
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and C,,(y,R) = Z R,(1,1).

t=1

(i) If the X, are i.i.d. copies of X and E(| min(X,0)|?) < oo, then the above asymptotic normality result holds with R, = 0 for any t > 1,

that is,
VIFE,)

~ d
————@, ~ & lr, ~ 4s,) — NO.V)).
a(1/F(E, )

If X is bounded, then assumption Y., I*/%a(l) < o in (i) can be weakened to Y., a(l) < oo, and no integrability assumption on X is
necessary.

In Theorem 1, condition nf(.f,n) — oo requires 7, to be intermediate, i.e. not too large. Assumption 4/ nf(f,")A(l /f(f,n)) =0(1)is
a bias condition which corresponds exactly to the usual bias condition 1/n(1 - 7,)A((1 - 7,,)!) = O(1) in extreme quantile estimation
when replacing £, with its quantile analog g, , see Theorem 2.4.1 on p. 50 in de Haan and Ferreira (2006). In fact, an inspection of

the proof of Theorem 1(i) reveals that the bias condition \/nf(.g,n YA(1 /f(.f,'I )) = O(1) is only needed for the asymptotic normality of
4y, = 4x,, and is thus unnecessary for the validity of the asymptotic normality of E," —¢,, alone. The conditions on r, in Theorem 1(i)
are similar to those of Theorem 3.1 in Davison et al. (2023) in heavy-tailed models, taking into account that F(f,n) is asymptotically
proportional to 1 — 7, in the latter setting. The integrability assumption on X and the condition on the mixing rate (/) ensure that
a central limit theorem applies to X, as part of the proof of the asymptotic normality of E,(x)/E(x) at high levels x = x, close to
&, .

" It is natural, and instructive, to compare Theorem 1 with results one may obtain in the i.i.d. setting. It is, first of all, obvious
that the asymptotic variance V(y) + 2 C(y, R) obtained in our mixing framework is always greater than or equal to the asymptotic
variance V(y) in the i.i.d. setup. This can be viewed as a consequence of positive extremal dependence between bivariate margins
of the time series (X;) under condition D, in the sense that for any x,y>0and > 1,

s{ P(F(X,) < x/s, F(X,,)) < y/s) = P(F(X)) < x/9)P(F(X,,,) < y/s)} - R,(x,y) 20

as s — oo. This is nothing but a weaker version of the classical positive quadrant dependence assumption between pairs (X, X, ;)
which itself is a fairly weak assumption on the family of bivariate copulas of these pairs, see the discussion on p. 200 in Nelsen (2006).
The positive quadrant dependence assumption is satisfied in particular if these copulas are extreme value copulas, see Gudendorf
and Segers (2010).

We then compare our result with an asymptotic normality result for intermediate quantile estimation at level 7, by its direct
empirical counterpart §; = X[, 1 ,- According to Theorem 2.4.1 on p. 50 in de Haan and Ferreira (2006), when the X; are i.i.d.,

V "F(q r,, @

—— @, ~ 4;,) — N, D).
a(1/F(,))

Obsgve that, by a combination of Lemma 1.2.9 on p. 22 in de Haan and Ferreira (2006) and Lemma A.1 in Section A.1,
a(1/F(x))/(x* —x) = —y as x 1 x*, and therefore

VrFE,) /\/nf(q,") FE,) x*-a,
= X

a(l/F¢, )/ a/F@,) \Fa,) X &,

1+ o(1)).

By (2.4) and (2.5) this ratio is asymptotically proportional to (x* — g, )~**/2/(~7) under the mild further condition p < 0. In other
words, the intermediate LAWS estimator E,n converges faster than :’1‘," when y > —1/2, has the same rate of convergence if y = —1/2,
and converges at a slower rate if y < —1/2.

One may also compare Theorem 1, devoted to short-tailed data, with the corresponding result one obtains for i.i.d. heavy-tailed
data. If X has a heavy right tail, that is, U(sz)/U(s) — z” as s — oo for any z > 0, where 0 < y < 1/2, and under the assumptions
that E(| min(X, 0)]**%) < oo for some & > 0, 7, 1 1 and n(1 — 7,,) - oo, one has, by Theorem 2 in Daouia et al. (2018),

Er,, d 2)’3
\/n(1 —Tn)(a - 1) —»JV'(O, 1_27).

In this same setting, (U(sz) — U(s))/a(s) — (z¥ —1)/y as s — oo, with a(s) = yU(s), and f(:,")/(l —17,) = 7' =1=(1-y)/y (this was
first shown by Bellini et al., 2014, Theorem 11). Therefore, when X has a heavy right tail,

"F(frn) ~ d 2(1-7y)
VTG ¢ e VT i (1) Lo (0.2452).
a(l/FE,) " o) 3’2 o (érn ) -2

It follows that the rates of convergence of the LAWS estimator look similar in both the heavy and bounded tail settings, but there
is a phase transition in terms of asymptotic variance: the term 1 -y appears in its numerator for heavy tails, while it appears in the
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denominator for short tails, as established in Theorem 1. Interestingly, the two asymptotic variances in the heavy and short-tailed
settings converge to 2, and therefore exactly match in the light-tailed scenario, when y — 0.

As a corollary of Theorem 1, we obtain the asymptotic normality of the empirical estimator F,.(E,") of f(érn ), on which the rate
of convergence of E,” crucially depends.

Corollary 2. Work under the conditions of Theorem 1. Then

~

—(F,E,) d W4y 41
F — -1 0, —m88 ———
ViFC _'N( a-na-2n

n

+2// Z (lz R(x~ /7,y 11y 4 l[R,(x—'/r, D+ R,(Lx ")+ R,(1, 1)) dxdy).
©OI1F 53 \Y 4

The rate of convergence of F"(E,n) is rather natural: for a sequence (u,) tending to x* such that nF(u,) — oo, Lemma A.5 states

that
VnFau) | £ —">N<0,1+22R,(1,1)>.
Fu,) P

It is worth noticing that the asymptotic variance of F,,(E,”) does not coincide with the variance that would be obtained if £, were
known, namely, if F,,(g,”) were considered instead. This is due to the asymptotic dependence existing between E,ﬂ and high order

statistics of the sample (and therefore between E,” and F,), see Theorem 1 and the proof of Corollary 2.

We now have the tools necessary to construct an extreme value estimator of a properly extreme expectile §,_, , where p, | 0 atany
possible rate as n — oo. Recall, first of all, that condition nf(grn) — oo, ensuring that E," is an asymptotically normal estimator of Ses
requires 7, to be intermediate. In particular, El_ », 1s N0t going to be an asymptotically normal estimator of £, _, whatever the choice
of p, | 0is; the construction of an appropriate estimator for £,_, with p, arbitrarily close to 1 requires extrapolating the intermediate
LAWS estimator E," using the extreme value condition C,(y, a, p, A). Using (2.1) with s =1 /f(:,") and z = f(;," )/f(gl_,,n) motivates
the approximation

—  (FE)/FE.,) -1
&1y, ~ &, +a(1/FE, ) —" 7‘ A

By Theorem 1, §; is estimated by the LAWS estimator E,” at rate a(l /F(:,"))/ nf(.f,n). The scale parameter a(1 /7(.5,")) and shape
parameter y can be estimated by a variety of techniques such as:

+ The (pseudo-)Generalized Pareto maximum likelihood (GPML) estimators, that is, if k = k,, — oo is a sequence of integers such
that k/n — 0,

k
@ (n/k). 7" = argmax [ X, is10 = Xuoialon?)
0>0,y>-1/275

where the GP probability density function A(:|c, ) is defined as
~1/y-1
h(x|o,y) = l(1+E) " forall x>0 with 1 + X > 0.
[ o o

+ The Moment-type estimators of Dekkers et al. (1989), defined as

@' /.5 = X, MU =F0) MY +717)

(y2\ !
Y i
" 2 M,‘f’

k
) 1 ) .
and M = ;Z(logX,,_,-H‘,,—logX,,_k_,,)J, for j=1,2.
i=1

where

Typically, estimators of the scale function a(1/F(u,)) converge on the relative scale at the rate 1/4/nF(u,) when u, 1 x* is such
that nf(u,,) — oo; see Sections 3.4 and 4.2 in de Haan and Ferreira (200_6) in thE i.i.d. case, and Section 6 in Drees (2003) in
the dependent data setup. Since, by Corollary 2, the (unknown) quantity F(u,) = F(¢; ) can be consistently estimated at the rate
1/ nf({," ), we therefore expect to be able to estimate a(1 /f(.f,n )) at this rate on the relative scale. Finally, given an intermediate
level 7, it is customary to estimate the extreme value index y at the rate 1/4/n(1 — 7,) when the top k = [n(l — 7,)] values in the
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data are used, see Sections 3.3, 3.4, 3.5 and 3.6 in de Haan and Ferreira (2006) in the i.i.d. case, and again Section 6 in Drees
(2003) when the data points are serially dependent. It remains to find a way to estimate f(f,n)/f(.fl_p" ), which depends on the
target quantity &,_, itself. A combination of Egs. (2.4) and (2.5) with the fact that the function s = x* — U(s) is regularly varying
with index y (see de Haan and Ferreira, 2006, Corollary 1.2.10 p. 23) suggests that

- 1/(1-
F&) 1-1, x*—&., 1-Tn(x*—q1_,,">" "

~ ~ <
X* —
qr,

F,) Py x* =& Py

1-71, (1-1,,)7/“‘” (1-1,,)‘/““”
~ 1-w = (1% 2.7)
pll p'l pn

which in turn leads to the expectile-specific approximation
(@ —z)/p)" 1 1
P .
Consequently, like extreme quantiles, extreme expectiles can be extrapolated from their values at lower levels, but their values are
not (in the appropriate sense) asymptotically equivalent to those of intermediate expectiles, since
n(l—-1,)
a(1/F(,))

when n(l - 7,) - o0 and p, /(1 — 7,) — 0. Given estimators 5, and 7, of a(l/f(.f," )) and 7, respectively, one can then construct the
following estimator of &,_, :

~ ((L=7,)/p,)n/ T — 1

o~ ~
él—p =€t" +0, =
n Tn

&1y, M &, +a(l/F(E,)

€y, &) = +oo

(2.8)

Since (1 — rn)/f(.fr") — 0, the parameter y is estimated at a slower rate than the other quantities, so we expect the asymptotic
behavior of 7, to govern that of El”_ . The last theorem of this section makes this intuition rigorous. Its proof crucially relies on
Theorem 1 and on Proposition 1 in order to quantify the bias in the approximation (2.7).

Theorem 2. Work under the conditions of Theorem 1. If moreover p < 0, n(1-7,) = oo, (1-1,)/p, — oo, \/n(1 —7,)/ log((1-7,)/p,) = oo,
V(1 =7,)(x* - q,n)l/“_” =0(l), \/n(1 = 7,)A((1 —7,)"") = O(1), 5, and 3, are such that

p— G, d
\/nF(érn)(+ - 1) =0p(1) and \/n(1-7,)7,-7v) — T,
a(1/F(,,)

where I is a nondegenerate limit, then

yn(l—1,) d T
f(gl—p" - él—p”) — wh
a(1/F(,)) v

2.3. Quantile-based estimation

We use here Proposition 1 to present an alternative estimator of extreme expectiles, purely based on quantiles, and to develop
its asymptotic theory. Similarly to the setup of extreme quantile estimation in Section 4.3 of de Haan and Ferreira (2006), assume
that k = k, — oo is a sequence of positive integers such that k/n — 0 and that estimators 7,, a(n/k) and X,_, , of 7, a(n/k) and
U(n/k), respectively, are given such that

\/I: (?,, —y, a(n/k) -1 Xk U("/k)> L (', A, B) (2.9)
a(n/k) a(n/k)
where (I, A, B) is a nontrivial trivariate weak limit. This assumption is satisfied by the moment and Generalized Pareto maximum
likelihood (GPML) estimators of the shape and scale parameters presented in Section 2.2, among others, see an overview in Section
4.3 of de Haan and Ferreira (2006) in the case where the X, are independent random variables. It is also satisfied when (X),, is
a strictly stationary but serially dependent sequence: this is for example the case when the data points are f-mixing and satisfy an
anti-clustering condition similar to the tail dependence assumption D, as a consequence of the powerful results of Drees (2003).
Let p, | 0 with k/(np,) — oo, so that the level 1 — p, is much more extreme than 1 — k/n. Following Section 4.3 of de Haan and
Ferreira (2006), the extreme quantile ¢,_, and the right endpoint x* can be estimated by

?ﬂ — al
i, = Xy i + @l KL~ g g = x,,, - 28R (2.10)
" 7'] r"

According to Proposition 1, an estimator of §;_, follows then as
&, =® (@ =X -7, IR - gt 0T, 2.11)

The next result provides its asymptotic properties, where a sequence (u,,) is said to be asymptotically proportional to another sequence
(v,) if (u,/v,) converges to a finite positive limit as n — co.
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Theorem 3. Suppose that E| min(X,0)| < oo and condition C,(y, a, p, A) holds with p < 0. Assume that condition (2.9) holds true and
— P
that k(X » — E(X)) — 0 with k = k,, being asymptotically proportional to n*, for some y € (0, 1). Let p, be asymptotically proportional
to n~® where w > 0 is such that y + @ — 1 > 0. If moreover \/;A(n/k) — A € R, then we have, up to changing probability spaces and with
appropriate versions of the estimators involved,
a(n/k) 1
N

+ la(n/k)k/(np, )y 1/ (=)™ (1 = py " — BOO) /)

1/(1=y)
« <log(np" Or o (mﬂ )
vk vk

+ O(Hﬂ)r/(l—r)(nwi/(l—r) + |A(”m/“_”)|))-

ET_,," —&, = (r+ B—yA- A—p+op(1))

Let us discuss the assumptions made in Theorem 3. Condition \/I:(Yn—]E(X ) —P> 0 is satisfied in practice if \/5(7" -E(X)) = Op(1),
which is in particular true when a central limit theorem applies. As already highlighted below Theorem 1, this will be the case if
E(| min(X,0)|?) < co when the X ; are independent, or if there is 6 > 0 such that E(| min(X ,0)]**%) < 0 and st 1?/3a(1) < co when
(X,);»; is a-mixing. In particular, when the data mixes geometrically fast, then \/E(Y" - E(X)) = Op(1) as soon as X has a finite
moment of order 2 + 5, for some & > 0. Besides, the assumption that k = k, is asymptotically equivalent to a positive and finite
multiple of n#, is only very slightly stronger than the usual pair of extreme value conditions k — oo and k/n — 0. The only difference
is that our assumption does not allow to take k growing to infinity logarithmically fast; such sequences produce, however, very small
values of k in practice and would therefore yield estimators having very large variances. We also note that in standard settings such
as those of Beirlant et al. (2004, Table 2.2 p. 68), A(s) is asymptotically proportional to s?, in which case the optimal choices of
k satisfying the usual bias-variance tradeoff for extreme value index estimation would fulfill \/I:A(n /k) - i € R\ {0}, that is, k
should be asymptotically proportional to n~2#/(!=2/)_ In other words, it is reasonable to expect that optimal choices of k in practice
have to be asymptotically equivalent to a positive and finite multiple of a fractional power of n.

It follows from Theorem 3 that the asymptotic behavior of the extreme expectile estimator .51 is more complex than that of
the extreme quantile estimator ql : while, from Theorem 4.3.1 on p. 134 and Theorem 4.5.1 on p 146 of de Haan and Ferreira

(2006), Z;‘l* », ~ d1-p, converges to the same distribution — (1“ +yIB—yA - ,1—) as X* — x* at the rate a(n/k)/\/_ for y < 0, the

asymptotic distribution of .f* - ¢, may be a nonstandard mixture of the two limiting distributions of X* — x* and 7, — 7. In
particular, Corollary 3 shows that when, for example, w = 1 (containing the typical setting p, = 1/n) and y (and hence k) is chosen

small enough, it is in fact the asymptotic distribution I of ¥, — y that dominates in 51*—,; = &1—p,» While Corollary 4 examines what
can otherwise be said. !

Corollary 3. Under the assumptions of Theorem 3, if moreover y <1 —w/(1 —y) and y < 2w min(—y, —p)/(1 —y), then
\/’: r—Pn B gl_i’n
log(np,',/“_”/k) [a(n/k)(k/(np,))r 11/ 0=1)

—_ —}'_l(l — 7)—1/(1—Y)(x* _ IE(X))"/“‘”I‘.

One may then compare the rates of convergence of .fl - and 5" by setting 7, = 1—k/n. Using the convergence a(s)/(x*-U(s)) —
—y as s — oo and Eq. (2.5), one finds under the assumptions of Corollary 3 that

Vk Vi
a(l/FE_yy)) [ ogtnp,! "™ 7k)latn/k)(k/(np, )y 11/0=D

k)] 1= )
o log(n) %(k/(npn))’/”_” & nxte=r/(-y) log(n) — 0.

a(l/F (& _gn))

This means that .f* ", converges to &1, faster than 51 when k (or 1-1,) is chosen sufficiently small. We shall illustrate this finding
below in our sunulatlon study. It is also interesting to note that the closer  is to 0, or equivalently, the closer the data-generating
distribution is to having a light tail, the stronger the constraint on y through the condition y < 2wmin(—y,—p)/(1 — ). This is
analogous to what happens in extreme expectile estimation for heavy-tailed distributions, where the condition Vk/q;_,, = O(1) (see
e.g. Daouia et al., 2020, Theorem 5) becomes a strong restriction as the tail gets less heavy, i.e. when y approaches 0.

Condition y < 1 — /(1 —y) may not hold in a given example, especially when o is large enough, or equivalently, p, is small
enough. Yet, interestingly this condition can always be satisfied for sufficiently small y in the standard setting w = 1 of extreme
value analysis. If it is not satisfied, then 51 tends to inherit the asymptotic behavior of X*, rather than 7, as established in the
following result.

Corollary 4. Under the assumptions of Theorem 3, if moreover y > 1 — w/(1 —y), then
a(n/k) 1

= _¢ _
1=p, l=py — \/; 72

<r+ 2B—yA- A p+on>(l)>



A. Daouia et al.

+O(n /1D 100 4 | A=),

It is important to note that the condition y > 1 —w/(1 —y) itself is not sufficient to ensure the convergence of Er_ ; in practice,
. . . . . . . . . n .
depending on the choice of k, the bias term may dominate the asymptotics. This is most easily seen when A(s) is asymptotically
proportional to s” and @ = 1, corresponding to the standard extreme value situation where p, ~ ¢/n. In this case:

* One automatically has y +w—1= 7 >0,
+ Condition \/I:A(n/k) — A € R essentially amounts to y < -2p/(1 - 2p),
+ Condition y > 1 — /(1 — y) becomes y > —y/(1 —y).

For the bias term in Corollary 4 to be negligible, one requires

Vi

a(n/k)
Since a(n/k) is asymptotically proportional to (n/k)” by Lemma A.3(i), this is equivalent to assuming

X (% +7)+ 72— min(7~p) _nim_(;”_") <0.
When y > —1/2, which is a case often encountered in practical applications, and 0 < —p < —y, representing situations where the
bias due to the second-order framework is high, this condition becomes

207 +p)

(1= +2p)°
Depending on the value of p, this final condition may not be compatible with y > —y/(1 — y): in fact, if p is close enough to 0, it
may even be impossible to satisfy whatever the value of y (since the right-hand side of the above displayed inequality tends to a
negative constant as p — 0, when y > —1/2). In this case, with the choice p, = ¢/n, the asymptotic behavior of ¥* — x* can never
dominate in El*_P" =&,

x 0/ =D (gt /A=0) 4 | A(n /1)) - 0.

¥ <

2.4. Selection of the expectile asymmetry level

In practical situations it is crucial to make an informed decision as to what the asymmetry level of the target expectile should
be. In financial applications, where the dual interpretation of expectiles in terms of the gain-loss ratio is available (Bellini and Di
Bernardino, 2017), it is sensible to set the expectile level so as to achieve a certain value of the gain-loss ratio. Otherwise, it has
been proposed in the literature to select 7 such that £, coincides with another pre-specified intuitive risk measure: Bellini and Di
Bernardino (2017) suggest to choose the expectile level 7 so that £, is identical to the Value-at-Risk (or quantile) g,, where r is a
high probability level specified by the statistician or the practitioner.

The proposal of Bellini and Di Bernardino (2017) is valid only when the underlying loss distribution is Gaussian. Daouia et al.
(2018) later extended this idea to the heavy-tailed setup. We examine here the short-tailed situation, hitherto unexplored from this
perspective. Fix a large quantile level 1 — p,. Setting 7 = 7, to be such that §; = ¢,_, , Eq. (2.4) leads to

O* =a1p)P  (x* —£)F(E,)

-1,

~ (X —EX)A-77h.

-7
In other words,
x* - 91-p,
" & —EOa -7 ™
This approximation suggests to estimate the quantity 7, by

1-

Tn

A

x* —ffl”_p
T, =T,(p) =1~ %Pn
G*-X,)1-771

with the notation of (2.10). Our next main result shows that, under suitable bias conditions, this estimator converges at the rate
log(k/(np,))/ \/l: in the framework of Section 2.3.

Proposition 2. Under the assumptions of Theorem 3, if moreover y < min(—2wy, —2p/(1 — 2p)), then

\/l: 1- ?n

log(k/(np,)) (1—_

It is worth noting that in the standard setting when p, = ¢/n, for a positive constant ¢, the bias condition y < min(—2wy,-2p/(1 -

2p)) will always be satisfied provided k is chosen small enough. In contrast to Proposition 2, in the heavy-tail setting and according

to Section 5 in Daouia et al. (2018), it holds that 1 -7, ~ p,/(y~' — 1). An estimator of 7, is then 7, = 1—p,/(7;" — 1). In this setting,
it is straightforward to obtain, under a suitable bias condition when \/I:(?,, —y)— I, that

(150 5t

l-1, 7(1_7).

d
—1>—>I".
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The estimator 1 — 7, therefore converges at a slightly faster rate in the heavy-tailed model. The slower speed of convergence in the
short-tailed framework is due to the presence of the quantity x* — fil"_p = —an/k)7,; L(k/(np,))’ in the numerator of 1 — 7,, whose

rate of convergence to x* —g,_, is precisely log(k/(np,))/ Vk.
2.5. Towards conditional and dynamic extreme expectile estimation

The tail behavior of X can often be better understood by estimating its conditional extremes given a relevant finite-dimensional
covariate Z € R?. In financial applications, this covariate can contain, among others, global market information (through current
global market index values, for instance) as well as lags of the target variable, in order to allow for dynamic prediction of future
extreme risk levels given past financial information. Many popular models used in statistical practice for this purpose are particular
examples of explicit regression models linking X, to Z, through the formula X, = m(Z,) + ¢,, where m(-) : RY - R is an unknown
measurable function to be estimated and ¢, is an unobserved innovation. When the model is correctly specified, as we shall assume
here, the ¢, = X, — m(Z,) are typically independent and identically distributed copies of a centered random variable &£ with survival
function F, and for each 1, ¢, is independent of Z,.

It follows from this model assumption that a conditional expectile £ (X,|Z, = z) can be written as £ (X,|Z, = 2) = m(2) +£_(¢). A
reasonable idea in order to estimate the extreme conditional expectile ¢,.(X,|Z, = z), for r =7, 1 1, from data (Z,, X)), ...,(Z,. X,)
generated from this model, is to estimate first the regression function m(z) and then the tail unconditional expectile & (¢), using
residuals Eﬁ") of the model instead of the unobserved &,. This eventually results in a two-step estimator of ¢, (X;|Z, = z). The
crucial difficulty, of course, is that these residuals, unlike the true unobserved innovations, will typically not be independent or even
identically distributed, even in simple models such as those concerned with linear regression. However, since at least in parametric
regression models one is typically able to estimate the function m in a straightforward fashion at the rate 1/ \/;, which is faster
than the rate of convergence of the extreme-value step, one should expect the estimator of £, (¢) based on residuals to behave
asymptotically just like its unachievable true error-based counterpart.

An interesting question is therefore to consider whether this intuition is indeed correct under a reasonable condition. Our final
asymptotic result goes in this direction.

Theorem 4. Assume that the centered random variable ¢ satisfies cgndition Cy(y,a, p, A), with E(| min(e, 0)]?) < 0 and right endpoint
e* >0, and let §; = &, (¢) be its tth expectile. Let 7, 1 1 be such that nF(§, ) — co. If the éf"’ satisfy

VAFE,) »

a(1/F(,) 51

then the LAWS residual-based estimator E,n = argmingep Y, ;. (" - 0) is such that

VrFE,) p 5
—( ,”—frn)ﬁN(O,ﬁ>.
a(1/F(; ) (1 =y1-2y)

The key condition to be checked as part of Theorem 4 is convergence (2.12), which essentially expresses that the model has to
be estimated faster than the rate of the extreme-value procedure applied to the innovation term for the residual-based intermediate
estimator to have the required asymptotic normality property. For example, in the linear model X, = Z,T B +¢,, where g € R? is
estimated by B,, £ — & = |Z] (B, - B)|, so that

\/nFE,)
—~ " max "

L =gl =

a(1/F(g,)) 's'=n a(1/F(&,))

P
—€] — 0, (2.12)

when (for instance) the covariates Z, have compact support. If moreover B, is y/n-consistent, as is for instance the case with the
standard ordinary least squares estimator, then

VrFE,) wax € e | VFE)

a1 /FE, ) s T a1 fFE,)

Besides, it follows from convergence a(s)/(e* —U(s)) — —y as s — oo and the fact that the function s — e* —U(s) is regularly varying
with index y (see de Haan and Ferreira, 2006, Corollary 1.2.10.2 p. 23) that one has

a(l/F(x))  ex —U(1/F(x))

=G(1/F(x)) as x1e*,

where G(s) = 1/( \/E(e' —U(s))) is regularly varying with index —(y+1/2). This means that convergence (2.12), and hence Theorem 4,
will be satisfied for any choice of intermediate sequence (7,) when y > —1/2. This discussion naturally leads to the following
corollary.
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Corollary 5. Assume that the centered, no_ndegenerate and bounded random variable ¢ satisfies condition C,(y, a, p, A), with y > —1/2,
and let §, = £ (). Let 7, 1 1 be such that nF(£, ) — oo. If the linear model X, = Z[ B + ¢, holds, where the covariates Z, have compact

support and B € RY is estimated by a \/;-consistent estimator 3,,, then the LAWS estimator E,n = argmingey Y, N, (E’f") — 6) based on
the residuals 2-*,") =X, - Z;rﬁ,, is such that

;

nF(, )
a(1/F(,))

and the tail conditional expectile estimator E,“(X NZ, =2)= zTﬁ,, + E," satisfies

VrFE,)

", (X,|Z, =0 -¢, (X,|Z,=2) D N (0, ;) :
a(1/F(E,)

1=y1-2y)

The condition y > —1/2 is fairly natural in extreme value theory; it appears in particular in the asymptotic analysis of the
semiparametric GPML estimators of the scale and shape extreme value parameters (see de Haan and Ferreira, 2006, Theorem 3.4.2
p- 92). It is fortunately satisfied in most models and applications: for example, it is a straightforward consequence of Taylor’s
theorem with remainder in Lagrange form that this condition holds as soon as ¢ has a probability density function which is k times
continuously differentiable in a neighborhood [e* —1,e* + 1] of the right endpoint e* of ¢ (for a certain k > 1 and : > 0) and whose
(k + D)th derivative exists in [e* —1,¢*) and has a finite positive left limit at e*. It is noteworthy that while the estimation of central
regression parameters often requires assumptions about the smoothness of the probability density function of the errors near 0 (see
for example Condition 3.2 in Chaudhuri, 1991, for regression quantile estimation), our framework of extremal regression naturally
involves smoothness assumptions near the upper boundary of the support of ¢ instead.

In applied settings, one would of course require consistent and asymptotically normal estimators of properly extreme conditional
expectiles, of the form &,_, (X;|Z, = z), where np, — ¢ < co. This in turn requires constructing extrapolated, residual-based
estimators of £,_, (¢), which can only be obtained by constructing first residual-based estimators of a(l /f(.f," )) and 7, as is already
the case in the construction of extrapolated estimators of extreme unconditional expectiles in Section 2.2. Proving rigorously that
these residual-based estimators of a(1 /f(.f," )) and y are indeed consistent and asymptotically normal is a difficult mathematical task
whose solution may require establishing asymptotic Gaussian theory for the tail empirical process of residuals, that is, s E?-),. (1mr)s?
0 < s < 1. Current results on this empirical process are limited to the setting when the innovations are heavy-tailed, see Girard et al.
(2021). The hard but interesting mathematical question of working out the asymptotic behavior of this stochastic process when the
€, are short-tailed is left for future research.

~ d 2
- — 0, —mM8M—— ).,
s, = 4s) N( (l—r)(1—2r)>

3. Simulation study

The finite-sample performance of the estimators proposed in Sections 2.2 and 2.3 is illustrated here through a simulation study.
The simulation setup first considers three models for i.i.d. observations:

(i) The X, have a Beta distribution, whose density function is

xa—l(l _ x)ﬁ—l
(xla,p) = —————, 0<x< L
s B(a, )
Here B(a, f) is the Beta function and the shape parameters are set as « = 3 and f = 5/2. The extreme value index and the upper
endpoint of this model are y = —2/5 and x* = 1, respectively.

(i) The X, have a short-tailed power-law distribution, whose distribution function is
F(x|x*,K,a) =1 - K(x* —x)%, x* - K~ /% < x <x*.

Here x*, K and « are the endpoint of the distribution, a positive constant and the shape parameter, respectively, which have been
set as x* =5, K = 1/3 and « = 3, so that the extreme value index is y = —1/3.
(iii) The X, have a GEV distribution, whose distribution function is

F(x|y) = exp(—=(1 + yx)"/"), 1+ yx > 0.
We set the extreme value index y = —1/3, so that the upper endpoint is x* = —1/y = 3.

We then consider the following three time series models, in which @ denotes the standard normal distribution function and ¥, is
the AR(1) process defined as Y,,; = oY, + V1 — ¢? ¢,, with independent standard normal innovations ¢,, and where ¢ € (-1, 1):

(iv) X, = qx(@(Y;)), where gy is the quantile function corresponding to the Beta distribution defined in (i), and where the correlation
parameter is o = 0.95.

(V) X, = qx(@(Y))), where g is the quantile function corresponding to the short-tailed power-law distribution defined in (ii), and
where the correlation parameter is ¢ = 0.5.

(vi) X, = qy(@(Y))), where g, is the quantile function corresponding to the GEV distribution defined in (iii), and where the
correlation parameter is ¢ = 0.8.
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Table 1

Values of the expectile £. obtained through intensive Monte
Carlo simulations for 7, = 1 — 1/n, with n = 150,300, 500.

Model 7/ =0.9933 ! = 0.9967 ! = 0.9980
), (iv) 0.8571 0.8814 0.8968

(ii), (v) 4.5284 4.5939 4.6372

(iii), (vi) 1.9523 2.1020 2.2000

The EVI and upper endpoints of models (iv), (v) and (vi) are those of models (i), (ii) and (iii), respectively, and the time series models
(iv)—(vi) are geometrically f-mixing (and in particular geometrically a-mixing) since the linear AR(1) process (Y;) is so. We consider
the sample sizes n = 150,300, 500 and we aim to predict expectiles of extreme level 7} = 1—p, = 1 —1/n = 0.9933,0.9967,0.9980. The
true expectile values cannot be given in closed form, but they have here been computed by intensive Monte Carlo simulations and
are reported in Table 1.

We simulate M = 10,000 samples of n observations from each model and compare the purely empirical (LAWS) estimator 5,: in

(2.6), the extrapolating LAWS estimators 5" in (2.8) obtained by setting 5, = a(l /F (5, ), its alternative version 5 / obtained with

6, =a((1-7,)"Hx((1- )/F (.fr ) in view of the approximation a(l/F(.f, )N~ ((1- )/F(.f,"))Va((l -1, ) 1) that follows from the
regular variation property of the scale function a, and the extrapolating quantile-based (QB) estimator .5* in (2.11). In these last

three estimators, (a(n/k),7,) are either the pair of GPML estimators of (a(n/k),y) based on the top k observatlons in the sample, or
their versions based on the Moment estimator. We set throughout 7, = 1 — k/n, let the effective sample size k range from 1% up
to 25% of the total sample size n, and record Monte Carlo approximations of the relative bias, variance and Mean Squared Error
(MSE) of the estimators as a function of k.

Results are reported in Figures B.1-B.6 in the Appendix. In each figure the relative bias, variance and MSE are displayed from
left to right, and results related to sample sizes n = 150, 300, 500 are shown from top to bottom. For the sake of brevity we only report
below in Fig. 1 the results obtained with the Beta distribution, for the sample size n = 300 that we will also consider in our real data
analysis of weekly loss returns, but we discuss the conclusions from the full set of models in Appendix B. The Beta model corresponds
to a case in which the extreme value bias is present (unlike in the power-law setting, which is a transformation of a pure Pareto
model) but not too disruptive in small samples (unlike in the case of the GEV distribution, which should be seen as difficult from
that perspective). On the basis of the bias, the empirical estimator and extrapolating QB estimator tend to underestimate the true
expectile along the entire range of the effective sample size, while the extrapolating LAWS estimator tends to overestimate the true
expectile (at least when the scale and shape parameters are estimated via GPML). From the variance point of view, the extrapolating
QB estimator is overall best among the estimators we consider, with the extrapolating LAWS estimators having large variance for
small values of the effective sample size. Variability of the estimates seems to be highest when the data points come from time
series. This conclusion carries over to the MSE: based on this criterion, the extrapolating QB estimator overall performs best, as
expected from our discussion below Corollary 3, with the extrapolating LAWS estimator sometimes outperforming the extrapolating
QB estimator for effective sample fractions larger than 20%. In general, both extrapolating QB and LAWS estimators seem to perform
remarkably well relative to the purely empirical expectile estimator, especially when one takes into account the small sample size
in this simulation study.

4. Application to forecast verification and comparison

In this section, we apply our LAWS and QB estimation methods to estimate tail risk for Bitcoin (BTC-USD), a peer-to-peer digital
decentralized cryptocurrency, and then for the Netflix stock. At the end of September 2014, Bitcoin had volatility seven times greater
than gold, eight times greater than the S&P 500, and 18 times greater than the US dollar. Although the growth of Bitcoin prices has
been often described as an economic bubble, the COVID-19 crisis has sparked substantial investment in this digital currency as an
alternative to conventional asset classes. We construct a time series of weekly loss returns (i.e. negative log-returns) from averaged
daily Bitcoin closing prices within the corresponding week, from September 28th, 2014, to June 12th, 2022. The time series of loss
returns is represented in Fig. 2(A).

We consider risk assessment from a forecasting perspective. With our knowledge of this week, the goal is to give the best possible
point estimate of the expectile risk measure ¢/ for the next week based on rolling windows of length » = 300. This window length
results in 103 samples of size n over the observed timeframe. For each sample (X, ..., X,), the EVI of the underlying distribution was
estimated by means of the ML method for peaks over a high threshold X,,_, ,. The plot of the estimates obtained over the successive
103 rolling windows is given in Fig. 2(B), where an appropriate k is chosen, for each sample, by regarding the path of the ML
estimator of y as a function of k and selecting the k value which corresponds to the median estimate over the most stable region of
the path (this can be achieved by employing for instance the algorithm developed by El Methni and Stupfler (2017)). This selection
is highlighted in Fig. 2(B) by a color scheme, ranging from dark red (low) to dark violet (high). The final EVI estimates are found
to be all negative in [—0.147, —0.057]. It should also be noted that we have comfortably concluded the stationarity of the time series
samples across all T = 103 rolling windows of short-tailed data, from the Augmented Dickey-Fuller test in our exploratory analysis, at
the three significance levels 0.10, 0.05 and 0.01. Similarly, the Kwiatkowski-Phillips-Schmidt-Shin test corroborates the stationarity
hypothesis, see Fig. 2(C). A test specifically focused on the tail would of course be important, but the (Quintos et al., 2001) test, which
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Fig. 1. Empirical relative bias, variance and MSE (left, middle and right), multiplied by 100, for the estimators of 1 obtained with observations from a Beta
distribution, r, = 1 — 1/n and sample size n = 300. Empirical estimator E,; (orange line), extrapolating LAWS estimators E: (magenta lines) and E: (blue lines),

and extrapolating QB estimators E:, (black lines). The versions of the extrapolating estimators based on the GPML scale and shape parameter estimates are
referred to using solid lines, and those based on the Moment estimators are referred to using dashed lines. Top: i.i.d. data, bottom: nonlinear AR(1) data.

is, to the best of our knowledge, the only formally established test in order to detect structural breakpoints in extreme value analysis,
does not apply here since it relies on the marginal distributions being heavy-tailed. We tested for heavy tails by implementing the
test of Theorem 5.2.12 pp. 172-173 in de Haan and Ferreira (2006) under the stringent condition of independent weekly loss returns:
the plot of p-values displayed in Fig. 2(D) clearly rejects the assumption of heavy tails over each rolling window at the significance
level 0.01. In any event, we only require a local form of stationarity to be valid, with model parameters being allowed to change as
the rolling window changes; this is standard practice in the extreme value analysis of financial data, see e.g. McNeil and Frey (2000)
and Drees (2003). As is to be expected from the resulting range of mildly negative EVI estimates, the 95% confidence intervals for y
in Fig. 2(B), derived from the asymptotic GPML theory under the independence condition (black curves), do not exclude the value 0.
Likewise, the one-sided Wald test of y = 0 versus y < 0, induced by the asymptotic normality of the GPML estimator of y under the
independence condition (Theorem 3.4.2 p. 92 in de Haan and Ferreira, 2006), does not reject the null hypothesis as indicated by the
plot of p-values in Fig. 2(E). If the hypothesis y = 0 were true, a natural implication would be to assume that the light-tailed Bitcoin
loss returns have a normal distribution. However, both the Kolmogorov-Smirnov and Shapiro-Wilk tests reject the normality of the
weekly data over all estimation windows at the significance level 0.01, as shown in Fig. 2(F). Therefore, the model assumption of
a short tailed-distribution over each time period appears to be the only plausible choice.

Expectiles have recently received growing attention in quantitative risk management not only for their coherence as a tail risk
measure, but also for their property of elicitability that corresponds to the existence of a natural methodology for backtesting and
forecast verification. According to Gneiting (2011) and Ziegel (2016) among others, letting the random variable X model the future
observation of interest, the expectile £,/ equals the optimal point forecast for X given by the Bayes rule

& =argminE L, €. X)]
eR
under the asymmetric quadratic scoring function
Ly R —[0,0), (£x) 0 ny(x—9),

where L (&, x) represents the loss or penalty when the point forecast ¢ is issued and the realization x of X materializes. Following
the ideas of Gneiting (2011) and Ziegel (2016), the competing estimation procedures for £/ can be compared by using the scoring

function L./ Suppose that, in T forecast cases, we have point forecasts (Ef'"), ,5;7") and realizing observations (x, ..., x;-), where
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Fig. 2. (A) Bitcoin weekly loss returns from September 28th, 2014, to June 12th, 2022. The vertical red lines delimit the realizations of the future observation to
be forecast. (B) ML estimates of y over the 103 rolling windows (rainbow curve), and the associated 95% confidence intervals (black curves). (C) Kwiatkowski-
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functions 7} Lr. . (H) Top-ranked forecaster of &, for 7/ = 0.99,0.9933,0.9966. (I) Realized loss functions =z, ~ Ln " (J) Top-ranked forecaster of g_, for
x, = 0.99,0.9933,0.9966.

the index m numbers the competing forecasters that are computed at each forecast case r = 1, ..., T. In the assessment, we compare
the purely empirical expectile .f(” = E,: in (2.6) with the direct extrapolating LAWS estimator g‘z’ = E* in (2.8) and its alternative

version 5(3) : § described in Section 3, and with the indirect QB extrapolating estimator 5‘4) = E* in (2.11), all of them
being based on the GPML estimators (a(n/k),7,) of (a(n/k),y). When the Moment estimators (a(n/k), y,,) "are used instead of the
ML estimators, the corresponding three extrapolating forecasters .5 > 5 / and 5 will be denoted in the sequel by replacing “x” with
“&” to define

(5) ._ 74 (6) (7)
1 e ér"” = f I, = f !

The seven competing point estimates can then be ranked in terms of their average scores (the lower the better):

T
m_ 1 (m) =
f,'. _TZ o (§tm,x,), m=1,...,7.

1=1

The computation of the different extrapolated expectile estimators requires, like the EVI estimators, the determination of the optimal
value of the effective sample size k. By balancing the potential estimation bias and variance, a usual practice in extreme value
theory is to choose k from the first stable region of the plots [see, e.g., Section 3 in de Haan and Ferreira (2006)]. This is achieved

by using the path stability procedure for y estimation. However, to achieve optimal point forecasts f("", ,5(7") for the future

—( ) —(m)

observation X, this requires the use of k values that minimize their associated realized loss L (k), for m = 2,...,7. Doing

so, we obtain the final values of Lr, graphed in Fig. 2(G), as functions of the extreme level 7, € [0.99, 1], for the seven competing
estimators. It can be seen that the LAWS-Moment estimator E‘ (dashed magenta) is the best forecaster uniformly in 1." followed

by the LAWS-ML estimator .f* (solid magenta) and then the QB-ML estimator f* (solid black). The remaining three extrapolating
estimators do not seem, for tfus particular choice of T = 103 rolling windows o’f length n = 300, to outperform the naive sample
expectile {, (dashed orange). The values of the top-ranked forecaster 5 ,, computed on the 103 successive rolling windows for the
extreme levels 7, € {0.99,0.9933,0.9966}, are displayed in Fig. 2(H), along with the realizing observation at each forecast case. The
point forecasts seem to smoothly increase with 7/ approaching the worst expected (finite) losses at 7, = 1. From the perspective
of pessimistic decision making, the forecasts obtained at the lower level z; = 0.99 (orange curve) are already cautious since they
do lie almost overall beyond the range of the data: This is mainly due to the short-tailed nature of Bitcoin data that is closer to
light-tailedness.
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Extreme expectiles can also serve as a useful tool for estimating the conventional Value at Risk (VaR) itself. Stated differently,
if the statistician or the practitioner wishes to forecast a coherent expectile £ that has the same probabilistic interpretation as an
extreme quantile g, , for a pre-specified tail probability level x,, a natural way of doing so is to select the asymmetry level 7} so

&g, (1-x) I I
— ———="——-. When substituting this estimated
=X, (17 )

value in place of 7] in our £ extrapolated estimators, the latter estimate the VaR g, itself'and can then be compared with the
popular GP fit Z;‘* defmed in (2.10). Here also, forecast verification and comparison is possible thanks to the elicitability property
of quantiles (see . g Gneiting (2011)). Given that it is the quantile level x, which is fixed in advance, the accuracy of the associated
VaR forecasts is to be assessed by means of the realized loss

that & = q,,. As justified in Section 2.4, such a 7, can be estimated by 7, =

—(m) l

Tn

M~

(q:"'}.x,). m=1,...,8,

r=l

under the asymmetric piecewise linear scoring function

L, : B —[0,00), (g,%)" 0 (x—9),

(2) (3) (4)

for the competing ML-based forecasters q(l = qx", g, = EA,, = .§~, q = Efj, and their Moment-based versions q[S’ = a’:"
(6) = .fA,, (7) = 51 , and q = .f‘ The resulting realized losses L ! are graphed in Fig. 2(I), as functions of the quantile level

x, € [0. 99 1], for the eight competmg estimators of g, = .. It is remarkable that the best forecaster is still the LAWS-Moment
estimator §A, (dashed magenta), followed by the LAWS-ML estimator §A, (solid magenta). Most importantly, these expectile-based
forecasters clearly outperform the usual GP-ML fit Z;\* (solid orange) and GP-Moment fit r’i‘ (dashed orange), which is good news
to practitioners whose concern is to assess the accuracy of forecasts. Fig. 2(J) contrasts the evolution of the optimal point forecasts
.fA,, for the risk measure 4y, at the extreme levels 7, € {0.99,0.9933,0.9966}, with the realizing observation at each forecast time.
By comparing these z,th quantile estimates with their expectile analogs from Fig. 2(H) at the same asymmetry levels (z, = 7)), it
may be seen that expectiles are ultimately less conservative than quantiles, which empirically corroborates the theoretical result for
short-tailed data in Proposition 2.2 by Bellini and Di Bernardino (2017). This more liberal expectile assessment of tail risk is indeed a
consequence of the diversification principle satisfied by expectiles. Interestingly, the conservative LAWS-Moment (expectile-based)
forecasts Ef,, for g, in Fig. 2(J), seem also to be more sensitive to the variability of weekly losses compared with their analog

forecasts .f‘ for ¢, in Fig. 2(H).
We repeated the same exercise based on rolling windows of length » = 150 and found negative EVI estimates in [-0.324,-0.014]
over 160 successive rolling windows. However, the dominant forecasters become the alternative LAWS-Moment estimator £, and

the LAWS-ML estimator .fr for the expectile risk measure &s and their composite versions .§~ and .5?, for the VaR g, -

Now, we consider the time series of weekly loss returns of the Netflix stock observed from September 26th, 2014, to April 22nd,
2022 (Fig. 3(A)), and estimate its unconditional EVI over successive rolling windows of length n = 150, before forecasting the
tail risk based on the pre-identified estimation windows of short-tailed data. First, we conclude the stationarity of the time series
samples across all the resulting 246 estimation windows from the Augmented Dickey-Fuller test (Fig. 3(B)). The ML estimates of
the EVI obtained over the successive windows are superimposed (as rainbow curve) in Fig. 3(C) with their associated asymptotic
95% confidence intervals derived from the asymptotic theory of the ML estimator under either an independent data assumption,
see Theorem 3.4.2 p. 92 in de Haan and Ferreira (2006) (black curves), or the condition of f-mixing data, see Corollary 3.2 p. 1283
(see also p. 1288) of Drees (2000) (gray curves). It should be noted that, while inference via GPML theory is practically feasible
under the assumption of independent data (using low frequency data is a practical solution to reduce the potential serial dependence
substantially), it is so far only theoretically possible in a f-mixing model. The major difficulty in exploiting the asymptotic result
in Corollary 3.2 of Drees (2000) lies in the unknown asymptotic variance of the ML y estimator, which crucially depends on
the cumulative serial extremal dependence coefﬁcient >»1 Ri(1,1), whose estimation is notoriously difficult. Instead, we used the
intuitive average squared estimator (log —)‘ i (" D "(0)2 of the asymptotic variance, based on the ML estimator y(') that uses the
i+ 1 largest order statistics of the sample, with a chonce of the tuning parameter j, = o(k) being eyeballed between the thresholds 5
and 65 over each estimation window. The consistency of this asymptotic variance estimator can be shown by adapting the arguments
of the proof of Theorem 2.3 p. 630 of Drees (2003) using the expression of the asymptotic variance term in convergence (50) p.
652 therein combined with the asymptotic Gaussian representation of 7\ given on p. 654. As expected from the asymptotic theory
in p. 1288 of Drees (2000) where the asymptotic variance of the ML estimator is higher under f-mixing serial dependence, the
asymptotic Gaussian 95% confidence intervals are wider in this case than in the i.i.d. case. Although they are fairly wide, both
confidence intervals comfortably indicate negative EVI values over the first successive 234 estimation windows. This is, however,
no longer valid starting from the 235th rolling window due to the appearance of a severe loss return (corresponding to the week
of 2022-01-28, as indicated by a vertical red line in Fig. 3(A)) into this estimation window. These results are corroborated by the
p-values related to the one-sided Wald test of y = 0 versus y < 0 obtained in Fig. 3(D), induced by the asymptotic normality of the
GPML estimator of y under the independence condition from Theorem 3.4.2 of de Haan and Ferreira (2006) and under the f-mixing
condition from Corollary 3.2 of Drees (2000).

For the comparison and validation of our competing estimation procedures on historical short-tailed data, we restrict the forecast
assessment to the T = 234 rolling windows that result in negative EVI estimates in [-0.6,—0.25]. The realizations of the future
observation to be forecast in an optimal way under both the expectile and the quantile scoring functions on each rolling window
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Fig. 3. (A) Netflix weekly loss returns from September 26th, 2014, to April 22nd, 2022. The vertical red lines delimit the realizations of the future observation
to be forecast. (B) Augmented Dickey-Fuller test. (C) ML estimates of y over the 246 rolling windows (rainbow curve), along with the associated 95% confidence
intervals derived under an independent data assumption (black curves) and a f-mixing data condition (gray curves). (D) Test of y = 0 versus y < 0 with the

p-values under the independence condition (blue curve) and the f-mixing condition (red curve). (E) Realized loss functions r; - Z‘:' for the seven competing

¢, forecasters. (F) Top-ranked forecaster of &, for 7/ = 0.99,0.9933,0.9966, along with the realizing observations. (G) Realized loss functions x, ~ Z‘:J for the
eight competing g, forecasters. (H) Top-ranked forecaster of g, for x, = 0.99,0.9933,0.9966.

are delimited by the vertical red lines in Fig. 3(A). When using the expectile ¢, as an optimal point forecast for the future
observation, we obtain in Fig. 3(E) the realized losses Z(r',") for its seven competing estimators E,,, E:‘,, E:,, E:,, .E:,, E:, and E;‘,,

n " . n n n n I
as functions of the extreme level 7/ € [0.99,1]. The best forecasters are the two LAWS-ML estimators 5* (solid magenta) and & ,

(solid blue), followed by the LAWS-Moment estimator .f (dashed blue). The optimal point forecasts 5* obtained at the extreme
levels 7} € {0.99,0.9933,0.9966} are displayed in Fig. 3(F), along with the realizing observation at each forecast case When using
the quantile g, as an optimal pomt forecast for the future observation, we obtain in Fig. 3(G) the realized losses L ’ for its eight
competing estimators g* a .fA,, §~, .f,,, a* b0 .f,,, §A, and .fA,, as functions of x, € [0.99,1]. Globally, the top forecaster is still the

LAWS-ML estimator with both its variants 5,, (solld magenta) and §~ (solid blue) that clearly outperform the traditional GP-ML fit
q (solid orange) and GP-Moment fit :’;‘ (dashed orange). Finally, Flg 3(H) contrasts the evolution of the resulting optimal point
forecasts .f;, atr, € {0.99,0.9933,0.9966} with the realizing observation at each forecast time.

5. Discussion

We concentrated on the estimation of, and inference about, extreme expectiles of short-tailed distributions in a general setting
of weakly dependent and strictly stationary time series. Our assumptions require that the strong mixing coefficients of the data-
generating process decay algebraically fast and, in particular, that they form a summable series. This does not cover the interesting
frameworks of long memory processes or high-frequency data, both of which have been extensively analyzed in heavy-tailed models
(see e.g. Kulik and Soulier (2020) and Mao and Zhang (2018)), but whose theory remains untouched in our short-tailed setup. In
contrast to high-frequency data analysis, we explored and provided tools that may be used for long-run market risk assessment, which
explains the focus on expectiles of the underlying stationary distribution in our theory and weekly loss data in our application.
While we did discuss the extension of our results about intermediate expectile estimation to the altogether different problem of
conditional/dynamic intermediate expectile estimation for short-tailed models, we could not provide asymptotic theory about the
estimation of properly extreme conditional expectiles where the expectile level can grow arbitrarily fast to 1. This is a very difficult
problem requiring to obtain asymptotic theory about residual-based estimators of extreme value parameters, which is well beyond
the scope of the current paper. Theoretical results along these lines are left for future research.
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Appendix A. Supplementary data

The supplement to this article contains all necessary proofs and provides extra finite-sample results about our simulation study.
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105770.
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