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Abstract

This thesis contributes to sensitivity analysis for computer experiments. Computer exper-

iments are becoming increasingly popular to support scientific investigations and decision-

making. Thanks to recent advances in computing power, analysts are capable of building

sophisticated computer codes that simulate the behavior of a system of interest. The

simulator is considered as a black box and sensitivity analysis methods are essential to

communicate insights about the input-output mapping to the analyst.

One of the main tasks of sensitivity analysis is to identify the key uncertainty drivers

in the simulator response. However, this becomes a challenging task especially when

the analyst is dealing with expensive-to-evaluate computer codes. Two main unresolved

problems have been addressed in this thesis. First, the quantification of uncertainty in

the estimates of global sensitivity measures at small sample sizes. Second, the creation of

emulators for dimensionally large simulators. For the first task, a fully Bayesian approach

to the estimation of global sensitivity measures is proposed. Four new classes of estima-

tors are introduced, linking ideas in Bayesian non-parametrics to ideas in probabilistic

sensitivity analysis. For the second task, an innovative Kriging emulator is proposed,

borrowing recent advances from machine learning. The proposed emulator reduces the

computational complexity in terms of time and memory requirements while achieving the

same accuracy of currently implemented algorithms. Experiments show that the proposed

algorithm offers significant improvements on simulators of increasing dimensionality.
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1

Chapter 1

Introduction

Computer experiments are becoming increasingly important in scientific investigations.

Computer models imitate the behavior of a physical or abstract system and allow the

analysts to perform virtual experiments. In general, a computer model is used to map

assumptions into inferences. The assumptions consist of the state-of-art understanding of

the hypotheses, structures or inputs. The inferences refer to the produced outputs that are

relevant to the analysis. Good modeling practices always select alternative assumptions

and produce an interval of inferences, rather than mapping a single set of assumptions to

a single inference.

Recent improvements in computing performance allow the analysts to create increas-

ingly sophisticated computer models, usually associated with a dimensionality larger than

in the past. Often, such complex simulators have no closed form solution and are consid-

ered as black boxes. The complexity of computer codes make it unfeasible to appreciate

the input-output response solely based on intuition, which raises the need to look into the

black box. The field of sensitivity analysis provides the analyst with a set of methods to

gain insights into the model input-output relationship.

A broad range of applications have benefited from sensitivity analyses (Saltelli et al.,

2006, Section 1). To name but a few, Saltelli and Tarantola (2002) apply sensitivity

analysis to a nuclear risk assessment problem, Anderson et al. (2014) identify the most

influential inputs for a climate change model, Hill et al. (2016) discuss the use of sensitivity

analysis for model calibration of hydrological models. International agencies such as the

US Environmental Protection Agency (US EPA, 2009), the British National Institute

for Health Care Excellence (NICE, 2013) and the European Commission (2009), have

suggested sensitivity analysis as an essential step in modeling process to guarantee the

reliability and transparency of computer codes.

Sensitivity analysis serves as a link between the uncertainty about the assumptions and

uncertainty about the inferences. As stated in Saltelli et al. (2006, p. 1113), “the scope

of SA is not only to quantify and rank in order of importance the sources of prediction
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2

uncertainty, but, which is much more relevant to calibration, to identify the elements

(parameters, assumptions, structures, etc.) that are mostly responsible for the model

realizations in the acceptable range. ”In the literature, pioneers highlight the need to

specify the objectives of sensitivity analysis (Saltelli et al., 2006, 2008; Borgonovo and

Plischke, 2016). An objective, also called setting, is defined as “framing the sensitivity

quest in such a way that the answer can be confidently entrusted to a well-identified

measure ”in Saltelli et al. (2008, p. 24). The objectives of sensitivity analysis include:

• factor prioritisation: to determine the most influential inputs, in the sense that,

once determined, would lead to the greatest reduction in the output uncertainty;

• factor fixing : to fix the non-influential inputs for simulation simplification;

• direction of change: to appreciate if a change of the input would lead to an increase

or decrease of the output;

• interaction quantification: to identify the interaction effects among inputs.

Over the years, plenty of sensitivity analysis techniques have been developed to address

these sensitivity problems. Conventionally, such methods fall into two categories: local

or global. Local sensitivity approaches focus on the simulation behavior around certain

reference values of the inputs. Examples of local methods include Tornado diagrams for

one-factor-at-a-time designs (Howard, 1988b), spider-plots (Eschenbach, 1992), derivative-

based methods (Borgonovo and Apostolakis, 2001; Sobol’ and Kucherenko, 2009; Rakovec

et al., 2014). In between local and global methods, one can find Morris’ screening method

Morris (1991) and derivative-based global sensitivity measure (Kucherenko et al., 2009;

Becker et al., 2018). Global sensitivity methods allow the inputs to vary in the entire

input space. Typically, probability distributions are assigned to the inputs. Global meth-

ods include standardized regression coefficients, variance-based methods (Sobol’, 1993),

moment-independent methods (Borgonovo, 2007; Borgonovo et al., 2016), value of infor-

mation (Strong et al., 2014) etc. In this thesis, global sensitivity analysis is the main

focus, with special reference to the estimation of global sensitivity measures.

When a simulator is complex and expensive to evaluate, a single model evaluation

may take minutes or even days, thus calling for the reduction in computational time.

Meta-modeling or emulation tools are often used to reduce the computational burden.

The intuition underlying the use of a meta-model (surrogate model or emulator) is to

replace the original time-consuming computer code by a time-efficient emulator. Meta-

modeling techniques such as Kriging (Gaussian process regression), polynomial chaos

expansion (PCE), neural networks, and support vector machines are among the most

popular practices (Sacks et al., 1989; Sudret, 2008; Santner et al., 2003). The applica-

tions of meta-modeling range from experimental design (Sacks et al., 1989; Welch et al.,

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



3

1992) to risk assessment and optimization problems (Kleijnen, 2017). In particular, it is

used to reduce the computational burden for sensitivity analysis (Borgonovo et al., 2012).

1.1 Motivation and objectives

Quantifying uncertainty in a simulator predictor is essential. When there is only a limited

number of model runs available due to the large dimensionality and long running times

of the simulators, it is even more important to quantify uncertainty in the estimates of

global sensitivity measures. To do this, one can resort to a Bayesian approach.

Computer experiments become complex and are characterized by a high number of

inputs or realizations. However, conventional full-order emulators like kriging, are not

suitable for such large datasets because they have been traditionally studied for problems

in relatively small dimensions. Then, there is a need to study kriging emulators that can

cope with the increased dimensionality. In this respect, recent advances have been made

in the field of machine learning.

This thesis focuses on the following objectives:

1. to investigate and compare the application of alternative sensitivity analysis meth-

ods, focusing on the reduction of the computational burden;

2. to develop a fully Bayesian paradigm for sensitivity analysis using recent advances in

Bayesian non-parametric techniques, such that the proposed methods allow uncer-

tainty quantification in the estimates of global sensitivity measures for small sample

sizes;

3. to use state-of-the-art machine learning techniques for meta-modeling, specifically

for a popular surrogate model called Kriging, so that the resulting emulator is more

efficient in terms of memory and time requirements;

4. to apply the proposed sensitivity analysis methods to complex realistic simulators.

1.2 Outline

The structure of this thesis is as follows.

Chapter 2 contains a thorough review of sensitivity analysis. As this chapter clearly

shows, the proposals and methods in the sensitivity literature are plentiful. Thus, choosing

among the competing methodologies requires a comprehensive understanding of their

properties.
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Chapter 3 concerns the global sensitivity analysis of complex hydrological simulators

(Borgonovo et al., 2017). In particular, several sensitivity methods are investigated to

obtain insights in response to four sensitivity settings simultaneously, without requiring

any additional simulation run. To identify the key uncertainty drivers, we make use of

variance-based and moment-independent sensitivity measures. To determine the trend,

we make use of visualization tools such as the plots of the first order effects of the func-

tional ANOVA expansion, the cumulative sum of normalized reordered output curves and

scatter-plots of partial derivatives. To quantify interactions, we implement three emula-

tors (PCE, high dimensional model representation, and LASI) to calculate higher-order

global sensitivity measures.

Chapter 4 provides a Bayesian paradigm to conduct sensitivity analysis. In the liter-

ature, given-data (or one-sample) estimation is an approach that reduces computational

burden notably. It is a post-processing technique that allows the analyst to obtain several

sensitivity measures simultaneously from the same sample. The given-data method relies

on an adequate partition of the input space. For a finite sample, the number of parti-

tion sets affects the estimates. In this work, we propose four Bayesian alternatives for

estimating probabilistic sensitivity measures. Specifically, two Bayesian non-parametric

bootstrap estimators are extensions of the one-sample estimators and are associated with

two main features: 1) the non-parametric bootstrapping smooths the estimates within

each partition set; 2) the estimators allow one to quantify the uncertainty in the esti-

mates. However, these non-parametric bootstrap estimators do not avoid the issue of

partition selection. Therefore, we introduce two estimators based on conditional and

joint density estimation using Bayesian non-parametric approaches. These two estima-

tors achieve the goal of providing credibility intervals of the quantity of interest without

requiring a predefined partition.

Chapter 5 aims to improve computational efficiency and reduce memory requirements

in Kriging meta-modeling. Kriging is commonly used for emulation in computer simu-

lations. Kriging meta-modeling involves a Gaussian process with a correlation function

evaluated at the data points, which becomes the so-called correlation matrix. The correla-

tion matrix R plays a crucial role in Kriging calibration and has size n×n, where n is the

training sample size. The storage and inversion of R can be computationally infeasible

for large n. The goal is to develop a new technique that deals with this issue. The idea is

inspired on the Nyström regularization in machine learning. In Nyström regularization,

instead of searching the optimal predictor in a space where kernels have size n × n, the

search is constrained to a space where kernels have size n ×m, where m represents the

size of a randomly chosen subsample. It can be proved that the resulting new subroutine

reduces computational cost from O(n3) to O(nm2), and memory requirements from O(n2)

to O(nm), without loss of accuracy. We have examined the performance of the proposed

‘fast Kriging’ on several complex and computationally intensive simulators used in op-
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erations research, including the largest linear program in the Netlib library. The latter

has 40, 000 inputs, which is a input dimension that is out of reach to this date. We also

conduct the comparison of the proposed ‘fast Kriging’ with other subroutines currently in

use. Results show a better performance of the new Kriging implementation with respect

to existing ones.

Finally, Chapter 6 provides a brief discussion about potential directions for future

research.
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Chapter 2

Review

Sensitivity analysis methods have been studied widely over the past years. This chapter is

dedicated to providing a review of the literature and unifying the framework for the various

proposals.

Over the years, plenty of sensitivity analysis methods have been proposed, which pos-

sess diverse characteristics and are designed for different sensitivity settings. A systematic

utilization of sensitivity analysis methods aims to “a) making model builders fully aware

of the response of the model to variations and uncertainty in the model inputs and, b)

providing decision makers with an enriched set of insights about the managerial problem

at hand”(Borgonovo and Plischke, 2016, p. 884).

In general, sensitivity analysis methods can be classified into two categories: local

and global. This classification is defined according to the region in which the inputs are

allowed to vary. In this chapter, we first introduce several commonly used local methods;

then describe some popular global sensitivity methods such as regression-based methods,

the decomposition of the variance of model output; after which a common rationale of

global sensitivity measures is presented. Finally, we discuss the use of meta-modeling

techniques.

As the literature is vast, this chapter cannot claim exhaustiveness. For a more gen-

eral overview, we refer to the review works of Borgonovo and Plischke (2016); Iooss and

Lemâıtre (2015); Saltelli et al. (2006). Comprehensive contexts are offered by Saltelli

et al. (2000, 2008); Borgonovo (2017).

2.1 Local sensitivity methods

In a local approach, the analyst is interested in studying the impact of inputs around

specific locations (points of the model input space). The impact is identified through per-

turbations at the points of interest. In local sensitivity analysis, no probability distribution
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is assigned to the inputs. For local sensitivity methods, we discuss the one-at-a-time de-

sign, scenario decomposition through finite changes, and screening methods.

2.1.1 One-at-a-time design

The most intuitive sensitivity approach is to assess the impact on the output when varying

one input at a time. Assume one writes

y = g(x) + ε(x), (2.1)

where g represents a set of operations performed by a computer code which processes a

set x of inputs, resulting in a set y of outputs of interest; g is considered as a real-valued

deterministic multivariate mapping, the input space is denoted as X ⊆ Rk and output

space as Y ⊆ Rd. The term ε(x) represents a zero-mean error term, which is present

when the simulator response is stochastic. For simplicity, we focus on deterministic uni-

variate responses, with ε(x) ≡ 0 and d = 1. Now consider evaluating the model at two

locations (points) in X , the base case x0 and a sensitivity (or alternative) case x+, where

x0 = (x01, x
0
2, ..., x

0
k) and x+ = (x+1 , x

+
2 , ..., x

+
k ). Then, varying one input component at a

time, one can quantify the individual effect of shifting xi from x0i to x+i by the quantity

g(x+
i )− g(x0), where x+

i = (x01, . . . , x
0
i−1, x

+
i , x

0
i+1, . . . , x

0
k). This is the so-called one-at-a-

time, or one-factor-at-a-time design.

Tornado diagrams are the most successful graphical representation of one-at-a-time de-

signs (Howard, 1988a; Eschenbach, 1992). To construct a Tornado diagram, one first

defines three levels for each input, by assuming an additional sensitivity case denoted

x− = (x−1 , x
−
2 , ..., x

−
k ). Then one can calculate the effects of two series of one-at-a-time

sensitivities:

∆−i = g(x+
i )− g(x0) and ∆−i = g(x−i )− g(x0), i = 1 . . . k, (2.2)

where x−i = (x01, . . . , x
0
i−1, x

−
i , x

0
i+1, . . . , x

0
k). These quantities reflect the finite change in

the output induced by the changes in xi alone, and are called first order effects. The

Tornado diagram is then constructed by arranging bar charts of ∆−i and ∆+
i separately in

descending orders.For normalization purposes, one may divide ∆+
i by |x+1 −x0i |/range(Xi),

like in the method of Morris (Morris, 1991). The number of required simulation runs

(computational cost) to construct a Tornado diagram is C = 2k + 1.

One-way sensitivity functions can be considered as a generalization of the one-at-a-

time method. Instead of registering the impact of switching the input of interest xi from

the base value to a sensitivity value, an alternative is to consider varying this input over

a predetermined range while the remaining simulator inputs are fixed at their base case
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values. The one-way sensitivity function can be written as a function of xi:

h(xi) = g(x01, . . . , x
0
i−1, xi, x

0
i+1, . . . , x

0
k). (2.3)

A graphically efficient visual representation of one-way sensitivity functions is offered by

spider plots (Eschenbach, 1992), where the functions h∗(xi) = h(xi)− g(x0) are displayed

over a scaled range of inputs.

The methods mentioned above provide a rank of the inputs based on their impacts on

a local scale. However, there are also limitations underlined in the literature, for example,

the inability to detect interactions, or the inability to consider simultaneous changes of

inputs, see Saltelli and Annoni (2010); Saltelli and D’Hombres (2010) for critiques of these

basic methods.

2.1.2 Scenario decomposition

Scenario analysis has been widely studied and is becoming a popular decision tool in

economics and strategic management (O’ Brien, 2004; Tietje, 2005). In scenario analysis,

decision-makers are interested in exploring the simulator responses on certain scenarios

which are “descriptions of alternative hypothetical futures”(Jungermann and Thuring,

1988, p. 117). When dealing with quantitative simulators, the scenarios play the same

role as the base/alternative cases. The decision-maker can consider a scenario as a point

in the input space which draws particular attention. For a deterministic simulator, it has

been proved that the change ∆g = g(x+) − g(x0) can be decomposed into 2k − 1 terms

(Alis and Rabitz, 2001; Borgonovo, 2010). To illustrate, let us denote by x+
u a point

where, xj = x+j if j ∈ u, and xj = x0j otherwise, for u ⊆ {1, 2, . . . , k} a subset of indices.

Then the decomposition of ∆g can be written as:

∆g = g(x+)− g(x0) =
k∑

i=1

φi +
∑

i<j

φi,j + ...+ φ1,2,...k, (2.4)

where: 



φi = g(x+
i )− g(x0),

φi,j = g(x+
i,j)− φi − φj − g(x0),

. . .

φu = g(x+
u )−

∑
i∈u φi −

∑
i,j∈u,i<j φi,j − · · · − g(x0)

. . .

(2.5)

In the above system of equations, we arrange the elements in u in ascending order without

replicates, i.e. for any φu={i,j,`}, we have i < j < `. The terms φu in (2.5) are called finite

change sensitivity indices (Borgonovo, 2010). Note that φi coincides with ∆+
i of the
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Tornado diagram, reflecting the individual effect of altering xi from the base scenario to

the alternative scenario. In case of multiple levels, the approach is still adaptable across

each level. The higher-order terms φi,j, φi,j,` . . . measure the residual interactions provoked

by the simultaneous variation of the corresponding inputs. Scenario decomposition merges

the decomposition of the finite change and the idea of scenario analysis, introducing

managerial interpretations to the analysis.

In principle, the calculation of finite change sensitivity indices of all orders requires

2k−1 model evaluations. However, computational shortcuts are available in the literature

(see Borgonovo (2010) for further details).

2.1.3 Screening methods

The goal of screening methods is to identify the least-influential inputs at a minimal cost

with the purpose of discarding them for model simplification. One of the most successful

screening methods is the method of Morris (Morris, 1991). The intuition is illustrated as

follows. One considers l levels of each input, defining a grid in the input space. Then,

the analyst randomly draws r points from the total lk selected points, and performs a

series of one-at-a-time designs. The individual effects are obtained by averaging over the

r randomly drawn points. For each input, one can also calculate the standard deviation

of the elementary effects obtained at the r points, which becomes a measure of non-linear

and/or interaction effects. The computational cost of the Morris design is C = r(k + 1).

Additional technical details are found in Morris (1991); Campolongo and Saltelli (1997);

Becker et al. (2018). The recently proposed enhanced version of elementary effects (Cuntz

et al., 2015) allows for a more computationally efficient sequential screening.

Other screening methods in the literature include sequential bifurcation (Bettonvil,

1990; Bettonvil and Kleijnen, 1997), controlled sequential bifurcation (Wan, Ankenman,

and Nelson, Wan et al.), the screening by groups (Dean and Lewis, 2006) etc. We refer to

Campolongo et al. (2000); Kleijnen (2005); Woods and Lewis (2017) for thorough reviews.

2.2 Global sensitivity methods

While local methods involve the evaluation of the simulator at a limited number of lo-

cations, global sensitivity methods allow the inputs to vary over the entire space. The

fundamental assumption of global sensitivity analysis is that we have knowledge of the

input distributions, either joint or marginal, with or without correlations. The distribu-

tion information may come from the experts’ knowledge or physical boundaries (Saltelli,

2002b). In this respect, another way to call this type of methods is probabilistic sensitivity
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analysis (Oakley and O’Hagan, 2004), where inputs and output are considered as random

variables, denoted as X = (X1, . . . , Xk) and Y .

In the factor prioritization setting, the analyst’s goal is to identify the input parameter

that, if fixed to a certain value, would lead to the greatest reduction in the variability

of the model output (Saltelli and Tarantola, 2002). Thus, the degree of statistical de-

pendence between Y and Xi is of concern. The stronger the statistical dependence, the

more important we consider the parameter. Global sensitivity measures aim at sum-

marizing such dependence accounting for uncertainty over the entire parameter support.

In a variance-based sensitivity analysis (Ratto et al., 2007), the intuition is to quantify

statistical dependence as the expected reduction in the simulator output variance due to

fixing input Xi.

This section concisely discusses the most commonly used global sensitivity methods,

including non-parametric methods, variance-based methods, and presents a common ra-

tionale for probabilistic sensitivity measures.

2.2.1 Non-parametric methods

The popularity of non-parametric techniques is due to the fact that these methods allow

the analyst to derive sensitivity measures from a given sample. The term non-parametric

is used in Saltelli and Marivoet (1990). In the literature, those methods are also called

sampling-based methods. One of the earliest non-parametric measures is the well-known

Pearson correlation coefficient (or Pearson product-moment correlation coefficient) of Y

and Xi, developed by Karl Pearson in the 1880s. The definition of Pearson’s correlation

coefficient, usually denoted as ρY,Xi
, is

ρY,Xi
=

Cov(Y,Xi)

σY σXi

, (2.6)

where Cov(Y,Xi) denotes the covariance between Y and Xi, σY and σXi
are the corre-

sponding standard deviations. The absolute value of ρY,Xi
is less than or equal to one.

In particular, a value of −1 or 1 implies a linear relationship between Xi and Y . Unfor-

tunately, a null value of ρY,Xi
does not imply the independence between Y and Xi, e.g.,

Y = X2.

Pearson correlation coefficient is closely related to regression-based indices. In par-

ticular when inputs are independent, ρY,Xi
coincides with the standardized regression

coefficient (SRC) SRCi. Regression-based methods rely on fitting a linear regression to a

given sample. It is assumed that the input-output mapping can be well-represented by a
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linear relationship Y = b0 +
∑k

i=1 biXi. In this case,

SRCi = bi
σXi

σY
, i = 1 . . . k (2.7)

are natural sensitivity measures because they account for the fractional reduction in the

output variance. The reason is illustrated as follows. If the inputs are uncorrelated 1, the

variance of Y can be decomposed as2:

V[Y ] =
k∑

i=1

b2iV[Xi]. (2.8)

One can see that b2iV[Xi] is the proportion of the variance of Y induced by Xi. The

absolute value of SRCi lies in [0, 1], where a value close to 1 indicates that Xi has a major

contribution to the variance of Y , and a value close to 0 implies little influence.3

However, if the linearity assumption is not valid, the conclusions derived by ρY,Xi
and

SRCi are not reliable. When the mapping is non-linear but still monotonic, one cannot

directly use those regression-based indices but may resort to a pre-processing the dataset

by rank transformations, that is, replacing the values of the input-output realizations

by their ranks in the corresponding dimensions (Saltelli et al., 2000). The resulting

sensitivity measures become the Spearman’s rank correlation coefficients and standardized

rank regression coefficients. Note that the monotonic hypothesis in the rank-transformed

data needs to be validated.

When no hypothesis can be made regarding the model structure, a more general

method is needed. Researchers have proposed the functional ANOVA decomposition,

which we discuss in the next section.

2.2.2 Functional ANOVA decomposition and variance-based sen-

sitivity indices

To illustrate, we denote the input probability space by (X ,B(X ),PX), where PX rep-

resents the joint probability measure of X = (X1, . . . , Xk), assumed known. Similarly,

(Y ,B(Y),PY ) denotes the output probability space, where PY represents the distribution

of Y induced by PX. Let us consider g(X) is a real-valued measurable function on X and

1In general, SRC is defined under classical assumptions for regression analysis, where Xi are assumed
to be linearly independent.

2Both V[Y ] and σ2
Y denote the variance of Y .

3Note that the square of the correlation coefficient is R2.
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is square integrable

g ∈ L2(X ,B(X ),PX) =

{
g :

∫

X
g(x)2dPX <∞

}
.

Under the assumption of a product probability measure dPX(x) =
∏

dPXi
(xi), and the

strong vanishing conditions :

∫

X
gu(xu)dPXi

(xi) = 0, i ∈ u 6= ∅, u ⊆ {1, 2, . . . , k},

g can be decomposed exactly into 2k components (Efron and Stein, 1981):

g(X) =
∑

u⊆{1,...,k}

gu(Xu)

= g0 +
k∑

i=1

gi(Xi) +
∑

1≤i<j≤k

gi,j(Xi, Xj) + · · ·+ g1,...,n(X1, . . . , Xk) (2.9)

where

g0 = EX [g(X)] =

∫
g(x)dPX

gi(Xi) = EX−i
[g(X)|Xi]− g0 =

∫
g(x−i, Xi)dPX−i

(x−i)− g0

gi,j(Xi, Xj) = EX−{i,j} [g(X)|Xi, Xj]− gi(Xi)− gj(Xj)− g0

=

∫
g(x−{i,j}, Xi, Xj)dPX−{i,j}(x−{i,j})− gi(Xi)− gj(Xj)− g0

· · ·

g1,2,...,k(X) = g(X)−
k−1∑

j=1

∑

i1<i2<···<ij

gi1,...,ij(Xi1 , Xi2 , . . . , Xij)− g0. (2.10)

In eq (2.10), X−i is a shorthand for (X1, . . . , Xi−1, Xi+1, . . . , Xk), and dPX−i
is short for∏

j 6=i dPXj
; g0 is the expectation of Y ; gi(Xi) is called the first order effect function and

displays the expected behavior of Y as a function of Xi; gi,j(Xi, Xj) is the interaction

effect between Xi, Xj, etc. The generic effect function gu(xu) has null expectation and

two generic effect functions are mutually orthogonal (Sobol’, 1993; Rabitz and Alis, 1999).

Note that, if we consider the above decomposition at two specific points x0 and x+, one

obtains a 2k term decomposition of a finite change under PX.

The orthogonality and null expectation properties of the terms in Eq. (2.10) allow to

obtain the complete decomposition of the variance of Y as (Efron and Stein, 1981; Sobol’,
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1993):

V[Y ] =
k∑

i=1

Vi +
k∑

i<j

Vi,j + · · ·+ V1,2,...,k, (2.11)

where

Vi =

∫
g2i dPXi

Vi,j =

∫∫
g2i,jdPXi

dPXj

. . .

V1,2,...,k =

∫
· · ·
∫
g21,2,...,kdPX. (2.12)

In Eq. (2.12), the first order terms Vi account for the portion of the total model

output variance V[Y ] due to the individual variation of Xi; the second order terms Vi,j

represent the part apportioned by the residual interaction of inputs Xi and Xj. A similar

interpretation applies to higher order terms. The variance based sensitivity indices are

defined as(Sobol’, 1993; Homma and Saltelli, 1996):

Su =
Vu
V[Y ]

. (2.13)

The quantity Su is called the variance-based sensitivity index of group u ⊆ {1, 2, . . . , k}
and it represents the fractional contribution to the model output variance resulting from

the interaction between inputs Xu. When the group Xu is restricted to an individual

input Xi, we obtain the first-order Sobol’ index defined as

Si =
Vi

V[Y ]
. (2.14)

The index Si corresponds to the fraction of V[Y ] associated with the individual contribu-

tion of Xi. If one wishes to consider the overall contribution of Xi, one needs to account

also for its interactions with the remaining inputs. One writes:

STi =
Vi +

∑k
i 6=j Vi,j + · · ·+ V1,2,...,k

V[Y ]
. (2.15)

The index STi is, then, the total fractional contribution of Xi to the variance of Y . For

independent inputs, we have
∑
Su = 1 and

∑k
i=1 STi ≥ 1. In particular, we have that

STi = Si if Xi is not involved in interactions with other inputs. If this occurs for all

inputs, then we have that
∑k

i=1 Si = 1, so that SInteraction
i = 0 and the model response

is additive. Finally, for computational assessment of different numerical approaches to

calculate total (variance-based) interaction indices we refer to Fruth et al. (2014).
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The ANOVA decomposition for correlated inputs is studied in (Rahman, 2014; Li and

Rabitz, 2012).

2.2.3 Global sensitivity measures: a common rationale

In a variance-based sensitivity analysis (Ratto et al., 2007), the intuition is to quantify

statistical dependence as the expected reduction in model output variance due to fixing

input Xi. Following this intuition, we can define the expected reduction in simulator

output variance as (Homma and Saltelli, 1996):

ηi = E
[
V[Y ]− V[Y |Xi]

V[Y ]

]
=

V[Y ]− E[V[Y |Xi]]

V[Y ]
=

V[E[Y |Xi]]

V[Y ]
, (2.16)

where V[Y |Xi] represents the variance of Y given that Xi is fixed. The definition of ηi in

Eq. (2.16) is equivalent to the first-order Sobol’ indices Si in Eq. (2.14) when inputs are

mutually independent. Borgonovo et al. (2016) point out that the rationale at the basis of

variance-based sensitivity measures is common to other sensitivity measures. Eq. (2.16)

can be seen as a measure of the separation between the marginal model output distribu-

tion (PY ) and the conditional model (PY |Xi=xi) output distribution given Xi in terms of

variance reduction. In general, we can consider ζ(PY ,PY |Xi=xi) a (discrepancy) operator

between probability measures over Y , which is evaluated at the marginal-conditional pair

PY and PY |Xi=xi . The expectation of a measure of discrepancy:

ξi := E[ζ(PY ,PY |Xi
)], (2.17)

where the expectation is calculated with respect to the marginal distribution of Xi, is

called the probabilistic sensitivity measure of Xi with inner operator ζ (Borgonovo et al.,

2014). In order to be a sensible measure of the discrepancy between PY and PY |Xi=xi ,

the operator ζ(·, ·) is required to be null when the two distributions are identical, i.e.

ζ(P,P) = 0.

We denote the joint cumulative distribution function of the inputs by FX, if the density

exists, we denote the joint density as fX, and the marginal cdf and pdf of Xi as FXi
and

fXi
.The cdf and pdf of the model output are denoted by FY and fY , respectively. Examples

of inner operators used in the literature are:

ζV (PY ,PY |Xi
) =

V[Y ]− V[Y |Xi]

V[Y ]
, (2.18)

for variance-based sensitivity measures (Homma and Saltelli, 1996), the L1-distance be-
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tween density functions,

ζL1(PY ,PY |Xi
) =

∫

Y
| fY (y)− fY |Xi

(y|Xi) | dy, (2.19)

for the δ-importance measure (Borgonovo, 2007), the Kolmogorov-Smirnov (KS) distance

between cdfs in the PAWN method (Pianosi and Wagener, 2015),

ζKS(PY ,PY |Xi
) = sup

Y
| FY (y)− FY |Xi

(y|Xi) |, (2.20)

or the Kuiper distance in Baucells and Borgonovo (2013),

ζKU(PY ,PY |Xi
) = sup

Y

(
FY − FY |Xi

)
+ sup

Y

(
FY |Xi

− FY
)
. (2.21)

Baucells and Borgonovo (2013) and Borgonovo et al. (2014) discuss the use of distances

between cumulative distribution functions in sensitivity analysis proposing a general def-

inition of which Eqs. (2.20) and (2.21) are particular cases. Kuiper (1960) underlines

that some limitations associated with the KS distance can be overcome by its modifi-

cation in the Kuiper metric. In particular, the Kuiper distance “puts all percentiles on

equal footing ”(Crnkovic and Drachman, 1996, p. 140). Alternative choices of ζ lead to

different global sensitivity measures. For instance, in the PAWN method (Pianosi and

Wagener, 2015) the inner operator is the Kolmogorov-Smirnov distance between cumula-

tive distribution functions and the statistic is the median. The variance-based sensitivity

measure is obtained by taking the expectation of Eq. (2.18); similarly, δi, β
KS
i and βKUi

can be obtained by taking the expectation of Eqs. (2.19), (2.20) and (2.21) respectively

(Borgonovo et al., 2016):

δi =
1

2
EXi

[∫

Y
| fY (y)− fY |Xi

(y|Xi) | dy
]
, (2.22)

βKSi = EXi

[
sup
Y

∣∣FY (y)− FY |Xi
(y)
∣∣
]
, (2.23)

βKUi = EXi

[
sup
Y

(
FY − FY |Xi

)
+ sup

Y

(
FY |Xi

− FY
)]
. (2.24)

2.2.4 Properties of global sensitivity measures

In this section, we limit ourselves to two important properties: nullity-implies-independence

and monotonic transformation invariance.

The nullity-implies-independence property, is also known as Rényi’s postulate D for

measures of statistical dependence (Renyi, 1959). This property is relevant in measuring

statistical dependence and is defined in such a way that a null value of a global sensitivity
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measure reassures the analyst that Y is independent of Xi. This is not necessarily true

in general. For instance, although variance-based sensitivity measures are widely-used

in the literature, they do not possess this property. Plischke et al. (2013, proposition 1)

consider functions of the form

y = g(x) = a(xu)h(xj) + b(xu′ ),with u ∪ {j} ∪ u
′
= {1 . . . k}, (2.25)

where j /∈ u ∪ u
′

and u ∩ u
′

= ∅. Then if E[h(Xj)] = 0, the first-order indices ηi of Eq.

(2.25) are all zeros for any i ∈ u. That is, for a function of the form in Eq. (2.25), even

if Y is statistically dependent on Xu, such dependence is not revealed by ηi (Note that

the total indices STi account for interactions). A widely studied example named Ishigami

function (Ishigami and Homma, 1990; Saltelli et al., 2004) falls in this family of functions

Y = sinX1 + 7 sin2X2 + 0.1(X3)
4 sinX1 =

(
1 + 0.1(X3)

4
)

sinX1 + 7 sin2X2 (2.26)

with u = {3}, j = 1.

A second relevant property is monotonic transformation invariance. This property is

particularly useful for estimation, because transformation of the output (typically a log-

arithmic or a rank transformation) is shown to accelerate numerical convergence in some

cases(Borgonovo et al., 2014). To illustrate, let us denote by ξ(Y ) a generic sensitivity

measures calculated on output Y , by ξ(T ) the same sensitivity measure calculated on

the transformed output T = t(Y ), where t(·) is a monotonically increasing (decreasing)

function, e.g. T = log(Y ). We say that a global sensitivity measure ξi is monotonic trans-

formation invariant, if ξi(Y ) is equal to ξi(T ). Clearly, issues emerge if one transforms the

output but then uses a sensitivity measure which is not transformation invariant, since

the results obtained on the transformed scale might not be directly transferred back to

the original scale. This problem is, of course, avoided if one uses a transformation in-

variant sensitivity measure. Borgonovo et al. (2014) offer some analytical examples that

demonstrate the issues caused by the use of transformations. For example, they consider

a model

Y = exp(X1 + 2X2) with X1, X2
iid∼ N (0, 1).

The above function contains interactions, with a second order interaction effect S1,2(Y ) =

0.625. After a logarithmic transformation on Y , S1,2(T ) becomes zero, because the trans-

formed model becomes additive. Thus, information about interactions in the model struc-

ture is different before and after the transformation.

Furthermore, transformations can also cause rank reversals. If one considers the following
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function (Borgonovo et al., 2014)

Y = X1(3 +XX3
2 ) with X1 ∼ U(1, 100), X2 ∼ U(400, 600), X3 ∼ U(0.5, 1),

where U(a, b) stands for a uniform distribution over interval [a, b], one has S3(Y ) = 0.54 >

S1(Y ) = 0.26. This result indicates that X3 is significantly more influential than X1.

However, after a logarithmic transformation, one obtains S3(T ) = 0.486 < S1(T ) = 0.499,

so that X3 appears less influential than X1 after the transformation. The problem of rank

reversal is avoided if one uses a transformation invariant sensitivity measure.

The properties of a global sensitivity measure are strictly related to the choice of the

inner operator ζ(·, ·) in Eq. (2.17). Generally, if one chooses an inner operator based

on the family of Csiszár divergences, or f-divergences (Rahman, 2016), one is reassured

to obtain a sensitivity measure that possesses both the nullity-implies-independence and

the transformation invariance properties. All global sensitivity measures mentioned so

far, with the exception of variance-based sensitivity measures, i.e. δi, β
KS
i , βKUi , possess

the nullity-implies-independence and monotonic transformation invariant properties. We

refer to Borgonovo et al. (2014) and Borgonovo et al. (2016) for further details.

2.2.5 Estimation of global sensitivity measures

The estimation of global sensitivity measures is a challenging task. The most intuitive

way is to adopt a brute force approach, where estimators are defined strictly following

the definition in Eq. (2.17). The brute force method involves a Monte Carlo estimation

of the outer expectation with next simulation runs in Eq. (2.17), and additional nint runs

for calculation of the inner statistics. Specifically, for each i, next samples of Xi from its

marginal and for each of those, nint simulations of X−i from PX−i
leading to the total

number of model evaluations CBF = k · next · nint.
The advantage of the brute force approach is that, under unbiased estimation of the

required distributions, it leads to unbiased estimators. However, when inputs are not

independent, sampling from the conditional distributions fX−i|Xi=xi may not be feasible.

In fact, fX−i|Xi=xi may not be available. Even if we have a closed form for fX−i|Xi=xi ,

sampling from it can also be challenging due to its complexity. Techniques like importance

sampling or Gibbs sampling can be adopted, however, the implementation of a brute force

approach in the presence of dependence might be cumbersome. Another disadvantage

of a brute force approach is the associated computational cost. Because several global

sensitivity measures require the estimation of a density or of a cdf, next and nint need to

be sufficiently large. Previous studies consider next and nint of the order of hundreds or

thousands of simulation evaluations, with an overall computational cost of hundreds of
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thousands simulator runs. For computationally intensive simulators, the calculation of

global sensitivity measures then becomes infeasible. Resorting to an emulator 4 becomes

the only way by which an analyst can compute global sensitivity measures (see Ratto and

Pagano (2010); Borgonovo et al. (2012) among others).

In the literature, researchers have devoted efforts to the creation of designs that may

abate such computational costs. Investigators have tackled the estimation of variance-

based sensitivity measures since the late 1990’s. For instance, Saltelli et al. (1999); Saltelli

(2002b) introduce the extended Fourier amplitude sensitivity test (FAST) method which

enables the estimation of variance-based sensitivity measures at a cost of C = kn sim-

ulation runs. Recently, the given-data (or one-sample) approach has been a subject of

investigation, because it has the potential of abating the computational cost to n simu-

lation runs. A given-data design is not specific to a particular sensitivity measure, but is

suitable for any sensitivity measure in the form of Eq. (2.17) (Borgonovo et al., 2016). The

principle can be dated back to Pearson (1905) and is illustrated as follows. Given a size

n dataset of input-output realizations denote by Data = {(xj, yj) : j = 1, . . . n}, where

xj = (xj1, . . . , x
j
k); the subscript stands for the i-th input, and the superscript for the j-th

realization, one first partitions the support of Xi into M bins {Xm
i ,m = 1 . . .M}; The

key-intuition is then to use the bin conditions P̂Y|Xi∈Xm
i

instead of the point conditions

P̂Y|Xi=xi in the estimator.

The given-data approach provides two main advantages. First, it allows to post-process

the sample so that several sensitivity measures can then be estimated simultaneously.

Second, nominally, the given-data approach reduces the computational cost to n model

evaluations, and the computational cost is independent of the number of inputs. In

particular, one may want to discuss the efficiency under a limited budget of model runs.

Suppose that the minimum budget of other estimators except for the given-data is k ×
nothers(k), where n depends on the number of input dimensions k. To make given-data

estimator less efficient than other estimators, one should have that, for reaching the same

level of accuracy, ngiven−data(k) >> k × nothers(k). This implies that we have nothers <<

ngiven−data/k. Suppose k is of the order of 100 (in this thesis, simulators with k=40,000

were addressed), then, a method whose cost depends on k should be capable of reaching

the same accuracy as a given data approach with nother = ngiven−data/100. Intuitively,

this seems a difficult condition to be reached, especially if the output of the simulator

is sparse. For example, if the budget is n = 10000, applying a given-data estimator

one would use all model runs for each input. If now one uses a double-loop estimator,

assuming there are 10 inputs, then one has only 10 points for each inner loop, which

is hardly more ‘efficient’ than the given-data estimator, unless the experiment design is

super perfect for the problem. Therefore, nominally, the computational cost of given-data

4Emulator is also called metamodel, or surrogate model in this work, see Section 2.3 for a brief
discussion.
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estimation is independent to the number of inputs. Given-data (or one-sample) estimators

have been successfully applied for the computation of variance-based (Strong et al., 2012),

value of information (Strong and Oakley, 2013) and other sensitivity measures, such as

δi, β
KS
i , βKUi (Plischke et al., 2013; Borgonovo et al., 2014). In Plischke et al. (2013) the

analysis is conducted for an 800 input model, while in Plischke and Borgonovo (2017) for

a 30, 000 input simulator.

The estimation of global sensitivity measures is one of main focuses of this thesis,

therefore, a separate section in Chapter 4 is devoted to the discussion in greater details.

2.3 Meta-models

Meta-modeling techniques have been developed across disciplines, ranging from statistics

and mathematics, to engineering and machine learning. Analysts use meta-models as

surrogates of the time-consuming computer code to reduce the overall computational

burden.

In the literature, meta-modeling plays a role in various research areas. For example, in

design space exploration, the analyst works with a cheap-to-run meta-model to explore the

design space in order to enhance the understanding of the design problem (Simpson et al.,

2001; Kleijnen, 2017). In an optimization problem, the analyst may reduce the search

range by the assistance of a meta-model. In sensitivity analysis, the analyst can extract

the input-output insights through a computationally cheap surrogate model instead of

directly using the expensive simulator (Borgonovo et al., 2012).

Meta-model approximation or meta-modeling is the key to emulation-based applica-

tions. In this thesis, meta-modeling refers to the mathematical discipline that has an

interest in emulating the statistical input-output mapping from a set of observations and

a limited set of prior assumptions. In machine learning, it is often known as supervised

learning (Williams and Rasmussen, 2006) 5. Supervised learning is generally divided into

two categories based on the nature of the output, namely, regression and classification. In

regression problems, the output is continuous, while in classification problems, the output

takes value in a discrete set of labels. In this thesis, we focus on regression problems.

There exists a wide variety of emulators for regression problems. One of the best-

known methods is generalized linear regression. Numerous studies have contributed to

the use of linear regression to construct emulators, and we refer to the monographs of

Kutner et al. (1996) and Chatterjee and Hadi (2006). Neural networks are also popular

emulators, see Rojas (1996); LeCun et al. (2015); Lampinen and Vehtari (2001); Ripley

5Unsupervised learning refers to the discipline that has interest in building statistical models for
inputs, but without any supervision of outputs/targets.
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(1994). Polynomial chaos expansion is another popular method and we refer the readers

to Blatman and Sudret (2010); Sudret (2008); Schobi et al. (2015) for reviews. Other

types of emulators include smoothing spline ANOVA meta-models (Ratto et al., 2007),

radial basis functions (RBF) (Dyn et al., 1986; Fang and Horstemeyer, 2006), multivariate

adaptive regression splines (MARS) (Friedman, 1991), support vector regressions (SVR)

(Clarke et al., 2005) etc. Sacks et al. (1989) introduce the use of Kriging meta-modeling.

In Kriging, the deterministic output response is considered as a realization of a Gaussian

process. We refer to Chapter 5 of this thesis, which is devoted to the development of a

fast Kriging method, for further details.

Researchers have developed various types of fitting methods in the literature. Each

meta-model often has its associated fitting method. For instance, the (weighted) least

square method is frequently used for generalized linear regression; the best linear unbiased

predictor (BLUP) is usually preferred for Kriging; back propagation is used for artificial

neural networks. We refer to Simpson et al. (2001) and Wang (2007) for a detailed review

of common fitting methods.

Meta-model validation is an essential step before the fitted surrogate model can be

used. Two classes of commonly used methods are in-sample cross-validation and out-

of-sample validation. The p-fold cross-validation belongs to the first class, the idea is

as follows: one first divides the training set into p subsets, then fits the meta-model p

times, each time, leaving one of the subsets out of training and using the omitted subset

to compute the fitting error Meckesheimer et al. (2002). The leave-q-out method is a

variation of p-fold cross-validation, where all possible subsets of size q are considered. The

out-of-sample validation employs additional points to measure the meta-model accuracy,

e.g. the root mean square error (RMSE), the maximum absolute error (MAX) and the

coefficient of determination (also known as R2). RMSE is used to measure the overall

accuracy of the meta-model, while MAX focuses on the local accuracy.

One can work with meta-models by adopting different strategies. The most commonly

adopted strategy is to first fit a meta-model, then use the fitted emulator to replace the

computationally expensive simulator (Borgonovo et al., 2012). Another popular strategy

involves an iterative process with validation or optimization steps in the loop to decide

the re-sampling or re-fitting. At each iteration, a new sample is generated, and the meta-

model is updated to improve or maintain the model accuracy (Jones et al., 1998). These

sampling approaches are often called ‘batch’, sequential/ adaptive sampling approaches.

The literature on emulators is broad and cannot be exhaustively developed in this

section. We refer to Wang and Shi (2013); Wang (2007) for meta-modeling techniques in

optimization problems, to Kleijnen (2017) for a review of meta-modeling from a design

of experiments perspective, to Simpson et al. (2001) for an empirical comparison of the

performance of alternative meta-models, and to the monographs of Santner et al. (2003);

Hastie et al. (2009) and Williams and Rasmussen (2006).
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Chapter 3

Sensitivity analysis of complex

hydrological simulators

This chapter investigates sensitivity analysis methods for gaining greater insight from

hydrological simulation runs conducted for uncertainty quantification and model differ-

entiation. We frame the sensitivity analysis questions in terms of the main purposes of

sensitivity analysis: parameter (factor) prioritisation, trend identification and interac-

tion quantification. For parameter prioritisation, we consider variance-based sensitivity

measures, sensitivity indices based on the L1-distance, the Kuiper metric and the sen-

sitivity indices of the DELSA methods. For trend identification, we investigate insights

derived from graphing the one-way ANOVA sensitivity functions, the recently introduced

CUSUNORO plots and derivative scatter plots. For interaction quantification, we con-

sider information delivered by variance-based sensitivity indices. In this work, we apply

the so-called given-data principle, which allows one to perform the above analyses from

a set of simulation runs. Therefore, one avoids using specific designs for each insight,

thus controlling the computational burden. The methodology is applied to a hydrological

simulator of a river in Belgium simulated using the well established Framework for Under-

standing Structural Errors (FUSE) on five alternative configurations. The findings show

that the integration of the chosen methods provides insights unavailable in most other

analyses.

This chapter contains joint work with Emanuele Borgonovo, Mary C. Hill, Elmar Plis-

chke, and Oldrich Rakovec, and is based on Borgonovo et al. (2017).
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3.1 Motivation

This study focuses on sensitivity analysis of hydrological models 1, which are used to

analyze water shortage (drought), water excess (flood), water quality (contamination of

drinking water and/or crops), and river dynamics (erosion). These can cause large socio-

economic damage and ways to prevent such damage are of intense interest. Computer

models are developed with the hope of adequately representing the real world complexity

of rainfall-runoff processes in hydrology catchments, the contributing areas from which a

given stream/river derives its flow. In this context, Gupta et al. (2012); Foglia et al. (2013)

adequately suggest a level of accuracy that makes model results useful for managing the

system being simulated. Model inputs/parameters generally cannot be directly measured

in nature with sufficient accuracy, and therefore are commonly estimated through inverse

modeling — see, among others Duan et al. (1992); La Vigna et al. (2016). The process has

inherent uncertainty, and measures of uncertainty commonly accompany any modeling

analysis (e.g., Pappenberger and Beven, 2006; Montanari, 2007; Beven, 2011; Nearing

et al., 2016). Sensitivity analysis is conducted to understand the relation between inputs

and outputs and to obtain insights in what often is a complicated model input-output

mapping (Hill and Tiedeman, 2007; Saltelli et al., 2008; Rosero et al., 2010; Mendoza

et al., 2015; Norton, 2015; Hill et al., 2016; Pianosi et al., 2016; Razavi and Gupta, 2016a;

Markstrom et al., 2016; Houle et al., 2017). These discoveries help the analyst to use

simulated values appropriately in planning, risk assessment, and decision support.

In the simulation of environmental/hydrologic systems, the plethora of sensitivity

analysis methods that have been developed causes confusion and for many of the methods

execution times can be colossal (e.g., Hill et al., 2016, and references cited therein). All

this recommends careful consideration of the necessary model runs and how they are used.

Of interest are studies that explore how a set of model runs can be used to obtain relevant

and varied insights. In this work we consider the utility of a set of sensitivity analysis

methods.

Our approach rests on two main pillars: clearly stating the sensitivity analysis goals

from the start and controlling the computational burden.Regarding goals, we make use of

the methodology of sensitivity analysis settings. “A setting is used to frame the sensitiv-

ity quest in such a way that the answer can be confidently entrusted to a well-identified

measure”(Saltelli et al., 2008, p. 24). We consider the following three sensitivity settings

which have emerged from previous sensitivity analysis studies: parameter prioritisation

(Ratto et al., 2007), trend identification and interaction quantification — see, among oth-

ers Borgonovo and Plischke (2016)). These settings can be used at different stages of the

modeling process. Saltelli et al. (2000) and Hill and Tiedeman (2007) emphasize the role

1In this chapter, following the conventions in hydrological modeling, the word ‘model’ refers to the
simulator/computer code, and the word ‘parameter’ refers to an input or input factor.
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of sensitivity analysis throughout model development, starting with the model building

phase. Ratto et al. (2007) discuss the role of sensitivity analysis to support calibration

and validation. As an example, consider using the root mean square error (RMSE) as

the quantity of interest. RMSE measures the distance between the model predictions

and the actual physical measurements. In factor prioritisation, using RMSE as the quan-

tity of interest produces results that can guide the determination of which parameters

matter the most and least in calibration. Once these are identified, trend identification

is used to understand further whether the dependence of RMSE is monotonic or not on

the parameters. Interaction quantification, as specified in Ratto et al. (2007) helps with

identifiability: parameters associated with high individual contribution are more easily

identified than parameters owing their importance to interaction effects. Ratto et al.

(2007, p. 1254) point out that “Small main effect but high total effect: here, such a situ-

ation flags an influence mainly through interaction, implying lack of identification”. Also

see Hill and Tiedeman (2007), where they discuss the high composite scaled sensitivities

and large parameter correlation coefficients.

We aim to conduct sensitivity analyses that deliver insights on these sensitivity settings

simultaneously while keeping computational burden under control. We propose combining

a given-data approach for the estimation of global sensitivity measures (Plischke et al.,

2013) with the hybrid local-global method DELSA (Rakovec et al., 2014). A given-data

approach allows us to exploit the dataset generated for uncertainty quantification to

calculate a variety of global sensitivity measures. We then integrate the insights of global

methods with the indications yielded by a method capable of extracting information from

the partial derivatives dataset.

Table 3.1: Summary of the settings and sensitivity methods used in this chapter.

Setting/Name Symbol Equation
Parameter Prioritization
First-order Sobol’ ηi, Si Eq.(2.16), Eq. (2.14)
Borgonovo’s δ δi Eq.(2.22)
Kuiper-based βKU Eq.(2.24)
DELSA SLi Eq.(3.4)b

Trend Identification

Partial Derivatives ∂g
∂xi

Eq. (3.8)b

Main effect functions gi(xi) Eq.(2.10)
CUSUNORO ci(u) Eq.(3.5)
Interaction Quantification
Sum of First order sensitivity Indices
Higher order variance-based indices Si,j, STi,. . . Eq. (2.13), Eq. (2.15)

b calculated using local derivatives obtained at distributed points in the parameter space

Our approach addresses each sensitivity setting using multiple sensitivity measures.
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This is important because any single sensitivity method refers to a particular aspect of the

model output response, has theoretical limitations and, moreover, numerical errors might

affect the estimates at finite sample sizes. Thus, by relying on an ensemble of sensitivity

measures that can be simultaneously estimated, one increases the robustness of the infer-

ence without augmenting the computational burden. For parameter prioritisation, we rely

on first-order Sobol’ indices 2, on the δ-importance measure (Borgonovo, 2007), on a sen-

sitivity measure based on the Kuiper metric, a modification of the Kolmogorov-Smirnov

distance (Kuiper, 1960; Baucells and Borgonovo, 2013) and on a linearized variance index

of the DELSA method — see Table 3.1. Note that if the goal of the analysis is model

calibration, some sensitivity measures may be preferable. For example, if the objective

of the calibration is to minimize the RMSE via gradient/descent method, one may be

more interested in looking at the derivative-based sensitivity measures, specially when

the uncertain inputs are the same variables on which one is optimizing.

For trend identification, we make use of alternative visualization tools to display results

in an intuitive and easy-to-grasp fashion. Because partial derivatives are the natural sen-

sitivity measures for trend identification, we also use them in this work to create derivative

scatter plots (D-scatterplot) jointly with the graphs of the global main effect functions of

the functional ANOVA expansion and the cumulative sum of normalized reordered output

(CUSUNORO) (Plischke, 2010) plots. Indeed, these last two visualization methods do not

require partial derivatives, accommodating the case in which the model execution time

does not allow the analyst to produce a partial derivatives dataset. Furthermore, we dis-

cuss ways to profit from the derivative dataset to analyse the regional contribution of the

uncertain parameters. In this case, our goal is to identify whether the importance of a pa-

rameter is concentrated in particular ranges of its support (in Ratto et al. (2007), regional

sensitivity analysis is associated with a fourth setting, factor mapping). For interaction

quantification, we use the second-order effects Si,j, which are estimated using Polynomial

Chaos Expansion (PCE) (Sudret, 2008; Marelli and Sudret, 2015), HDMR (Ziehn and

Tomlin, 2009) and LASI (a subroutine based on high dimensional model representations

described Section 3.3.2).

We demonstrate the approach by conducting numerical experiments within the well-

established hydrologic modelling framework for understanding structural errors (FUSE)

(Clark et al., 2008). This framework was the first in the hydrologic sciences to be de-

signed specifically to support consideration of alternative working hypotheses (also called

alternative models or multi model analysis) (Clark et al., 2011). We provide results for a

medium-sized basin situated in the hilly parts of the Belgian Ardennes (Western Europe).

We start with a reference configuration (FUSE-016) and then compare it with other four

2Note that one can alos compute the total-order indices for parameter prioritisation. However, their
estimation from a given-sample is less convenient than individual global sensitivity indices, thus we
consider first-order Sobol indices in this work.
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alternative structure configurations while studying the sensitivity of the model RMSE to

variations in the parameters. The sensitivity methods allow us to confidently identify the

key drivers of RMSE variability across the configurations, to establish whether RMSE is

increasing or decreasing in the parameters and to identify the presence of interactions.

The sensitivity analysis insights of this work will be broadly applicable for the next

generation modeling frameworks, such as the structure for unifying multiple modeling

alternatives (SUMMA) in Clark et al. (2015) and Clark et al. (2015) and the ongoing

community-based efforts on parameter regionalization schemes of hydrology/land-surface

models (e.g., Mizukami et al., 2017; Samaniego et al., 2017). They also have considerable

utility for climate models and other environmental systems (e.g., Mendoza et al., 2015;

Cuntz et al., 2015).

The remainder of the chapter is organized as follows. Section 3.2 reviews the sensitiv-

ity analysis methods used in correspondence of each setting. Model results are presented

in and discussed in Sections 3.4 and 3.5 respectively.

3.2 Methods I: review, definitions and properties

This section is organized as follows. Section 3.2.1 offers a literature review of the use

of sensitivity analysis in hydrological modeling. In parameter prioritisation, the analyst

aims to identify the most influential input parameters. Sensitivity measures, either global

or local, can be used for such identification. Sections 3.2.2, 2.2.2, 2.2.3 and 2.2.4 of Chap-

ter 2 describe the commonly used sensitivity measures in the literature. Section 3.2.3

presents the sensitivity methods associated with the setting trend identification; Section

3.2.4 illustrates the methods for interaction quantification. The notation in this chapter

is consistent with that used in Chapter 2.

3.2.1 Concise literature review

In the last decade, the work of many researchers has contributed to make sensitivity anal-

ysis a key ingredient of modelling in the hydrologic, environmental and climate change

sectors. Pianosi and Wagener (2015), Razavi and Gupta (2016b) and Hill et al. (2016)

present recent overviews on environmental and hydrological applications of sensitivity

analysis. The works of Saltelli et al. (2012) , Borgonovo and Plischke (2016), Razavi

and Gupta (2016b) and Ghanem et al. (2016) provide broad overviews with applications

also in other fields. We limit our review to works which are relevant to ours. We start

with Pappenberger and Beven (2006), who strongly underline the importance of prop-

erly quantifying uncertainty in hydrological modelling, using global sensitivity analysis
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methods. The potential of global sensitivity analysis methods in hydrological modelling

is further illustrated in Ratto et al. (2007), who performed sensitivity analysis in the

context of model calibration and validation, using the generalized likelihood uncertainty

estimation (GLUE) method (Beven and Binley, 1992). They perform global sensitiv-

ity analysis within the settings of factor prioritisation using variance-based methods and

including the elementary effect test of the Morris method (Morris, 1991).

Cloke et al. (2008) are among the first to apply global sensitivity analysis in the context

of a complex hydrological model. This work relies on variance-based sensitivity measures

and focuses on factor prioritisation. Pappenberger et al. (2008) compare five different

methods with a focus on factor prioriziation for the one-dimensional indundation model

of the Alzette River basin in Luxembourg. The compared methods are variance-based

sensitivity measures (Homma and Saltelli, 1996), Kulback-Leibler entropy (Critchfield

and Willard, 1986), the Morris Method, regionalized sensitivity analysis (Young, 1999)

and regression (Storlie et al., 2009). The work concludes that alternative methods lead

to completely different parameter rankings and it is not possible to draw a firm infer-

ence about the key drivers. Tang et al. (2007) compare four sensitivity analysis methods,

namely, differential sensitivity, regional sensitivity, analysis of variance and variance-based

sensitivity analysis for factor prioritisation of watershed models, concluding that the anal-

ysis of variance and Sobol’ methods yield more stable rankings. Tang et al. (2007) em-

ploy variance-based sensitivity methods for parameter raking in distributed rainfall-runoff

models. van Werkhoven et al. (2009) use variance-based sensitivity measures for param-

eter prioritisation in the context of multi-objective calibration of watershed models. In

Dobler and Pappenberger (2013), the authors compare model parameter sensitivity rank-

ings obtained from the Morris method, regional sensitivity analysis and variance-based

sensitivity measures calculated using the state-dependent parameter meta-modeling ap-

proach — see Ratto and Pagano (2010) for details. Similarly to ours, these works utilize

alternative methods for the identification of key drivers of uncertainty. Differently from

ours, these works focus mainly on factor prioritisation, and use specific designs for each

of the proposed methods — as, indeed, the given-data methodology was not yet fully

developed.

To quantify interactions, Rosero et al. (2010) use first and total order variance-based

sensitivity indices. Identifying interactions is crucial in hydrological/land surface studies

to shed additional light on the underlying phenomena to improve model realism. On the

one hand, from the modeler’s point of view, parameter interactions may be unwarranted

and appear to deteriorate the overall model realism, implying that the model structure

can become over-parameterized and parameters unidentifiable (e.g., Rosero et al., 2010;

Foglia et al., 2013). Similar findings were recently also discussed by Houle et al. (2017) for

two snow models of varying complexities and different degrees of physical realism. On the

other hand, parameter interactions may be unavoidable in complex environmental models,

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



29

and maybe intrinsic in the physics of the phenomena under investigation (Markstrom

et al., 2016). Hill et al. (2016) compare global and differential methods for identifying

parameter interactions.

While the works cited so far focus mainly on variance-based sensitivity measures, re-

cently, moment independent methods have become of interest, for their ability to solve

some of the limitations associated with variance-based sensitivity measures (moment-

independent sensitivity methods derive their name from Borgonovo and Tarantola (2008)

who compare them in the context of chemical models with correlated inputs). In par-

ticular, first order variance-based sensitivity measures do not possess the nullity-implies

independence property (Note that this limitation is addressed by the total-order Sobol

indices.). That property is relevant in parameter prioritisation, where we want to be re-

assured that a null value of a global sensitivity measure implies that the parameter may

not play a role in the model. In the environmental sciences, the δ-importance measure of

(Borgonovo, 2007; Borgonovo et al., 2012) and the PAWN method of Pianosi and Wagener

(2015) have been subject of investigation. Khorashadi Zadeh et al. (2017) provide a re-

cent comparison between variance-based and moment-independent methods. We refer to

Section 2.2.3 for details on the common rationale encompassing several global sensitivity

measures including variance-based and moment independent methods.

3.2.2 Methods based on semi-local and local sensitivities

3 The class of differentiation-based (derivative-based) sensitivity measures is regarded as

a class of sensitivity measures in a factor fixing setting. Sobol’ and Kucherenko (2009)

define:

νDGSMi = EXi

[(
∂g

∂xi

)2
]
. (3.1)

The sensitivity measure in Eq. (3.1) is equal to the average of the square of partial

derivatives evaluated at randomized locations in the parameter space. In particular, the

DELSA method of Rakovec et al. (2014) combines methodological properties from three

other methods: the method of Morris (Morris, 1991), the Sobol’ method (Sobol, 2001),

and regional sensitivity analysis (Hornberger and Spear, 1981). DELSA uses the local

equation for variance estimation VL (Seber and Wild, 1989; Draper and Smith, 1998;

Aster et al., 2013; Lu et al., 2012):

VL =

(
∂g

∂x

)T
(XTωX)−1

(
∂g

∂x

)
, (3.2)

3The ’semi-local’ method refers to a hybrid local-global method.
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which linearly propagates the parameter uncertainty expressed by (XTωX)−1 to obtain

the variance of the output — see Appendix A in Rakovec et al. (2014) for additional

mathematical details. In Eq.(3.2), we define X as a k × k identity matrix and ω is

estimated as the reciprocal variance of the uniform distribution from the parameter prior

ranges. Then, the total linearized local variance VL becomes

VL =
k∑

i=1

(
∂g

∂xi

)2

σ2
Xi
, (3.3)

where σ2
Xi

is the priori variance of the i-th input. Finally, the DELSA first-order sensitivity

measure of the ith parameter is calculated at each sampling point as:

SLi =

(
∂g
∂xi

)2
σ2
Xi

VL
. (3.4)

Eq. (3.4) is the local fraction of the linearized variance of Y apportioned by Xi. The

DELSA indices SLi are calculated at randomized locations throughout input space. The

analyst can then consider the empirical distribution of these sensitivity measures or any

other statistical property for making inference. For instance, the median of the sample of

SLi is considered in Rakovec et al. (2014) for factor prioritization.

3.2.3 Trend identification: sensitivity measures

In the trend identification setting, we address an essential insight about model behavior,

the need to understand whether an increase (decrease) in a parameter leads to an increase

(decrease) in the model output. The importance of this setting has been appreciated since

the seminal work of Samuelson (1941, p. 97):“In order for the analysis to be useful it must

provide information concerning the way in which our equilibrium quantities will change

as a result of changes in the parameters taken as independent data.”As also underlined in

Samuelson’s work, the appropriate sensitivity measures for this task are signs of partial

derivatives. As we shall see, an efficient visualization tool is a derivative scatter plot. If

a derivative dataset is not available, we argue that one can make use of the following two

methods to still obtain information on trend identification: visualization of the first order

terms of the functional ANOVA expansion and use of the CUSUNORO plot. Let us start

with the former first-order terms.

The first order functions gi(xi) in Eq. (2.10) can be used to obtain information about

sign of change. By definition, gi(xi) is the conditional expectation of Y given Xi = xi.

Thus, gi(xi) conveys the average behavior of Y as a function of xi. Moreover, the first

order effect function gi(xi) retains the monotonicity of the original input-output mapping
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(Beccacece and Borgonovo, 2011). That is, if g(x) is increasing, then all the gi(xi)
′s are

increasing. Then, the visualization of the graphs of the first order effect functions provides

an indication about the expected trend of Y as a function of xi.

The CUSUNORO curve for parameter Xi is given for u ∈ [0, 1] by:

ci(u) =
u√
V[Y ]

E
[
Y − E[Y ]

∣∣Xi ≤ F−1Xi
(u)
]

=
1√
V[Y ]

∫ F−1
Xi

(u)

−∞
E [Y − E[Y ]|Xi = x] dx

(3.5)

By construction, it is a curve with ci(0) = 0 and ci(1) = 0. The curve ci(u) dis-

plays the average mean of the standardized output when the associated parameter is less

than a given quantile u. We may therefore speak of a partial mean to the left (given

by FXi
(x)E[Y − E[Y ]|Xi ≤ x] in contrast to the conditional mean to the left given by

E[Y − E[Y ]|Xi ≤ x]) and note that due to standardization, this mean to the left and

the corresponding mean to the right add up to zero (Plischke, 2010). If the model is an

increasing function of Xi, then the partial mean to the left is always lagging behind the

global mean. Therefore, the CUSUNORO curve is negative for all values of u. Conversely,

if the model is decreasing in Xi, then the CUSUNORO curve is positive for all values of

u. It can also be proven that if there exists a linear regression curve with respect to the

estimated cdf of the parameters

E[Y − E[Y ]|F̂Xi
(Xi) = u] = α(u− 1

2
) (3.6)

the CUSUNORO curve has a local extremum at u0 = 1
2
. Hence any extreme value not

located in the center of the CUSUNORO plot shows a nonlinear dependence between Y

and Xi.

3.2.4 Interaction quantification: sensitivity measures

In an interaction quantification setting, we are interested in understanding whether the

model response is additive or not. If the response is additive, then the variation of the out-

put is the direct sum of the individual effects of the variations in the parameters. Herein,

we aim at studying interactions while remaining in a given-data frame. As underlined in

Saltelli et al. (2000) the quantity

SInteraction = 1−
k∑

i=1

Si (3.7)

can be considered as an indicator of the percentage of the model output variation ap-

portioned by interactions. Because first order variance-based sensitivity indices can be
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estimated from a given-data frame, this quantity SInteraction is also delivered by a given-

data approach. Then, if the sum of Si (or ηi) is close to 1, we are informed that interactions

provide a limited contribution to the model output variation, so that the model response

can be regarded as additive. Otherwise, further investigation on the nature of interactions

is needed. Several methods are available. For instance, one can start investigating the

effects of the interactions of all pairs, through linear inferential measures (Hill and Tiede-

man, 2007; Hill et al., 2016). Herein, we rely on second order Sobol’ sensitivity indices

Si,j - see Section 2.2.2 of Chapter 2 for the mathematical definitions.

Alternative ways are available for estimating second order Sobol’ sensitivity indices

directly from the Monte Carlo sample. We employ here two methods based on the high

dimensional model representation (HDMR) theory, namely, HDMR (Ziehn and Tomlin,

2009) and LASI, see Section 3.3.2 for further details. We compare the two HDMR based

estimations to the estimation method based on PCE (Sudret, 2008; Marelli and Sudret,

2015).

3.3 Methods II: numerical estimation and graphical

representation

3.3.1 Given-data and derivative estimation

We consider that a team of hydrologists has developed a complex hydrological code.

Performing a global uncertainty quantification has produced a sample of input-output

realizations. Here we focus on using this dataset containing n realizations of the input

parameters and the corresponding model output realizations to extract insights on pa-

rameter prioritisation, parameter fixing, trend and interaction quantification. This way

of proceeding, with sensitivity measures estimated directly from the sample generated

for an uncertainty quantification and without a specific design is either called one-sample

estimation or given-data estimation — see Strong et al. (2012), Strong and Oakley (2013),

Plischke et al. (2013), and Borgonovo et al. (2016) for detailed accounts and the related

theory. A cursory review of the principles of this estimation technique is presented in

Section 2.2.5 of Chapter 2 and Section 4.2.1 of Chapter 4.

Because n is unavoidably finite, best practices recommend to assess the error bounds

in the estimates. In this chapter, we use bootstrapping and the bias-reducing bootstrap

estimator of Efron and Gong (1983). The distribution of the bootstrap estimator provides

a convenient way to assess the error bound and does not require additional model runs.

Thus, in a given-data framework, the estimation cost of the sensitivity measures of interest
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is equal to n model runs.

The estimation of partial derivatives is a widely studied subject in the literature. In

the present work, we use the derivatives dataset generated by Rakovec et al. (2014), who

employ Newton’s ratio

̂∂g(x)

∂xi
=
g(xi + h,x0

−i)− g(xi,x
0
−i)

h
. (3.8)

for the computation of partial derivatives. Conveniently, small values of h is used. With

Eq. (3.8), the computational cost for estimating all k first order partial derivatives at

a given location is k + 1 model runs. When this estimation is randomized in the model

parameter space, the computational cost becomes n(k+ 1). We do not indulge further in

the discussion of the computation of partial derivatives as this is a widely discussed sub-

ject. However, we refer to Griewank and Walther (2008); Neidinger (2010) and Peckham

et al. (2016), among others, for additional details.

3.3.2 Estimation of first order and second order indices using

harmonic functions

The main idea for the estimation of variance-based sensitivity indices from given data

is their interpretation as nonlinear goodness-of-fit measures (R2) for suitable regression

models. We therefore populate a design matrix D = [Ψ1(u) . . .ΨM(u)]n×M with the

harmonic feature maps Ψm(u) =
√

2
n

cos(πum) where u = (2`−1
2n

)`=1,...,n. Here n is the

sample size and M is the maximal higher harmonic to consider (usually M = 4 to 8).

The dependence on the factor of interest i enters the regression model by reordering

y using xi as key: there exists a permutation πi such that xπi(`)i ≤ xπi(`+1)i for all ` =

1, . . . , n− 1.

The coefficients from the least squares solution β(i) = D(D∗D)−1D∗yπi yield the first

order estimate Ŝi =
∑M

m=1 β
2
m(i)

(n−M)σ̂2
Y

.

The first order ANOVA functions are given by the graphs linking points (xπi(·)i, ŷi)

with ŷi = ȳ + D∗β(i), i = 1 . . . k. As −Ψ1(u) ≈
√

2
n
(2u − 1) the opposite of the first

coefficient may serve as a monotonic trend indicator.

For second order effects, we mix two design matrices. In order to do so, the as-

sociated reverse permutations on the design matrices is needed, instead of the permu-

tation on y. Let ψi such that ψi(πi(`)) = ` denote the reverse look-up permutation

and Dψi be the design matrix with permuted rows. Then the two-dimensional de-

sign matrix is Dij = Dψi � Dψj where � multiplies each column of the first matrix

with each column of the second matrix, e.g., for M = 2 we have Dij = [Ψ1(uψi) ·
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Ψ1(uψj) Ψ1(uψi) ·Ψ2(uψj) Ψ2(uψi) ·Ψ1(uψj) Ψ2(uψi) ·Ψ2(uψj)]. The regression coefficients

are γ(i, j) = Dij(D
∗
ijDij)

−1D∗ijy and the estimates of the second order indices are given

by Ŝij =
∑M2

m=1 γ
2
m(i,j)

(n−M)2σ̂2
Y

.

3.3.3 Graphical methods and visualization of sensitivity results

Partial derivatives are used for DELSA and for trend identification. This setting is partic-

ularly amenable to a graphical representation of results, and visualization can serve as a

nice bridge between the analyst and the decision maker. We first introduce the construc-

tion of D-scatterplots. In a D-scatterplot one forms a scatter plot of xi and the values of

the partial derivatives of the model output estimated at xi . If the model is monotonically

increasing in xi then the dots of the scatter plot are located only in the first and second

quadrants; if y is monotonically decreasing in xi, then the dots are located only in the

third and fourth quadrants.

Several methods and subroutines are available to estimate and plot fist-order effect

functions from a given-dataset. For instance, the GUI-HDMR Matlab code of Ziehn and

Tomlin (2009) or the routine based on smoothing spline regression of Ratto and Pagano

(2010). Here we make use of the COSI subroutine provided by Plischke (2012), where

mathematical details are provided. The COSI method obtains the graph of the estimated

first order terms gi(xi) from a harmonic regression.

A further way to obtain indications about trend from the uncertainty quantification

sample is to build a CUSUNORO plot. A CUSUNORO curve for model input Xi can be

constructed through the following simple steps:

1. Permute the input parameter of interest (x1, . . . , xn) (the input superscripts i are

omitted) in ascending order (order statistics), so we have xπ(j) < xπ(j+1), j =

1, . . . , n − 1 using the index permutation π, and corresponding re-ordered model

output
{
yπ(j)

}n
j=1

.

2. Calculate the scaled cumulative sums of centered re-ordered output as follows:

z(j) =
1
n

∑j
m=1

(
yπ(m) − ȳ

)
√

1
n−1

∑n
n=1 (yn − ȳ)2

. (3.9)

3. Plot the pairs
(
j
n
, z(j)

)
, j = 1, . . . , n with the convention imposing z(0) = 0.

The above procedure is repeated for each parameter and the CUSUNORO curves are

plotted then in the same graph, yielding the CUSUNORO plot. From this plot, we obtain

insights concerning trend as discussed above.
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Interaction quantification can be very computationally demanding. The first step is

to quantify the sum of first order variance-based sensitivity measures. To calculate higher

order Sobol’ indices, several strategies are available. In a brute force approach, the estima-

tor strictly follows the definition of these sensitivity measures. This requires a double-loop

Monte Carlo simulation approach. In this case, the cost is equal to
(
k
2

)
n model runs. The

computing time may render the estimation impractical, especially if the model evaluations

are time-consuming or if k is large. Researchers have therefore investigated computational

reduction strategies since the late 90’s. For example, Saltelli (2002a) presents a method

in which all first, total and non-normalized second order terms gi,j can be estimated at

a cost of n(2k + 2) model runs. In this work, we estimate all interactions at a cost of n

model runs by building a metamodel to replace the original model, namely, PCE, HDMR

and LASI. A dedicated review of meta-modelling techniques in the hydrological sciences

is discussed in Razavi et al. (2012).

3.4 Application

3.4.1 Hydrological framework

The ensemble of sensitivity methods described in the aforementioned sections is exe-

cuted using a set of models developed to simulate a medium-sized catchment (Lasnenville,

200 km2) located in the Belgian Ardennes (Western Europe). The maritime climate can be

classified as rain-dominated with irregular snow in the winter. The runoff regime is highly

variable with low summer discharges and high winter discharges. The annual precipitation

yields around 1 000 mm and the mean annual air-temperature is 7.5◦C. Mixed-forest and

agricultural areas represent the two dominant land cover classes (Rakovec et al., 2012).

Five models are developed using the Framework for Understanding Structural Errors

(FUSE), a well-established modular framework, which enables the construction of a suite

of hydrological models to rigorously implement and evaluate hydrological theories (Clark

et al., 2008, 2011). The ability of a model to adequately approximate dominant hydrolog-

ical processes depends on (1) the choice of state variable in the unsaturated and saturated

zones, and (2) the choice of flux equations describing the surface runoff, vertical drainage

between soil layers, baseflow and evapotranspiration (Clark et al., 2008).

The vertical dimension of all models is discretized into two reservoirs: the unsaturated

reservoir above the water table (often referred to as soil moisture storage) and the satu-

rated one below the water table (also known as groundwater storage). The outflow of the

two model reservoirs constitutes the total simulated river flow, which is often also called

river discharge and/or streamflow. The model output g used to assess model sensitivity

of this study is an aggregated metric over T daily time steps. The metric g is defined
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to quantify discrepancies between the model and reality (real-world measurements/obser-

vations)as the root-mean-square-error (RMSE) between the simulated streamflow (qsim)

and the observed streamflow (qobs):

g = RMSE =

√√√√ 1

T

T∑

t=1

(qobs,t − qsim,t)2. (3.10)

The FUSE-016 configuration has a “single-layer” architecture for the unsaturated zone,

which does not allow for vertical variability in soil moisture. Evapotranspiration is re-

stricted to the upper unsaturated zone, and is a linear function of the storage between the

wilting point and the field capacity. The FUSE-016 does not allow any vertical drainage

when the saturation is below field capacity. FUSE-016 has a single nonlinear groundwater

reservoir of unlimited size. The surface runoff is conceptualized using the “ARNO/VIC”

parameterization, and the routing schemes employ the time delay function using a gamma

distribution. The FUSE-014 and FUSE-160 models extend the FUSE-016 configuration

by alternative evapotranspiration processes from the unsaturated zone, which is repre-

sented by two cascading reservoirs. The FUSE-072 model enables for vertical drainage

through a non-linear function, which is the only difference with respect to FUSE-016. The

FUSE-170 configuration addresses alternative representations of the base flow parameter-

izations with respect to FUSE-016 by employing two linear groundwater storages. We

refer to Clark et al. (2011) for further details.

The number of parameters for the five FUSE models ranges between 11 and 14 (Clark

et al., 2008; Rakovec et al., 2014). The parameters are summarized in Table 3.2. The pa-

rameters can not be directly measured in nature with sufficient accuracy, and are location-

specific based on the regional climate and physiographic basin properties.

This study makes use of the model simulations at daily time steps presented by

Rakovec et al. (2014) for a 10-year period from 1 October 1998 to 30 September 2008.

The parameter ranges applied in this study are slightly adjusted from Clark et al. (2011).

Note that the sample size n of this study is 9 548, which represents the number of base

model runs for the FUSE-016 model. The difference from the 10 000 runs used in Rakovec

et al. (2014) originates from revising the lower parameter bound for TIMEDELAY from

0.01 to 0.1.

In the reminder of this section, we focus the presentation on results for the FUSE-016

configuration, while the four alternative models FUSE-014, FUSE-160, FUSE-072, and

FUSE-170 are used to assess the robustness of the parameter sensitivity analysis methods

for alternative model structures. Results for these models are described in Section 3.4.5.

Besides, the model outputs, subroutines and datasets can be obtained from the publicly

available repository: https://github.com/rakovec/Making the Most out of a HM Dataset.
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3.4.2 Parameter prioritisation results

With the aim of identifying the most important parameters, we use an ensemble of sensitivity

indices combining indications from variance-based, density-based and cdf-based global sensitivity

measures. Specifically, using the given data estimators described in Section 3.3, we estimate

first-order Sobol’ indices ηi, Borgonovo’s δi, and the Kuiper index βKUi .
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Figure 3.1: Factor prioritisation using four methods. Boxplots for the bootstrap estimates for
three global sensitivity measures

(
ηi, δi, β

KU
i

)
, with 500 bootstrap replicates (C = 9548). Simi-

larly, the bootstrap median of DELSA is presented in the fourth graph. All sensitivity indices
agree in suggesting TIMEDELAY, AXV BEXP and FRACTEN as key uncertainty drivers.

Figure 3.1 shows boxplots of the bootstrap estimates of these three global sensitivity mea-

sures, with a bootstrap sample size B = 500. All three approaches rank TIMEDELAY,

AXV BEXP and FRACTEN as the most influential parameters. The first two parameters

directly influence the dynamics of simulated streamflow, in particular its timing and magnitude

(TIMEDELAY), and the partitioning of incoming precipitation into quickly responding surface

runoff and slow baseflow components (AXV BEXP). Their role, therefore, explains the direct

and strong influence on the RMSE in Eq. (3.10), which is derived directly from the simulated

streamflow. The third most influential parameter (FRACTEN) has a direct effect on the soil

moisture dynamics. It quantifies tension storage as a non-linear function of the total storage

in the unsaturated zone. FRACTEN closely controls the magnitude of evapotranspiration pro-

cesses, i.e., the return of incoming precipitation back to the atmosphere, and it also indirectly

affects the magnitude of the total modelled streamflow. Overall, the importance of the three

key parameters is identified clearly and consistently, which is shown by the narrow and not over-

lapping bootstrap uncertainty bounds. Furthermore, Figure 3.1 includes the parameter ranking
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Figure 3.2: Visualization of estimated conditional and unconditional model output densities
for the FUSE-016 configuration. The bold black line in each of the first eleven panels represents
the estimated unconditional RMSE density f̂Y (y). The blue lines in each graph represent the
estimated bin conditional distributions f̂Y |Xi∈Xm

i
. Densities are estimated using kernel smooth-

ing method. The first three panels show that fixing TIMEDELAY, AXV BEXP and FRACTEN
leads to conditional distributions that may largely deviate from the unconditional distribution
(black line). The remaining panels show lesser deviations associated with fixing the remaining
parameters. The last panel displays the estimated separations at each value of Xi using Eq.
(2.19). That is, each line is an approximation of the curve ζi(xi) = 1

2

∫
Y | fY (y)−fY |Xi=xi(y) | dy.

Results in this panel show that the separations of TIMEDELAY, AXV BEXP and FRACTEN
are systematically higher than the remaining separations.
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obtained using the median of DELSA index SLi (we use n = 9548 model runs). The results are

in clear agreement with the results produced by the three global sensitivity measures estimated

directly on the uncertainty quantification sample.

We provide a visual complement to these results in Figure 3.2. As we have seen in Section

2.2.3 of Chapter 2, global sensitivity measures quantify the discrepancy between the uncondi-

tional and conditional model output distributions over the entire support. A large difference

between fY (y) and fY |Xi
(y) implies that the model output is sensitive to Xi. In a given-data

estimation we can profit of our knowledge of the estimated fY (y) and fY |Xi∈Xm
i

to visualize

this effect. Consider the first graph in Figure 3.2. The black thick line refers to the uncondi-

tional density fY (y). Each of the blue lines is a conditional density fY |Xi∈Xm
i

, i.e., it represents

the conditional RMSE distribution given that Xi belongs to a certain bin. We can visualize

whether the conditional lines (in blue) are close to, or depart from the unconditional black line.

In the first three graphs, we see notable departures. Thus, we would expected the RMSE to

be sensitive to the parameters in the first three graphs. These parameters are indeed the three

most relevant parameters, as identified by all global sensitivity measures, namely TIMEDELAY,

AXV BEXP and FRACTEN. The remaining graphs display colored curves much closer to the

black line, signalling that the parameters are less relevant. Besides, Figure 3.2 shows how the

output distribution is affetcted. For instance, for the first parameter (the first plot of Figure

3.2), the influence is evenly spread-out over the entire output support, while the second param-

eter tends to influence the lower values of the output. One can also see that both the first and

second parameters shift the unconditional distribution to the left, while the third one has a more

symmetric influence.

The last graph in the lower panel of Figure 3.2 visualizes the inner statistic of a given-

data estimation, i.e., it is a plot of the curves ζi(xi) = ζ(fY (y), fY |Xi=xi) which represent the

separation between the unconditional and conditional distribution using the L1-distance. We

can see that the L1 separations associated with TIMEDELAY, AXV BEXP and FRACTEN are

larger at any value of Xi than the separations associated with the remaining parameters.

To corroborate these results, we use the median statistic of the DELSA in Eq.(3.4) (Figure

3.1). This graph identifies LOGLAMB, PERCRTE, BASERTE as the least relevant parameters,

which is consistent with the ranking of global sensitivity measures. Thus, for the RMSE of FUSE-

016, we can not only identify the key drivers, but are also able to figure out the parameters that

can be fixed at their base case because they are less influential.

Figure 3.3 displays the derivative-based sensitivities, with the goal of identifying important

parameter regions, in a factor mapping setting. For illustration purposes, we limit our attention

to four parameters (columns in Figure 3.3). Figure 3.3 row (a) presents the SLi sensitivities

on the horizontal axis and the model output value on the y-axis, as per Rakovec et al. (2014).

These results show a crucial difference in the contribution of TIMEDELAY, and AXV BEXP,

the parameters associated with the largest sensitivities. TIMEDELAY is most important in the

subset of parameter values associated with higher RMSE, i.e., where the performance of the

model is poorer. Conversely, AXV BEXP is important in regions of lower RMSE, i.e., where

the model has a better prediction capability. These considerations show that using information

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.
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Figure 3.3: Prioritization using DELSA. DELSA results showing parameter importance, mea-
sured using first-order metric SLi , plotted against the model output root mean-squared error
(RMSE). Each dot represents a scaled local sensitivity calculated for one input point. 9 548
dots are shown in each figure. The RMSE for each dot is the same in each figure; the SLi value
changes. (a) Black and white figures emphasize the position of the dots for the parameters in
columns (I-IV). (b-d) The dots are colored based on the value of the parameter listed below the
color bar.
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coming from derivatives in a regionalized DELSA setting allows the analyst to delve deeper into

how each parameter contributes to the RMSE variability. This leads to insights that enrich and

complement the information in Figure 3.1.

For this model, the partitioning of incoming precipitation into fast and slow flow components

governed by AXV BEXP may be more important than the routing dynamics characterized by the

TIMEDELAY parameters, if the focus is on the “acceptable” model performance-simulations.

Additionally, although FRACTEN and MAXWATR 1 exhibit considerably less pronounced im-

portance, some parameter combinations yield SLi > 0.5, and some of these are very good fitting

models based on RMSE.

Figures 3.3b-d yield additional insights. Random color scatter indicates that the value

of parameter importance (measured here using SLi ) and model fit (measured here by RMSE)

are unrelated to the value of the parameter (row b-d). Thus, the value of the MAXWATR 1

parameter (row b) is mostly inconsequential to the results shown for FRACTEN and AXV BEXP

(columns II and III). The only possible pattern is that the worst-fitting models appear to be

dominated by small values of MAXWATR 1.

If the color of dots changes vertically in the plots, then the model fit depends on the parameter

value. For instance, Figure 3.3, panel IV-b shows that for any parameter importance level

(for parameter TIMEDELAY), poorer fitting models are dominated by larger values of the

MAXWATR 1 parameter. Figure 3.3 panel I-c, and all of row d show vertical patterns in dot

color.

If the color of dots changes horizontally in the plots, then importance of the parameter

depends on the value of the parameter. For example. Figure 3.3 panel I-b shows that nearly

all models with large values of MAXWATR 1 are insensitive to the MAXWATR 1 parameter.

Figure 3.3 panel IV-d shows that large sensitivities for the TIMEDELAY parameter (the most

important parameter) are related to values of the TIMEDELAY parameter smaller than about

one day. The time step of the model used is one day, and this suggested that evaluation of

models with these small TIMEDELAY values are worth considering closely.

Finally, a note on computational cost. Keeping computational burden under control is essen-

tial to reassure the analyst about the feasibility of the analysis. In our case, the available sample

consists of about n = 10, 000 realizations. The relevant question for this work is whether we can

consider that estimates are stable at this sample size. Moreover, from the available sample we

can also address the question of what is the minimum sample size at which stable estimates of

the sensitivity measures are registered for this model. To answer these questions it is enough to

display the sequence of the sensitivity measures’ estimates as the sample size increases. Figure

3.4 reports such sequences for the four sensitivity measures of Figure 3.1. On the horizontal

axis in Figure 3.4 the sample size ranges from n = 200 to 9548. The first observation is that all

estimates are stable at n = 9548. By the consistency theorem of the given data methodology

(Borgonovo et al., 2016), we can then trust numerical estimates from this sample. Regarding

the minimal sample sizes, we observe that the rank of parameters revealed by DELSA median

estimates becomes stable at about n = 600 with the most and least important parameters iden-

tified even at the 200 model run level. At n = 600, also the given-data estimates of Sobol’
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Figure 3.4: Factor prioritisation measures of
(
ηi, δi, β

KU
i , SLi

)
, as computational cost C mea-

sures in number of model runs increases from 200 to 9548. We observe that the available sample
of size 9548 from previous studies (Rakovec et al., 2014) leads to a consistent identification of
the most important parameters with all sensitivity measures.

sensitivity indices become stable. Estimates of moment independent sensitivity measures stabi-

lize at a sample size of about 900. Thus, for the current analysis a computational cost of about

n = 1, 000 model runs could be considered sufficient to identify the rank of parameters.

3.4.3 Trend identification results

For trend identification, we consider two situations: in the first case, the available dataset

comprises partial derivatives; in the second case, only the sample of input-output realizations

are available.

In the first case, the sign of the partial derivatives immediately identifies direction of change.

Figure 3.5 shows the D-scatterplot for the FUSE-016 model, plotting the derivatives made
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Figure 3.5: Trend identification using D-scatter plots for the eleven parameters of the FUSE-
016 model. The vertical axis in each panel displays the estimated derivative of the RMSE with
respect to the corresponding parameter evaluated at sampled points . Note: the axis are not
standardized, because the goal of the plot is to indicate sign (trend) and not importance.

available by the DELSA method. Light color dots (red) refer to positive values, darker dots

(blue) to negative values. The upper left panel of Figure 3.5 shows that the derivatives of

RMSE with respect to TIMEDELAY estimated at several locations are negative. Thus, we

expect that an increase in TIMEDELAY has a decreasing effect on the RMSE. The upper

middle panel of Figure 3.5 plots the derivatives of RMSE with respect to AXV BEXP. We

observe both positive and negative values, which implies that an increase in AXV BEXP does

not necessarily lead to an RMSE increase. Specifically, if we look at AXV BEXP region [0, 1], we

observe both light(red) and dark(blue) dots in the graph (upper middle panel in Figure 3.5). For

values of AXV BEXP greater than unity, however, we observe mainly light dots, which indicates

that the effect of an increase in AXV BEXP leads to an increase in RMSE. The upper right

panel of Figure 3.5 presents the derivatives of RMSE with respect to the parameter FRACTEN.

Again, the existence of both positive and negative values implies non-monotonicity. However,

we observe a majority of positive derivatives (light dots (red)), which indicates an on-average
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positive effect. The remaining panels of Figure 3.5 show the existence of both positive and

negative values of the estimated derivatives for the remaining parameters.

Figure 3.6: Trend identification using first order effect gi(xi) for the FUSE-016 model. The
estimated curves gi(xi) using COSI subroutines (red lines) and input-output scatter plots (blue
dots) are shown.

Insights on direction of change can also be directly obtained from the original dataset. A first

way is to plot the first order effect functions in Figure 3.6, where we present the COSI curves (in

red) together with the input-output scatter plots. One can observe that TIMEDELAY shows

a on-average non-linear decreasing effect on the RMSE, while, in general, AXV BEXP and

FRACTEN present an ascending trend. In particular, the trend of AXV BEXP goes from de-

creasing to increasing on its support [0, 1/2], which is consistent with the result of D-scatterplot,

where a non-monotonic effect is observed in the same region. Besides, PERCEXP shows slightly

increasing effect. For the remaining parameters, there is no strong evidence of decreasing or

increasing first order effect.

Figure 3.7 illustrates the CUSUNORO plot of FUSE-016 data. Each curve refers to a given

parameter. Curves above the horizontal zero line signal a decreasing effect, curves below the

horizontal zero line suggest the opposite. Parameter TIMEDELAY (-o- curve) is associated

with the CUSUNORO curve that shows the highest peak above the zero horizontal axis, and

is therefore the parameter with the strongest negative impact on the RMSE. This is in accor-

dance with the information provided by the first graph in both Figures 3.5 and 3.6. Similarly,
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Figure 3.7: Trend identification using the CUSUNORO plot for the FUSE-016 model. Curves
above the zero horizontal line indicate a decreasing effect (model output decreases with increasing
parameter values). Curves below the horizontal axis show an increasing effect (output increases
with increasing parameter values). Curves aligned with the zero horizontal line show a negligible
effect.

parameter MAXWATR 1 (−−curve) has a negative effect. Conversely, parameters AXV BEXP

(-4- curve) and FRACTEN (-�- curve) have an increasing effect on the RMSE. Besides, the

magnitudes of the deviations from the zero horizontal line can be used to infer information about

the strength of the impact. Figure 3.7 indicates TIMEDELAY, AXV BEXP and FRACTEN

as the three most relevant parameters, in accordance with previous findings. Furthermore, the

vertical asymmetry of the CUSUNORO curve implies the non-linearity of the first order effect.

For instance, TIMEDELAY and AXV BEXP are slightly asymmetric to the right (have steeper

left parts), which implies that we can expect non-linear first order effects. This result is, again,

consistent with the graphs of the first order effect functions in Figure 3.6.

3.4.4 Interaction quantification results

A well established method for the identification of interactions is to check the sum of the first

order Sobol’ indices. From Figure 3.1, we observe that, the sum of first order Sobol’ indices

is about 90%, indicating that interactions have limited relevance. Thus, the RMSE can be

considered a nearly additive function of the parameters over the ranges of interest. However,

to investigate further, we study second order interactions, calculating the second order Sobol’

indices Si,j . We compare three different estimation methods: PCE emulation module in UQ lab

(Sudret, 2008; Marelli and Sudret, 2015), HDMR (Ziehn and Tomlin, 2009) and LASI (see

Section 3.3.2). The HDMR and LASI allow to estimate the second order indices directly from the

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



47

available 9548 model input-output realizations. The PCE subroutine is trained on a subsample

of size 2000 (this is the largest at which calculations can be performed on the available pc

without encountering an out-of-memory error). We calculate all second order interactions but are

showing only the largest ones. Figure 3.8 (a) illustrates the second order interactions associated

with the five largest values of Si,j .

(a) (b)
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Figure 3.8: (a) Interaction quantification using the five highest estimates of second order
Sobol’ indices Si,j for the FUSE-016 model. Calculated using PCE, HDMR and LASI. All
methods register the value of Si,j for i=TIMEDELAY and j=AXV BEXP as highest second
order index. However, the values of all second order Sobol’ indices are small (the indices may
run on a scale between 0 and 1), confirming that interactions have a limited effect on RMSE in
this case. (b) First-order (Si) plotted against the corresponding total-order (STi) Sobol’ indices
for the 11 FUSE-016 parameters. Estimation is performed using the PCE subroutine in UQ Lab
from the available uncertainty quantification sample. Values on the line indicate no parameter
interaction.

The three most important parameters, TIMEDELAY, AXV BEXP and FRACTEN, are

involved in the most relevant second order interactions. In particular, the interaction between

TIMEDELAY and AXV BEXP is identified as the strongest second order interaction. However,

we need to observe that the values of the second order Sobol’ indices are all small. The last two

panels of Figure 3.8 (a) (estimated via HDMR and LASI subroutines) report that all estimates

of Si,j are less than 0.05. This confirms the observation stated at the beginning of this section,

that interactions have limited influence in the determination of the RMSE for the configuration

of interest.

To investigate further and interpret these results in terms of identifiability, we report results

for the total order indices. In fact, according to Ratto et al. (2007), Saltelli et al. (2008) and

others, parameters associated with a small main effect but having a high total effect evidence

a lack of identifiability. To offer an intuitive visual interpretation, we refer to Figure 3.8 (b).

Here, the value of first order Sobol’ index for each model input is represented on the horizontal

axis, while the vertical axis presents the value of total order Sobol’ indices. Each dot in the
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Figure 3.9: Factor prioritisation using the four sensitivity methods in Table 1 for alternative
hydrologic configurations: (a) FUSE-014, (b) FUSE-160, (c) FUSE-072, and (d) FUSE-170.

graph corresponds to one parameter. Less identifiable parameters would lie further toward the

top-left conner. For the FUSE-016 configuration, all parameters lie close to the 45-degree line,

confirming the limited contribution of interaction effects. Thus, we register very limited identi-

fiability issues for this configuration.

3.4.5 Alternative model configurations results

While in the description of results we have focused on the FUSE-016 configuration, we performed

similar sensitivity analyses for the FUSE-014, FUSE-072, FUSE-160 and FUSE-170 models

described by Rakovec et al. (2014). These results are summarized in Figures 3.9, 3.10 and 3.11.
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Figure 3.10: CUSUNORO curves for four alternative configurations: (a) FUSE-014, (b) FUSE-
160, (c) FUSE-072, and (d) FUSE-170.
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Figure 3.11: D-scatterplots for the parameters of the FUSE-160 model configuration. This
graph provides complementary insights on Panel b in Figure S2. The FUSE-160 model RMSE
is a non-monotonic function of most parameters. RTFRAC1 has a prevailing negative effect on
RMSE.
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We describe here the main differences in the sensitivity analysis results with respect to the

FUSE-016 configuration, discussing them setting by setting. Regarding parameter prioritisation,

Figure 3.9 shows that across all FUSE configurations the two most important parameters are

TIMEDELAY and AXV BEXP. The third most important parameter is PERCEXP for FUSE-

014, FUSE-072, and FUSE-170 model. The parameter FRACTEN, the third most important

for the FUSE-016 configuration, ranks fifth for FUSE-014 and fourth for FUSE-014,FUSE-072

and FUSE-170. For FUSE-160, FRACTEN is ranked third by first order Sobol’ sensitivity

measures and median DELSA indices, while it ranks fourth based on the moment-independent

sensitivity indices δ and βKu. The parameter RTFRAC1 ranks third based on these sensitivity

measures and fourth based on first order Sobol’ sensitivity measures and median DELSA. This

parameter is not present in the FUSE-016 configuration. For trend identification, we obtained

the D-scatterplot, the COSI and CUSUNORO plots for all configurations. The CUSUNORO

results are presented in the panels of Figure 3.10. The direction of change associated with the

most important parameters remains the same across all the different configurations. Specifically

on FUSE-160, the CUSUNORO curve of parameter RTFRAC1 shows a prevailing decreasing

trend on the RMSE - see Figure 3.10, panel b. To test this indication further, consider the

corresponding D-scatterplot (Figure 3.11). The first panel in Figure 3.11 shows that RTFRAC1

has a non monotonic effect, however, with a prevalence of negative partial derivatives. Positive

values of the partial derivatives are only associated with high values of this parameter. Overall,

the D-scatterplots of Figure 3.11 confirm the observations of the other configurations, though

indicating that also in the FUSE-160 configuration the RMSE is not a monotonic function of

the parameters.

Finally, for interaction quantification, we computed the second order and total order Sobol’

indices measures using the PCE, HDMR and LASI subroutines. Results show a negligible effect

of interactions in all configurations, with the sum of all second order indices never exceeding 6%

of the total variance. This value indicates that identifiability issues are low and that the five

model configurations are not over-parameterized, as suggested by Rosero et al. (2010).

3.5 Discussion

The investigation we have carried out leads to four takeaways for the analysis of hydrological

models as well as for the practice of sensitivity analysis:

1. Given the huge number of available methods, the search for the appropriate sensitivity

method needs to be made systematic. The most rigorous way to make the analysis sys-

tematic is through the formulation of a sensitivity analysis setting. A setting allows the

analyst to transparently choose the method that answers the sensitivity analysis question

at hand.

2. Employing a unique sensitivity method for performing a sensitivity analysis even within

the same setting is suboptimal. In fact, each sensitivity analysis method has merits as well
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as limitations. To illustrate, consider an analysis performed within a trend identification

setting. Here, derivatives suggest the direction of change of the model output as a result of

changes in the model parameters. However, they require scaling to suggest the importance

of a parameter, especially if the parameters have different units — in that case, unscaled

partial derivatives are not even comparable. An analyst willing to identify the most

important parameters needs to consider sensitivity measures in a factor prioritisation

setting. Here, a desirable property is that nullity of the sensitivity measure should imply

independence. First order variance-based sensitivity measures, while appropriate, do not

possess this property.

Thus, complementing the analysis with the calculation of a moment-independent measure

increases the robustness of the inference. If the ranking obtained from variance-based

methods is confirmed by the ranking implied by a moment-independent method, we gain

additional confidence about what parameter is important, without the need of additional

model runs.

3. Alternative methods may be applied under different circumstances. Consider again a

trend identification setting. Partial derivatives are available through the DELSA method.

However, in case derivatives are not available, one can use a CUSUNORO plot together

with the plot of the first order effects of the functional ANOVA expansion to obtain

insights about trend.

4. In the literature, the calculation of each global sensitivity measure requires a specific

design. However, we can now estimate efficiently several sensitivity measures simulta-

neously from the same model output sample. This allows to exploit the synergies and

complementary insights that different sensitivity measures make available to the modeler.

We believe that our study contributes to building a comprehensive sensitivity analysis frame-

work which enables a thorough characterization of the most relevant sensitivity-related prop-

erties of model responses, as recently advocated by Razavi and Gupta (2015). Our approach

can be extended to more complex environmental models currently being developed in the hy-

drological community, such as the next generation modeling framework SUMMA (Clark et al.

(2015) and Clark et al. (2015)). SUMMA considers water and energy closure together and also

allows to fully solve Richards’ equation of the unsaturated flow. All these factors yield much

higher degrees of input parameter uncertainty than in the presented study and the proposed

framework can be directly employed for uncertainty quantification and sensitivity analysis of

this new generation of hydrological models.

Finally, our analysis is applicable to the statistical diagnosis of models used in the broader en-

vironmental and climate literature. For example there is a growing interest in the sensitivity

analysis of integrated assessment models for climate change. Works such as Confalonieri et al.

(2010); Anderson et al. (2014); Butler et al. (2014a,b); Gao et al. (2016); Marangoni et al. (2017);

Paleari and Confalonieri (2016) show the growing trend of sensitivity analysis investigations in

the climate and environmental modelling arena, where the need for keeping computational bur-

den under control is also felt. In this respect, the ensemble approach developed here might result
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in supporting investigators in such sectors as well.
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Chapter 4

Bayesian estimation of probabilistic

sensitivity measures

In the presence of model uncertainty, analysts employ probabilistic sensitivity methods to identify

the key-drivers of change in the quantities of interest. Simulation complexity, large dimensional-

ity and long running times may force analysts to make statistical inference at small sample sizes.

Methods designed to estimate probabilistic sensitivity measures at relatively low computational

costs are attracting increasing interest. In Chapter 4, we propose a fully Bayesian approach to

the estimation of probabilistic sensitivity measures based on a one-sample design. We discuss,

first, new estimators based on placing piecewise constant priors on the conditional distributions

of the output given each input, by partitioning the input space. We then present two alterna-

tives, based on Bayesian non-parametric density estimation, which bypass the need for predefined

partitions. In all cases, the Bayesian paradigm allows the quantification of uncertainty in the

estimation process through the posterior distribution over the sensitivity measures, without re-

quiring additional simulator evaluations. The performance of the proposed methods is compared

to that of traditional point estimators in a series of numerical experiments comprising synthetic

but challenging simulators, as well as a realistic application.

This chapter contains joint work with Isadora Antoniano-Villalobos and Emanuele Borgonovo,

and is in preparation for submission.

4.1 Motivation

The use of computer simulations is becoming increasingly important in broad areas of science

(Lin et al., 2010; Wong et al., 2017). High-fidelity mathematical models allow analysts to

perform virtual (or in silico) experiments on complex natural or societal phenomena of interest

(see Smith et al. (2009) among others). Predictions are often used to support policy-making.

However, the level of sophistication of the models is often too high for analytical solutions to

be available. In these cases, the only way to obtain a quantitative solution may be to encode

complex mathematical equations in a computer software; so that the input-output mapping
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remains a black-box to the analyst. It then becomes important to carefully design and execute

the computer experiment. The design and analysis of computer experiments (DACE) has entered

the statistical literature with the seminal work of Sacks et al. (1989) (see also the monographs

of Santner et al. (2003); Kleijnen (2008)). Since then, researchers have studied the creation

of space-filling designs (He, 2017), the calibration of computer codes with real data (Tuo and

Wu, 2015), their emulation (Conti et al., 2009), the quantification of uncertainty in their output

(Oakley and O’Hagan, 2002; Ghanem et al., 2016) and their sensitivity analysis (Oakley and

O’Hagan, 2004; Borgonovo et al., 2014). These areas are intertwined. A given design may allow,

for instance, not only an uncertainty quantification, but also the creation of an emulator and

the analysis of sensitivity.

Probabilistic (or global) sensitivity measures are an indispensable complement of uncer-

tainty quantification, as they highlight which areas should be given priority when planning data

collection or further modelling efforts. International agencies such as the US Environmental

Protection Agency (US EPA, 2009) or the British National Institute for Health Care Excellence

(NICE, 2013) and the European Commission (2009) have issued guidelines recommending the

use of probabilistic sensitivity analysis methods as the gold standard for ensuring reliability and

transparency when using the output of a computer code for decision-making under uncertainty.

Over the years, several probabilistic sensitivity measures have been proposed. Different mea-

sures enjoy alternative properties making them preferable in different contexts and for different

purposes. We recall regression-based (Helton and Sallaberry, 2009), variance-based (Saltelli and

Tarantola, 2002) and moment-independent measures (Borgonovo et al., 2014), all of which offer

alternative ways to quantify the degree of statistical dependence between the simulator inputs

and the output. A transversal issue in realistic applications is that analytical expressions of these

measures are unavailable and analysts must resort to estimation. This, however, is a challenging

task, especially for simulators with a high number of inputs (the curse of dimensionality) or

with long running times (high computational cost).

Recent results (e.g Strong et al., 2012; Strong and Oakley, 2013) evidence the one-sample (or

given-data) approach as an attractive design, which allows analysts to estimate global sensitivity

measures from a single probabilistic sensitivity analysis sample, i.e., a sample generated for

propagating uncertainty in the simulator. Thus, a one-sample approach has a nominal cost

equal to the sample size and independent of the number of inputs, a feature that potentially

reduces the impact of the curse of dimensionality. Related works such as Strong et al. (2012);

Strong and Oakley (2013); Plischke et al. (2013); Strong et al. (2014, 2015) and Borgonovo

et al. (2016) provide advances on theoretical and numerical aspects of the methodology, while

at the same time, evidencing some open research questions. One-sample estimation procedures

are closely related to scatter-plot smoothing, where partitioning of the covariate space plays

a central role (Hastie and Tibshirani, 1990). Strong and Oakley (2013) show that the choice

of partition size affects estimation, especially when the sample size is small (see Figure 1 of

Strong and Oakley, 2013, p. 759). In the literature, some heuristics for determining a partition

selection strategy which is optimal in some sense have been proposed, but finding a universally

valid heuristic seems out of reach (see Section 4.3.2 for numerical experiments illustrating this
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issue). Moreover, the literature is concerned with point estimators and uncertainty regarding

the estimated value of a sensitivity measure is not an intrinsic part of the analysis. Because

most one-sample estimators are consistent (in the frequentist sense), an accurate estimation

of the error is often overlooked. However, especially at small sample sizes, it is essential for

transparency that interval estimates become part of result communication (see Janon et al.

(2014) among others).

We propose to enrich the one-sample design through the use of Bayesian non-parametric

(BNP) methods, aiming to reduce and even eliminate the partition selection problem, while mak-

ing uncertainty in the estimates a natural ingredient. First, we extend the partition approach,

using Bayesian non-parametric models to augment the output sample within each partition set,

by adequately generating additional synthetic data according to two alternative schemes. The

Bayesian intuition supporting these designs can be interpreted as setting a prior on the condi-

tional distribution of the output, given that the input realization falls within a given set of the

partition. We build estimators based on this intuition for variance-based, density (pdf)-based

and cumulative distribution function (cdf)-based global sensitivity measures. We compare the

results with given-data estimators currently in use at low sample sizes, through numerical ex-

periments. The results show that our estimators recover the correct ranking of the inputs, while

providing an appropriate quantification of the estimation uncertainty. However, the results may

be strongly influenced by the partition choice. Therefore, we investigate two additional classes of

estimators based on Bayesian non-parametric joint and conditional density estimation methods.

These estimators eliminate the partition selection problem and, at the same time, enable error

quantification. Finally, we discuss the application of all the new estimators to the global sensi-

tivity analysis of the benchmark computer code known as LevelE (Saltelli and Tarantola, 2002).

Results show that the estimators correctly identify the key drivers of uncertainty at sample sizes

lower than the ones used in previous literature. Additionally, the analyst obtains a quantifica-

tion of the uncertainty in the estimates in the form of a posterior distribution which can be used

to determine whether the available sample is large enough to make robust conclusions about the

simulator input ranking.

The reminder of this chapter is organized as follows. We begin in Section 4.2 by introduc-

ing the framework of global sensitivity analysis and the one-sample estimation approach for

probabilistic sensitivity measures. Section 4.3 combines Bayesian non-parametric methods and

the one-sample approach to create two new partition-dependent estimators. Section 4.4 derives

two classes of Bayesian partition-free estimators by adopting Bayesian a non-parametric density

estimation approach. Section 4.6 presents numerical results for the LevelE code. Section 4.7

offers discussion and conclusions.
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Table 4.1: Some probabilistic sensitivity measures

Measure ζ(PY ,PY |Xi) ξi
ηi (E[Y |X i]− E[Y ])2/V[Y ] V[E(Y |X i)]/V[Y ]

δi
1

2

∫
Y |fY |Xi(y|X i)− fY (y)|dy 1

2
E
[∫
Y |fY |Xi(y|X i)− fY (y)|dy

]

βi supy∈Y
∣∣FY |Xi(y|X i)− FY (y)

∣∣ E
[
supy∈Y

∣∣FY |Xi(y|X i)− FY (y)
∣∣]

4.2 Probabilistic sensitivity analysis of computer ex-

periments

The notation for illustration in this chapter is consistent with that used in Chapter 2. To clarify,

we recall the following. Formally, the sensitivity analysis framework considers a multivariate

mapping g : X 7→ Y with input space X ⊆ Rk and output space Y ⊆ Rd, denoted as y =

g(x) + ε(x) in its more general form. In the DACE set-up, g represents a computer code

which processes a set x of inputs, resulting in a set y of outputs of interest. The term ε(x)

represents a zero-mean error term, which is present when the simulator response is stochastic.

For simplicity, we focus on deterministic univariate responses, with ε(x) ≡ 0 and d = 1. In

probabilistic sensitivity analysis, we denote the input probability space by (X ,B(X ),PX), where

PX represents the joint probability measure of X = (X1, . . . , Xk), assumed known 1. Similarly,

(Y,B(Y),PY ) denotes the output probability space, where PY represents the distribution of Y

induced by PX through g.

It has been recently shown that several probabilistic sensitivity measures frequently used in

practice can be expressed as expectations of measures of discrepancy between PY and PY |Xi . In

particular, we focus on probabilistic sensitivity measures of the form:

ξi := E[ζ(PY ,PY |Xi)] (4.1)

where the expectation is calculated with respect to the marginal distribution of Xi and ζ is a pre-

metric on the space of probability measures over Y, and ξi is called the probabilistic sensitivity

measure of Xi with inner operator ζ (Borgonovo et al., 2014) 2.

Table 4.1 reports three probabilistic sensitivity measures encompassed by this construction,

namely, the variance-based sensitivity measure (ηi), the density-based δ-importance measure

(δi) and the cdf-based β-importance measure (βi) (Pearson, 1905; Saltelli and Tarantola, 2002;

Oakley and O’Hagan, 2004) 3. For more details of probabilistic sensitivity measures, we refer

the reader to Sections 2.2.3 and 2.2.4 of Chapter 2.

As mentioned in the Section 4.1, analytical expressions for these and other popular sensi-

tivity measures are not available in most realistic applications, and their estimation is a prolific

subject of research. We now discuss some relevant aspects of numerical estimation in the next

1For illustration, we use superscripts to indicate the input indices.
2Also see Section 2.2.3 of Chapter 2.
3The cdf-based importance measure is denoted as βKSi in Section 2.2.3 of Chapter 2. For ease of

notation, we drop the superscript KS from βKSi in this chapter.
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section.

4.2.1 Discussion on one-sample estimation

The estimation of global sensitivity measures is a challenging task and the availability of efficient

designs is crucial in realistic applications. The number of simulator evaluations necessary to

estimate sensitivity measures encompassed by Eq. (4.1) for a simulator with k simulator inputs,

using a brute-force approach, would be of the order of C = kn2 simulator runs, where n denotes

the sample size required for Monte Carlo uncertainty quantification. The design becomes rapidly

infeasible. For instance, if k = 20 and n = 1, 000, the C = 20, 000, 000 simulator runs would

require a prohibitive computational effort for most complex computer codes used in practice.

However, notable advances in the literature have contributed in abating this computational

burden, see Tissot and Prieur (2015); Janon et al. (2014) for reviews. Saltelli (2002a), for

instance, achieved the estimation of variance-based sensitivity measures at a cost of C = n(k+2)

simulator runs, while the FAST method of Saltelli et al. (1999) achieves a cost of order C = nk.

Recently, efforts have been made towards an estimation cost independent of the number of

simulator inputs, k. Strong and Oakley (2013), Strong et al. (2014) and Strong et al. (2015)

show that value-of-information measures can be estimated from a single probabilistic sensitivity

analysis sample, {(xj , yj) : j = 1, . . . n}, i.e., from the Monte Carlo sample generated for uncer-

tainty quantification, thus lowering the computational cost to C = n simulator runs. Roehlig

et al. (2009) and Strong et al. (2012) obtain similar results for first-order variance-based sen-

sitivity measures and Plischke et al. (2013) extend the intuition to density-based measures.

The approaches proposed in these works receive the common name of one-sample or given-data

estimation methods.

One-sample methods can be seen as generalizations of the intuition developed for estimating

the correlation ratio (Pearson, 1905). If Xi is a discrete random variable then, an input-output

sample of (sufficiently large) size n contains repeated observations of Y = g(Xi, X−i), for each

fixed value Xi = xi, while the other factors, X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xk), remain

random. This allows the estimation of ζ(PY ,PY |Xi=xi) directly from a sample of size n. For a

continuous Xi, a similar result may be achieved by partitioning the support X i of Xi into M

bins {X im}Mm=1. The point condition (Xi = xi) is then replaced by the bin condition (Xi ∈ X im).

Then, for any sensitivity measure encompassed by Eq. (4.1), a one-sample estimator is given by

(Borgonovo et al., 2016):

ξ̂i =

M∑

m=1

PXi(X im) ζ̂im, (4.2)

where ζ̂im may be any estimator of ζ(PY ,PY |Xi∈X i
m

). Note that by using equiprobable partition

sets, PXi(X im) should reduce to 1/M . In practice, this partition probability is estimated by the

sample proportion, nim/n, where nim denotes the number of realizations for which the i-th input

falls within the m-th partition set of its support. Borgonovo et al. (2016, Theorem 2) show that,

under mild conditions on the inner operator ζ, a consistent version of the estimator in Eq. (4.2)
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can be obtained, if the size M of the partition is chosen as a monotonically increasing function

of the sample size n, such that lim
n→∞

n
M(n) =∞.

Indeed, the most popular one-sample estimator of ηi relies on a plug-in estimator of the inner

statistic, based on the output sample mean and variance, ȳ and s2y respectively, to estimate the

marginal mean and variance of Y . The within cluster sample mean ȳim =
1

nim

∑
y∈yi

m
y with

yim = {yj : xij ∈ X im, j = 1, 2, ..., n} is used to estimate the conditional mean of Y |Xi ∈ X im. The

final expression (see e.g. Strong et al., 2012) takes the form of Eq. (4.2) with:

η̂?i =

M∑

m=1

nim
n

(ȳim − ȳ)2

s2y
. (4.3)

The one-sample estimator for the δ−importance introduced by Plischke et al. (2013) can be

written as:

δ̂?i =

M∑

m=1

nim
n

∫

Y
|f̂?Y (y)− f̂ im(y)|dy, (4.4)

where f̂?Y and f̂ im denote kernel-smoothed histograms of the full output vector y = (y1, . . . yn)

and the within cluster output vector yim, respectively. The authors propose a quadrature method

for the numerical integration required by the L1-distance in the inner operator, but other so-

lutions could be used, producing similar estimators. Because estimates of this type rely on

the approximation or estimation of probability density functions, we refer to them as pdf-based

estimators.

Plischke and Borgonovo (2017) observe that the kernel-smoothing methods commonly in-

volved in the calculation of pdf-based estimators may induce bias, even at high sample sizes,

for simulators with a sparse output. Therefore, they introduce alternative cdf-based estimators

which rely on the properties of empirical cumulative distribution functions.

Scheffé’s theorem allows one to write the L1-distance between two probability density func-

tions in terms of the associated probability functions, as
∫
Y |f1(y) − f2(y)|dy = 2(P1(Y ∈

B) − P2(Y ∈ B)), where B is the set of values for which f1(y) > f2(y). Since B can be

written as a union of intervals (a(t), b(t))Tt=1, these probabilities can be calculated from the cor-

responding cumulative distribution functions. Thus, a cdf-based estimator of δi can be obtained

as:

δ̂�i =
M∑

m=1

nim
n

T i
m∑

t=1

(
F̂ im(b̂im(t))− F̂ im(âim(t))

)
−
(
F̂Y (b̂im(t))− F̂Y (âim(t))

)
. (4.5)

For further details on the estimation of the intervals (âim(t), b̂im(t)), we refer to Plischke and

Borgonovo (2017).

Since βi is itself a cdf-based sensitivity measure, the definition of a one-sample cdf-based

estimator is straightforward:

β̂�i =

M∑

m=1

nim
n

max
j∈{1,...,n}

∣∣∣F̂Y (yj)− F̂ im(yj)
∣∣∣ , (4.6)
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where F̂Y , and F̂ im are the empirical cdf’s of y and yim, respectively, i.e.:

F̂Y (y) =
1

n

n∑

j=1

1(−∞,yj ](y); F̂ im(y) =
1

nim

∑

yj∈yi
m

1(−∞,yj ](y), (4.7)

and 1A(y) denotes the indicator function, taking the value 1 if y ∈ A and 0 otherwise.

Recalling that the expected value of a random variable Y can be calculated as the integral of

its survival function, E[Y ] =
∫
Y(1−FY (y))dy, a cdf-based one-sample estimator of the variance-

based sensitivity measure, ηi is given by:

η̂♦i =
M∑

m=1

nim
n

(∫
Y F̂

i
m(y)− F̂Y (y)dy

)2

σ̂2Y
. (4.8)

Notice that, since the empirical distribution functions are piece-wise constant, the integral in

the above expression reduces to a sum. Plischke and Borgonovo (2017) propose an efficient way

to calculate this integral.

Most of the estimators found in the literature, including those mentioned above, are con-

structed either as deterministic approximations or as (frequentist) point estimators. Therefore,

quantification of the estimation error (or interval estimation) requires additional manipulation.

Finding asymptotic distributions of the estimators in order to provide approximate confidence

intervals is not straight forward, except for the variance-based estimator η?i , and even in this

case, they are accurate only for high sample sizes. For instance, Gamboa et al. (2016); Janon

et al. (2014); Tissot and Prieur (2015) show that variance-based estimators, calculated with a

pick-and-freeze design or a replicated Latin hypercube, are asymptotically normal, but similar

results are not available for other sensitivity measures. An alternative for non-deterministic

sampling methods, is to replicate the estimation procedure in order to obtain a sample of esti-

mates and corresponding sample-based confidence intervals. This, however requires a number

C > n of simulator evaluations and, as mentioned in the introduction, the computational cost

of such an effort could be prohibitive for time-demanding realistic applications. The idea of

replicates also excludes the use of quasi-random generators to create the probabilistic sensitivity

analysis samples, as they are deterministic in nature. As a further alternative, bootstrap con-

fidence intervals have been proposed in the literature in order to avoid the need for additional

simulator runs (Plischke et al., 2013; Janon et al., 2014), but these are not an integral part of

the estimation process.

A second issue to consider when using partition-based one-sample methods is the sample size

bias induced by the partition. Quantities related to the marginal distribution of Y are estimated

using the full sample size n, but those related to the within bin distribution of Y |Xi ∈ X im are

estimated using a smaller sample size nim ≈ n/M . While a sample size correction is implicit

in the estimation of variances (see Eq. 4.3), the same is not true for the pdf and cdf estimates

of equations (4.4) to (4.5). In other words, there is a different granularity when estimating

the conditional and the unconditional distributions. In Section 4.3, we propose two partition-
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dependent Bayesian estimators which mitigate the sample size bias, while providing a natural

way to quantify the estimation error, allowing interval estimation.

Within the Bayesian paradigm, unknown objects are treated as random, and assigned a prior

probability measure which reflects the analyst’s uncertainty about their values. In this context,

Oakley and O’Hagan (2004) treat the input-output mapping g as unknown (at least before eval-

uation). Thus, they define a semi-parametric regression model with a Gaussian process prior,

which allows posterior inference on variance-based sensitivity measures. In fact, it is possible to

calculate posterior means for the conditional and unconditional variance of Y and Y |Xi respec-

tively, either analytically or via numerical integration. The approach eliminates the need for a

partition of the covariate space, thus solving the second issue mentioned above. However, the

posterior distributions of the variance-based measures (e.g. ηi) are not available analytically,

and finding a posteriori credibility intervals for estimation error quantification would be cum-

bersome and this aspect is not treated in the paper. Furthermore, it is not clear how to extend

the results to the estimation of other (pdf or cdf-based) sensitivity measures. In Section 4.4, we

present two alternative partition-free Bayesian models which allow interval estimation for these

types of sensitivity measures as well. For illustrative purposes, we focus on estimation of the

three measures in table 4.1.

4.3 Bayesian non-parametric partition-dependent es-

timation

We propose to quantify the uncertainty about fixed but unknown sensitivity measures, ξi, before

(a priori) and after (a posteriori) the observation of a sample, {(xj , yj) : j = 1, . . . n}, within

the Bayesian paradigm. The ξi play the role of parameters of interest and they are linked

to the data through functionals of the marginal and conditional distributions of Y and Y |Xi.

In view of this, it seems sensible to induce a prior on ξi by assigning a prior to the family

Pi = {PY |Xi=xi : xi ∈ X i} of conditional probability measures. Notice that, since PXi is assumed

known, the marginal distribution of Y , PY (y) =
∫
X i PY |Xi=xi(y|xi)dPXi(xi), is fully determined

by PY |Xi , so no additional prior specification is required. For each i, Pi is a family of probability

measures on Y, indexed by xi ∈ X i, so defining a prior probability on this space is, in principle,

not a simple task. Furthermore, the relation between ξi and Pi is complex, making it difficult

to conceive an adequate parametric prior. In other words, choosing a family of distributions

characterized by a finite-dimensional parameter θ, to express an expert’s uncertainty about ξi

through some prior on θ would seem overly restrictive, if not unreasonable. It is known that an

inadequate prior may lead to troublesome posterior (Freedman, 1965) and hinder the properties

of the proposed estimators. A natural alternative is to use a Bayesian non-parametric prior in

order to ensure enough flexibility to capture complex data structures. Bayesian non-parametric

methods are not restricted to a finite number of parameters to represent a distribution. Generally

speaking, they rely on measure-valued stochastic processes to define priors on the space of
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probability measures of interest. The supports of such priors are wide, ideally covering the full

range of all possible distributions, in our case, over Y (see e.g. Hjort et al., 2010, for an extensive

discussion on bayesian non-parametric priors, their properties and their use).

Our first proposal can be interpreted as a Bayesian refinement of the cdf-based estimators

introduced in the previous section and, as such, relies on a partition of the input space. We

assume that the distribution of Y |Xi = xi is identical for every xi ∈ X im, and denote it by

Pim. In practice, it is enough to assume that PY |Xi=xi can be well approximated in this way.

Prior uncertainty is expressed through a prior on the collection {Pim}Mm=1. For simplicity, we

assume that such distributions are independent and identically distributed (i.i.d.), so the problem

becomes that of finding a prior which assigns probability 1 to a large enough set of probability

distributions supported on Y. We focus our attention on the Dirichlet Process (DP), first

introduced by Ferguson (1973) and widely studied in the BNP literature (see e.g. Hjort et al.,

2010, Chapter 2, for a discussion on its properties). We therefore define, for each i = 1, . . . k the

following Bayesian non-parametric model:

Y |(Pim, Xi ∈ X im) ∼ Pim; Pim
iid∼ DP(αG), (4.9)

where DP(αG) denotes a Dirichlet process with base measure G and concentration parameter

α. The Dirichlet process could be replaced by a more general stick-breaking process, achieving

greater flexibility at a similar computational cost (see e.g. Ishwaran and James, 2001; Pitman and

Yor, 1997; Lijoi et al., 2007). In this case, the algorithms and proposed estimators would maintain

a similar structure so we focus on the Dirichlet process, without loss of generality, in order to use

a notation more familiar to a wider audience. With regards to the hypothesis of independence

between the Pim, it could be removed through the application of recent developments in BNP

methods (see Wood et al. (2011); Teh et al. (2006); Teh and Jordan (2010); Camerlenghi et al.

(2017) and Camerlenghi et al. (2018)). This, however, would lead to a complication of the

estimation algorithms which goes beyond the scope of this paper.

Note that this Bayesian model is coherent, in the sense that it induces a unique prior over

the unconditional distribution of Y , whenever the partitions are equiprobable, that is when

P(Xi ∈ X im) = 1
M for all i = 1, 2, ..., k and m = 1, 2, ...,M . In fact,

PY (·|Pi1:M ) =
M∑

m=1

Pim(·)P(Xi ∈ X im) =
1

M

M∑

m=1

Pim(·).

Then, by marginalizing, we obtain

PY (·|αG) =
1

M

M∑

m=1

∫
Pim(·)dDP(Pim|αG) =

∫
P(·)dDP(P|αG),

because
∫
Pim(·)dDP(Pim|αG) does not depend on i or m. In other words, a priori, PY ∼

DP(αG), so that the prior for the marginal simulator distribution is also a Dirichlet process.

This statement alone, however, provides no information on the probabilistic dependence of Y
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on Xi. Thus, it is not meaningful, by itself, for a sensitivity analysis.

The posterior for this model, given the simulator input-output realizations (Data for short),

{(x1, y1), . . . , (xn, yn)}, can be written as follows:

Y |(Xi ∈ X im,Pim) ∼ Pim; Pim|Data
ind∼ DP

(
(α+ nim)G̃im

)
, (4.10)

where

G̃im = E[Pim|Data] =
α

α+ nim
G+

nim
α+ nim

∑

y∈yi
m

1

nim
δDirac(y) . (4.11)

Note that the posterior of the marginal for Y can be obtained as:

PY (·|αG,Data) =
1

M

M∑

m=1

∫
Pim(·)dDP(Pim|(α+ nim)G̃im), (4.12)

which may depend both on i and m. However, the marginal coherence of the model still holds, at

least asymptotically. Informally, for an equiprobable partition, P(Xi ∈ X im) = 1/M , nim ' n/M
when the sample size n is sufficiently large, so α/(α+nim) 'Mα/(Mα+n) and nim/(α+nim) '
n/(Mα + n). Furthermore,

∑
(1/nim)δDirac(y) '

∑
(M/n)δDirac(y). Thus, asymptotically,

PY (·|αG,Data) does not depend on m or i and PY (·|αG,Data) ∼ DP((α+ n)G̃), where

G̃ =
α

α+ n
G+

n

α+ n
P̂n, (4.13)

and P̂n denotes the empirical distribution of Y based on the full set of observations, (y1, . . . , yn).

Note that this is the usual posterior corresponding to the DP prior on PY .

The sensitivity measures we aim to estimate are functionals of the conditional and marginal

distributions. The posterior means in Eqs. (4.11) and (4.13), respectively, may be proposed as

Bayesian estimators of such densities. Thus, a Bayesian point estimator of ξi may be given by:

ξ̃i =
M∑

m=1

nim
n
ζ(G̃, G̃im)

Unfortunately, the direct calculation of ξ̃i is impractical. Moreover, our purpose is to provide

interval estimation, so as to quantify the uncertainty associated to point estimates. A way

out is to sample observations (i.e., predicted realizations of the output) from G̃ and G̃im, in

order to enrich the sample. More specifically, we have a vector y of n observations from the

original simulator used to estimate PY , but only nim of these belong to yim and are therefore

used to estimate Pim. Because nim < n, the precision issue discussed in Section 4.2.1 emerges,

causing a bias in the empirical estimation of ξi. By re-sampling from G̃ and G̃im we can enlarge

both vectors, making them of the same size and, potentially, arbitrarily large. Our proposal

here is simply to sample n − nim observations from G̃im, thus obtaining two vectors of size

n. The intuition underlying this corresponds to the non-parametric Bayesian bootstrap (Bb)

(Hjort, 1985, 1991). In our case, for each m a sample ỹim = {ỹi
ni
m+1

, . . . , ỹin} of size n − nim
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is obtained from G̃im. A value of ξ̂Bb,si in Eq. (4.2) can be calculated through any of the

methods discussed in Section 4.2.1, using y to estimate all quantities related to the marginal

distribution of Y and the extended vector yBb,i,sm = (yim, ỹ
i,s
m ) to estimate all quantities related to

the conditional distribution of Y |Xi ∈ X im. Informally, the weighted average over m can be seen

as approximately simulated from the posterior distribution of ξi. By repeating this procedure S

times, we obtain a Bb sample {ξ̂Bb,si : s = 1, 2, ..., S}. We propose the Monte Carlo average:

ξ̂Bbi =
1

S

S∑

s=1

ξ̂Bb,si

as a point estimator of ξi. Approximate credibility intervals can be obtained from the empirical

quantiles. Note that, because each ỹij is simulated from a single distribution, G̃im, the sampling

process can be done in parallel and the method is computationally fast. However, the uncertainty

is underestimated because the additional variability captured by the posterior distribution of

Eq. (4.10) is ignored.

A more accurate alternative is to sample ỹim jointly from the Dirichlet process posterior

distribution (4.10), instead of sampling each ỹij from the posterior mean. This can be done via

the Pólya Urn scheme (Pu) of Blackwell and MacQueen (1973). Specifically, ỹim is generated as

a realization of the Pólya sequence:

Ỹ i
j+1|

(
ỹini

m+1:j , Data
)
∼ α

α+ j
G+

j

α+ j
P̂j ∀ j ≥ nim. (4.14)

Once again, the extended samples yPu,i,sm = (yim, ỹ
i,s
m ) can be used to obtain a value ξ̂Pu,si by

any available method to calculate the expression in Eq. (4.2). We use ξ̂Pui to denote the Monte

Carlo average of a sample of size S generated in this way. Note that this is a point estimator

with the same expectation as ξ̂Bbi . However, a greater variability which fully accounts for the

uncertainty on Pim results in wider credibility intervals. The sampling procedure is now sequential

for s = 1, . . . , S, so the price for greater accuracy in uncertainty estimation is a slightly higher

computational time.

The technical details for Bb and Pu estimators are presented in Section 4.5.1.

4.3.1 Simulation study

We illustrate the performance of the two classes of estimators proposed above, via two toy

examples for which the sensitivity measures can be calculated analytically (see Table 4.2). For

illustration, we summary the use of notation in Table 4.3. The first example is the 2-input

simulator

Y =
X1

X1 +X2
, (4.15)
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Table 4.2: Analytical values of ηi, δi and βi for the two test simulators used in this section.

2-input simulator 21-input simulator
Sensitivity measure X1 X2 X1 . . . X7 X8 . . . X14 X15 . . . X21

ηi 0.496 0.496 0.109 0.027 0.007
δi 0.315 0.315 0.112 0.053 0.026
βi 0.289 0.289 0.112 0.053 0.026

Table 4.3: Estimators used in numerical experiments

One-sample Partition-dependent Bayesian Partition-independent Bayesian

pdf-based cdf-based Bayesian bootstrap Pólya urn joint conditional

η η̂?i η̂�i η̂Bbi η̂Pui η̂BNJi η̂BNCi

δ δ̂?i δ̂�i δ̂Bbi δ̂Pui δBNJi δ̂BNCi

β N/A β̂�i β̂Bbi η̂Pui β̂BNJi β̂BNC

where X1,X2 iid∼ Gamma(3, 1), so that the output Y follows a Beta distribution. The second

example is the 21-input simulator

Y =
21∑

i=1

aiX
i, (4.16)

where Xi iid∼ Normal(1, 1), with a1 = · · · = a7 = −4, a8 = · · · = a14 = 2, and a15 = · · · = a21 = 1,

so that Y is normally distributed.

We are interested in small sample sizes, which make the estimation of global sensitivity

measures challenging. In particular, we consider n = {300, 600, 900}. The input data, x, is

generated via Quasi-Monte Carlo. For each n, alternative choices of the partition size, M , are

explored. The mass parameter, α, for the DP prior is set equal to 0.1n/M throughout. The

base measure, G, is chosen in correspondence with the support of Y : a Beta distribution for the

first example and a Normal distribution for the second; the hyper-parameters are fixed through

an empirical approach, based on the available sample y. Note that this choice centres the prior

distribution for Y |Xi ∈ X im roughly around the marginal distribution of Y , thus favouring, a

priori, independence between the Y and Xi, with a precision proportional to the number of

observations in each partition set. In practical applications, prior information elicited from

experts may be expressed through different choices of α and G.

We compare the Bayesian bootstrap and Pólya urn estimators to traditional point estimators

for three global sensitivity measures. Results are reported in Figures 4.1 and 4.2: the first row

corresponds to ηi, the second to δi and the third to βi. Columns, from left to right, correspond to

increasing sample sizes. Each graph is divided into three blocks displaying importance measures

estimates based on alternative choices of M . The dotted lines display the analytical values.

We first consider the left-most panel of Figure 4.1(a). At n = 300 the estimates vary notably

with the partition size: they are downward biased for M = 3 and upward biased for M = 21.

Observe that at M = 21, we have nim ' 9, a number too small to be reasonably chosen by the

analyst. However, the bias is systematic, that is, it affects identically all estimates. Estimates

are less affected by the partition choice as the sample size increases. Recall that in realistic
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(a) Variance-based η1, η2

(b) Density-based δ1, δ2

(c) CDF-based β1, β2

η̂⋆, δ̂⋆ η̂⋄, δ̂⋄, β̂⋄ η̂Bb, δ̂Bb, β̂Bb η̂Pu, δ̂Pu, β̂Pu

Figure 4.1: Results for the 2-input simulator in Eq. (4.15): comparison of sensitivity mea-
sures estimates using frequintist pdf/cdf-based estimators and partition-dependent Bayesian
non-parametric estimators. Bayesian estimates include 95% credibility intervals.

applications, where an analyst would not know the true values of the sensitivity measures, the

main interest is on the ordinal ranking of the inputs. In this example, X1 and X2 are equally

important. However, looking at the point estimators η̂?i and η̂�i the analyst would rank X2 as

more important than X1 for most combinations of n and M . The credibility intervals for η̂Pui
display a large overlapping that would prevent the analyst from ranking X2 above X1: there is

too much uncertainty in the estimates to make such conclusion. Notice the underestimation of

the uncertainty surrounding η̂Bb
i . Rows (b) and (c) of Figure 4.1 show a similar behaviour for

the δi and βi sensitivity measures.

Figure 4.2 shows the estimates for the 21−input simulator in (4.16). For a better display

clarity, instead of reporting seven sensitivity measures per group, we show numerical values for

a representative of each input group, namely X3, X10 and X18. The results in Figure 4.2 are in

line with the ones for the 2−input simulator. Once again, one observes an upward bias in the
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(a) Variance-based η3, η10, η18

(b) Density-based δ3, δ10, δ18

(c) CDF-based β3, β10, β18

η̂⋆, δ̂⋆ η̂⋄, δ̂⋄, β̂⋄ η̂Bb, δ̂Bb, β̂Bb η̂Pu, δ̂Pu, β̂Pu

Figure 4.2: Results for the 21−input simulator in Eq. (4.16): comparison of sensitivity mea-
sures estimates using frequintist pdf/cdf-based estimators and partition-dependent Bayesian
non-parametric estimators. Bayesian estimates include 95% credibility intervals.

estimates when M is high and a downward bias when M is low. For variance-based sensitivity

measures (Figure 4.2 a) for all n and M considered we are able to correctly identify the group

of inputs represented by X3, corresponding to a higher absolute value of the coefficient in the

simulator, as more important than X10 and X18 using the estimates η̂�i , η̂
Bb
i and η̂Pui . However,

η̂?i fails to indicate the correct ranking at n = 300, with M equal to 3 and 21, respectively.

Regarding the sensitivity measures δi and βi, in most cases the overlapping credibility intervals

of Bayesian estimates would not allow us to deem X10 more relevant than X18. Thus higher

sample sizes would be needed for neatly ranking the second and third most important groups of

simulator inputs.

Overall, Figures 4.1 and 4.2 suggest that the proposed estimators allow the identification of

the most important inputs, even at small sample sizes, and, most relevantly, they provide a mea-

sure of the uncertainty in the assessment. However, the results also display a strong dependence

on the partition size M . While i) as observed in Strong and Oakley (2013) (see their figure 1,
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at p. 759), the importance of selecting an optimal partition size diminishes as the sample size

increases and ii) a suboptimal partition selection has in most cases an identical impact on the

sensitivity measures (i.e., the sensitivity measures of all inputs are simultaneously upward or

downward biased), the analyst is still left with the question of what is the optimal partition size

for a given sample. Unfortunately, there seems to be no universally optimal selection rule (see

Section 4.3.2 for illustration).

4.3.2 Numerical experiments for the partition selection problem

We performed several thought experiments on test cases. The results show the difficulty, maybe

impossibility, of finding a universally valid rule for linking the partition size M to the sample

size n. We report some experiments results.

Assume the analyst wants to find an “optimal ”(in some sense) partition refining strategy, i.e.,

a relationship that produces the partition size M that minimizes the estimation error at sample

size n for the pdf-based point estimators η̂?i , δ̂
?
i and cdf-based point estimator β̂�i (Eqs. (4.3),

(4.4) and (4.6)). We focus on one estimator type for simplicity and also because Borgonovo et al.

(2016) propose a heuristic inspired by the rule of histogram partitioning of Freedman-Diaconis

(Freedman and Diaconis, 1981), in which M ∼ 3
√
n.

To evaluate the estimators’ performance at fixed values of M and n, we use the Root Mean

Square Error (RMSE):

RMSEi(n) ≈

√√√√
∑S

s=1

(
ξ̂si (n)− ξi

)2

S

where S is the number of bootstrap replicates. ξ̂si is the s-th bootstrap replicate of ξi.

We estimate the sensitivity measures with sample sizes varying from 300 to 900, and parti-

tion sizes covering the natural numbers between 5 and 35. Then we calculate the RMSEs with

S = 100 bootstrap replicates. Figures 4.3 and 4.4 present the heatplot of RMSEs in percentage

(RMSEi/ξi · 100%). The horizontal axis indicates the sample size, and the vertical axis the

partition size. The darker the color of a region in the plot, the lower the estimation error. For

example, in Figure 4.3(a), dark (blue) refers to low RMSE (less than 10 percent), and light (red)

to relative high RMSE (higher than 14 percent). The magenta line maps n into M using the

previously mentioned heuristic function. Figure 4.3 shows that the proposed heuristic works well

on the 2-input simulator (Eq. (4.15)), with the magenta line falling mainly into dark coloured

regions. However, for the 21-input simulator (Eq. (4.16)) we would incur in high errors at small

sample sizes. For instance consider graph a) in Figure 4.4. The graph reports the error in the

estimates of δ3 for the second model. The heuristic would propose values of M at about 20 for

all values of n as optimal partition sizes. However, the partition size that minimizes the error is

at about M = 10 or lower. The different behavior here could also be related to the differences

in structure and dimensionality of the models. However, even for the same model, the heatplots

differ significantly across the sensitivity measures. For the first simulator (Eq. (4.15)), the ideal

partition size for the variance-based estimator is between 10 to 15 (Figure 4.3 (b)), while for
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(a) Variance-based η̂?1
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(b) Density-based δ̂?1
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(c) CDF-based β̂�1
Figure 4.3: RMSE of sensitivity measures estimates for X1 of the 2-input simulator in Eq.
(4.15). Magenta lines correspond to M = 2.5 3

√
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(a) Variance-based η̂?3
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(b) Density-based δ̂?3
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Figure 4.4: RMSE of sensitivity measures estimates for X3 of the 21-input simulator in Eq.
(4.16). Magenta lines correspond to M = 2.5 3
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n; n ∈ [300, 900], M ∈ [5, 34]

mutual information, if falls between 20 to 25 (Figure 4.3 (c)).

These results show that aiming at postulating a universally valid heuristic might be a cum-

bersome task. Clearly, the problem would be solved if partition-independent estimators were

available. In Section 4.4, we study two proposals of Bayesian estimators that avoid the partition

choice problem.

4.4 Bayesian non-parametric partition-free estimation

In this section, we propose two classes of Bayesian partition-free estimators. The first is based

on the use of an infinite mixture model to estimate the joint density of Y and Xi. The second,

uses a Bayesian non-parametric regression model to estimate the conditional density of Y given

Xi.

4.4.1 Joint density-based estimation

The intuition is that all sensitivity measures under consideration can be recovered from the joint

distribution of Y and Xi. Therefore, in order to do Bayesian inference on ξi it suffices to place

a prior on the joint density fXi,Y . We propose to do so by means of a nonparametric mixture

model (see, e.g. Ferguson (1983); Lo and Others (1984)). In other words, we consider fXi,Y to
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be defined as a mixture:

fXi,Y (·, ·)|P =

∫
K(·, ·|θ)dP (θ), (4.17)

where K is a parametric bivariate density and the mixing measure P is a probability distribution

over an appropriate space of parameters. The model is completed by assigning a non-parametric

prior, Π, on P . Most common choices of Π assign probability one to discrete distributions of

the form

P (θ) =

∞∑

`=1

w` δ
Dirac(θ`), (4.18)

placing mass w` on locations (θ`). In the literature, particular attention has been paid to

nonparametric priors admitting a stick-breaking construction (Pitman, 1996; Sethuraman, 1994)

where the weights w = (w1, w2, ...) are defined as realization of random variables satisfying

W1 = V1, W` = V`

`−1∏

`′=1

(1− V`′) (4.19)

and independent of θ = (θ1, θ2, ...)
iid∼ G. Rich families of stick-breaking priors can be de-

fined via different distributional assignments for the sequence (V1, V2, . . .) (see e.g. Favaro et al.,

2012; Ishwaran and James, 2001). The main advantage over other types of construction is

that the stick-breaking representation of the random weights allows for efficient simulation al-

gorithms, specially in the context of nonparametric mixture models (Ishwaran and James, 2001;

Papaspiliopoulos and Roberts, 2008; Kalli et al., 2011; Yau et al., 2011). However, the most

popular stick-breaking prior remains the Dirichlet process, well known even outside the special-

ized community of Bayesian nonparametrics. For this reason, we will focus our analysis on DP

mixtures, thus letting P ∼ Π = DP(αG). Additionally, for simplicity, we choose K to be a

bivariate normal density, following the density estimation scheme of Escobar and West (1995).

In this case, θ` = (µ`,Σ`) and, to simplify calculations, we select G as a conjugate Normal

inverse-Wishart distribution. Thus, the the integral in (4.17) reduces to a sum and the joint

density can be written as:

fXi,Y (·, ·)|P =
∞∑

`=1

w` · N (·, ·|µ`,Σ`), (4.20)

where the weights follow (4.19), with Vi
iid∼ Beta(1, α).

Inference on this model is usually achieved via an MCMC scheme resulting in a sample from

the posterior distribution of fXi,Y given the Data. In the case of the DP-mixture, the function

DPdensity from the R package DPpackage provides an off-the-rack solution. In practice, the

MCMC scheme generates, at each iteration s = 1, . . . , S, values (ws, µs,Σs) which, substituted

in expression (4.20), produce a density function, fBNJ,s
Xi,Y

. Analytical expressions for the marginal

and conditional densities, fBNJ,sY and fBNJ,s
Y |Xi as mixtures of normal distributions are made eas-

ily available by the choice of the Gaussian kernel. Clearly, it is also possible to evaluate the

corresponding cumulative distribution functions. Thus, it is possible compute the global sensi-
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tivity measures of interest, ηBNJ,si , δBNJ,si , βBNJ,si from their definitions (Table 4.1), obtaining a

posterior sample of each. We denote the sample means by η̂BNJi , δ̂BNJi and β̂BNJi , respectively,

proposing them as Bayesian point estimators. Approximate credibility intervals can be obtained

from the empirical quantiles of the samples. The procedure is summarized in Section 4.5.2, to

which we refer for further details.

It is important to observe that the known marginal distribution for X does not, in general,

coincide with the marginal distribution for X derived from each fBNJ,s
Xi,Y

. Thus, by using only

the joint density fXi,Y to estimate the sensitivity measures, important information, standard in

global sensitivity analysis is wasted. In fact, inference for conditional densities based in the joint

model is known to be approximate (see e.g. Müller and Quintana, 2004). In the next section, we

present an alternative estimation method which avoids this problem through a recent Bayesian

approach to conditional density estimation.

4.4.2 Conditional density-based estimation

We now propose to use a Bayesian non-parametric regression model to do inference directly

on the conditional density of Y |Xi, thus using all of the information contained in the Data to

estimate the relationship between the variables and exploiting the knowledge of the marginal

distribution of X to obtain the marginal distribution of Y . The idea is to transform the non-

parametric mixture of equation (4.20) into a mixture of conditional densities:

fY |X(y|x) =

∫
K(y|x, θ)dPx(θ), (4.21)

This time a non-parametric prior, Π, is placed on the family, {Px}x∈X of mixing distributions

indexed by x. Analogous to the DP mixture model of the previous section, a dependent DP

mixture model or DDP mixture (MacEachern, 1999, 2000) is obtained when Px follows a DP

prior, marginally for every x, so that:

Px(θ) =
∞∑

`=1

w`(x)δθ`(x). (4.22)

The random covariate-dependent weights W`(x) follow the stick-breaking construction of Eq.

(4.19), for i.i.d. random processes {V`(x) : x ∈ X}. In other words, V(x) ∼ DP for every x.

It has been proved sufficient flexibility is achieved through models in which only the particles

θ` or the weights w` depend on the covariate x (Barrientos et al., 2012), the second option

being favoured due to better predictive capabilities. Several proposals have been studied in

the literature, focusing on alternative definitions of the random functional weights w`(x) (e.g.

Dunson and Park, 2008; Griffin and Steel, 2006; Rodriguez and Dunson, 2011).

The stick-breaking structure of the weights, which imposes a geometric decay, may be by-
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passed through an alternative construction allowing further flexibility:

w`(x) =
ω`K(x|ψ`)∑∞

`′=1 ω`′K(x|ψ`′)
. (4.23)

The denominator of this expression is, again, an infinite mixture of parametric kernels, K, this

time with support X . Each ω` can be interpreted as the probability that a realization of Y comes

from the `-th regression component regardless of the value of X, just as ω` is the conditional

probability given X = x. Such density regression model, where the weights w` in (4.23) follow

the stick-breaking representation of (4.19) and the extended parameters (θ`, ψ`) are i.i.d. from

some adequate base measure, G, was proposed by Antoniano-Villalobos et al. (2014), to which

we refer the reader for additional details on the role and choice of hyper parameters, as well as

the algorithm used for inference.

We adopt this construction to estimate the conditional density fY |Xi(y|xi) as a mixture of

linear regression models:

fY |Xi(y|xi) =

∞∑

`=1

w`(x
i)N (y|a` + b`x

i, σ`), (4.24)

where w`(x
i) is given by Eq. (4.23), with a DP prior. Once again, a MCMC approach is used to

generate a sample of values, (θs, ψs) = (as, bs, σs, ωs, µs, τ s), s = 1 . . . S, this time from the pos-

terior distribution of fY |Xi . Each fBNC,s
Y |Xi (y|xi), s = 1, . . . , S, together with the known marginal

for Xi can be used to calculate (e.g. by numerical integration) a corresponding marginal for

Y . As discussed in Section 4.4.1, this is all that is needed to compute the global sensitivity

measures of interest, ηBNC,si , δBNC,si and βBNC,si . These, again allow point estimation, e.g. via

the Monte Carlo averages, which we denote by η̂BNCi , δ̂BNCi and β̂BNCi , and interval estimation,

via empirical quantiles. Section 4.5.3 summarizes the estimation procedure and offers additional

technical details.

4.4.3 Simulation study

We examine the performance of the classes of partition-independent estimators proposed in

Sections 4.4.1 and 4.4.2, via the 2−input and 21−input simulators introduced in Section 4.3.1.

For both joint and conditional density-based estimation, we set a burn-in period as 10n

and the stored MCMC samples size S = 1000. Results are illustrated in Figures 4.5 and

4.6. Let us consider the 2−input simulator. In terms of ordinal ranking, Figure 4.5 suggests

that both estimators correctly recover the equal importance of the two simulator inputs. The

credibility intervals obtained from the joint model are wider than those for the conditional

model, as expected, because additional uncertainty is introduced by neglecting to profit from

the knowledge of the true marginal distribution of Xi. In terms of cardinal values, while deeming

the inputs equally important, the joint estimators η̂BNJi and β̂BNJi overestimate the true value,

while δ̂BNJi is closer to it. The conditional estimators η̂BNCi , δ̂BNCi and β̂BNCi correctly suggest
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the simulator inputs as equally important, but underestimate the sensitivity measures, with

the exact values falling outside of the credibility intervals, suggesting that stating definitive

conclusions on the exact numerical values of the sensitivity estimates at such small sample sizes

is risky.

(a) Variance-based η1, η2

(b) Density-based δ1, δ2

(c) CDF-based β1, β2
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Figure 4.5: Results for input X1, X2 the 2−input simulator in Eq. (4.15): comparison of
sensitivity measures estimates with 95% credibility intervals using Bayesian non-parametric
partition-free joint/conditional estimators. The dash lines are analytical values of sensitivity
measures in Table 4.2.

Figure 4.6 reports results for the 21−input simulator. The Bayesian non-parametric joint

estimators η̂BNJi , δ̂BNJi and β̂BNJi correctly recover the true values of the parameters and, as the

sample size increases from n = 300 to n = 600, the credibility intervals become narrower. At n =

900, there is no more overlap among the three groups of sensitivity measures, allowing the analyst

to rank the inputs neatly. Regarding the Bayesian non-parametric conditional estimates, we also

observe a reduction of the interval widths as the sample size increases. The important measures

are overestimated, but ordinal ranking is accurately recovered, thus allowing the analyst to

visualize that the first group of simulator inputs is more important than the second which,
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(a) Variance-based η3, η10, η18

(b) Density-based δ3, δ10, δ18

(c) CDF-based β3, β10, β18
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Figure 4.6: Results for input X3, X10, X17 of the 21−input simulator in Eq. (4.16): comparison
of sensitivity measures estimates with 95% credibility intervals using Bayesian non-parametric
partition-free joint/conditional estimators. The dash lines are analytical values of sensitivity
measures in Table 4.2.

in turn, is more important than the third. For this example joint Bayesian estimators seem to

outperform their conditional counterpart. This, again, is to be expected, since the joint Gaussian

structure of the data is more easily recovered by the joint model in this case, so the loss due to

ignoring the true distribution of Xi has a lesser effect on the results. However, we can appreciate

a reassuring improvement in the estimation with larger sample sizes. One may argue that, in

a situation in which the true conditional distribution of Y given Xi is unknown and may be

complex, estimation based on the conditional density model may be preferred, as more robust;

the price to pay is that a larger sample size may be required, specially in high-dimensional

situations.

In Section 4.6, we test the behavior of the proposed methods when applied to a benchmark

realistic application for sensitivity experiments.
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4.5 Implementation details for the Bayesian non-parametric

estimators

We present further details regarding the implementation of the Bayesian non-parametric esti-

mation methods in Sections 4.3 and 4.4. Inference on the three selected sensitivity measures

ηi, βi and δi is performed independently for each i = 1, . . . , k. Therefore, in order to simplify

the notation, we will leave out the index i throughout this section, considering its value fixed.

Throughout this section, all the integrals are approximated numerically using trapezoidal rule,

and all the supremes are approximated by the maximum on a predetermined grid over Y.

4.5.1 Partition-dependent bootstrap and Pólya urn estimation

Recall that in Section 4.3, given M , we have the partition {Xm}Mm=1 of X according to the

sample proportion and corresponding {ym}.
Within each partition set, we generate n − nm new points ỹsm and obtain the extended

vector yC,sm = (ym, ỹ
s
m) with C ∈ {Bb, Pu}, where ỹsm is sampled from the posterior mean G̃m

for C = Bb, and is generated through Pólya urn scheme when C = Pu. The superscript s is

used to indicate the s−th replicate.

After repeating the sampling procedure for S times, we obtain the partition-depended

Bayesian estimator of η by calculating the Monte Carlo average:

η̂C =
1

S

S∑

s=1

ηC,s, with ηC,s =
M∑

m=1

nm
N

(
ȳC,sm − ȳ

)2

s2y
, (4.25)

where ȳC,sm is the sample mean of yC,sm ; ȳ and s2y are the sample mean and variance of y.

Approximate credibility intervals of η can be obtained from the empirical quantiles of {ηC,s, s =

1 . . . , S}. The same intuition is used for δ and β. Specifically, we use

δ̂C =
1

S

S∑

s=1

δC,s, with δC,s =
M∑

m=1

nm
N

∫

Y
|f̂?Y (y)− f̂C,sm (y)|dy, (4.26)

β̂C =
1

S

S∑

s=1

βC,s, with βC,s =

M∑

m=1

nm
N

sup
y∈yC,s

m

∣∣∣F̂Y (y)− F̂C,sm (y)
∣∣∣ , (4.27)

where f̂?Y and f̂C,sm are kernel smoothing functions of y and yC,sm , respectively; F̂Y , and F̂C,sm

are the empirical cdf’s of y and yC,sm , respectively.

Note that the calculations of ηC,s, δC,s and βC,s are equivalent to the pdf-based estimators

in Eqs. (4.3), (4.4), (4.6) but with the enriched samples. Alternatively, the cdf-based estimators

in Eqs. (4.8) and (4.5) could be used for ηC,s and δC,s.
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4.5.2 Partition-free joint density-based estimation

Following the proposal in Jara et al. (2011), we fix α = 1, and choose G to be a Normal-Inverse

Wishart distribution

(µ`,Σ`)|(m1, γ, ψ1)
iid∼ N (µ`|m1,

1

γ
Σ)IW (Σ`|4, ψ1), ` = 1, 2, . . . ,

where N (·|m,A) denotes a bivariate normal distribution with mean m and covariance matrix

A, and IW (·|4, ψ) denotes an Inverse-Wishart distribution with mean ψ−1. A hyper-prior is

assigned to the parameters of the base measure, with hyperparameters determined empirically:

γ ∼ Gamma (·|0.5, 0.5) , m1|(m2, s2) ∼ N (·|m2, s2), ψ1|(s2) ∼ IW (·|4, s−12 ),

where Gamma(·|a1, a2) denotes the Gamma distribution with mean a1/a2; m2 = (µX , ȳ) and

s2 = diag(σ2X , s
2
y).

Inference is achieved through the function DPdensity from the DPpackage in R. The output

is a MCMC posterior sample θs = (ws, µs,Σs), s = 1, . . . , S. In practice, the number Js of

components with non-zero weights is finite, thus we have

ws = (ws1, . . . , w
s
Js), µs = (µs1, . . . , µ

s
Js), Σs = (Σs

1, . . . ,Σ
s
Js),

with µs` =

[
µs1,`
µs2,`

]
, Σs

` =

[
σs1,` σs3,`
σs3,` σs2,`

]
. (4.28)

Given the posterior realizations, the corresponding joint density can be obtained:

fBNJ,sX,Y (x, y|θs) =

Js∑

`=1

ws` · N (x, y|µs` ,Σs
`).

By the properties of the bivariate Normal distribution, the marginal and conditional distribu-

tions, fBNJ,sY and fBNJ,s
Y |Xi respectively, are also mixtures of Normal distributions:

fBNJ,sY (y|θs) =

Js∑

`=1

ws` · N (y|µs2,`, σs2,`), fBNJ,sY |x (y|x, θs) =

Js∑

`=1

ws` · N
(
·|νs2,`, τ s2,`

)
(4.29)

where νs` = µs2,` + σs3,`(x− µs1,`)/σs1,` and τ s` = σs2,` − (σs3,`)
2/σs1,`. Clearly, the corresponding

cdfs, FBNJ,sY and FBNJ,sY |X , as well as the marginal mean and variance can be calculated trivially.

In particular,

µsY := E[Y |θs] =

Js∑

`=1

ws`µ
s
2,`, V s

Y := V[Y |θs] =

Js∑

`=1

ws`

(
σs2,` +

(
µsY − µs2,`

)2)
. (4.30)

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



78

Thus, MCMC samples of the sensitivity measures of interest can be obtained as follows:

ηBNJ,s ≈ V s

V sY
; δBNJ,s ≈ 1

2

∫

X

∫

Y

∣∣∣fBNJ,sX,Y − fX · fBNJ,sY

∣∣∣ dydx; βBNJ,s ≈
∫

X
sup
Y

∣∣∣FBNJ,sY − FBNJ,sY |X

∣∣∣ fXdx,

where

µsY (x) := E[Y |X = x, θs] =
Js∑

`=1

ws`ν
s
2,`,

V s =

∫

X
(µsY (x)− µsY )2 fXdx =

∫

X

(
Js∑

`=1

ws`
σs3,`
σs1,`

(
x− µs1,`

)
)2

fXdx.

Point estimators of interest are obtained as Monte Carlo averages:

η̂BNJ =
1

S

S∑

s=1

ηBNJ,s, δ̂BNJ =
1

S

S∑

s=1

δBNJ,s, β̂BNJ =
1

S

S∑

s=1

βBNJ,s. (4.31)

4.5.3 Partition-free conditional density-based estimation

Following the proposal of Antoniano-Villalobos et al. (2014), we fix α = 1 and choose

K(x|ψ`) to be a Normal kernel, with ψ` = (µ`, τ). The base measure G is given by:

τ ∼ Gamma(· | 1, 1); (b`, σ`, µ`)
iid∼ N

(
b` | b0, σ`C

−1)Gamma(σ−1` | 1, 1)N
(
µ` | µ0, (τ/10)−1

)
,

where b` = (a`, b`).The hyperparameters are chosen empirically. We consider the

scatter-plot of (x,y) and the convex hull, i.e. the smallest convex set containing all

points; we denote by the largest and smallest slopes amax, amin of the lines that constitute

the convex hull, and the largest and smallest intercepts bmax, bmin. We then fix b0 = (ā, b̄)

where ā = (amax + amin)/2 and b̄ = (bmax + bmin)/2. We fix C−1 = diag(σ2
a, σ

2
b ), where

σa = 1/3(amax − ā) and σb = 1/3(bmax − b̄).
We use the Matlab subroutine provided by Antoniano-Villalobos et al. (2014) to

generate an MCMC posterior sample (θs, ψs) = (as, bs, σs, ωs, µs, τ s), s = 1 . . . S, where

as = (as1, . . . , a
s
Js), bs = (bs1, . . . , b

s
Js), σs = (σs1, . . . , σ

s
Js),

ωs = (ωs1, . . . , ω
s
Js), µs = (µs1, . . . , µ

s
Js). (4.32)

Given the a posterior realization (θs, ψs)), a conditional density can be obtained from
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Eqs. (4.23) and (4.24):

fBNC,sY |X (y|x, θs, ψs) =
Js∑

`=1

ws`(x)N (y|as` + bs`x, σ
s
` ) . (4.33)

The corresponding marginal pdf fBNC,sY of Y is obtained by integrating with respect

to the true fX :

fBNC,sY (y|θs) ≈
∫

X
fBNC,sY |X fXdx. (4.34)

Clearly, the corresponding marginal and conditional cdfs, FBNC,s
Y |X and FBNC,s

Y , respec-

tively can be obtained trivially. In particular, posterior realizations of the marginal mean

and variance of Y are given by

µsY := E[Y |θs, ψs] ≈
∫

Y
yfBNC,sY dy, V s

Y := V[Y |θs, ψs] ≈
∫

Y
(y − µsY )2 fBNC,sY dy (4.35)

Thus, MCMC samples of the sensitivity measures of interest can be obtained as follows:

ηBNC,s ≈ V s

V sY
; δBNC,s ≈ 1

2

∫

X

∫

Y

∣∣∣fBNC,sY − fBNC,sY |X

∣∣∣dyfXdx; βBNC,s ≈
∫

X
sup
Y

∣∣∣FBNC,sY − FBNC,sY |X

∣∣∣ fXdx,

where

µsY (x) := E[Y |x, θs, ψs] =
Js∑

`=1

ωs` (x) (a` + b`x) .

µ̃sY := E[µsY (X)] ≈
∫

X
µsY (x)fXdx, V s = V[µsY (X)] ≈

∫

X
(µsY (x)− µ̃sY )2 fXdx.

Finally, point estimators of interest are obtained as Monte Carlo averages:

η̂BNC =
1

S

S∑

s=1

ηBNC,s, δ̂BNC =
1

S

S∑

s=1

δBNC,s, β̂BNC =
1

S

S∑

s=1

βBNC,s. (4.36)
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Table 4.4: Simulator inputs for the LevelE code. U(·, ·) and LU(·, ·) stand for the uniform and
log-uniform distributions respectively

Input Meaning Distribution
X1 Containment time U(100,1000)
X2 Iodine Leach rate LU(10−3, 10−2)
X3 Neptunium chain Leach rate LU(10−6, 10−5)
X4 Iodine retention factor (1st layer) LU(10−3, 10−1)
X5 Geosphere water velocity 1st layer U(100,500)
X6 Geosphere Length 1st layer U(1,5)
X7 Factor to compute Neptunium retention coefficients Layer 1 U(3,30)
X8 water velocity in geosphere’s 2nd layer LU(10−2, 10−1)
X9 Length of geosphere’s 2nd layer U(50,200)
X10 Retention factor for I (2nd layer) U(1,5)
X11 Factor to compute Neptunium retention coefficients Layer 2 U(3,30)
X12 Stream flow rate LU(105, 107)

4.6 Case study: LevelE simulator

In this section, we evaluate the performance of the proposed estimators through the bench-

mark simulator of sensitivity analysis, LevelE. The LevelE code simulates the release of

radiological dose from a nuclear waste disposal site to humans over geological eras. The

code has been developed in an international exercise launched by the Nuclear Energy

Agency (NEA) in the mid 1980’s (Nuclear Energy Agency, 1989). Goal of the exercise

was the realization of a reference simulator for the prediction of flow and transport of

radionuclides in actual geologic formations against which to compare other simulators de-

veloped internationally to support the selection of radioactive waste management policies.

Since then, LevelE has become the benchmark simulator of sensitivity analysis (Saltelli

et al., 2000; Saltelli and Tarantola, 2002). During the international exercise, distributions

for the uncertain simulator inputs were assessed (Table 4.4), and have become the refer-

ence for analysis on this code. From a technical viewpoint, the LevelE code solves of a

set of nested partial differential equations that compute the released radiological dose in

Sievert/year over a time range of t = 10, 000 to 2× 109 years. The detailed equations of

the code are reported in Saltelli and Tarantola (2002).

Previous works have discussed the sensitivity analysis of this simulator using alter-

native sampling methods and sizes. For instance, Saltelli et al. (2000) employ 3, 084

simulator evaluations to obtain point estimates of the first and total order variance-based

sensitivity indices. Saltelli and Tarantola (2002) employ 10, 000 simulator runs for the

point estimation of first-order variance-based sensitivity indices, a second experiment with

16, 384 runs for the point of the first and total order sensitivity indices according to the

design in Saltelli (2002a) (no uncertainty in the estimates is provided). In Ratto et al.

(2007), stable patterns for the estimation of variance-based sensitivity measures are ob-
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tained at a cost of about 1, 024, after the input-output dataset has been used to train

an emulator. In Castaings et al. (2012), design based on substituted columns sampling

and permuted columns sampling are used, with convergence at about 104 runs. Wei et al.

(2014) propose a copula-based estimation methods that reduces the cost to about 1, 000

runs for point estimates, with 20 replicates for obtaining confidence intervals. Plischke

and Borgonovo (2017) apply a given-data design for the point estimators η̂�i , δ̂
�
i and β̂�i

using a sample up to size n = 5, 000, with estimates becoming stable for n > 1, 000

runs. Thus, a sample of size n = 1, 000 can be considered reflective of state of art for the

identification of the key-uncertainty drivers of LevelE.

We report results for the calculation of global sensitivity measures using all classes

of estimators discussed in the present work for samples of sizes n = 600 and n = 900.

Figures 4.7 and 4.8 display the results.

The graphs in Figure 4.7 report the Bayesian bootstrap and Pólya urn estimators,

vis-á-vis the point estimators for variance-based (graphs in row a), density-based (graphs

in row b) and cdf-based (graphs in row c) sensitivity measures. The results show that

already at n = 600 the two most important simulator inputs are correctly identified.

However, the estimates are sensitive to the partition size. Consider the right graph in row

a). The credibility intervals of the variance-based Pólya urn estimators with M = 26 are

completely overlapping. This signals that, had the analyst chosen such partition size, the

estimates would not be meaningful. The separation becomes, instead, clearer at smaller

partition sizes with M = 9 being possibly the optimal choice. Note that the estimates

tend to be upward biased as the partition size increases, in agreement with our previous

experiments and also with previous literature findings.
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We then come to the joint and conditional partition-independent Bayesian density

estimators (Figure 4.8).

(a) Variance-based η1, . . . , η12

(b) Density-based δ1, . . . , δ12

(c) CDF-based β1, . . . , β12

0.1

0.2

0.3

0.4

0.5
N= 300 N= 600 N= 900

One-sample BBPD

One-sample BBPU

η̂BNJ , δ̂BNJ , β̂BNJ

0.1

0.2

0.3

0.4

0.5
N= 300 N= 600 N= 900

One-sample BBPD

One-sample BBPU

η̂BNC ,δ̂BNC , β̂BNC

Figure 4.8: Results for the LevelE code: comparison of sensitivity measures estimates with 95%
credibility intervals using Bayesian non-parametric partition-free joint/conditional estimators.

The two graphs in row (a) display the estimates and credibility intervals for variance-

based sensitivity measures (η̂BNJi ,η̂BNCi ), the two graphs in row (b) for density-based

sensitivity measures (δ̂BNJi , δ̂BNCi ) and the two graphs in row (c) for cdf-based (β̂BNJi ,

β̂BNCi ) sensitivity measures. Figure 4.8 shows that the two key-uncertainty drivers are

correctly identified already at n = 600, by η̂BNCi , δ̂BNCi and β̂BNCi , as the credibility

intervals of the associated sensitivity measures separate from the credibility intervals of

the remaining simulator inputs. The estimators η̂BNJi (based on joint Bayesian density

estimation) do not produce meaningful results for variance-based sensitivity measures at

either sample sizes. However, the estimators δ̂BNJi and β̂BNJi correctly identify the two

most influential simulator inputs.

Let us consider the perspective of an analyst interpreting the results overall. From

the available Data, the analyst is able to obtain alternative estimators for representatives

of three categories of sensitivity measures, with display of credibility intervals. With the

exception of η̂BNJi , the estimators communicate that uncertainty in the simulator response

is mostly driven by two simulator inputs, with the remaining ones being of lower signifi-
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cance. Thus, the analyst is allowed to confidently report the key-uncertainty drivers to the

decision-maker even if the sample size is limited. At the same time, Figures 4.7 and 4.8

communicate that the sample is not sufficient to rank the medium and low-important sim-

ulator inputs with confidence. If the decision-maker (modeler) wished sharper estimates of

the sensitivity measures of these inputs, the analyst would need a larger sample size. This

could be obtained either through additional runs of the original simulator or by fitting an

emulator and, in case the fit is accurate, running the emulator instead of the original code.

4.7 Discussion

This work has presented a fully Bayesian approach to the estimation of probabilistic sen-

sitivity measures from a given sample. The proposed algorithms yield credibility intervals

for the estimates without increasing computational burden. We have studied four classes

of estimators. The first two find their theoretical ground in non-parametric Bayesian

estimation based on the Dirichlet process. These estimators run in parallel with one-

sample frequentist estimators currently in use, produce uncertainty in the estimates and

are computationally simple to implement. However, they leave the analyst with the prob-

lem of choosing the optimal partition. The introduced conditional and unconditional

non-parametric Bayesian estimators eliminate the partition selection problem, while pro-

ducing uncertainty in the estimates. However, their numerical implementation needs to be

carefully executed, as it requires a combination of numerical integration and MCMC. Al-

gorithms are available, but their convergence might take a longer time than the Bayesian

bootstrap and Pólya urn estimators. Then, how should one proceed in a practical situa-

tion? The several numerical experiments performed by the authors (of which a subset was

reported in the paper) evidence that the estimators succeed in identifying key-uncertainty

drivers at small sample sizes in most situations. Then, a suggested approach would be to

apply first the Bayesian bootstrap and/or Pólya urn estimators on the available sample

for computing an ensemble of sensitivity measures (e.g., η, δ, β). If the sensitivity measure

estimates and credibility intervals yield a clear picture of the simulator inputs influence,

then the analysis could be considered satisfactory. However, the analyst ought to test this

assertion repeating the estimates at alternative partition sizes. In case results are strongly

dependent on the partition size, the analyst can invest in the Bayesian non-parametric

estimation. If these estimators yield a clear picture about the simulator input influence,

the analysis is conclusive. Conversely, a larger sample is needed and the analyst ought to

plan for additional simulator runs.

While we have discussed three well-known global sensitivity measures, the paradigm

presented here can be applied to the estimation of any global sensitivity measure, includ-
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ing, among others, value of information, sensitivity measures based on any discrepancy

between densities or cumulative distribution functions.

From a more general perspective, the work shows that combining recent advances

in Bayesian non-parametric density estimation with probabilistic sensitivity analysis in

DACE may lead to improvements in the estimation of global sensitivity measures. Re-

search in Bayesian non-parametric density estimation is active in Statistics and Machine

Learning, but the advances in this discipline are not directly known to the DACE com-

munity. This work represents a first systematic bridge between these two closely related

areas of Statistics, and we hope it could favour further research for transferring findings

in Bayesian-non parametric estimation to the field of computer experiments. At the same

time, exposing Bayesian estimation to the demands coming from probabilistic sensitiv-

ity analysis of realistic simulators may challenge state of the art and stimulate further

research in Bayesian-non parametric estimation.
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Chapter 5

Kriging for large scale simulators

Kriging is one of the most widely used emulation methods in simulation. However, mem-

ory and time requirements may prevent its application to datasets generated by dimension-

ally large simulators. In this chapter, we merge Kriging with a recent innovation of the

machine learning literature to propose a new algorithm that, while preserving prediction

accuracy, notably reduces Kriging time and memory requirements. We analyze theoreti-

cally the error and prove that the algorithm lowers computational complexity of one order

of magnitude. We then test the implementation of the algorithm in a series of challenging

numerical experiments. To evaluate its performance, we use not only traditional measure

of the prediction performance (e.g., root mean square error), but challenge the prediction

ability through the computation of complex functionals of the simulator output. The pro-

posed algorithm is compared against four Kriging subroutines, which are either commonly

used in the operational research field or designed for large datasets. Experiments on sim-

ulators of increasing dimensionality show that the proposed algorithms offers significant

improvements in time and memory and allows one to breach the 10, 000 simulator input

barrier for the first time.

This chapter contains joint work with Alessandro Rudi, Emanuele Borgonovo and Lorenzo

Rosasco, and will be submitted for publication shortly.

5.1 Motivation

The continuous growth in computing capabilities and the data driven revolution are mak-

ing computational modeling and simulation experiments increasingly relevant for enter-

prises and decision makers. They allow us to extract value from data and ask questions

about behaviors; and then use the answers to understand, design, manage and predict the

workings of complex systems and processes... (UK Government Office for Science, 2018,

p. 6). However, while the steady increase in computing capabilities allows analysts to

build simulators of increasing complexity and sophistication (Luo et al., 2015), simulation

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



88

models are often tedious to build, need substantial data for input modeling, and require

significant time to run(Ankenman et al., 2010). Thus, computational burden might be

an obstacle to fully exploit the capabilities of simulation codes. Relevant research efforts

are devoted to increase computational efficiency (Luo et al., 2015). One main strategy for

fully exploiting the insights of a simulator is to substitute the time-consuming computer

code with a fast-running emulator on a region of interest.

Kriging (also called Gaussian process regression in statistical context) is one of the

most well known and applied emulation methods in simulation (Ankenman et al., 2010;

Chen et al., 2013). The merits of Kriging are several, ranging from its analytical tractabil-

ity For example, 1 to the fact that an analyst obtains not only a point estimate, but a

corresponding estimate of the prediction error (Santner et al., 2003). Three aspects are

of primary interest to the analyst : 1) accuracy, 2) the ability of using all available infor-

mation, 3) the speed in training and prediction. The first is essential for obvious reasons.

The second often generates a trade-off, insofar exploiting available information is key for

increasing prediction accuracy, but large datasets make Kriging time and memory con-

suming. Specifically, in training, memory requirements associated with matrix inversion

limit the size of the input-output dataset that can be used. In prediction, the execution

time increases with the matrix dimension reducing the convenience of using the emulator.

Our goal is to introduce an algorithmic approach that reduces Kriging memory and

time requirements, thus allowing the application of Kriging to simulators of larger di-

mensionalities or to input-output samples with larger sizes than in current practice. We

merge the regularization algorithms of the Machine learning literature and the typical

algorithmic implementation of Kriging in simulation. In the proposed algorithm, the part

concerning the predictive mean borrows from the work of Rudi et al. (2015) on Nyström

regularization. The approach is then modified to take into account the constraint of

positive variance, which is often neglected in Machine Learning studies. We provide a

theoretical analysis, obtaining an expression for the predictive variance and showing that

the algorithm requires a total cost of

O(nm(d+m)) in time, O(m2 + n) in space.

Note that universal Kriging algorithms requirements are of O(n3) in terms of time and

space. We call the proposed approach ‘fast Kriging’.

We then challenge the proposed fast Kriging in a series of numerical experiments for

simulators of increasing dimensionality. To test its performance, we use not only tradi-

tional metrics such as the root mean square error (RMSE), but also use functionals of the

output. In particular, the intuition is that the accurate estimation of a complex functional

1Oakley and O’Hagan (2004) investigate the analytical tractability of Kriging in application of sensi-
tivity analysis, especially under Gaussian input distribution assumption.
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of the output is a sign of how accurately the emulator forecasts the output distribution.

Moreover, the estimation of a complex functional requires thousands of predictions, serv-

ing as a test of whether the algorithm produces a time advantage in prediction. As

functionals, we use global sensitivity measures based on alternative distance metrics that

require an accurate estimation of the conditional and unconditional distributions of the

model output. The details of global sensitivity measures are given in Sections 2.2.3, 2.2.4

and 2.2.5 of Chapter 2.

In the experiments, the algorithm is compared against four Kriging implementations

available in the literature. In particular, we use the well-known Matlab toolbox called

‘DACE’, developed by Lophaven et al. (2002), and the Kriging implementation in UQlab,

a Matlab metamodelling tool created by Lataniotis et al. (2015). The third and fourth

subroutines belong to the R package laGP, developed by Gramacy (2016) to address large

datasets (see Section 5.3 for further details).

The experiments are carried out with simulators of increasing dimensionality starting

with a synthetic test case, then moving to the LevelE code, a benchmark simulator well

known for its low numerical tractability. We then move to the STOCFOR3 linear program,

the largest linear program in the online-available NETLIB library, with 40, 000 uncertain

simulator inputs.

Overall, the experiments show that the proposed algorithm notably reduces memory

and time requirements while maintaining the same level of accuracy. Also, for the STOC-

FOR3 problem, the proposed implementation is the only to grant the emulation of the

original simulator, as the other four subroutines fail due to memory or time requirements.

This chapter is organized as follows. Section 5.2 clarifies the notation used in this chap-

ter. Section 5.3 introduces the background and relevant literature of Kriging. Section 5.4

is devoted to derive the proposed fast Kriging technique and offers the corresponding

theoretical analysis. Section 5.5 presents the numerical results. Section 5.8 provides a

brief summary.

5.2 Notation

We first clarify the notation used in this chapter. One lets y = g(x) denote the simulator

input-output mapping, where y represents the output observation, and x = (x1, . . . xd)> ∈
X ⊆ Rd is the corresponding d-dimensional input vector 2.

The idea of meta-modeling is to use an explicit and simple function gmeta to replace

the original simulator g, that is y = gmeta(x), where gmeta gives an approximation of the

2Note that in the previous chapters, the number of inputs is denoted as k. In this chapter, k is used
for kernel functions.
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Table 5.1: Some symbols and notation used in this chapter. Matrices are capitalized and
vectors are in bold.

Symbol Meaning
d dimension of input space X
GP Gaussian process
k(x,x′) covariance (or kernel) function evaluated at x and x′

K, K(X,X) n× n covariance matrix
r(x,x′) correlation function evaluated at x and x′

R, R(X,X) n× n correlation matrix
P a measure
n and ntrain number of training cases
n∗ and npred number of test cases
X d× n matrix of the training inputs {xj}nj=1: the design matrix
xj the j-th training input

output response surface. Our goal is to make inference on gmeta based on a given dataset

(the training set) and provide a prediction of the output when given a new input point

(or testing/prediction point).

We denote the training set by Data = {(xj, yj)}nj=1, which consists of n input-output

pairs. We aggregate the n input vectors in a d × n design matrix X = (x1, . . . ,xn),

and arrange the output observations in a column vector y = (y1, . . . , yn)>. Table 5.1

summarizes some notation used in this chapter.

5.3 Background

Kriging originates in geostatistics and spatial statistics as an exact interpolation method

(Krige, 1952). Subsequent works such as Matheron (1975); Howarth (1979); Welch et al.

(1992); Ver Hoef and Cressie (1993); Morris (1993) elaborate the mathematical properties

of the method.

Following Sacks et al. (1989), the so-called universal Kriging emulator (also known as

Gaussian process regression in Santner et al. (2003)) is constructed as:

y = φ(x)>w +M(x), (5.1)

where

• φ(x) = (φ1, . . . , φp)
> is a fixed basis function which maps a d−dimensional input

vector x into a p−dimensional feature space;

• w is a size p column vector of weights (regression coefficients), and the term φ(x)>w

is called trend ;
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• M(x) is a stationary Gaussian process with zero mean, E [M] = 0. In general, the

covariance between outputs is assumed to be proportional to a correlation matrix,

cov (M(x),M(x′)) = σ2r(x,x′), x,x′ ∈ X (5.2)

where r(x,x′) is the correlation function of input vectors. One typically assumes

that the correlation function is separable, writing

r(x,x′|θ) =
d∏

i=1

r(hi|θi), where hi = |xi − x′i| , θ = (θ1, . . . , θd). (5.3)

Williams and Rasmussen (2006, p. 80) present some commonly used correlation

functions.

Kriging also shares a Bayesian interpretation (Koehler and Owen, 1996; Santner et al.,

2003), where the response surface is regarded as a realization of a stochastic process and

the mean of the posterior process is used as the predictor (Kleijnen, 2017).

An active research area of Kriging is the determination of efficient (or space-filling)

designs. Chen et al. (2006); Kleijnen (2014) and Silvestrini et al. (2013) provide overviews

of the use of orthogonal arrays and the maximum entropy principle for the selection of the

design points. Sequential designs based on Kriging meta-models are presented in Kleijnen

(2005); Huang et al. (2006); Kleijnen (2009, 2017).

Kriging for simulators with a stochastic response (stochastic kriging, henceforth) has

been widely studied (Mitchell and Morris, 1992; Van Beers and Kleijnen, 2003; Forrester

et al., 2008; Yin et al., 2009; Ankenman et al., 2010; Chen et al., 2012; Dellino et al.,

2012; Picheny et al., 2013). In stochastic Kriging, researchers face the challenge of ap-

proximating the trend while simultaneously accounting for extrinsic and intrinsic noise

(Ankenman et al., 2010). Extrinsic noise is the variability associated with the randomness

of the Gaussian process. Intrinsic noise or ‘nugget effect’ in spatial statistics (Ver Hoef

and Cressie, 1993, Chapter 3) is the variability associated with the randomness of the

simulator response itself. Ankenman et al. (2010) develop an efficient stochastic Kriging

meta-model that has become a benchmark for subsequent studies. Chen et al. (2013); Qu

and Fu (2014) incorporate gradient information in stochastic Kriging. The intuition is

to make use of information coming from calculating the gradients of Kriging to improve

prediction accuracy or enforce known properties of the original model on the response

surface (e.g., monotonicity). Chen et al. (2012) study the effect of common random

numbers on stochastic Kriging showing that common random numbers worsen prediction

performance, but improve the estimation of slope parameters and gradients. For other

stochastic Kriging variants, we recall the works of Van Beers and Kleijnen (2003); Kleijnen

and Van Beers (2005); Marrel et al. (2012); Yin et al. (2009, 2011), among others.
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Xu (2012); Sun et al. (2014) develop an adaptive algorithm based on stochastic Krig-

ing for optimisation problem with a large feasible set, where the intuition is to use ef-

ficient sampling scheme for sampling the next solution. Preuss et al. (2012) investigate

the performance of Kriging-based optimization techniques for relatively high-dimensional

problems (d = 22). We refer to Chen and Kim (2016); Barton and Meckesheimer (2006);

Hong et al. (2015); Picheny et al. (2013); Jalali et al. (2017) for further details about

Kriging-based optimization.

Works closely related to ours concern the research for reducing computational com-

plexity. In fact, the estimation of Kriging parameters, i.e. θ and σ2 in Eq. (5.1), is

recognized as a mathematically challenging task, see Erickson et al. (2018) for a recent

overview. In fact, the use of full-order kriging involves the inversion of a n×n matrix (see

Section 5.4 for details). The memory requirement for storing the matrix is O(n2), while

the computational time for the inversion is O(n3). For large n, the estimation becomes

prohibitive.

Two main intuitions have been explored to reduce the computational complexity in the

literature. The first is to make the Kriging prediction locally dependent on the training

points in a neighborhood. For example, Urtasun and Darrell (2008) propose an on-line

meta-model (assuming the prediction points arrive sequentially) based on a local mixture

of Gaussian Processes. When a new point arrives, the algorithm first defines the training

points which are located in the nearest neighborhood of this new point, then calculates

the prediction based on those selected training points. Thus, the dimension n of the

matrix to be inversed is limited. Gramacy and Apley (2013) use a similar idea and apply

different criteria to determine the sub-design region such as active learning Cohn (ALC)

and mean-square prediction error. This method has been implemented in the R package

laGP, used in this work for comparison.

The second is to select a subset of the training dataset of size m < n, the so-called

active set, the associated approaches are typically encountered in the machine learning

literature. Entropy minimization and gradient-based optimization are frequently used in

the selection of the active set. For instance, Lawrence et al. (2003) propose Gaussian

process regression associated with a forward greedy search of the training points based on

differential entropy score. Snelson and Ghahramani (2006) propose a Gaussian process

regression with reduced covariance matrix parameterized by pseudo-input points, where

the pseudo points are selected via gradient-based optimization. Hensman et al. (2013) fit a

Gaussian process regression by using stochastic variational inference so that the resulting

fitted surface only depends on a set of inducing variables. We refer to Quiñonero-candela

et al. (2005) for a comprehensive review.

In this work, we borrow from ideas in Rudi et al. (2015), where Nyström regularization

is used for randomly sampling the active set from the available dataset. The intuition

of a regularization is that a suitable choice of the kriging scale parameter allows one to
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capture the relevant information in the empirical kernel matrix. Nyström regularization

achieves such goal by selecting a subset of columns, thus allowing one to manipulate

and store only a fraction of the empirical kernel matrix. More specifically, in Nyström

regularization the empirical kernel matrix is used together with a regularization term.

The regularization term has the purpose of retaining the part of the matrix that contains

the relevant information required by the algorithm, while discarding the part that is less

relevant. See Appendix 5.4.1 and the next section for greater detail.

This concise literature review shows that Kriging is a widely used and studied method-

ology in the fields of simulation and machine learning. However, recent advances in the

latter field have not crossed the disciplinary barrier. We believe that such crossing could

benefit the use and application of Kriging in the simulation community. In the next sec-

tion, we propose a methodology based on such cross-fertilization.

5.4 Methodology

5.4.1 Regularization

The first step for making Kriging faster is to relate Kriging and the so-called regularization

methods of machine learning (Williams and Rasmussen, 2006). A central role is played by

the concept of Reproducing Kernel Hilbert Space (RKHS). Let f : X 7→ R, and f ∈ H,
where H is a Hilbert space. H is called a RKHS with inner product 〈·, ·〉H, if there exists

a function k : X × X → R such that: 1) ∀x ∈ X , k(x′,x) is a function of x belonging to

H; and 2) k possesses the reproducing property, i.e., 〈f(·), k(·,x)〉 = f(x). The function

k is called reproducing kernel and the matrix K = (k(xi,xj))
n
i,j=1 ,∀xi,xj ∈ X is positive

semi-definite (Williams and Rasmussen, 2006). One can express the RKHS as 3

Hn =

{
f ∈ H|f(x) =

n∑

j=1

αjk(xj,x),xj ∈ X , αj ∈ R

}
(5.4)

By the Moore-Aronszajn theorem (Aronszajn, 1950), the RKHS uniquely determines k

and the converse, see Wendland (2004) for detailed discussions.

The problem then becomes to infer an underlying function f(·) from a finite dataset

Data. One considers the functional

J [f ] = Q(y, f) + β‖f‖2H, (5.5)

where ‖f‖2H = 〈f, f〉H; in Eq. (5.5), the first term assesses the quality of data-fit (a

3The associated inner product is 〈f, f ′〉H =
∑n
i=1

∑n
j=1 αiα

′
jk(xi,x

′
j) where f ′(x) =

∑n
j=1 α

′
jk(x′j ,x).
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measure between the observed yi and fitted value f(xi)), and the second term is called

regularizer.

The representer theorem of Kimeldorf and Wahba (1971) states that any minimizer

f ∈ H of J [f ] has the form f(x) =
∑n

j=1 αjk(xj,x). Furthermore, if J [f ] is convex, the

minimizer f is unique (Schölkopf et al., 2002).

A classical way to derive the minimiser solution is to consider a Tikhonov regularization

approach:

min
f∈H

(
1

n

n∑

j=1

(yj − f( xj))
2 + β‖f‖2H

)
, β ≥ 0. (5.6)

The solution f̂β to Eq. (5.6) can be written as (Rudi et al., 2015):

f̂β(·) =
n∑

j=1

α̂jk(xj, ·) with α̂ = (K + nβIn)−1 y, (5.7)

where α̂ = (α̂1, . . . , α̂n)>. One can re-write the above regularization predictor as

y∗ = k(X,x∗)> (K + nβIn)−1 y. (5.8)

If one regards the kernel matrix K as the covariance matrix of output observations (re-

call that every covariance matrix is positive semi-definite), and imposes the covariance

assumption in Eq. (5.2), one obtains:

y∗ = R>∗

(
R +

nβ

σ2
In

)−1
y, (5.9)

where R∗ := r(X,x∗) = r(x∗, X)> is the n×1 matrix of correlations evaluated at all pairs

of training and test points; and R := r(X,X) = (r(xi,xj)) is the n×n correlation matrix

of the training inputs.

This expression is useful to the link between regularization and Kriging in Section

5.4.2. In deriving the link, we shall pose attention to the predictive mean and variance of

the Kriging emulator. Indeed, most of the machine learning literature focuses on expec-

tation, because this has direct relevance for predictions. Here, we observe that a Nystöm

regularization with negative variance would impair the use of the faster-Kriging for sim-

ulation optimization, which, instead, is relevant in operations research applications. We

then pay attention to this aspect in deriving our emulator, so that no negative variance

is achieved.
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5.4.2 Linking regularization and Kriging

In this section, we present the core of the proposed methodology. The first intuition is to

show that the regularization predictor can be obtained from applying ordinary Kriging

with noisy observations (Williams and Rasmussen, 2006; Durrande et al., 2013). To

illustrate, one starts assuming that the output y is observed with white noise, that is

y = g(x) + ε, ε ∼ N (0, σ2
ε ), (5.10)

and one adopts the ordinary Kriging meta-model without trend, rewriting Eq. (5.1) as

y =M(x), M(x) ∼ GP(0, σ2r(x,x′)). (5.11)

Thus, we have cov(y,y) = cov(M,M)+σ2
ε In = σ2R+σ2

ε In, whereM = (M(x1), . . . ,M(xn))>.

Consider now making a prediction of the output value y∗ given a new input value

x∗ ∈ X . By the properties of Gaussian processes, M and M(x∗) follow a multivariate

Gaussian distribution:

(
M
M(x∗)

)∣∣∣X,x∗, σ2, σ2
ε , θ ∼ N

[
0,

(
σ2R + σ2

ε In σ2R∗

σ2R>∗ σ2

)]
, (5.12)

The Kriging predictor then follows the conditional distribution of y∗ :=M(x∗)|y, X,x∗,
σ2, σ2

ε , θ, so that its mean and variance are given by

µy∗(x
∗) = σ2R>∗

(
σ2R + σ2

ε In
)−1

y

= R>∗

(
R +

σ2
ε

σ2
In

)−1
y (5.13)

σ2
y∗(x

∗) = σ2 − σ2R>∗
(
σ2R + σ2

ε In
)−1

σ2R∗

= σ2

(
1−R>∗

(
R +

σ2
ε

σ2
In

)−1
R∗

)
. (5.14)

Comparing Eq. (5.13) with Eq. (5.9), we see that the regularization predictor coincides

with the Kriging predictor with noisy observations. In particular, the noise distribution

is N (0, nβ).

However, there are computational challenges associated with the Kriging method. In

particular, the matrix R has size n×n. Then, evaluating the inverse matrix R−1 becomes

computationally impractical as n increases for reasons related to the speed with which the

operations are performed and to the available memory. This problem has been addressed

in the machine learning literature with alternative techniques, and a successful approach

is Nystöm regularization.
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5.4.3 Nystöm regularization

The Nystöm method is used to approximate the covariance matrix K (Williams and

Seeger, 2001; Williams and Rasmussen, 2006). To illustrate the idea of Nystöm reg-

ularization, we start with the expression of kernels regarding their eigenfunctions and

eigenvalues using Mercer’s theorem.

Let P be a measure over X . A function ϕ(·) is called an eigenfunction of the kernel k

with eigenvalue λ with respect to measure P, if it satisfies the following integral:

∫
k(x,x′)ϕ(x)dP(x) = λϕ(x′). (5.15)

Equation (5.15) possibly admits infinitely many solutions. We order the eigenfunctions

as ϕ1(x), ϕ2(x), . . . according to their corresponding eigenvalues such that λ1 ≥ λ2, . . . .

Eigenfunctions are orthogonal with respect to P. Besides, the normalised eigenfunctions

satisfy
∫
ϕi(x)ϕj(x)dP(x) = δij, where δij is the Kronecker delta.

Under certain regularity conditions, Mercer’s theorem (König, 1986) allows us to ex-

press the kernel by normalized eigenfunctions and the corresponding eigenvalues:

k(x,x′) =
∞∑

l=1

λlϕl(x)ϕl(x
′). (5.16)

The right hand side in Eq. (5.16) can be a sum of infinitely many terms or can terminate

at some value t ∈ N (in that case we write λl = 0 for l > t).

Given an i.i.d. sample {xj}nj=1 from a probability measure PX(x) 4, one considers the

approximation:

λlϕl(x
′) =

∫
k(x,x′)ϕ(x)dPX(x) ≈ 1

n

n∑

j=1

k(xj,x
′)ϕl(xj). (5.17)

Letting x′ = xj, j = 1 . . . n, one can write

λlϕl(X) ≈ 1

n
Kϕl(X), (5.18)

where ϕl(X) = (ϕl(x1), . . . , ϕl(xn))>, and K is the covariance matrix of sample {xj}nj=1.

Considering the eigenproblem of a matrix K, one has

λmatl · ul = Kul, (5.19)

where λmatl is the l-th eigenvalue of a matrix K, and ul is the corresponding n × 1

4Here, we are interested in P = PX.
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normalized eigenvector, u>l ul = 1. Comparing Eqs. (5.18) and (5.19), one obtains:

λl ≈
1

n
λmatl , ϕl(xi) ≈

√
nul,i, i = 1 . . . n, (5.20)

where ul,i represents the i-th entry of the eigenvector ul.
5 Plugging Eq. (5.20) back into

Eq. (5.17), we obtain the Nystöm approximation to the l-th eigenfunction (Baker, 1977,

Chapter 3):

λl ≈
1

n
λmatl , ϕl(x

′) ≈
√
n

λmatl

k(X,x′)>ul, ∀x′ ∈ X (5.21)

where k(X,x′) = (k(x1,x
′), . . . , k(xn,x

′))>. Note that Eq. (5.21) extends Eq. (5.20)

from a sample {xj}nj=1 to the entire X .

We now have all the tools to use the Nystöm method for approximating the covariance

matrix K. Assume we select a subset of size m with m < n (active set henceforth),

without loss of generality, we assume the data points are ordered in such a way that the

active set comes first, so that the corresponding design matrix is Xm = (x1, . . . ,xm).

Then K is partitioned as:

K =

[
Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

]
(5.22)

We also denote the upper block of size m × n as Kmn, Kmn = [Kmm, Km(n−m)] (by the

symmetry of K, Knm = K>mn).

Let us compute the eigenvalues/vectors of the matrix Kmm, denoted with {λ(m)
l }ml=1

and {u(m)
l }ml=1 henceforth. Applying Eq. (5.21), one has:

λ̃l =
λ
(m)
l

m
, ϕ̃l(x

′) =

√
m

λ
(m)
l

k(Xm,x
′)>u

(m)
l , ∀x′ ∈ X , (5.23)

where k(Xm,x
′) = (k(x1,x

′), . . . , k(xm,x
′))> 6.

Applying Mercer’s theorem (Eq. (5.16)), and truncating at t = m, we have the Nystöm

approximation for a kernel using a subset of size m of the training points:

5For a fixed l, 1/nλmatl
n→∞−→ λl

6̃· is used for indicating an approximation.
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k̃(x,x′) =
m∑

l=1

λ
(m)
l

m
ϕ̃l(x)ϕ̃l(x

′)

=
m∑

l=1

λ
(m)
l

m

(√
m

λ
(m)
l

)2

k(Xm,x)>u
(m)
l ·

(
u
(m)
l

)>
k(Xm,x

′)

= k(Xm,x)>K−1mmk(Xm,x
′). (5.24)

Now evaluating Eq. (5.24) for all pairs of {xj}nj=1 and the new point x∗, we obtain the

following equations:

K̃ = KnmK
−1
mmKmn, (5.25)

k̃(X,x∗) = KnmK
−1
mmk(Xm,x

∗). (5.26)

Plugging Eqs. (5.25) and (5.26) into the regularization predictor in Eq. (5.8), we obtain

the Nystöm-based predictor:

ỹ∗ = k(Xm,x
∗)> (KmnKnm + nβKmm)−1Kmny (5.27)

= R>mn∗

(
RmnRnm +

nβ

σ2
Rmm

)−1
Rmny, (5.28)

where Rmn∗ := r(Xm,x
∗) = R>n∗m and Rmm := r(Xm, Xm).

The above predictor Eq. (5.27) can be interpreted from a Kernel Regularized Least

Squares viewpoint. Instead of considering the spaceHn in Eq. (5.4), we seek the minimiser

of the regularization problem in Eq. (5.6) in the following reduced space:

Hm =

{
f ∈ H|f(x) =

m∑

j=1

α̃jk(xj,x),xj ∈ X , α̃j ∈ R

}
(5.29)

where {xj}mj=1 is a subset of the input training set. The corresponding solution to Eq. 5.6

now becomes:

f̂β,m(·) =
m∑

j=1

α̃jk(xj, ·) with α̃ = (KmnKnm + nβKmm)−1Kmny. (5.30)

By the equivalence between the regularization predictor and Kriging predictor, i.e.

Eq. (5.9) and Eq. (5.13), we can derive the Nystöm predictive variance by plugging Eqs.
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(5.25) and (5.26) into Eq. (5.14), and obtain

σ2
ỹ∗ = σ2

(
1−

(
R>mnR

−1
mmRmn∗

)>
(
RnmR

−1
mmRmn +

nβ

σ2
In

)−1 (
R>mnR

−1
mmRmn∗

)
)
. (5.31)

Recall that β is not a random variable with distribution but, rather, a choice regarding the

trade-off between fit and complexity made by the analyst. The Nystöm approximation

is, in fact, a reduced-rank approximation, for this approximation to be accurate, we are

hoping the kernel to be a fast-decaying eigenspectrum (or faster decay of eigenvalues).

5.4.4 Parameter estimation

In the Nystöm approximated Kriging predictor (Eqs. (5.28) and (5.31)), unknown pa-

rameters include the kernel bandwidth θ and the regularization parameter β, denoted by

ψ = (θ, β). We estimate ψ by minimizing the expected squared risk:

ψ = argmin
ψ

∫
(fβ,m(x)− y)2 dP(x, y), (5.32)

where P denotes the distribution associated with the input-output probability space.

Based on the training dataset, the numerical solution of above equation writes:

ψ̂ ≈ argmin
ψ

1

n

n∑

j=1

(fβ,m(xj)− yj)2 . (5.33)

Besides, the variance of Gaussian process σ2 in Eq. 5.11 is estimated by plugging ψ̂ into

σ̂2 =
1

n
y>R̃y =

1

n
y>RnmR

−1
mmRmny

>.

5.4.5 Computational analysis of the algorithm

A practical implementation of the Nystöm approximated Kriging predictor is shown in

Algorithm 1. This algorithm has been coded in Matlab, and we call this emulator ‘fast

Kriging’.

The steps 1, 2, 4 of the presented algorithm require O(nmd) in time and O(nm) in

memory to compute the Rnm, O(m3 + m2d) in time and O(m2) in memory to compute

Rmm and perform the Cholesky decomposition. Moreover O(nm2 +m3 +nm) in time and
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Algorithm 1: Fast Kriging algorithm

Input: X, y, r(·), x∗ , m

1. Randomly sample m columns from X and obtain Xm;
Randomly split X into [Xt, Xv], where Xt has size d× nt with nt = 0.3n; and Xv

has column size nv = n− nt; then obtain corresponding y = (yt,yv)
>, where

yv = (yv,1, . . . , yv,nv)>.

2. Define the following functions of ψ = (γ, θ):

L0 := chol(Rmm);A0 := RntmL
−1
0 ;R0 := (A>0 A0 + ntγIm);α0 := L−10 R−10 A>0 yt;

and
ỹv := Rnvmα,

where
Rntm := r(Xt, Xm);Rnvm := r(Xv, Xm); ỹv = (ỹv,1, . . . , ỹv,nv)>.

3. Let

ψ̂ = (γ̂, θ̂) = argmin
ψ

1

nv

nv∑

j=1

(ỹv,j − yv,j)2 .

4. Compute Rmm, Rnm and Rmn∗ using θ̂, then calculate

L1 := chol(Rmm);A1 := RnmL
−1
1 ;R1 := (A>1 A1 + nγ̂Im);α1 := L−11 R−11 A>1 y;

and
ỹ∗ = R>mn∗ · α1.

The prediction variance is obtained by:

σ2
ỹ∗ := σ̂2

(
1− diag{R>mn∗WRmn∗}

)
,

where

σ̂2 :=
1

n
Z>Z, with Z := A−11 y;

W := (L1)
−1R−11 A>1 · A1(L

>
1 )−1.

Output: ỹ∗, σ̂2
ỹ∗

a γ = β
σ2 in Eqs. (5.28) and (5.31)

b L = chol(B) : Cholesky decomposition of B; L is a lower triangular matrix such that
LL> = B
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O(m2) in memory to compute A>0 A0 and α0. For a total cost of

O(nm(d+m)) in time, O(m2 + n) in space.

The step 3 of the algorithm is performed via stochastic coordinate descent (Nesterov,

2012) and requires the cost of steps 1, 2 times the number of parameters in ψ and the

maximum number of descent steps T allowed, for a total time cost of

O(nm(d+m)|ψ|T ).

Note that for stochastic coordinate descent the error on the solution at step T with respect

to the solution at the local minimum is in the order of O( 1√
T

).

Finally, the cost of the algorithm in the test/prediction phase (step 4) is O(n∗m) in

time to compute the mean values for the prediction set and O(n∗m2) in time for the

variance, where n∗ is the number of prediction points. Note that the computation of W

is done once in the training phase and costs O(nm2). So in conclusion

Train : O(nm(d+m)|ψ|T ) in time, O(m2 + n) in space

Test : O(n∗m2) in time, O(m2 + n∗) in space.

5.4.6 Theoretical analysis

In this subsection we quantify the point-wise discrepancy between the standard Kriging es-

timator and the proposed approximation. We use the notation introduced in Section 5.4.2.

Rudi et al. (2015) analyze the generalization properties of the Nyström approximation

method in the context of statistical machine learning, where the data are assumed to be

independently and identically distributed. Here, by using similar techniques, we analyze

the properties of the Nyström approximation for Gaussian processes.

Theorem 5.4.1. Let δ ∈ (0, 1], m,n ∈ N with m ≤ n and γ > 0. Assume that there

exists κ > 0 such that k(x,x) ≤ κ2 for any x ∈ X . Assume moreover that the Nyström

points are selected uniformly at random from the dataset. Denote with f̂ the Kriging

function and with f̃ the Nyström Kriging function in Algorithm 1 and with α the Kriging

coefficients α = (R + γnI)−1y. Then, for any x∗ ∈ X , we have

|f̂(x∗)− f̃(x∗)| ≤

√
30κ4‖α‖ log 40κ2

mδ

m
+

30κ3‖α‖ log 40κ2

mδ

m
√
γ

.

Proof. 5.4.1. Let z1, . . . , zn ∈ H and for all f ∈ H, α ∈ Rm, define as (see appendix of

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



102

Rudi et al. (2015))

S : H → Rn, S(f) =
1√
n

(〈z1, f〉H , . . . , 〈zn, f〉H)

S∗ : Rn → H, S∗(α) =
1√
n

n∑

i=1

αizi.

Note in particular that SS∗ = Rnn/n (see appendix of (Rudi et al., 2015)). De-

note with P the orthogonal projection operator whose range is the subspace Hm =

span{k(·, x̃1), . . . , k(·, x̃m)}, where {x̃j}mj=1 are the selected Nyström points. In Capon-

netto and De Vito (2007), it is shown that the Kriging mean function f̂ ∈ H is charac-

terized by

f̂ = S∗(SS∗ + γI)−1ŷ, ŷ =
1√
n

(y1, . . . , yn).

While, by Lemma 2 of Rudi et al. (2015) and the spectral theorem, we have that the

Nyström approximation f̃ ∈ H of the Kriging estimator is characterized by

f̃ = PS∗(SPS∗ + γI)−1ŷ.

Let x∗ be a test point. We have

f̃(x∗)− f̂(x∗) =
〈
k(·, xi), PS∗(SPS∗ + γI)−1ŷ − S∗(SS∗ + γI)−1ŷ

〉

=
〈
k(·,xi), (P − I)S∗(SS∗ + γI)−1ŷ

〉

+
〈
k(·,xi), PS∗[(SPS∗ + γI)−1 − (SS∗ + γI)−1]ŷ

〉
.

Now for the first term, we have

|
〈
k(·,xi), (P − I)S∗(SS∗ + γI)−1ŷ

〉
| ≤ ‖k(·,xi)‖H‖(I − P )S∗‖‖(SS∗ + γI)−1ŷ‖.

Note in particular that ‖k(·,xi)‖ =
√
k(xi,xi) ≤ κ. Moreover (SS∗ + γI)−1ŷ = α.

For the second term note that by the matrix identity A−1 − B−1 = A−1(B − A)B−1

valid for any two invertible matrices, we have

|
〈
k(·,xi),PS∗[(SPS∗ + γI)−1 − (SS∗ + γI)−1]ŷ

〉
| =

|
〈
k(·,xi), PS∗(SPS∗ + γI)−1(SS∗ − SPS∗)(SS∗ + γI)−1ŷ

〉
|

≤ ‖k(·,xi)‖H‖PS∗(SPS∗ + γI)−1/2‖ ×
× ‖(SPS∗ + γI)−1/2‖ ‖SS∗ − SPS∗‖ ‖(SS∗ + γI)−1ŷ‖.

In particular we have ‖(SPS∗+γI)−1/2‖ ≤ γ−1, moreover by the fact that ‖Z‖2 = ‖Z∗Z‖
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for any bounded operator and that P 2 = P since it is a projection operator, we have

‖PS∗(SPS∗ + γI)−1/2‖2 = ‖(SPS∗ + γI)−1/2SPS∗(SPS∗ + γI)−1/2‖ ≤ 1,

moreover, since I − P is a projection operator, then (I − P ) = (I − P )2, so

‖SS∗ − SPS∗‖ = ‖S(I − P )S∗‖ = ‖S(I − P )2S∗‖ = ‖(I − P )S∗‖2.

In particular, since S∗S + ηI − S∗S is positive semidefinite for any η, by Prop. 5 of Rudi

et al. (2015), we have that

‖(I − P )S∗‖2 ≤ ‖(I − P )(S∗S + ηI)1/2‖2.

Finally, by Lemma 6 of Rudi et al. (2015), by selecting η = 10κ2

m
log 40κ2

mδ
, we have

‖(I − P )S∗‖2 ≤ 3η,

with probability 1− δ. So finally

|f̂(x∗)− f̃(x∗)| ≤ κ
√

3η‖α‖+
3ηκ‖α‖
√
γ

.

Theorem 5.4.1 provides a guarantee on the accuracy of the algorithm. It also reveals

that the choice of m is important in a practical implementation of the algorithm. Rudi

et al. (2015) provide a strategy to efficiently explore different subsampling levels m. The

idea is to use rank-one Cholesky updates in steps 2 and 4 of Algorithm 1. 5.6 provides a

detailed discussion.

5.5 Numerical experiments

The experiments are divided into two stages. In the first stage, detailed in this section, we

study the performance of the proposed fast Kriging in terms of fitting, speed and memory

requirements. In the second stage (next section), we test the emulator in the challenging

numerical task of estimating global sensitivity measures.

We compare the performance of fast Kriging with four standard Kriging subroutines.

The first is the UQlab Kriging subroutine, which is a Matlab meta-modeling tool cre-

ated by Lataniotis et al. (2015). The second is a well-known Matlab toolbox called

‘DACE’, developed by Lophaven et al. (2002). The third and fourth Kriging subroutines

are functions belonging to the R package laGP, which is developed by Gramacy (2016).
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Specifically, we consider the standard Kriging emulator GP, and the Kriging emulator for

large dataset called aGP. The heart of the laGP package is a C implementation; thus,

it should be faster than a basic R implementation. All above Kriging subroutines are

open-source and free to download.

To assess fitting accuracy, we compare the actual response surface and the predicted

values at a large number of prediction points. We use two diagnostic statistics to assess the

prediction performance: the root mean squared errors and the coefficient of determination

(R2). Assume we have npred new prediction points {x∗j}
npred

j=1 , and corresponding true

output values and fitted values are denoted with {y∗j}
npred

j=1 and {ŷj}
npred

j=1 respectively. The

two diagnostic statistics are estimated empirically as follows 7:

RMSE ≈

√√√√ 1

npred

npred∑

j=1

(ŷj − y∗j )2, R2 ≈ 1−
∑npred

j=1 (ŷj − y∗j )2∑npred

j=1 (y∗j − ȳ∗)2
, (5.34)

where ȳ∗ is the mean of {y∗j}
npred

j=1 .

To evaluate the speed of training and prediction, we record the elapsed time for training

and the elapsed time for a new prediction (average over npred predictions). For the aGP

algorithm, the training and prediction time are bound together. Since the main use of

emulators is to replace the simulator and provide predictions for analysis, we focus on

the prediction and record the average prediction time of aGP as the mean of the total

execution time (training and prediction).

To assess the capability of analyzing large datasets, we record the maximum training

set one can use on a standard PC. We conduct the numerical experiments on a PC with an

Intel-i5 core processor at 3.10GHz and 4G RAM. The software we are using are Matlab

2016a, R 3.4.1.

5.5.1 21-input simulator

We first test the Kriging subroutines on the 21-input simulator, i.e. the additive Gaussian

function in Eq. (4.16).

We generate the training and prediction inputs by Quasi-Monte Carlo. We set the

correlation function as the Gaussian kernel exp(−h2

2θ
) with zero trend (φ(x)>w = 0) for

all five subroutines, so that the number of unknown Kriging parameters are the same. We

conduct 30 replicates of the experiments. For fast Kriging, we choose the subsample size

m = 100, following the selection method in Section 5.6. For this simple additive model

(4.16), we are expecting accurate approximations from all Kriging subroutines. Table 5.2

7In order to illustrate results with a clear notation, we start using ntrain and npred for number of
training and prediction cases.
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Table 5.2: Meta-model performance for the 21-input simulator in Eq. (4.16), ntrain = 1000.

Ttrain (sec) Tpred (10−6sec)
Average
RMSE

Mean
R2

Max
ntrain

Fast Kriging (m = 100) 0.12± 0.05 2.44± 0.12 0.05 0.99 > 40, 000
UQLab 43.59± 4.04 93± 2.86 0.40 0.99 7,000
DACE 43.76± 0.34 956.97± 13.35 0.01 0.99 2,300
laGP.GP 18.39± 0.16 917.88± 7.50 0.86 0.99 10,000
laGP.aGP NA 5.45× 104 0.79 0.99 10,000

illustrates the Kriging subroutines performance for model (4.16). Our goal is to test the

training and prediction time when all subroutines fit well the response surface. For this

simple model, a training set of ntrain = 1000 is sufficient for an accurate approximation:

columns four and five in Table 5.2 display coefficients of determination close to unity and

small RMSE’s for all subroutines. However, note that to use the DACE subroutine, one

must provide the upper and lower bounds for θ, and the fitting performance depends

strongly on the choice of the bounds. We conducted several pre-training tests to obtain

a proper choice.

Let us now come to training and prediction times (Ttrain, Tpred, henceforth), calcu-

lated based on the training set discussed above. The second column of Table 5.2 presents

the mean and standard deviation of Ttrain over 30 replicates, results are in seconds. The

replicates take into account that the optimization is associated with a random subsam-

ple coming from regularization and also with variability in the initialization seed of the

optimization subroutine. The third column reports the average time for a new prediction

over npred = 3000 predictions (results are in 10−6 seconds). Column 2 shows that fast

kriging saves from 95% to 99.7% of the training time. In prediction, all subroutines show

an average value of Tpred lower than 10−3 seconds. For prediction, fast Kriging saves 95%

of time comparing to UQlab. Note that the total execution time (training on 1000 points

and predicting on 3000 values) of aGP is 163 seconds, while fast Kriging takes less than 1

second.

The last column of Table 5.2 reports the maximum number of training points one can

use on a PC with 4G RAM (exceeding this number causes an out-of-memory problem).

With DACE, UQlab and laGP, the maximum sample size for training is 2, 300, 7, 000, and

10, 000 points respectively. With fast Kriging, the size can be higher than ntrain = 40, 000.

Thus, while providing similar results in terms of accuracy, the fast Kriging algorithm

promises to be less demanding in terms of space and time than the other subroutines. We

test this assertion further with two realistic-size simulators.
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Table 5.3: Meta-model performance for LevelE code, ntrain = 1000

Ttrain (sec) Tpred (10−6 sec)
Average
RMSE

Average
R2

Max
ntrain

Fast Kriging (m = 400) 1.17± 0.55 14.24± 0.33 0.0019 0.89 160,000
UQlab 38.75± 15.66 190.13± 49.89 0.0016 0.93 6,500
DACE 19.52± 0.04 791.74± 6.70 0.0020 0.89 3,500
laGP.GP 9.23± 0.05 1112.88± 8.82 0.0027 0.82 8,000
laGP.aGP NA 4.85× 104 0.0030 0.80 8,000

5.5.2 LevelE simulator

In this section, we apply the subroutines to the benchmark model in sensitivity analysis:

LevelE, see Section 4.6 of Chapter 4 for further details.

In this section, we try to leave most options of the subroutines at the settings suggested

by the respective manuals, because that is what most analysts are likely to do. The

training and prediction sets have sizes of ntrain = 1000 and npred = 3000 respectively. For

the fast Kriging algorithm we set m = 400.

Table 5.3 shows the results for the LevelE code. One can see that, given 1000 training

points, most of the subroutines perform satisfactorily with R2 > 82%. Regarding the

training time to fit the surface, fast Kriging takes 1.17 seconds, while UQlab, DACE and

GP take more than 9 seconds. In prediction, the mean single prediction time is of the order

of 10−3 seconds or less, just slightly higher than for the 21-input simulator (fast kriging

saves at least 64%). In terms of time per prediction, fast Kriging takes less than 13% of

the time required by other subroutines. In terms of memory requirements and therefore

the size of the largest allowable dataset, the DACE subroutine works without an out-of-

memory result for ntrain ≤ 3, 500 , UQlab for ntrain ≤ 6, 500, and laGP for ntrain ≤ 8, 000.

The fast Kriging subroutine did not produce an out-of-memory till ntrain = 160, 000.

5.5.3 STOCFOR3

In this section, we challenge the subroutines with an input-output dataset generated by

a dimensionally large simulator: STOCFOR3. STOCFOR3 is the linear program (LP) of

largest size available in the NETLIB Library. The problem parameters can be downloaded

from the NETLIB website. The LP has then been implemented in Matlab by the authors

and solved through the lingprog.m subroutine with the dual-simplex method. As typical

in the sensitivity analysis of linear programs (Wendell, 2004), we have considered a hyper-

box for parameter variations, with coefficients and right-hand side (RHS) terms varying

between [−100%. + 200%] and [±100%], respectively. This leads to a total of 40, 216

inputs (23, 541 coefficients and 16, 675 RHS terms).
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We evaluate the simulator on 40, 000 input points for obtaining an uncertainty quan-

tification. We use the rand.m subroutine in Matlab to generate the random model input

sample, because the quasi-random generation algorithms of Sobol’ and Halton are limited

at d = 1, 111. The number of training points is ntrain = 20, 000, while npred = 10, 000.

The size of the training dataset (d×ntrain = 40, 216×20, 000) does not make the analysis

feasible on a personal PC. We then use cloud computing services with the same memory

specifications for all subroutines (up to 1 Tera Byte RAM). Only fast Kriging manages

to produce results, the other subroutines fail due to memory requirements. In terms of

accuracy and time, using m = 12, 000, we register R2 = 0.9376, and the root relative

squared error (RRSE) is 0.2498. 8 The training and prediction times are Ttrain = 4.27

hours and Tpred = 0.0016 seconds respectively.

5.6 Details on efficiently tuning the number of Nyström

centers

According to Theorem 5.4.1, the efficiency of the Nyström approximation depends on the

redundancy of the dataset and the coreset size (number of Nyström centers). In practice,

to identify the number of Nyström centers (m), the analyst can adopt a sequential tuning

procedure. Intuitively, one selects an increasing and finite sequence of values for m and

stops at the value that satisfies certain criteria. The criteria usually depend on the

prediction performance and on the gain in efficiency. As m increases, the accuracy of the

approximation increases; however a high value of m leads to a poor gain in efficiency.

A typical choice for a stopping rule is the marginal improvement of a given performance

measure achieved by adding points to the coreset. Here we provide three stopping rules

based on the RMSE. Considering a window of size S on the last recorded RMSE’s, one

can stop adding points to the subset when one of the following conditions is met: 1) the

relative decrease of the first and last RMSE’s of the window is lower than a given threshold,

i.e. RMSE1−RMSES

RMSE1
< ε; 2) the relative decrease of the average over the first and last 10%

RMSE’s of the window is lower than a given threshold, i.e. RMSE1:0.1S−RMSE0.9S:S

RMSE1:0.1S
< ε ; 3)

similar to C2 but with the median replacing the mean.

This naive algorithm would correspond to a computational cost of O(nm2T + m3T ),

where T is the number of candidate m’s before the stopping criterion is met. However,

Rudi et al. (2015, Algorithm 1) recommend an efficient incremental updating algorithm

for tuning m. The main idea is the following: starting from a small value of m, increase

8In this case we cannot compare across subroutines. Therefore, we report the RRSE, which ranges

from 0 to infinity, with 0 corresponding to the ideal. RRSE ≈
√∑

(ŷj−y∗j )2∑
(y∗j−ȳ∗)2 .
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m by one at each iteration. At iteration t, the matrix Lt in Algorithm 1 is computed

via the Cholesky rank-one update formula using Lt−1 from the previous iteration. In this

way, the computational cost of tuning m is reduced to O(nm2 + m3). Figure 5.1 shows
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Figure 5.1: Results of stopping criteria for LevelE model with dataset of size n = 1000.
Window size uses S = 50. Threshold is ε = 1%. Simple stopping rule suggests m = 350;
Average and median stopping rules suggest m = 359.

an example of choosing m using the stopping criteria mentioned above, for the LevelE

simulator. We use ntrain = 1000 and increase m from 10 to 700. The threshold is set at

ε = 1%. The first stopping rule suggests m = 350, while with the second and third rules

one would obtain m = 359.

5.7 Application: estimating functionals of the output

distribution

In this section, we challenge the proposed fast Kriging algorithm in the estimation of

global sensitivity measures. The details on definitions and estimations of global sensi-

tivity measures are presented in Sections 2.2.3, 2.2.5 of Chapter 2 and Section 4.2.1 of

Chapter 4. We observe that the expressions of global sensitivity measures involve the

determination of functionals of marginal and conditional the model output distributions,
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PY and PY |Xi
. Then, if the emulator grants an accurate estimation of these functionals,

the emulator is capable of correctly identifying the conditional and unconditional model

output distributions, not only one of the moments of the simulator output. However,

the estimation of these distributions requires a large number of emulator evaluations and

speed becomes a central aspect. Here, our numerical experiments address the following

research question. Given that the analyst replaces the original model with any of the

four Kriging subroutines, once predictions have been generated, how accurate are the

estimates and how much time is the estimation requiring?

Table 5.4: Global sensitivity measures estimates for the 21-input simulator in Eq. (4.16)

Sensitivity measure ηi δi βKSi

Analytical values
X1 . . . X7 0.108 0.112 0.110
X8 . . . X14 0.027 0.053 0.053
X15 . . . X21 0.006 0.026 0.026

Fast Kriging: running time =16.90 s
X1 . . . X7 0.115 0.114 0.112
X8 . . . X14 0.027 0.053 0.053
X15 . . . X21 0.006 0.026 0.026

UQLab: runining time = 304.25 s
X1 . . . X7 0.108 0.109 0.106
X8 . . . X14 0.025 0.051 0.052
X15 . . . X21 0.005 0.025 0.025

Estimates for the 21-input simulator in Eq. (4.16), LevelE code and STOCFOR3 are

discussed. We restrict the comparison to the fastest subroutines, namely fast Kriging and

UQLab. In fact, as we have seen before, the execution time aGP is notably slower than

that of fast Kriging and UQLab and in the prediction on massive new values the aGP

execution time becomes extremely long.

We start with the 21-input simulator. The emulators are trained with ntrain = 1, 000.

A brute force approach here requires d · next · nint evaluations. Because d = 21 and we

set next = nint = 1, 000, a total of 21, 000, 000 evaluations (predictions) of the emulator

is required. For this simulator, we have the analytical values for the global sensitivity

measures (lines 3 to 5 in Table 5.4) and it is therefore possible to compare the analytical

values with the estimates.

The simulator inputs are split into three groups of equal importance: X1 . . . X7, fol-

lowed by X8 . . . X14, and by X15 . . . X21. fast Kriging and UQlab clearly provide accurate

estimates. However, fast Kriging requires 16.90 seconds and UQlab 304.25 seconds.

We now come to the LevelE code. For this code, analytical expressions of the global

Tesi di dottorato "Sensitivity Analysis and Machine Learning for Computationally Challenging Computer Codes"
di LU XUEFEI
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2019
La tesi è tutelata dalla normativa sul diritto d'autore (Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



110

sensitivity measures are not available. However, the simulator has been intensively studied

in previous sensitivity analysis works (Saltelli et al., 2000; Borgonovo et al., 2012; Plischke

and Borgonovo, 2017), and X4 and X12 have been identified as the most important inputs.

For more details on sensitivity analysis of LevelE code, see Section 4.6 of Chapter 4.

Our computational test is then as follows. The fast Kriging and UQlab emulators are

trained at increasing sample sizes, from ntrain = 100 to ntrain = 1000. For each training

set, we generate predictions of size npred = 162, 144 from which we estimate the global

sensitivity measures using subroutines based on a given-data approach.

Figure 5.2: Global sensitivity measure estimates for LevelE code using fast Kriging and UQLab
Kriging subroutines. Three sensitivity measures are considered: ηi, δi and βKSi . In each plot,
the X-axis indicates the training size increasing from 100 to 1000. The blue boxes stand for the
fast Kriging estimates, the red for UQlab. For LevelE model, two out of 12 inputs are the key
drivers. Both Kriging and UQlab estimates clearly identify the rank of the inputs.

Figure 5.2 displays the sensitivity measures estimates, obtained using fast Kriging

and UQLab as ntrain increases. The error bands are produced using 30 replicates. We

observe convergence as ntrain increases, the error bands collapsing towards point estimates.

Notably, the identification of the two most important inputs is achieved clearly already at

ntrain = 400. This would imply that a computational strategy requiring a number of model

evaluations below 1, 000 would lead to the correct identification of the key uncertainty

drivers. Note that this number is in line with current best practices in the literature.

Regarding the time for analysis, results are reported in Figure 5.3. The execution time

of UQLab increases as training size increases: at ntrain = 400, UQLab takes Test = 20

seconds on average for estimation, while at ntrain = 1000, the average estimation time

escalate to Test = 304 seconds. The required estimation time of fast Kriging remains at
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Figure 5.3: Global sensitivity measure estimation performance for LevelE code using fast
Kriging and UQLab Kriging subroutines. Training size increases from 100 to 1000. The blue
lines stand for the fast Kriging estimates, the red for UQlab. The average RMSE and R2 are
calculated based on npred = 3, 000 predictions.

about 15 seconds. That is, with relative small training size ntrain = 400, fast Kriging

provides a saving of about 20%. Increasing training size to ntrain = 1000, the saving time

of fast Kriging builds up to 94%.

We now come to STOCFOR3. For this simulator, sensitivity measures have not been

computed in previous studies due to the ‘curse of dimensionality’; in fact, STOCFOR3

has slightly over forty thousand (40, 216) inputs. To the authors recollection, the code

of largest dimensionality on which global sensitivity measures have been estimated is

the probabilistic safety assessment code developed by the Idaho National Engineering

Laboratory for the NASA constellation space mission project. Such simulator registers d =

870 inputs and has been used in Plischke et al. (2013). Thus, STOCFOR3 is a simulator

of notably larger dimensionality. We employ the same strategy as before considering

ntrain = [1000, 5000, 10000, 15000, 20000].

 1000  5000 10000 15000 20000
n_train

0

1

2

Avg Training time (hr)
Avg Estimation time (hr)

Figure 5.4: Global sensitivity measure estimation performance for STOCFOR3 using fast
Kriging, ntrain = [1000, 5000, 10000, 15000, 20000]. Blue line represents the average training
time over 30 replicates; dotted line represents the average estimation time.

Results for the average training and estimation times are reported in Figure 5.4. The
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training time increases from 25.18 secs at ntrain = 1000 to 1.59 hours at ntrain = 20, 000;

the time for estimating the global sensitivity measures remains about 0.05 hours (dotted

line in Figure 5.4).

Figure 5.5: Global sensitivity measure estimates for STOCFOR3 using fast Kriging, ntrain =
[1000, 5000, 10000, 15000, 20000], m = 0.6ntrain.

Figure 5.5 displays the estimates of global sensitivity measures ηi, δi and βKSi , as

ntrain increases. Error bands are obtained with 30 replicates. One observes that, as ntrain

increases, the estimates of global sensitivity measures become stable and Error bands

collapse.

Note that, there are (only) five main uncertainty drivers, namely, X23555(RHS), X7861

(coefficient), X7908 (RHS), X23553 (coefficient) and X7924 (RHS). Inputs X23555 and X7861

have a similar importance. The estimated values of the variance-based sensitivity mea-

sures (ηi) show that they contribute to about 41% and 39% of the output variance re-

spectively. The values of the density-based (δ23555 = 0.2779 and δ7861 = 0.2621) and

distribution-based sensitivity measures (βKS23555 = 0.2652 and βKS7861 = 0.2524 ), confirm

their relevance. The sensitivity measures estimates of these two inputs are notably higher

than the sensitivity measures of the inputs ranking from 3rd to 5th. For simulator in-

put X7908 (3rd), the sensitivity measure estimates are η7908 = 0.0742, δ7908 = 0.1178 and

βKS7908 = 0.1150. For inputs X23553 and X7924 (4th and 5th), the estimates are η23553 =

0.0329, δ23553 = 0.0913, βKS23553 = 0.0854 and η7924 = 0.0274, δ7924 = 0.0850, βKS7924 = 0.0793,
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respectively. The remaining simulator inputs have sensitivity measures of lower values.

The above results suggest the following. Although dealing with a dimensionally large

problem, the analyst can restrict her/his attention to only 5 inputs over 40, 000 that dom-

inate uncertainty in the simulator response, at least in a first iteration. From a general

perspective, we encounter a phenomenon similar to what is stated in Kleijnen (2008, Sec-

tion 4.1), and Tolk et al. (2017, Section 8.2), and called the Pareto principle, suggesting

that in business and economics applications only a few inputs may play a key role.

5.8 Summary

We have merged an innovation in machine learning with a traditional tool in simulations

to obtain a fast Kriging method that reduces computational time and memory usage. The

theoretical and algorithmic properties of the method have been analyzed. We have shown

that the algorithm requires a total cost of O(nm(d+m)) in time, O(m2 +n) in space.

In a series of numerical experiments of increasing dimensionality, we have compared

fast Kriging with other Kriging subroutines in use. We have tested performance in training

through traditional performance measures (e.g., RMSE); we have also challenged the

prediction precision using the estimation of probabilistic sensitivity measures, which are

complex functionals of the simulator output, and are well-known to be computationally

challenging. The experiments show that fast Kriging allows the analyst to deal with larger

samples, reduces computational time and preserves accuracy in fitting and prediction. In

particular, fast Kriging permits the emulation of a dimensionally large simulators allowing

one to breach the 10, 000 simulator input wall.
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Chapter 6

Summary and future work

Computer experiments have been widely used in supporting scientific investigations. Sen-

sitivity analysis becomes challenging when the computer code is complicated. The difficul-

ties may come from the long evaluation-time or the high dimensionality of the simulator.

This thesis has developed methods to cope with these issues, mainly focusing on global

sensitivity measure estimation using Bayesian non-parametric techniques and Kriging

meta-modeling that reduces the computational complexity in terms of time and memory

requirements while achieving the same accuracy.

In chapter 2, we thoroughly investigated the relevant literature in sensitivity analysis.

Sensitivity analysis techniques are categorized into the classes of local and global. For

local methods, we present the one-at-a-time approach and differential-based sensitivity

methods. For global methods, we illustrate the regression-based and variance-based sen-

sitivity indices, followed by a common rationale of global sensitivity measures, following

by the nullity-implies-independence and monotonic transformation invariant properties.

In chapter 3, we conduct a systematic sensitivity analysis on complex hydrological

models. In particular, we focus on sensitivity methods that provide insights of the input-

output mapping simultaneously from a given set of simulation realizations, so that the

computational burden is under control.

In chapter 4, we focus on the task of quantifying uncertainty in the estimates of global

sensitivity measures at small sample sizes. A Bayesian paradigm is proposed for the es-

timation, adopting advanced Bayesian non-parametric techniques. We have developed

four classes of Bayesian estimators, among which, two classes bypass the partition selec-

tion issues by using Bayesian non-parametric joint and conditional density estimation.

These two classes of estimators provide credibility intervals without requiring additional

simulation runs. Possible future research directions regrading this work are listed here.

• The numerical implementation of the estimation of the sensitivity measures based

on BNP density estimation and BNP density regression requires a combination

of numerical integration and MCMC. The current algorithms may not be efficient
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enough for large datasets, say n > 1000. Thus, MCMC posterior sampling with

improved efficiency would be an exciting direction for future research.

• Bayesian non-parametric mixture models have advantages in flexibility and ability

to capture the complex structures that are likely to be present in the dataset. In this

work, for simplicity, Gaussian kernels have been considered. However, in practice,

the analyst may deal with various types of distributions, the use of Gaussian kernels

may not be appropriate in those cases. In this respect, a study of Bayesian non-

parametric mixture models using other types of kernels (e.g. Beta or Log-Normal)

is also an interesting avenue of future research.

• Because Bayesian non-parametric density estimation techniques provide the poste-

rior distributions of the output response, either joint or conditional, there is potential

to use these techniques as emulators to support a broader range of applications, for

example, higher-order sensitivity measures estimations, simulation-based reliability

assessment and sampling-based optimization.

In chapter 5, we focused on the development of a Kriging meta-model for dimension-

ally large simulators. Recent advances in machine learning are adopted. The proposed

emulator reduces computational complexity regarding time and memory requirements

while achieving the same accuracy. We have examined the performance of the proposed

algorithm on several complex simulators, compared with commonly used emulators. We

further applied the proposed emulator to estimate global sensitivity measures. In the

future, research may focus on the following aspects.

• In recent studies, stochastic simulators have drawn increasing attention (Nelson,

2004; Xie et al., 2014). However, classical Kriging, as an interpolation method, is

designed for deterministic simulators, and may not be appropriate for stochastic

simulators. Recently, stochastic Kriging meta-modeling is becoming an active re-

search area (Yin et al., 2009; Ankenman et al., 2010; Chen et al., 2012; Picheny et al.,

2013). Ankenman et al. (2010) propose a stochastic Kriging meta-model which takes

into account both uncertainty about the response surface of interest and the random

simulation noise. Similar to classical Kriging, the stochastic Kriging also suffers the

issue of computational complexity (the inversion of a n× n matrix). A study that

reduces the computational complexity of the stochastic Kriging is to be carried out.

• Design of experiments is a widely developed discipline that aims to support the

data collection stage to ensure the fidelity of simulators. Space-filling designs are

suggested for complex simulators involving systematic randomness (Sacks et al.,

1989). Koehler and Owen (1996) summarize several frequentist and Bayesian space

filling designs, such as minimax and maximin designs (Johnson et al., 1990), maxi-

mum entropy designs (Currin et al., 1991), mean-squared-error designs, scrambled
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nets, orthogonal arrays, and Latin Hypercube designs. An empirical comparison

among those designs can be found in Simpson et al. (2001). The development of

sampling designs that are specifically optimal for Kriging and stochastic Kriging is

an interesting avenue of further research.
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