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Abstract
A key question for the explanation of fertility trends in advanced societies is whether, in 
addition to age, period- rather than cohort-related factors matter. In this paper, we analyze 
a standard set of age-specific fertility rates – from the Human Fertility Database – on the 
United States between 1933 and 2015. More specifically, we describe and apply an Age-
Period-Cohort (APC) modeling approach that relies on second differences as identifiable 
parameters. Results of our APC analyses tend to be consistent with an interpretation that 
gives a greater weight to period effects over shorter time horizons, with a significant pres-
ence of smooth cohort effects over the longer term.

Keywords  Age-period-cohort analysis · Identification issue · Fertility analysis

1  Introduction

Whether and to what extent changes over time in fertility are mostly associated with 
period or cohort effects has been a central point of discussion in the demographic litera-
ture for decades (e.g.,Bhrolchain 1992; Ryder 1986). For instance, in their 1982 classic 
review, Hobcraft, Menken and Preston stated that “In one way or another, demography has 
concerned itself with the measurement of age, period, and cohort effects for well over a 
century” (Hobcraft et al. 1982). However, as of today there is not yet a commonly-agreed 
method to decompose period and cohort effects from the underlying age-specific fertility 
data that constitute the typical point of departure for macro-level fertility analysis.
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The baby boom in the United States, a unique phenomenon for its magnitude and sig-
nificance, has attracted several discussions on whether its main drivers where at the period 
or at the cohort level (e.g.,Butz and Ward 1979a; Pullum 1980; Healy 2018). In this paper, 
we present a novel Age-Period-Cohort (APC) analysis on this key fertility phenomenon, 
using U.S. age-specific fertility rates (ASFRs) between 1933 and 2015. APC analysis aims 
at breaking down a phenomenon of interest into constituent effects associated with the 
three typical time scales of demography: age, period (or calendar year), and cohort. As it is 
well-known, the principal challenge of APC models consists in simultaneously identifying 
the distinct effect of each of the three time scales. This identification carries relevant impli-
cations for the interpretation of past trends, as well as for forecasting the future (Myrskyla 
et al. 2013; Ryder 1990; Smith 2020).

In what follows, we analyze U.S. fertility data using what we see as a realistic approach, 
which does not rely on specific, and untestable, identifying assumptions on the separation 
between age, period, and cohort effects (Kuang et al. 2008; Nielsen and Nielsen 2014). By 
relying on second differences, this approach is also related to the earlier study of Pullum 
(1980) on U.S. fertility.

The main contributions of our study are twofolds. First, we contribute to the methodo-
logical literature on the analysis of age-specific demographic rates by outlining and using 
a novel approach, which we apply to what one can now define as standard demographic 
source, the Human Fertility Database. These analyses can be extended to other country 
or period settings. Second, we contribute to the literature on the interpretation of the U.S. 
baby boom, by demonstrating that both period and cohort changes have contributed to 
fertility change, with period, however, being relatively more important than cohort. Our 
analyses also document the different time scales at which period and cohort effects have an 
impact on fertility. While period contributes to the explanation of long-term fertility trends 
through both temporal discontinuities and short-term effects Foster (1990), and their cumu-
lation, cohort contributes mostly through the cumulation of effects over time. Given our 
focus on non-linear effects, it is plausible that our approach downplays the role of cohorts 
in shaping fertility, which is more likely captured by linear trends (differently from age 
and period effects). This problem, however, is intrinsically linked to the basic APC prob-
lem of not being able to identify separately linear period and cohort trends Smith (2020). 
The remainder of this paper is structured as follows. In Sect. 2, we briefly review recent 
developments in APC analysis. In Sect. 3.1 we introduce and describe the data we study. 
In Sect. 3.2 we define the model we apply in our analyses. The results of APC analyses are 
presented in Sect. 4. Section 5 concludes and discusses.

2 � The challenges of age‑period‑cohort analysis

In this section, we assume to start from data on age-specific fertility rates (ASFRs) for a 
number of consecutive years, such as those available through the Human Fertility Database 
for a number of countries. Almost all ideas, however, can be extended to any age-specific 
demographic rate setting. In order to carry Age-Period-Cohort (APC) analyses, we refer to 
the following standard model, used to separate the theoretical effects of age, period, and 
cohort:

(1)g(E(Yij)) = �ij = �i + �j + �k + �.
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In Eq. (1), we define i = 1,… , I ages, j = 1,… , J periods, and k = 1,… , I + J − 1 
cohorts. E(Yij) is the expected value of the ASFR for the i-th age-group, the j-th period 
and g is a suitable link function. If we model directly ASFRs, g is the identity function. 
�i denotes the mean difference from the overall mean � associated with the i-th age cat-
egory, �j is the deviation from the overall mean associated with the j-th time period and 
�k the deviation associated with the k-th cohort. The usual ANOVA constraint applies so 
that the sum of the coefficients of each effect is equal to 0. As it is well known, model 
(1) suffers from a lack of identifiability, due to the linear dependency among the three 
components. When two out of the three components are known, the value of the third is 
also determined (Cohort = Period −Age). This a special case of collinear regressors pro-
ducing a singular design matrix. Indeed, if we stack the time effects in a unique vector 
� = (�1,… , �I , �1,… , �J , �1,… , �K , �)

�

, for a suitable choice of design matrix X, model (1) 
can be written as a regression model g(�) = X� . In this case, the model’s design matrix X 
is rank deficient, due to the linear dependency of the entries related to the cohort on the 
entries related to age and period effects. As a consequence, there are infinite solutions to 
the equation, so that no valid estimate of the distinct effects of the three time dimensions 
can be identified. Observed trends therefore cannot be uniquely assigned to age, period, 
and cohort.

Several solutions have been proposed to this identification problem—see among others 
Smith and Wakefield (2016) for a detailed review. In what follows, we shortly refer to some 
of these proposals.

Mason et  al. (1973) introduced the Constrained Generalized Linear Model (CGLM). 
The idea of the CGLM is to introduce at least one identification coefficient constraint. 
In general, the constraints are equality ones. For example, the effects of the first two age 
groups, periods or cohorts are constrained to be equal based on theoretical or external infor-
mation (Mason et al. 1973). Clayton and Schifflers (1987a) restrict the first period effects 
differences to be on average equal to zero. Bayesian methods based on ICAR priors include 
sum-to-zero constraints and penalties on the linear trends in age, period and cohort effects, 
see Berzuini and Clayton (1994), Besag et al. (1995), Knorr-Held and Rainer (2001). An 
approach of this kind has essentially two problems. First, the assumptions underlying the 
imposed constraints require strong prior information and cannot in general be empirically 
validated. Second, the results of the analyses strongly rely on the imposed constraints: dif-
ferent choices of identifying constraints can lead to different estimates for the age, period 
or cohort effects (Rodgers 1982; Holford 1991). A large literature in demography, epide-
miology and statistics has discussed the sensitivity of the APC model to the assumptions 
specification (see Mason and Wolfinger 2001).

A further approach starts from nonlinear parametric functions for one of the compo-
nents, so to break the linear dependency among them. The idea is to treat the time effects as 
continuous variables and model their effects by means of polynomial functions. Carstensen 
(2007) suggested to model the age, period and cohort effects by means of penalized splines 
while imposing again a set of constraints for identifiability. Unfortunately, a solution of 
this kind does not completely solve the identification problem, since, as emphasized by 
Fienberg and Mason (1979), the linear components of such models remain unspecified. As 
pragmatically argued by Smith (2020) following a broad and critical reflection of the wide 
literature on the topic, it is clear that identification in Age-Period-Cohort analysis, always 
entails some constraints in the linear terms.

In biostatistics, demography and epidemiology, alternative approaches have been sug-
gested. Robertson and Boyle (1986) suggest to rely on individual records to construct a 
three-way APC table, but this approach is again based on assumptions. In particular 
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Clayton and Schifflers (1987) and Clayton and Schifflers (1987a), Holford (1983) and Tar-
one and Chu (1992) suggest to express the model only in terms of the functions of the time 
effect parameters that are estimable as linear combinations of curvature effects and some 
specific functions of the time effects slopes. The limits of a hierarchical-model approach to 
APC modelling have been documented, among others, in the simulation study of Bell and 
Jones (2014).

Fu (2000), Knight and Fu (2000) and Fu et al. (2004) and Yang and Land (2004) fol-
lowed the so-called “estimable function” approach, to derive a new APC estimator called 
the Intrinsic Estimator (IE). The IE is based on the singular value decomposition of matri-
ces. Yang et al. (2008) provide a comparison of the intrinsic estimator approach to conven-
tional solutions to the identification problem. The IE estimator is presented as providing 
robust estimates of the time effects trend and uniquely determining the coefficient esti-
mates. However, Luo (2013) shows, through simulation studies, that the Intrisic Estimator 
is as well based on constraints that are difficult to verify in practice, constraints on which 
its statistical properties rely.

If one is willing to cast hypotheses on the mechanisms by which age, period, and cohort 
affect a specific variable, Winship and Harding (2008) proposed a mechanism-based 
approach that draws on causal modelling. This approach relies, however, on having data on 
the variables measuring these mechanism over the same scale of time.

After discussing the data we start from, we introduce our realistic approach that only 
focuses on vital rates as input.

3 � Data and methods

3.1 � Data

We analyze the set of age-specific fertility rates available from the Human Fertility Data-
base1 for the United States. The Human Fertility Database (HFD) is a joint project of the 
Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany and the 
Vienna Institute of Demography (VID) in Vienna, Austria, based at MPIDR. The HFD 
provides, for instance, data for U.S. ASFRs between 1933 and 2015, for ages between 15 
and 44.

We separately conduct analyses of a) general ASFRs; b) first birth ASFRs (parity 1); 
c) second and higher parity ASFRs. These rates are visualized respectively in Figs. 1,  2, 
and  3. These plots are broadly consistent with well-known studies of the baby boom and 
bust (Butz and Ward 1979; Bongaarts and Feeney 1998; Pullum 1980), as well with the 
more recent visualization of Healy (2018). The differences between the three plots, and in 
particular Fig. 2 on first births also outline the need to analyze ASFRs of Parity 1 separately 
from other parities. This is in line with other analyses of the U.S. baby boom (Bongaarts 
and Feeney 1998).

1  Human Fertility Collection. Max Planck Institute for Demographic Research (Germany) and Vienna 
Institute of Demography (Austria). Available at www.fertilitydata.org (data downloaded on 26 June 2023).
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Fig. 1   U.S. age-specific fertility rates (ASFRs) by age and period, all parities, 1933–2015

Fig. 2   U.S. age-specific fertility rates (ASFRs) by age and period, parity 1, 1933–2015
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3.2 � Methods

In our analyses, we use the APC approach proposed by Kuang et al. (2008), which has been 
discussed and applied to the analysis of mortality data in Nielsen and Nielsen (2014), and 
in Martinez Miranda et al. (2015). Kuang et al. (2008) abandon the standard APC model 
described in Eq. (1) and suggest to overcome the identification problem by modeling the 
time effects in terms of parameters that are identifiable. The model, that below is described 
in detail, is parametrized in terms of a freely varying vector given by three initial points, 
functions of the unidentified first differences, and the full set of second differences of the 
time effects. Indeed, Clayton and Schifflers (1987a) show that ratios of relative risks are 
identifiable and these in a logarithmic scale are the second differences. Pullum (1980) pro-
vides an early study of first differences on U.S. ASFRs of all parities.

The statistical model we rely upon is defined as in Kuang et  al. (2008) and Nielsen 
and Nielsen (2014) with respect to an age-cohort coordinate system, referred to as a gen-
eral trapezoid. The general trapezoid unifies the three Lexis-diagrams, that are the standard 
tabular formats for the storage of vital rates: tables by age and period, age and cohort and 
period and cohort. A general trapezoid is defined as an index set I  such that

with I, J and K being the numbers of age, period and cohort indexes, and L + 1 the low-
est period index. Let Yik be the vital rate value (in our case, the ASFR) for the i-th age 
group and the k-th cohort with i, k belonging to the trapezoid Iac , and let E(�ik) be the rate 
expected value. The APC model is expressed in terms of the parameter � defined as follows

Iac = {(i, k) ∶ i = 1… , I, 1 ≤ k ≤ K, L + 1 ≤ j ≤ L + J}

Fig. 3   U.S. age-specific fertility rates (ASFRs) by age and period, parities 2 and higher, 1933–2015
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where U = integer {(L + 3)∕2} identifies the middle of the trapezoid first diagonal of odd 
length, Δ is the first difference operator, i.e Δ�i = �i − �i−1 and Δ2 is the second difference 
operator, Δ2�i = Δ�i − Δ�i−1 = �i − 2�i−1 + �i−2 . Note that � has four fewer components 
than � . Indeed, the identification problem of the conventional APC model (1) arises from 
its over-parametrization.

The linear predictor in (1) is then specified in terms of the parameter � as follows

where

From (3), the predictor has a single level expressed by �U,U that satisfies 
�U,U = �U + �U + �U + � so that �U,U is identifiable, but the single levels �U , �U , �U 
and � are not identifiable from the model. The model foresees as well two linear trends, 
expressed with slopes defined as one-step slopes in age and cohort (�U+1,U − �U,U) 
and (�U,U+1 − �U,U) and can be expressed also as �U+1,U − �U,U = Δ�U + Δ�U and 
�U,U+1 − �U,U = Δ�U + Δ�U . Such trends are estimable but the individual slopes 
Δ�U ,Δ�U ,Δ�U are not identifiable. Note that the choice of the three initial points 
�U,U ,�U−1,U ,�U+1,U is not unique, any three points can be chosen as long as their indexes 
are not linear dependent. Here, we follow Nielsen and Nielsen (2014) and the level is 
anchored at the middle of the first diagonal of odd length so to derive a model that is sym-
metric in age and cohort. Finally, the contribution of the time components age, cohort and 
period is modeled in terms of the cumulative sums of the double differences with respect to 
age Ai, period Bj and cohort Ck , respectively, that are identifiable.

Kuang et al. (2008) show that � is a function of � , so that the predictor defined in (3) 
is a function of the time effects. The authors also show that the predictor is invariant with 
respect to any translation and addition of linear trend to the time effects, this implying 
� to be identifiable. Furthermore, when the link function g is set equal to the canonical 
link, such results make it possible to draw on the exponential family theory. The statisti-
cal model is from the exponential family, and since the predictor is linear in � that is freely 
variant, the model is regular with � as the canonical parameter.

The predictor in (3) can be written in linear form as X� , for a suitable specification of 
the design matrix X , so that the model turns out to be a generalized linear model, and max-
imum likelihood estimates of the parameter vector � can be obtained through any statistical 
software. In addition, it can be easily seen that two-factor models (AP, or age-period; AC, 
or age-cohort; PC, or period-cohort), as well as one-factor models (A, P, or C), or oth-
ers such as Clayton and Schifflers’s drift Clayton and Schifflers (1987) are nested into (3). 

(2)
� =(�U,U ,�U+1,U ,�U,U+1,Δ

2�3,… ,Δ2�I ,

Δ2�L + 2,… ,Δ2�L + J,Δ2�3,… ,Δ2�K)

(3)�ik = �U,U + (i − U)(�U+1,U − �U,U) + (k − U)(�U,U+1 − �U,U) + Ai + Bj + Ck

Ai =I(i<U)

U+1
∑

t=i+2

U+1
∑

s=t

Δ2𝛼s + I(i>U+1)

i
∑

t=U+2

t
∑

s=U+2

Δ2𝛼s

Bj =I(L odd&j=2U−2)Δ
2𝛽2U + I(j>2U)

j
∑

t=2U+1

t
∑

s=2U+1

Δ2𝛽s

Ck =I(k<U)

U+1
∑

t=k+2

U+1
∑

s=t

Δ2𝛾s + I(k>U+1)

k
∑

t=U+2

t
∑

s=U+2

Δ2𝛾s
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Model selection criteria such as the Akaike Information Criterion (AIC, (?), or following 
standard likelihood theory, Likelihood Ratio tests, can be used to compare the APC model 
in (3) with any of such nested models.

A specific R Package, apc, has been written to estimate models within this APC 
approach (Nielsen 2015). Our analyses rely on the apc package.

4 � Results

4.1 � Model selection

In our main analyses, we adopt a canonical identity link, so the model is a Gaussian Lin-
ear regression model with the predictor specified in (3). Our first results come from the 
analysis of model selection, a deviance table that makes it possible to compare the com-
plete APC model with the nested models, including only one or two of the three time com-
ponents (age, period, and cohort). Models can be compared using Likelihood Ratio tests, 
or the Akaike Information Criterion (AIC). This first analysis allows us to detect whether 
all components are needed for the analysis of U.S. fertility rates, i.e. whether period and 
cohort are both needed (in addition to age), and also to investigate on the relative impor-
tance by assessing the lower fit when either period or cohort are needed.

Table 1 displays the deviance table for U.S. all-parity ASFRs. From the likelihood ratio 
tests, the complete model with all three components needs to be selected. The APC model 
is therefore the preferred one, on the basis of a comparison of the AIC values, since it 
strikes the lowest value ( −12867.39). Consequently, the first main result is that both period 
and cohort components, in addition to age, are needed to model long-term trends in U.S. 
ASFRs. A second reading of this table aims at assessing which of the two components, 
period or cohort, is worth keeping when deciding to go for a two factors model. Here we 
compare the AP (age-period) and the AC (age-cohort) model, the AP model having the 
lowest AIC ( −12133.33 vs. -11177-77).

Table  2 displays the same deviance table on first birth ASFRs. Results are similar to 
what is obtained for all-parity ASFRs, with the preferred model including all three com-
ponents (APC, AIC=−16255.01), and the second-best model including age and period 
(AIC=−15632.43). Similar conclusions can be reached when the deviance table of parities 
2 and over is considered (Table 3).

Therefore, according to this reading, while all three components matter, in addition to 
age, period is relatively more relevant than cohort in the analysis of U.S. fertility data on 

Table 1   Deviance table for models on all parities

-2logL df.residual LR.vs.APC df.vs.APC prob(>chi_sq) AIC

APC −13305.39 2212.00 −12867.39
AP −12335.04 2320.00 970.35 108.00 0.00 −12113.04
AC −11457.17 2291.00 1848.21 79.00 0.00 −11177.17
PC −8323.81 2240.00 4981.58 28.00 0.00 −7941.81
A −10491.61 2400.00 2813.78 188.00 0.00 −10429.61
P −7249.66 2349.00 6055.72 137.00 0.00 −7085.66
C −7210.36 2320.00 6095.03 108.00 0.00 −6988.36
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top of linear trends. This holds both when all parities are considered and when only the first 
parity is considered. This general result is consistent with the early analysis on all parities 
by Pullum (Pullum 1980), who concluded that “the cohort identification was less impor-
tant than the period identification” (p. 241). Yet, given the focus on second differences, 
our analyses do not rule out the idea that linear trends in fertility are mostly attributable to 
cohorts rather than to periods, as biological and social effects rule out a linear age effect 
idea, and theoretical interpretation of period effects rule are emphasizing non-linearities 
and discontinuities Smith (2020).

We can assess, the goodness of fit of the selected APC model based on the graphical 
visualizations that are provided by the R package, including plots of the residuals, of 
fitted values and of the linear predictor. In particular, we focus here on a “Probability 
Transform Plot”, displayed in Fig. 4 for all parities. The plot returns for each age and 
period, the probability to observe the actual age-specific observed rates. In this way, 
the plot reveals where there are extreme values given the fit, and if they identify a 
specific pattern. As we can see, the great majority of all points are in black, the color 
corresponding to observed responses value falling in the 80% central part of the fitted 
distribution. Green points and red triangles flagging responses falling in the 1% tail 
of the fitted distribution are rare, and they mainly represent lower ages, where data 
are sparse. More specifically, there is a cluster of flagged points associated with age 
between 20 and 25 and period between 1955 and 1962, signaling the specific nature 

Table 2   Deviance table for models on parity 1

-2logL df.residual LR.vs.APC df.vs.APC prob(>chi_sq) AIC

APC −16693.01 2212.00 −16255.01
AP −15854.43 2320.00 838.58 108.00 0.00 −15632.43
AC −15789.65 2291.00 903.36 79.00 0.00 −15509.65
PC −13059.41 2240.00 3633.60 28.00 0.00 −12677.41
A −15440.12 2400.00 1252.90 188.00 0.00 −15378.12
P −10756.84 2349.00 5936.18 137.00 0.00 −10592.84
C −10952.74 2320.00 5740.28 108.00 0.00 −10730.74

Table 3   Deviance table for models on all parities but parity 1

-2logL df.residual LR.vs.APC df.vs.APC prob(>chi_sq) AIC

APC −14285.09 2212.00 −13847.09
AP −13635.82 2320.00 649.27 108.00 0.00 −13413.82
AC −12610.40 2291.00 1674.69 79.00 0.00 −12330.40
PC −9370.32 2240.00 4914.76 28.00 0.00 −8988.32
A −11483.88 2400.00 2801.21 188.00 0.00 −11421.88
P −9039.51 2349.00 5245.58 137.00 0.00 −8875.51
C −8901.81 2320.00 5383.28 108.00 0.00 −8679.81
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of this phase of the baby boom concerning lower ages at childbearing. In A the Prob-
ability Transform Plots for the two other cases, parity 1 and parity 2+ are reported, and 
same conclusions can be drawn.

We acknowledge that modelling the age-specific rates with an identity link might 
not be the only choice, especially in a forecasting perspective. As an alternative, we 
estimated a Poisson regression model on the observed birth counts. Also in this case, 
based on the deviance tables for all considered cases, the APC model turned out to be 
the best one. Figure 5 displays the probability transform plot for the Poisson regression 
model, again for the case of all parities. As we can see almost all points are red, so that 
we can conclude that the Gaussian model performs better, based on such diagnostic. 
Same conclusions can be drawn for parity 1 and parity 2+, as we can from the plots 
reported in A

We completed the evaluation of the goodness of fit of the Gaussian regression 
model, with the analysis of studentized residuals and leverage measures. Such meas-
ures cannot be directly obtained through the standard R package apc. However, it is 
possible to extract the design matrix and use it to fit a standard glm model. In all cases, 
more than 95% of studentized residuals fall in the interval [−2, 2] and more than 95% of 
leverage measures are below the corresponding cut-off, as we can see from the tables 
provided in B

Fig. 4   Probability Transform Plots - Gaussian Model - All Parities: central 80% in black, tails (10%, 5% and 
1%) in green, blue and red
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4.2 � Analysis of the APC model

We now consider the results of APC models. We rely on the graphical representation of 
results suggested and discussed in Nielsen (2014). This representation makes it possible 
to disentangle the contribution of the time effects in terms of deviations above and below 
arbitrary linear trends. Results are displayed respectively in Fig. 6 for all parities, and in 
Fig. 7 for first births. Results on parities 2 and over are available upon request.

Each figure should be read as horizontally divided into two panels. The first panel dis-
plays the estimates of the second differences for each time component (age, period, and 
cohort). The second panel displays the detrended estimates of the double sums, that cor-
responds to the terms Ai , Bj and Ck in (3) for the age, period and cohort effects respectively 
and constrained to start and end at 0. Such panel displays the effect of time components, in 
terms of deviations from the linear trend due to each of them. Note that the red and the blue 
dotted lines need to be read as 10% and 5% significance bands, respectively. Any value 
above or below the two lines should be considered as statistically significant.

Let us begin by discussing the results of the analysis for all parities, and focus on the period 
and cohort interpretation. As shown in the first panel of Fig. 6 box (b), for what concerns 

Fig. 5   Probability Transform Plots -Poisson Model- All Parities: central 80% in black, tails (10%, 5% and 
1%) in green, blue and red
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period, a clear discontinuity emerges after the end of World War II. Indeed, the second differ-
ences at 1946 (involving data from 1946, 1945, and 1944) and 1948 (involving 1948, 1947, 
and 1946) are the only significant ones, with opposite values 0.017 and −0.016 , respectively. 
This denotes a statistically significant period acceleration in the U.S. ASFRs to be located 
around 1946, followed by a deceleration in 1948. Considering the second panel, in cumulative 
terms, the baby boom and the baby bust are clearly visible. Box (e) displays a significant devi-
ation above the trend between 1940 and 1960, with a peak reached around 1960, and a signifi-
cant deviation below the trend, between 1960 and 2000. For what concerns cohort, while there 
are no significant discontinuities (see box (c)), the highest “deviant” fertility is for cohorts 
born around 1940 s, with peaks of low fertility for cohorts around 1920s. Figure 7 displays the 
analysis on first births only. Despite the qualitative differences arising from the visualization 
of two panels, APC model results are broadly in line with those on all parities.

5 � Conclusions

In this article, we analyzed age-specific fertility data from the Human Fertility Database 
on the United States between 1933 and 2015. We outlined and used a novel age-period-
cohort (APC) approach based on the proposal introduced in Kuang et  al. (2008) and 

Fig. 6   USA: Plots of the results of the APC model fit on all parities
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Nielsen and Nielsen (2014) to analyze long-term trends in all-parity, parity 1, and parity 
2+ age-specific fertility rates.

Our analyses relate to the literature on the prevalence of the role of period vs. cohort 
in shaping fertility choices (e.g.,Bhrolchain 1992; Ryder 1986). Model selection sta-
tistics allow to show that the preferred representations include both period and cohort 
components (in addition to age). However, in a period vs. cohort tournament on non-
linear trends, period prevails, as age-period models represent data better than age-cohort 
models. This result holds for all-parity, parity 1 and parity 2+ data, and is in line with 
the earlier results on the U.S. baby boom of Pullum (1980).

Fine-grained analyses of the models allow to explain this result, by pointing to the 
different time scales at which period effects and cohort effects operate. In particular, 
period effects can show interpretable discontinuities, as measured by second differences 
in estimated period effects and represented by what happens immediately after World 
War II. Cohort effects are more continuous over time.

The approach we adopted can be used to analyze data from standard demographic 
databases with time series of age-specific vital rates, such as the Human Fertility Data-
base or the Human Mortality Database. Results are easily obtained using the specially-
designed and freely accessible apc package (Nielsen 2015).

Fig. 7   USA: Plots of the results of the APC model fit on parity 1
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6 � Supplementary information

Scripts and datasets for the replication with R of all paper analyses are provided as Supple-
mentary online information

Appendix A Probability transform plots

Figures 8 and 9 display the probability transform plots obtained for parity 1 and parity 2+ 
respectively, from the fit of Gaussian Model. Figures  10 and 11 display the probability 
transform plots obtained for parity 1 and parity 2+ respectively, from the fit of Poisson 
Model.

Fig. 8   Probability Transform Plots - Gaussian model- Parity 1: central 80% in black, tails (10%, 5% and 
1%) in green, blue and red
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Fig. 9   Probability Transform Plots - Gaussian Model - Parities 2 and higher: central 80% in black, tails 
(10%, 5% and 1%) in green, blue and red.1
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Fig. 10   Probability Transform Plots - Poisson Model - Parity 1: central 80% in black, tails (10%, 5% and 
1%) in green, blue and red
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Appendix B Residuals analysis

Tables 4, 5, 6, 7, 8, 9 display studentized residuals and leverage measures tables.

Fig. 11   Probability Transform Plots - Poisson Model - Parities 2 and higher: central 80% in black, tails 
(10%, 5% and 1%) in green, blue and red.1

Table 4   Studentized residuals 
table: all parities

Studentized Residuals Percentage

In the interval [−2, 2] 97%
Outside the interval [−2, 2] 3%

Table 5   Leverage measures 
table: all parities

Leverage Measures Percentage

Smaller than cut-off 98%
Greater than cut-off 2%
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org/​10.​1007/​s11135-​023-​01787-5.

Acknowledgements  This project has received funding from the European Research Council (ERC) under 
the European Union’s Horizon 2020 research and innovation programme (grant agreement n. 694262), pro-
ject DisCont - Discontinuities in Household and Family Formation. The authors gratefully acknowledge the 
pioneering work of Bent Nielsen on APC modelling, and his inputs in various parts of the project. We are 
also grateful to three anonymous referees for their important comments and suggestions.

Funding  Open access funding provided by Università Commerciale Luigi Bocconi within the CRUI-CARE 
Agreement. This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement n. 694262), project Dis-
Cont - Discontinuities in Household and Family Formation. The authors gratefully acknowledge the pio-
neering work of Bent Nielsen on APC modelling, and his inputs in various parts of the project.

Declarations 

Conflict of interest  There are no conflict of interests.

Financial interest or non‑financial interest  All authors certify that they have no affiliations with or involve-
ment in any organization or entity with any financial interest or non-financial interest in the subject matter or 
materials discussed in this manuscript.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 

Table 6   Studentized residuals 
table: parity 1

Studentized Residuals Percentage

In the interval [−2, 2] 96%
Outside the interval [−2, 2] 4%

Table 7   Leverage measures 
table: parity 1

Leverage Measures Percentage

Smaller than cut-off 98%
Greater than cut-off 2%

Table 8   Studentized residuals 
table: parities 2+

Studentized Residuals Percentage

In the interval [−2, 2] 95%
Outside the interval [−2, 2] 5%

Table 9   Leverage measures 
Table: parities 2+

Leverage Measures Percentage

Smaller than cut-off 98%
Greater than cut-off 2%
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material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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