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Abstract

In this work different hidden Markov models are proposed for identi-

fying exceptional events in the electricity distribution. We propose a

way for evaluating the utilities restoration schemes, by studying the

distribution of the time needed to the electricity distribution utility

to reestablish the normal operating status, given that an exceptional

event occurs.

A Cluster analysis is performed and interpretation of the generated

clusters is provided. With the same goal we introduce the hidden

mixture Markov model, a model-based method for clustering utilities

by means of the Markov chain’s transitional dynamic.

Finally, a prior specification in Bayesian hidden Markov model, based

on the Reinforced Urn Processes, is considered.
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Chapter 1

Introduction

1.1 Presentation of the problem

Quality regulation in electricity distribution has received significant attention in

recent years, since, in 1999, a reliability performance regulation was introduced

for the first time. Analyzes of continuity of supply indicators are fundamental

for setting regulatory targets, monitoring utility performance and disseminating

information to the public (CEER, 2005; Fumagalli et al. 2007, 2008).

One of the main problems in these analyzes is how to identify events that are

exceptional with respect to the normal performance. The exclusion of these ex-

treme cases from the dataset enables utilities, regulators and the public to observe

more meaningful trends in ‘normal operation’ performance, that would be, other-

wise, hard to capture. In addition regulators usually design incentive mechanisms

specifically targeted at quality supply, assuming the form of financial penalties

and rewards to the distribution utility based on the expected performance. It

is therefore crucial to understand when failure in meeting the regulatory targets

is due to the utility behavior or to events that are outside the utility’s control

and that could be considered exceptional. Moreover, even if some events, such as

extreme weather conditions, are unavoidable, regulators have become more inter-

ested in controlling the efficiency and effectiveness of utility restoration schemes.

Traditional criteria for identifying data due to exceptional situations are based

on definitions of exceptional events, given in terms of number of customers inter-

rupted, duration of the interruptions, weather conditions, extent of the mechani-
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1. INTRODUCTION

cal damage to the distribution system and combinations of these factors. The ap-

plication of this criterion, however, resulted in some practical cases quite difficult

and ambiguous. For these reasons the introduction of statistical methodologies

was suggested; a statistical approach, in fact, is expected to present significant

advantages because of a reduction in ambiguities and an increase in fairness.

Nevertheless, statistical analyzes of exceptional events can be performed in very

different ways, depending on the choice of the quality indicator, on the spatial

and temporal units of such measure, and, of course, on the statistical methods

employed.

Hidden Markov Models (HMMs) describe the relationship between an ob-

served process {Yt}t>0 and an underlying and unobserved process {Xt}t≥0; the

hidden process is assumed to follow a Markov chain whose realization Xk governs

the distribution of the correspondent Yk. For example, when the Business Cycle

is under analysis it is possible to assume that the gross national product depends

on whether the economy is expanding or contracting; therefore an HMM with a

two state Markov chain can be considered: Xk = 1 for the expansion status and

Xk = 0 for the regression status (Hamilton, 1989).

The interpretation of the electrical faults as a signal of an underlying and

not observable process naturally leads to analyze the problem by means of an

HMM. In other words, in order to attain the regulators goals, we propose a

statistical method based on the idea that the number of interruptions depends on

the latent status of the “global” system controlling the electricity distribution; the

latent system operating status along time is modeled by a Markov chain, whose

realization controls the distribution of the corresponding number of observed

faults.

In Section 1.2 we will present the method adopted by the Italian Regulatory

Authority (Autorità per l’energia elettrica e il gas - AEEG) in order to identify

exceptional events, for the third regulatory period 2008-2011. In Sections 1.3

and 1.4 we will introduce the HMM and how to make inference in a Bayesian

framework. The choice of the number of possible states of the Markov chain will

be the objective of Section 1.5. In Section 1.6 we will analyze the time needed to

2



1.2 The method adopted by the Italian Regulatory Authority

the system to reestablish the normal situation, given that an exceptional event

occurred. Finally, in Section 1.7 the organization of the work will be explained.

1.2 The method adopted by the Italian Regula-

tory Authority

Since in 2000 the Italian Regulatory Authority introduced the first continuity of

supply regulation, different methods have been proposed, applied and in some

cases criticized and improved (see Fumagalli et al., 2008 for a review).

Before presenting the method adopted by the AEEG for the third Regulatory

period and in order to better understand it, we briefly describe the methods

proposed during the years.

In the first regulatory period (2000-2003), the regulation required companies

to classify interruptions according to three categories: Force Majeure, external

causes (i.e. third party responsibilities and interruptions originated on the trans-

mission grid) and utility responsibility. AEEG accepted a Force Majeure attri-

bution only if the exceptional nature of the event could be proven by technical

or administrative evidence. For instance, a formal declaration of calamity made

by the government or measures of wind speed made by an independent weather

center. In practical terms, this procedure turned out to be onerous both for the

companies, that were collecting the data, and for the regulatory authority, that

was controlling the documentation provided. In addition, a few controversial

cases, where the exceptional nature of the event was claimed by the companies,

but could not be formally proven, generated a large amount of disputes.

For these reasons, the AEEG began to consider a simpler procedure for identify-

ing an exceptional event on the basis of the nature of the interruption it caused,

compared to the characteristics of the interruptions caused by “normal events”.

Then, in 2004, for the regulatory period 2004 - 2007, AEEG introduced a sta-

tistical methodology for identifying exceptional events, based on the idea that

such events are characterized by a longer-than-average restoration time (Christie

(2003), Warren et al. (2003), Fumagalli et al. (2006)). Even if a significant

3



1. INTRODUCTION

reduction in administrative work resulted, on both the regulator’s and the utili-

ties’ side, the method showed some empirical problems. In particular, consumers

found confusing that the same event, when affecting different districts within

smaller geographical proximity, might result in exclusion of minutes lost in some,

but not in other districts; moreover, for a small number of districts the methodol-

ogy was found unable to identify events that the companies would have classified

as exceptional, on the basis of their knowledge and experience.

During the consultation process for the third regulatory period additional

elements emerged that lead to a new statistical analysis of exceptional events;

the new proposed method was incorporated by the AEEG, in the Regulatory

Order 333/07 (AEEG, 2007).

In this method a 6 hour interval is deemed to be exceptional when the number

of faults registered in that interval is larger than an exceptionality threshold ;

the procedure for the computation of these thresholds is briefly presented in the

following.

First of all, for each electricity distribution utility, the distribution of the

number X of faults in 6 hours time-interval is clustered in two groups: that

for Ordinary Interval (OI) and that for Exceptional Interval (EI). The threshold

separating the two clusters is computed using a k-means algorithm with k = 2.

Hence the distribution for the OI number of faults is modeled with a geometric

distribution with parameter (1 − e−λ)

P (X = h) = (1 − e−λ)e−λh

where h ∈ {0, 1, . . .}. The parameter λ is estimated with the maximum likelihood

estimator

λ̂ = − log

(
μ̄1

1 + μ̄1

)
,

where μ̄1 is the mean of the observations of X smaller than the threshold separat-

ing the two groups (i.e. it is the mean of the observations in the first OI-cluster).

Finally a quantile qα of the fitted geometric distribution for the OI number

of faults is computed and an interval is declared exceptional for the utility under

exam when the number of faults observed in the period is larger than qα, which

4



1.2 The method adopted by the Italian Regulatory Authority

is therefore called the exceptionality threshold. In particular α is set so that,

according to the fitted distribution for the OI number of faults, a value of X

greater than qα would be seen once every t years, with t large; for example suppose

that an event is considered exceptional if it happens every 20 years (i.e. t = 20),

then α = 1 − 1
365∗4∗20 = 0.9999658. Therefore, by the definition of quantile, the

exceptionality threshold qα is the minimum real value such that P (X ≤ qα) = α:

for each utility

qα =

[
−1 − log(1 − α)

λ̂

]

where [x] indicates the integer part of x.

Moreover, for ease of elicitation by the AEEG qα is expressed as a linear

function of the average number m of faults per 6 hours period computed over the

available years

qα = β0 + β1 ∗m
with β0 �= 0.

Given the EIs (where the number of faults occurred is greater than qα) an

Exceptional Period (EP) is defined considering 3 hours before the beginning of

an EI and 3 hours after the end of the same interval. Then the methodology

labels as an EP a larger time span and in the simplest case (where there are no

contiguous EIs) the EP covers a period of 12 hours.

The application of a statistical method, even if it is simple or very sophisti-

cated, needs the understanding of some technical aspect of the field in which the

method will be applied. For this reason before introducing the HMM we focus our

attention on the method applied by the AEEG for gathering considerations that

are useful to the implementation of the analysis we will perform. Then we under-

line that the method adopted by the Authority analyzes each utility separately

from the others and using only the observed performance, without considering

any other type of information. Moreover this method incorporates the idea that

an exceptional event causes several faults protracting in time; in fact it considers

the number of interruptions greater than a threshold and the analysis are based

on the interruptions occurred in a 6 hours time interval. Finally enlarging an ex-

ceptional interval to the 3 hours before the beginning and 3 hours after the end of

5



1. INTRODUCTION

the same interval, the AEEG method incorporates the idea that the exceptional

event is preceded and followed by some instability conditions.

THE AEEG method in general and these considerations in particular will be

the reference frame of the analysis we will perform.

1.3 The model

We now introduce the general properties of the model; the book by Cappé et al.

(2005) represents a complete and clear reference on HMMs.

An Hidden Markov Model (HMM) is a bivariate discrete time process {Xt, Yt},
where {Xt}t≥0 is a Markov chain and, conditional on {Xt}, {Yt}t>0 is a sequence

of independent random variable such that the conditional distribution of Yk only

depends on Xk. The dependence structure of an HMM can be represented by a

graphical model as in Figure 1.1, in which nodes are the random variables, and

the missing edges between the nodes represent conditional independencies.

· · · → Xk−1 → Xk → Xk+1 → · · ·
↓ ↓ ↓

· · · Yk−1 Yk Yk+1 · · ·

Figure 1.1: Graphical representation of the dependence structure of an HMM, where
{Yt} is the observable process and {Xt} is the hidden Markov chain.

In other words, the distribution of a variable Xk+1 conditionally on the history of

the process, X0, . . . , Xk, is determined by the value taken by the preceding one,

Xk (Markov property); likewise, the distribution of Yk, conditionally on the past

observations Y1, . . . , Yk−1 and the past value of the stateX0, . . . , Xk, is determined

by Xk only.

Denote the state space of the Markov chain {Xt} by X and the set in which

{Yt} takes its values by Y.

When X and Y are finite sets we have a finite hidden Markov model, that can

be characterized by the initial state distribution π = {πi}, with πi = P (X0 = i),

i ∈ X, the transition matrix A = {ai,j}, where ai,j = P (Xk+1 = j|Xk = i),

6



1.3 The model

i, j ∈ X and the emission matrix B = {bi(y)}, with the conditional probabilities

bi(y) = P (Yk = y|Xk = i), i ∈ X, y ∈ Y.

A parametric hidden Markov model assumes that the conditional distributions

of Yk given Xk all belong to a single parametric family, with parameters indexed

by Xk, i.e. Yk|Xk = i ∼ f(yk| ξi). In this case the HMM is characterized

by the initial state distribution π, the transition matrix A and the emission

parameters ξ; for example, in the Poisson HMM with a four state Markov chain,

Yk|Xk = i ∼ Pois(yt|λi) and ξ = (λ1, λ2, λ3, λ4).

Usually it is assumed that the state space of the hidden Markov chain, X, is

finite; Beal et. al. (2005) hypothesizes that X is countably infinite and introduces

the infinite hidden Markov models.

HMMs are widely used in a variety of fields for modeling dependence in data

and for analyzing (observed) phenomena depending on an underlying and not

observable system. An HMM generalizes the classical mixture model and the

component populations, from one observation to the next, are selected according

to an unobserved Markov chain. Moreover, they are used to study situations

where the hidden Markov chain has a physical meaning (it is not just a tool for

introducing dependence in data).

Besides economics (Hamilton 1989, 1990; Albert and Chib, 1993), HMMs have

been applied to some specific areas such as signal processing (Juang and Rabiner,

1991), biology (Leroux and Puterman, 1992), genetics (Churchill, 1989; Liu et al.,

1999; Guha et al., 2008).

1.3.1 The likelihood function

Let ϑ be a vector containing the model parameters, arising from the transition

mechanism (i.e. the transition matrix A and the initial state probability distri-

bution π) and from the emission mechanism (i.e. the emission matrix B or the

emission parameters ξ).

Consider a sequence of length T and let (y,X) be the complete-data, (Y1 =

y1, . . . , YT = yT , X0 = x0, X1 = x1, . . . , XT = xT ); then the complete-data likeli-

hood function p(y,X|ϑ) is given by

p(y,X|ϑ) = p(y|X,ϑ)p(X|ϑ). (1.1)

7



1. INTRODUCTION

The density p(X|ϑ) depends on A only and so

p(X|A) =
T∏

t=1

p(Xt|Xt−1, A)p(X0|A) = πx0

T∏
t=1

axt−1,xt (1.2)

= πx0

K∏
i=1

K∏
j=1

a
nij

i,j

where K is the number of possible states (i.e. K = |X|) and nij = #{1 ≤ t ≤ T :

Xt−1 = i, Xt = j}, ∀i, j ∈ X.

The probability distribution p(y|X,ϑ), in 1.1, depends on the hypothesized

emission structure, coming from the assumed finite or parametric HMM; more-

over, because conditionally on X the random variables Y1, . . . , YT are indepen-

dent, p(y|X,ϑ) =
∏T

t=1 p(yt|X,ϑ).

Therefore equation (1.1) is

p(y,X|ϑ) = πx0

K∏
k=1

( ∏
t:Xt=k

bk(yt)

)
K∏

i=1

K∏
j=1

a
nij

i,j

in the finite HMM and

p(y,X|ϑ) = πx0

K∏
k=1

( ∏
t:Xt=k

p(yt|ξk)
)

K∏
i=1

K∏
j=1

a
nij

i,j (1.3)

in the parametric case. For example, when a Poisson HMM is considered, equa-

tion (1.3) becomes

p(y,X|λ1, . . . , λK , A, π) ∝ πx0

K∏
k=1

λ
nkyk

k e−nkλk

K∏
i=1

K∏
j=1

a
nij

i,j ,

where nk = #{1 ≤ t ≤ T : Xt = k} and yk is the mean of all observations, when

Xt = k.

Note that we are assuming that the parametric distribution depends on a

single parameter (ξk is not a vector in (1.3)), but it could be a two or more

parameters family.

Summing the complete-data likelihood function over all possible hidden state

sequences we obtain the likelihood function

p(y|ϑ) =
∑

X∈XT+1

p(y,X|ϑ), (1.4)

8



1.4 Bayesian inference

where XT+1 is the space of all possible realizations of X. The sum in (1.4) is over

KT+1 elements and becomes infeasible for practical evaluation of the likelihood

function, even for small values of K and T .

A solution to the problem of computing the likelihood function (1.4) is pro-

vided by the forward-backward recursions of Baum et al. (1970) (for a clear

presentation of the procedure see the important tutorial of Rabiner, 1989).

1.4 Bayesian inference

When an HMM is considered, problems of interest are inference on the model

parameters ϑ and on the unobserved chain {Xt}. For many years HMMs have

been implemented using recursive algorithms developed for parameter estimation

(Baum and Petrie, 1966; Baum et al., 1970) and for restoring the hidden Markov

chain (Viterbi, 1967). More recently, these models have been studied from a

Bayesian point of view (among others Robert et al. 1993, 2000; Chib, 1996).

In a Bayesian approach, model parameters are random quantities, on which

a prior has to be assigned; a standard prior assumption is that the emission

parameters (B or ξ) are a priori independent of the transition matrix A: p(ϑ) =

p(A)p(B) or p(ϑ) = p(A)p(ξ1, . . . , ξK). Inference on the model parameters and

on the hidden chain is based on the posterior distribution

p(X,ϑ|y) ∝ p(y|X,ϑ)p(X|ϑ)p(ϑ) (1.5)

∝ p(y,X|ϑ)p(ϑ).

Sampling from the posterior (1.5) is commonly carried out by the Markov

Chain Monte Carlo (MCMC) sampling scheme. MCMC sampler is a powerful

and widely used method for iteratively sampling from posterior distributions.

The original MCMC algorithm was introduced by Metropolis et al. (1953) for

the purpose of optimization on a discrete state space. The Metropolis algorithm

was later generalized by Hastings (1970) and Peskun (1973, 1981) to statistical

simulation. Despite several other papers that highlighted its usefulness in specific

settings (see, for example, Geman and Geman, 1984; Tanner and Wong, 1987;

Besag, 1989), the starting point for an intensive use of MCMC methods by the

9



1. INTRODUCTION

statistical community can be traced to the presentation of the Gibbs sampler by

Gelfand and Smith (1990). Several other algorithmic approaches are available,

such as, slice (Neal, 2003), and adaptive rejection sampling (Gilks and Wild,

1992).

HMM’s missing-data structure naturally admits posterior samplers that alter-

nate between simulating X given ϑ and y, and simulating ϑ given the complete-

data X and y; then we can consider the following (general) Gibbs sampling

algorithm.

Algorithm 1.1 Gibbs sampling

Start with some state sequence X(0) and repeat the following steps for l =

1, . . . , L0, . . . , L.

1. Sample ϑ from the complete-data posterior p(ϑ|X(l−1),y) and store the values.

2. Conditional on knowing the model parameters ϑ(l), sample a path X of the

hidden Markov chain from the conditional posterior p(X|ϑ(l),y) and store all

generated states.

3. Increase l and return to step 1.

L0 is the number of burn-in samples to be discarded from the estimate. In

the next Sections we will explain in detail each step in Algorithm 1.1; as we will

explain in Sections 1.4.1 and 1.4.2, given the independence assumption between

transition and emission parameters, step 1. can be divided in two sub-points.

1.4.1 Sampling the transition matrix

We fix the initial state at 1, i.e. X0 = 1 (for a discussion on the choices of the

initial state distribution π and related prior specification see Cappé et al., 2005,

Subsection 13.1.2 or Frühwirth-Schnatter, 2006, Subsection 10.3.4).

Let the rows of the transition matrix be independent a priori, each following

a conjugate Dirichlet prior:

p(A) =

K∏
i=1

Dir(ai|αi1, . . . , αiK),

10



1.4 Bayesian inference

where ai = (ai,1, . . . , ai,K) is the ith row of the transition matrix A. Then the

rows are independent a posteriori, and, for a given trajectory X of the hidden

Markov chain, are drawn from the Dirichlet distribution

Dir(ai|αi1 + ni1, . . . , αij + nij , . . . αiK + niK), (1.6)

where nij = #{0 ≤ t ≤ T − 1 : Xt = i, Xt+1 = j}, i, j ∈ {1, . . . , K}.

1.4.2 Sampling the emission parameters

Sampling the emission parameters depends on if a finite or a parametric HMM

is hypothesized and, in the latter case, on the chosen parametric family.

Finite hidden Markov model

Recall that in a finite HMM the state space of the Markov chain, X, and the

set in which the observable process takes its values, Y, are finite sets; let Y =

{0, 1, . . . , q}. The rows of the emission matrix are assumed independent a priori,

each following a conjugate Dirichlet prior:

p(B) =

K∏
i=1

Dir(bi|βi0, . . . , βiq),

where bi = (bi(0), . . . , bi(q)) is the ith row of the emission matrix B. Therefore,

as for the transition matrix, the rows are independently drawn from the following

Dirichlet distribution

Dir(bi|βi0 + ei0, . . . , βiy + eiy, . . . , βiq + eiq), (1.7)

where eiy = #{1 ≤ t ≤ T : Xt = i, Yt = y}, with i ∈ {1, . . . , K} and y ∈ Y.

Parametric hidden Markov model

Consider for example a Poisson HMM, with conditional probability, Yt|Xt = xt ∼
Pois(yt|λxt), assume prior independence of the means and a conjugate Gamma

prior, λk ∼ Γ(λk|a0, b0), for λk. Then means are a posteriori independent and λk

is drawn from the posterior distribution

p(λk|X,y) ∼ Γ(λk|a0 + nkyk, b0 + nk) (1.8)

11
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where nk = #{1 ≤ t ≤ T : Xt = k} and yk is the mean of the observations when

Xt = k.

Of course different parametric models could be considered; in Chapter 2 we

will consider also the negative binomial and the compound Poisson HMMs.

1.4.3 Sampling paths of the hidden Markov chain

Now we consider how sample a path of the hidden Markov chain X from the

conditional distribution p(X|y,ϑ).

Early papers (Robert et al., 1993) use a sampling scheme, called single updat-

ing of the hidden chain, that samples the state Xt conditional on all other states

of the hidden chain. A more efficient way to sample X is the global updating

of the hidden chain (see Cappé et al., 2005), where the trajectory of the hidden

chain is updated as a whole from its conditional distribution given the data and

the model parameters ϑ.

Global updating of the hidden chain

Global updating of the hidden chain is based on writing the joint posterior dis-

tribution p(X|y,ϑ) as

p(X|y,ϑ) =
T∏

t=1

p(Xt|Xt−1,y,ϑ). (1.9)

Now, let yh:k = (Yh = yh, . . . , Yk = yk) with h ≤ k; so

p(Xt = j|Xt−1 = i,y,ϑ) =

=
p(yt|Xt−1 = i, Xt = j,yt+1:T ,ϑ)p(Xt = j|Xt−1 = i,yt+1:T ,ϑ)

p(yt|Xt−1 = i,yt+1:T ,ϑ)

=
p(yt|Xt−1 = i, Xt = j,ϑ)p(yt+1:T |Xt−1 = i, Xt = j,ϑ)

p(yt+1:T |Xt−1 = i, Xt = j,ϑ)

· p(Xt = j|Xt−1 = i,ϑ)

p(yt|Xt−1 = i,yt+1:T ,ϑ)

∝ p(yt|Xt = j,ϑ)p(Xt = j|Xt−1 = i,ϑ)p(yt+1:T |Xt = j,ϑ)

∝ p(yt|Xt = j,ϑ)ai,jp(yt+1:T |Xt = j,ϑ)

12



1.4 Bayesian inference

where p(yt+1:T |Xt = j,ϑ) is the so called backward variable and it is the proba-

bility of the partial observation sequence from t+ 1 to T, given state Xt = j and

the model parameters ϑ.

Let p(yt+1:T |Xt = j,ϑ) = βt(j) and solve inductively as follows:

a) Initialize with

βT (j) = 1 1 ≤ j ≤ K

b) and for t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ K

βt(i) =

K∑
j=1

ai,jp(yt+1|Xt+1 = j)βt+1(j). (1.10)

When p(yt+1|Xt+1 = j) is a density distribution, it is not necessarily bounded

by 1. Then the backward variables may converge, at a geometric rate, to either

zero or infinity. For this reason the introduction of a scaling factor is needed;

then we scale βt(i) by multiplying each variable by a scale coefficient 1�K
j βt(j)

,

that depends only on t; each scale factor effectively restores the magnitude of the

βt(i) terms to 1.

The conditional distribution (1.9) becomes

p(X|y,ϑ) ∝
T∏

t=1

p(yt|Xt = xt,ϑ)axt−1,xtβt(xt) (1.11)

and Xt, for 1 ≤ t ≤ T , can be sampled from

Pr(Xt = j|Xt−1 = xt−1,y,ϑ) =
p(yt|Xt = j,ϑ)axt−1,jβt(j)∑K
i=1 p(yt|Xt = i,ϑ)axt−1,iβt(i)

(1.12)

where we recall that X0 = 1.

Obviously, the sampling probability (1.12) specializes for the finite and para-

metric HMM, by substituting the corresponding emission probabilities p(yt|Xt =

i,ϑ).
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Single updating of the hidden chain

The local (or single) updating of the hidden chain is an alternative method of

sampling a path of the chain from the conditional distribution p(X|y,ϑ); it con-

sists in sampling the state Xt conditional on all other states from the conditional

posterior distribution Pr(Xt = j|X−t,y,ϑ), where X−t denotes the whole path

of X without the element Xt.

Then, the chain is sampled from

Pr(Xt = xt|X−t,y,ϑ) ∝ axt−1,xtaxt,xt+1p(yt|Xt = xt) (1.13)

for 1 ≤ t ≤ T − 1, with X0 = 1 and from

Pr(XT = xT |X−T ,y,ϑ) ∝ axT−1,xT
p(yT |XT = xT ) (1.14)

for t = T .

A computational advantage of the local updating sampler over the global

updating one is that the time-consuming computing of the backward variables is

avoided; a theoretical disadvantage of local updating, however, is that the auto-

covariance function of any complete-data sufficient statistics drawn is equal to

the auto-covariance function of the same statistics under global updating plus a

penalty term (Scott, 2002). Hence the local updating sampler should mix and

explore the posterior surface much more slowly than when global updating is

used.

1.4.4 Label-switching

As arises from the previous discussion, sampling model parameters ϑ from its

complete data posterior should be trivial once X is drawn, but the draw is com-

plicated by an identifiability issue known as label-switching. The HMM likelihood,

in fact, is invariant under permutations of the state labels and, if either the prior

distributions are exchangeable (i.e. they are invariant under permutations of

the components), the posterior will also be exchangeable. We underline that the

priors hypothesized in Sections 1.4.1 and 1.4.2 are exchangeable.
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Consider a Poisson HMM with two possible states; swap value of λ1 and λ2,

relabel all points currently in state 1 as state 2, and vice versa. The complete-

data likelihood assumes the same value with new and old labels and so (if the

priors are exchangeable) their marginal posterior densities are identical. Label

switching is not a problem related to the sampling strategy, but it is an intrinsic

property of the model and its prior.

Lack of identifiability also creates a difficulty with the maximum a posteriori

estimator, in fact the exchangeability property implies that there are a multiple

of K! modes of the posterior surface.

Because the data contains no information about the order of the state labels,

labels may only be identified in the posterior distribution by putting constraints

on the prior; it is common to assume constraints ordering parameters. For exam-

ple, in the Poisson HMM with 4 states, we could require the means to appear in

ascending order, that is λ1 < λ2 < λ3 < λ4.

Choosing parameters constraints can be informative, because we construct a

new prior that is zero in regions where the constrains does not hold; moreover, as

pointed out in Celeux et al. (2000), ordering different sets of the model parameters

produces different posterior means. Scientific insight about the chain may suggest

an order for the parameters. Consider the Business Cycle example presented in

Section 1.1, where an HMM with a 2 state Markov chain is assumed, state 1

means that the economy is in an expanding status, while state 0 means that the

economy is in a contracting status; assume that the gross national product given

that the chain is in state i is distributed according to a Gaussian distribution

with mean μi and variance 1; then μ0 > μ1 is nonsensical. From a practical point

of view, in a MCMC simulation, ordering can be imposed at each step of the

sampler.

Lack of identifiability can also be avoided by using a loss function that is

invariant under permutation of the labels; for instance, in case of mixture, Celeux

et al. (2000) employed a loss function based on the Kullback-Liebler divergence.

A totally different estimate method is the Variational method, also called

Ensamble learning (Beal, 2003) that approximates the posterior distribution with

a simpler and tractable (lower or upper) bound and then optimizes this bound.
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1.4.5 The MCMC algorithm and the Bayesian estimation

Taking into account previous considerations, we can state, in Algorithm 1.2, the

MCMC sampling scheme for drawing from posterior density p(X,ϑ|y), in the

case of finite HMM:

Algorithm 1.2 MCMC algorithm

Start with some state sequence X(0) and repeat the following steps for l =

1, . . . , L0, . . . , L.

1. Sample each row of A from the complete-data posterior distribution

p(A|X(l−1)) in equation (1.6), and store the values.

2. Sample the emission parameter from the complete-data posterior in equation

(1.7), p(B|y,X(l−1)) and store the values.

3. Conditional of knowing the model parameters ϑ(l)

a) Compute the means of the observable values in each state, μ(l) =

(μ
(l)
1 , μ

(l)
2 , . . . , μ

(l)
K ), with μ

(l)
i =

∑q
j=0 j · b(l)i (j), and

– if μ
(l)
1 < μ

(l)
2 < . . . < μ

(l)
K go to step b)

– else order the mean vector ρ(μ) and ρ(A), ρ(B)

b) Compute the scaled backward variables, like in equation (1.10)

c) Sample a path X of the hidden Markov chain from the conditional poste-

rior p(X|ϑ(l),y) in equation (1.12), trough the global updating sampler

and store all states.

4. Increase l and return to step 1.

Obviously the algorithm specializes for the parametric HMM; in particular,

in the Poisson HMM, the ordering step 3.a) is directly achieved by the mean of

the Poisson distributions.

Posterior draws produced by the MCMC sampler, provided that a sufficiently

large number L0 of draws are discarded, are used for statistical inference (for a
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1.5 Choosing the number of states of the hidden Markov chain

discussion on different methods to estimated the hidden chain see for example

Scott, 2002).

Considering a quadratic loss function (i.e. loss(ϑ, ϑ̂) = ‖ϑ− ϑ̂‖2), the model

parameters’ estimate is the posterior expectation, that is approximated by aver-

aging over the draws from the posterior distribution:

ϑ̂ =
1

L− L0

L∑
l=L0

ϑ(l).

Point estimations of the hidden Markov chain X may be obtained by considering

a 0/1 loss function, minimized by the mode of the marginal posterior probability,

also called the maximum a posteriori (MAP) estimator. Therefore the estimated

Markov chain is:

XMAP
t = mode

l=L0:L
X

(l)
t ,

for t = 1, . . . , T

1.5 Choosing the number of states of the hidden

Markov chain

Before considering the choice of the number of states of the Markov chain, let us

briefly present the dataset provided by the AEEG.

First analyzes implemented by the Italian Authority were referred to a dataset

relative to more than 300 territorial districts, covering the entire national terri-

tory. During the consultation process for the third regulatory period, 2008-2011,

additional elements emerged; in particular a more appropriate definition of the

spatial units was introduced. The proposal was to explore a geographical area

larger than the district.

The Italian distribution sector includes one large utility, that serves more than

80% of the consumers and a number of local companies. Telecontrol centers are

closely related to the technical structure of the network; therefore they appeared

as the preferable choice. However, it was observed that they might be modified

over time by the company to include different groups of consumers. For this
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reason, the company for local utilities and the province for the big one were

preferred as the new spatial units for the analysis.

The propose to identify exceptional events by an HMM was developed during

this consultation process. Then we dispose of two datasets: one containing the

hourly number of interruptions for 34 telecontrol centers in years 2004-2005 and

the other one relative to 113 province and company combinations for the three

year time span 2004-2006. We underly that utilities are the main object of our

analysis while telecontrol centers or province and company combinations are the

considered spatial units; in other words the analyzed object is the same while the

point of view (or better the statistical units) changes.

The main common characteristic between sequences in the two datasets is

that the great majority of the observations (more than 75% for the telecontrol

centers and about 90% for the province/company) is equal to 0; a quite large

number of faults is equal to 1 and so on in a decreasing order.

Consider Figure 1.2 showing observations for a center labeled as dg4, for the

period from 13th to 26th August 2004; it represents a typical trend noticeable in

the datasets. Very often the observations are equal to 0, there are several hours

with a quite small number of interruptions (the lower peaks); moreover we can

distinguish peaks with different height and width or, in other words, there are

periods with interruptions of different order of magnitude and involving various

hours.
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Figure 1.2: Time series’ typical trend. Observations from 13th to 26th August 2004
for the center dg4.

Coming back to the choice of the number of possible state, in order to reach

the set goal we will consider an HMM with a four state Markov chain. States

have a physical meaning: state 1 indicates that the system is in a normal oper-

ating status while state 4 indicates an exceptional operating status; states 2 and

3 are transitional and refer to an increasing degree of perturbation of the system

operating status, as yet non exceptional.

The choice to consider four possible states is the results of a “Goldilocks selec-

tion”: we first tried to consider two states (a normal and an exceptional state)

and three states; however results suggest that the problem is more complicate

and needs a more complex structure. In fact with, for example, two states we are

not able to discriminate between interruptions holding one hour (and then not

exceptional) and faults during in time (and the caused by an exceptional event).
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1.6 Studying the “Exceptional excursions”:

Phase-type distributions

As we said in Section 1.1 the Authority has become more interested in controlling

the efficiency and effectiveness of utility restoration schemes. In an HMM, the

transition matrix A reassumes information regarding the transition dynamic of

the underlying process and in particular dynamic related to the exceptional state.

Then, studying the transition matrix A, we can achieve some information related

to the exceptional periods.

First of all, it is known that the time spent by the Markov chain {Xt} in

a state i, say T (i), has a geometric distribution with parameter 1 − ai,i, where

ai,i = P (Xt+1 = i|Xt = i); therefore the expected number of instant the chain

passes in state i is E(T (i)) = 1
1−ai,i

.

Moreover, when an exceptional event occurs (i.e. the underlying chain is in

state 4), it could be interesting to analyze the requested time for re-establishing

the normal situation (i.e. the chain comes back to state 1); we define now an

exceptional excursion.

Definition 1.1. Let an exceptional excursion be a sequence beginning in the first

state after a state 1 (it could be state 2, 3 or 4), ending in state 1 and containing

at least one state 4.

In other words an exceptional excursion represents the time passed by the

chain outside the normal state 1, when an exceptional event occurs.

In order to analyze the length of an exceptional excursion, we consider the

Phase-type distribution, that is the distribution of the number of steps from a

Markov chain starting until absorption into absorbing state (for a complete and

clear explanation see Neuts, 1994).

Definition 1.2. Consider a discrete-time Markov chain with m+1 states, where

m ≥ 1. The states 1, . . . , m are transient and state m+ 1 is an absorbing state.

The process has an initial probability of starting in any of the m+1 phases given

by the probability vector (α, αm+1).
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This process can be written in the form of a transition probability matrix

P =

(
T T o

0 1

)

where T is an m × m substochastic matrix, T o + Te = 1 and e is the column

vector with all its components equal to one.

The distribution of the number of steps S until the process reaches the absorb-

ing state is said to be discretely Phase-type distributed and it is represented by the

pair (α, T ).

Moreover, the probability density {ps} of the Phase-type distribution is given

by

p0 = αm+1

ps = αT s−1T 0, for s ≥ 1.

We can now state the following result.

Proposition 1.1. The length of an exceptional excursion is discretely Phase-type

distributed.

Proof. Let the normal state 1 be the absorbing state and, without loss of gen-

erality, fix at 1 the starting time of the exceptional excursion; consider the two

stopping times E = min{t > 1 : Xt = 1}, that is the instant the chain reaches

the absorbing state 1 and H = min{t ≥ 1 : Xt = 4}, that is the first time the

chain enters in state 4. In order to prove the statement we need to verify that

P (X1 = x1, . . . , XE = 1|X0 = 1, X1 �= 1, Xh = 4 for at least one 0 < h < E)

(1.15)

has a Markov structure.

In the following we will write “Xh = 4, 0 < h < E” to indicate “Xh = 4 for

at least one 0 < h < E”. We have

P (X1 = x1, . . . , XE = 1|X0 = 1, X1 �= 1, Xh = 4, 0 < h < E) =
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=
P (X1 = x1, . . . , XE = 1, Xh = 4, 0 < h < E|X0 = 1, X1 �= 1)

P (Xh = 4, 0 < h < E|X0 = 1, X1 �= 1)

∝ P (X1 = x1|X0 = 1, X1 �= 1)

· P (X2:E = x2:E, Xh = 4, 0 < h < E|X1 = x1, X0 = 1, X1 �= 1)

∝ a1,x1∑
i∈X�{1} a1,i

1X�{1}(x1)

· P (X2:E = x2:E, Xh = 4, 0 < h < E|X1 = x1, X0 = 1, X1 �= 1) (1.16)

where 1A(x) =

{
1, x ∈ A

0, x �∈ A
, X is the state space of the Markov chain, and,

as usual, Xt:s = (Xt, Xt+1, . . . , Xs), with t < s.

Consider the second term in equation (1.16),

P (X2:E = x2:E, Xh = 4, 0 < h < E|X1 = x1, X0 = 1, X1 �= 1) =

= P (X2:H = x2:H ,XH+1:E = xH+1:E, H < E|X1 = x1, X1 �= 1)

= P (X2:H = x2:H , H < E|X1 = x1, X1 �= 1)

· P (XH+1:E = xH+1:E, H < E|X1 �= 1,X1:H = x1:H)

= by the strong Markov property

= P (X2:H = x2:H , H < E|X1 = x1, X1 �= 1)
E∏

i=H+1

ai−1,i. (1.17)

Consider the first term in equation (1.17); being H < E and H = min{t ≥ 1 :

Xt = 4}, we know that from time 1 to H − 1, in the exceptional excursion there

are no 1 and no 4. Therefore equation (1.15) becomes

P (X1 = x1, . . . , XE = 1|X0 = 1, X1 �= 1, Xh = 4 for at least one 0 < h < E)

=
a1,x1∑

i∈X�{1} a1,i
1X�{1}(x1)

H∏
l=2

axl−1,xl∑
j∈X�{1} axl−1,j

1X�{1}(xl)
E∏

i=H+1

ai−1,i

and this complete the proof.

We can now obtain the pair (α∗, T ∗), representing the Phase-type distrib-

ution. Consider a Markov chain with absorbing state 1 and transient states

{2∗, 3∗, 2, 3, 4}, where 2∗ and 3∗ are states 2 and 3 conditioning on the fact that
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1.7 Outline of the work

in following there is at least a 4; indicate the corresponding state space with X∗.

Then the initial probability vector is

α∗ =

(
a1,2

a1,2 + a1,3 + a1,4
,

a1,3

a1,2 + a1,3 + a1,4
, 0, 0,

a1,4

a1,2 + a1,3 + a1,4

)

and α1 = 0. The first element in α∗ is, for example, the probability to have

X1 = 2∗, given that X0 = 1 and X1 �= 1; null values are relative to states 2 and

3, in fact, given the definition of an exceptional excursion, it is not possible to

have X1 = 2 or X1 = 3 (we can have X1 = 2∗, X1 = 3∗ or X1 = 4).

Using similar considerations we obtain the following transition probability

matrix

P ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2,2

a2,2+a2,3+a2,4

a2,3

a2,2+a2,3+a2,4
0 0 a2,4

a2,2+a2,3+a2,4
0

a3,2

a3,2+a3,3+a3,4

a3,3

a3,2+a3,3+a3,4
0 0

a3,4

a3,2+a3,3+a3,4
0

0 0 a2,2 a2,3 a2,4 a2,1

0 0 a3,2 a3,3 a3,4 a3,1

0 0 a4,2 a4,3 a4,4 a4,1

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1.7 Outline of the work

After opting to analyze the utilities’ performance by an HMM with a four state

Markov chain, we need to decide on considering a parametric or a finite HMM.

In Chapter 2 we consider different parametric models; output does not com-

pletely accomplish our goal and the analysis of the results suggests us to consider

a finite HMM. Application of this model in Chapter 3 (Accoto et al., 2008) yields

interesting results, also compared with what obtained by the AEEG.

Dataset employed in the implementation of these models (parametric and

finite) is relative to the telecontrol centers; as we said in Section 1.5, a new

definition of the spatial units was introduced and the dataset relative to the

province and company combinations was available. In Chapter 4, after analyzing
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1. INTRODUCTION

all province and company combinations for year 2004, we consider a Cluster

analysis, in order to investigate eventual similarities in the underlying systems.

In Chapter 5 we define and apply, after presenting a method to make inference,

a model-based clustering method, alternative to the distance-based one proposed

in Chapter 4; hence we will introduce the Hidden mixture Markov Model.

This work could be virtually divided into two parts: one containing what so

far presented and another small one representing the starting point of a research

topic propose. In fact, in Chapter 6 we will present the Reinforced Urn Processes

(Muliere et al., 2000) and how they could be applied in the prior specification

when an HMM, from a Bayesian point of view, is considered.
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Chapter 2

Parametric hidden Markov

models for identifying

exceptional events

2.1 Introduction

The interpretation of the faults in the electricity distribution as a signal of an

underlying process leads us to consider an HMM, for identifying interruptions

due to an exceptional event.

HMMs represent a class of different possible model. The choice of the number

of possible states of the hidden Markov chain (see Section 1.5) restricts this class;

however, especially regarding implications on the emission mechanism, we could

consider two different types of HMM: the parametric HMM and the finite HMM.

The main difference between these two models is that in the parametric HMM the

observed value (given the state of the underlying process) is distributed according

to a parametric distribution, while in the finite HMM a matrix (called emission

matrix) contains the conditional probabilities to observe the different values, given

the state of the hidden chain. Of course the choice between the parametric and

the finite HMM has implications in terms of the number of emission parameters

to be estimated. If we consider a Poisson distribution, we have to estimate K

Poisson means, whilst if we consider a finite HMM, with Y = {0, . . . , q}, we need

to estimate K × (q + 1) emission probabilities.
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We start considering the parametric models. The nature of the data under

analysis (i.e. the number of faults) naturally leads to consider a Poisson HMM

(Section 2.2). An accurate analysis of the results obtained by the application

of this model suggests us to consider two different emission distributions: the

negative binomial and the compound Poisson distributions (Sections 2.3 and 2.4).

2.2 Poisson hidden Markov model

2.2.1 Model and results

Consider a Poisson HMM:

Yt|Xt = i ∼ Pois(yt|λi),

{Xt}|A ∼ Markov chain(A);

where Markov chain(A) is for “Markov chain with transition matrix A”, A =

{ai,j} with ai,j = P (Xk+1 = j|Xk = i), i, j ∈ X = {1, . . . , K}, and K is the

number of possible states.

In Chapter 1 we presented inference for the Poisson HMM as an exam-

ple of a parametric HMM. Fix X0 = 1, let the rows of the transition matrix

be independent a priori, each following a conjugate Dirichlet prior, p(A) =∏K
j=1 Dir(aj|αj1, . . . , αjK) and assume prior independence of the means and a

conjugate Gamma prior, λk ∼ Gamma(λk|a0, b0). Then, given a data sequence

y = (Y1 = y1, . . . , YT = yT ), the Gibbs sampling in Algorithm 1.1 specializes in

the following Algorithm 2.1 (see Section 1.4 for details).
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2.2 Poisson hidden Markov model

Algorithm 2.1 Gibbs sampling for a Poisson HMM

Start with some state sequence X(0) and repeat the following steps for l =

1, . . . , L0, . . . , L.

1. Sample each row of A from the Dirichlet posterior distribution

2. Sample the Poisson mean from the Gamma posterior

3. Conditional of knowing the model parameters

a) – if λ
(l)
1 < λ

(l)
2 < . . . < λ

(l)
K go to step b)

– else order the mean vector ρ(λ) and ρ(A)

b) Compute the scaled backward variables

c) Sample a path X of the hidden Markov chain trough the global updating

sampler

4. Increase l and return to step 1.

Each combination of telecontrol center and year is studied as an independent

global system; the hourly number of faults generated by the system in a year is

modeled by means of an HMM with a four state Markov chain; in the following

we will focus our attention on a telecontrol center codified with dr3, for year 2004.

Moreover, in the prior specification, we consider equal to 1 parameters for the

Dirichlet and the Gamma distributions.

We now briefly consider convergence of the MCMC algorithm; before starting

we have to observe that unfortunately diagnostics only say if stationarity has not

been achieved. Diagnostics considered in the following are implemented in the R

package (R Development Core Team, 2005) coda (Plummer et al., 2008).

Consider Figure 2.1 showing the first 5 000 generated values of probability of

staying in each state and the generated Poisson means. By this plot it seems that

the chain reached the stationarity, in fact there is not a trend.
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Figure 2.1: First 5 000 generated values from the Gibbs sampler, for center dr3, year
2004. In the plots’ title A[i, i] refers to the probability of staying in state i, ai,i and

lambda i is for λi.

Apart from these qualitative diagnostics, different quantitative diagnostics

have been proposed in literature; for example the Geweke’s diagnostic and the

Heidelberger-Welch diagnostic. Geweke (1992) proposed a convergence diagnostic

for Markov chains based on a test for equality of the means of the first and last

part of a Markov chain. If the samples are drawn from the stationary distribution

of the chain, the two means are equal and Geweke’s statistic has an asymptotically

standard normal distribution. The Heidelberger-Welch (1983) convergence test

uses the Cramer-von-Mises statistic to test the null hypothesis that the sampled

values come from a stationary distribution. The test is successively applied, firstly

to the whole chain, then after discarding the first 10%, 20%, . . . of the chain until

either the null hypothesis is accepted, or 50% of the chain has been discarded.

The latter outcome constitutes ‘failure’ of the stationarity test and indicates that

a longer MCMC run is needed. In our case, also these two diagnostics confirm

that the chain is stationary.
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2.2 Poisson hidden Markov model

Finally we use the Raftery and Lewis’s diagnostic (1992a, 1992b, 1995) to

obtain indications relative to the number of iterations to consider in the algorithm

(L) and how many generated values we need to discard from the estimation

(L0). This diagnostic, in fact estimates how long the chain needs to run in order

to estimate quantiles (q), within a specified accurancy (r) with some specified

probability (s). The minimum length is the required sample size for a chain

with no correlation between consecutive samples (of course MCMC draws are

not independent). Positive autocorrelation will increase the required sample size

above this minimum value. The number of burn-in iterations to be discarded at

the beginning of the chain is also calculated.

Table 2.1 contains the results of the Raftery and Lewis’s test when respectively,

the fist, the second and the third quartile are considered, with r = 0.05 and s =

0.95. The maximum values for the burn-in and the total number of iterations are

respective 117 and 12 460; however the “dependence factor”, that is an estimate

of the extent to which autocorrelation inflates the required sample size, is quite

large (in general values greater than 5 are considered considerable); for this reason

we will consider L = 30 000 and L0 = 2 000.
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Burn-in Total Lower bound Dependence Factor

A[1,1] 108 9708 289 33.60

A[2,2] 78 6408 289 22.20

A[3,3] 88 6732 289 23.30

A[4,4] 10 884 289 3.06

lambda 1 72 6872 289 23.80

lambda 2 104 9880 289 34.20

lambda 3 40 3575 289 12.40

lambda 4 30 2700 289 9.34

A[1,1] 100 12460 385 32.40

A[2,2] 80 9792 385 25.40

A[3,3] 54 6912 385 18.00

A[4,4] 8 1176 385 3.05

lambda 1 78 10296 385 26.70

lambda 2 117 13932 385 36.20

lambda 3 40 5090 385 13.20

lambda 4 36 4548 385 11.80

A[1,1] 80 6672 289 23.10

A[2,2] 63 5789 289 20.00

A[3,3] 35 3300 289 11.40

A[4,4] 10 894 289 3.09

lambda 1 70 6048 289 20.90

lambda 2 110 9526 289 33.00

lambda 3 56 5026 289 17.40

lambda 4 36 3090 289 10.70

Table 2.1: Results relative to the Raftery and Lewis’s diagnostic for q = 0.25 (top),
q = 0.5 (middle) and q = 0.75 (bottom).
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2.2 Poisson hidden Markov model

We now consider results obtained by the MCMC generated values (see Section

1.4.5 for details on the adopted Bayesian estimation).

The estimated transition matrix is

Â =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8888 0.1038 0.0054 0.002

0.208 0.7668 0.0191 0.006

0.0392 0.188 0.7163 0.0565

0.1528 0.0577 0.251 0.5385

⎞
⎟⎟⎟⎟⎟⎟⎠

and the estimated mean vector is

λ̂ = (0.091, 0.596, 1.754, 5.817).

In the following, with an abuse of terminology, we will say “observation yt classi-

fied in state i” to indicate that at time t the underlying estimated Markov chain

is in state i and it emits the observation yt.

To better evaluate the model consider results concerning the estimated hidden

chain, summarized in Table 2.2, where each value nxy is the number of observa-

tions equal to y, classified in state x, i.e. nxy = #{1 ≤ t ≤ T : XMAP
t = x, Yt =

y}.

nxy 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18

1 5798 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 844 978 318 54 17 0 0 0 0 0 0 0 0 0 0 0

3 31 74 88 59 25 14 1 0 0 0 0 0 0 0 0 0

4 0 1 0 5 14 20 14 12 9 6 1 2 1 1 1 1

Table 2.2: Telecontrol center dr3, year 2004: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}.

Also considering what obtained by the AEEG method, it seems that too

many observations (88) are considered as due to an exceptional event, i.e. they

are classified in state 4. Moreover consider the following subsequences, where a

quite large number of interruptions, followed and preceded by no interruptions are

classified in the exceptional state; these situations violate the natural idea, also
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emerged by the AEEG method (see the end of Section 1.2), that an exceptional

event generate a large number of interruptions protracting in time.

XMAP 1 4 1

y 0 5 0
(2.1)

XMAP 1 4 1

y 0 6 0

XMAP 1 4 1

y 0 8 0

We now analyze results in order to try to propose an improvement of the

model. An HMM is a generalization of a Mixture model, where the components

are not selected independently, but according to an underlying Markov chain. In

Figure 2.2 the Poisson distributions (mixture components) with mean λ = λ̂ are

plotted; it highlights that it is highly probable that the exceptional state (state 4)

emits observations larger than 4 or 5 (i.e. the tail of the Pois(·|λ3) is neglectable

at those values).

Let us explain this consideration and try to interpret results contained in those

subsequences previously considered. In the single updating scheme, presented in

Section 1.4.3, the chain is sampled from:

P (Xt = xt|X−t,y,ϑ) ∝ axt−1,xtaxt,xt+1Pois(yt|λxt) (2.2)

where X−t = (X1 = x1, . . . , Xt−1 = xt−1, Xt+1 = xt+1, . . . , XT = xT ). Then,

consider for example subsequence 2.1; given that the chain is in state 1 and the

corresponding observation is equal to 0, in the next time even if the probability to

go in state 4 (a1,4) is small, the emission probability, corresponding to a number

of interruption greater than 4 or 5, is considerably larger in state 4 than in other

states (Pois(4|λ4) > Pois(4|λi), i = 1, 2, 3); then the sampled state of the chain

will be the exceptional state 4.
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Figure 2.2: Center dr3, year 2004: Poisson probability mass functions with means
λ1 = 0.091, λ2 = 0.596, λ3 = 1.754 and λ4 = 5.817.

Those considerations induce us to consider other distributions more “heavy

tailed”: the negative binomial and the compound Poisson distributions.

Consider a random variable (r.v.) Z ∼ NegBin(r, p), where 0 < p < 1 and

r > 0; then

P (Z = z) =
Γ(z + r)

Γ(r)z!
pr(1 − p)z, z = 0, 1, 2, . . . .

Furthermore E(Z) = r 1−p
p

and V (Z) = r 1−p
p2 .

The compound Poisson distribution arises in a model formed by supposing

that objects (for example earthquakes or faults in the electricity distribution)

occur in cluster, the number of clusters having a Poisson distribution, while the

number of objects per cluster varies according to a distribution Q (see Johnson et

al. (1992), Chapter 9). More formally, let N ∼ Pois(λ) and consider W1,W2, . . .

independent and identically distributed (i.i.d.) r.v. with common distribution

Q independent of N ; then Y =
∑N

i=1Wi has a compound Poisson distribution

CP(λ,Q). The parameter λ is called the rate of CP(λ,Q) and Q is the base

distribution; moreover, if E(Wi) = μ and E(W 2
i ) = m2, then E(Y ) = λμ and

V (Y ) = λm2.
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Let Wi ∼ geo(1 − p), 0 < p ≤ 1, with probability mass function P (W =

w) = pw−1(1 − p), w = 1, 2, . . .; then the CP(λ, geo(1 − p)) is also called the

Pólya-Aeppli distribution with E(Y ) = λ
1−p

and V (Y ) = λp(1+p)
(1−p)2

.

Furthermore, for y = 1, 2, . . . and with q = 1 − p

P (Y = y) =

∞∑
n=1

P (Y = y|N = n)P (N = n)

=

y∑
n=1

P

(
n∑

i=1

Wi = y|N = n

)
P (N = n)

= e−λ

y∑
n=1

λn

n!

Γ(y)

(y − n)!Γ(n)
qn(1 − q)y−n (2.3)

and

P (Y = 0) = P (N = 0) = e−λ.

The last equality in (2.3) is due to the fact that P (N = n) is Pois(n|λ) by

assumption and, denoted by W 0 and W 1 r.v. geometrically distributed with

probability of success q and discrete support respectively starting in 0 and 1,

P (
∑n

i=1W
1
i = y|N = n) = P (

∑n
i=1W

0
i + n = y|N = n) and, finally,

∑n
i=1W

0
i ∼

NegBin(n, q).

By considering Γ(0)
Γ(0)

= 1 we have, for y = 0, 1, 2, . . .

P (Y = y) = e−λ

y∑
n=0

λn

n!

Γ(y)

(y − n)!Γ(n)
qn(1 − q)y−n. (2.4)

In fact when y = 0 the sum is equal to 1 and when y �= 0 the first term of the

sum (i.e. with n = 0) is equal to 0
(

1
yΓ(0)

= 1
∞ = 0

)
.

In the following we will indicate with CP(λ, q) the Pólya-Aeppli distribution

CP(λ, geo(1 − p)).

The Figure 2.3 shows, for each state, the three probability mass functions with

the same mean; to be precise each plot contains the Pois(λi), the NegBin(λi, 0.5)

and the CP(λi, 0.5) distributions, i = 1, . . . , 4 and λ = λ̂. The great differences

are related to states 3 and 4: both distributions (the negative binomial and

the compound Poisson) are more skewed to the right, but the negative binomial

concentrates more mass on smaller values while the compound Poisson is shifted

on larger values.
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Figure 2.4 represents a different way (similar to that in Figure 2.2) to look at

the model, in terms of mixture components, when the negative binomial and the

compound Poisson distributions are considered.
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Figure 2.3: Poisson, negative binomial and compound Poisson probability mass func-
tions. Top-left: with mean equal to 0.091. Top-right: with mean equal to 0.596. Bottom-

left: with mean equal to 1.754. Bottom-right: with mean equal to 5.817.
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Figure 2.4: Negative binomial (Left) and compound Poisson (Right) probability mass
functions with means λ1 = 0.091, λ2 = 0.596, λ3 = 1.754 and λ4 = 5.817.

2.2.2 Zero-inflated Poisson hidden Markov model

As we said in Section 1.5, for every utility more than 90% of observations is equal

to 0. Then before considering the introduced models (the negative binomial and

the compound Poisson HMMs) we take into account this feature by considering

the zero-inflated Poisson HMM.

In general, consider a r.v. W distributed according to a zero-inflated distrib-

ution, then

P (W = w) =

⎧⎨
⎩ π + (1 − π)e−λ, w = 0;

(1 − π)Pois(w|λ), w > 0

or

P (W = w) = πPois(w|0) + (1 − π)Pois(w|λ),

since Pois(w|0) = 0 for all w > 0 and Pois(0|0) = 1.

Consider a zero-inflated Poisson HMM and let the state 1 be the “zero-inflated

state”, that is P (Yt = 0|Xt = 1) = 1.

Inference on the transition matrix and on the Poisson means λi, i = 2, . . . , K,

is the same as described in Algorithm 2.1, while sampling from the posterior
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p(X|y,ϑ) changes. Consider the sampling probability for the single updating

scheme recalled in equation (2.2). In the zero-inflated Poisson HMM we need to

specialize (2.2) and to characterize it for the state 1. In fact

P (Xt = 1|X−t, yt �= 0,ϑ) = 0,

P (Xt = 1|X−t, yt = 0,ϑ) ∝ axt−1,1a1,xt+1Pois(0|0)

∝ axt−1,1a1,xt+1

and

P (Xt = j|X−t, yt = 0,ϑ) ∝ axt−1,jaj,xt+1Pois(0|λxt)

∝ axt−1,jaj,xt+1e
−λxt

for j = 2, . . . , K. Of course these considerations hold also for the global updating

scheme, and in particular for the sampling probabilities computation and in the

backward variables determination.

We applied the zero-inflated Poisson HMM, with both K = 4 and K = 5.

Results related to the estimated hidden chain are summarized in Tables 2.3 and

2.4. When K = 4 results for the exceptional state are quite similar to what

obtained by the Poisson HMM (see Table 2.2); when K = 5 only 38 observations

are classified in the 0-inflated state 1. Then we might conclude that, even if we

take into account the feature that the great majority of the observations is equal

to 0, changes in terms of the exceptional events do not represent an improvement

of the Poisson HMM.

nxy 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18

1 4046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2529 1273 253 33 5 0 0 0 0 0 0 0 0 0 0 0

3 98 174 150 74 29 9 0 0 0 0 0 0 0 0 0 0

4 0 1 3 11 22 25 15 12 9 6 1 2 1 1 1 1

Table 2.3: Telecontrol center dr3, year 2004: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}, K = 4.
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nxy 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18

1 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 5275 414 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1323 942 312 53 15 0 0 0 0 0 0 0 0 0 0 0

4 37 91 92 59 27 13 0 0 0 0 0 0 0 0 0 0

5 0 1 1 6 14 21 15 12 9 6 1 2 1 1 1 1

Table 2.4: Telecontrol center dr3, year 2004: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}, K = 5.

2.3 Negative binomial hidden Markov model

2.3.1 Model and inference

Consider a negative binomial HMM:

Yt|Xt = xt ∼ NegBin(rxt , pxt),

{Xt}|A ∼ Markov chain(A);

then

P (Yt = yt|Xt = i, ri, pi) =
Γ(yt + ri)

Γ(ri)yt!
pri

i (1 − pi)
yt .

Consider a sequence of length T and let (y,X) be the complete-data, (Y1 =

y1, . . . , YT = yT , X0 = x0, X1 = x1, . . . , XT = xT ), so the complete-data likelihood

function p(y,X|ϑ), where ϑ = (r1, . . . , rK , p1, . . . , pK , A), is given by

p(y,X|ϑ) = p(y|X,ϑ)p(X|ϑ).

The density p(X|ϑ) is given in equation (1.2):

p(X|A) = πx0

K∏
i=1

K∏
j=1

a
nij

i,j ,
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while

p(y|X,ϑ) =

T∏
t=1

p(yt|X, r,p) =

T∏
t=1

p(yt|Xt = i, ri, pi)

=
T∏

t=1

Γ(yt + ri)

Γ(ri)yt!
pri

i (1 − pi)
yt

=
K∏

i=1

∏
{t:Xt=i}

(
Γ(yt + ri)

Γ(ri)yt!

)
pniri

i (1 − pi)
Si ,

where ni = #{1 ≤ t ≤ T : Xt = i} and Si is the sum of observations when

Xt = i.

In order to implement the Gibbs sampling in Algorithm 1.1 we need to com-

pute the complete-data posterior distribution of the model parameters

p(ϑ|X,y) ∝ p(y,X|ϑ)p(ϑ).

As pointed out by Cappé (2002), negative binomial parameters r and p are not

independent and this has implications on the specification of the prior p(ϑ).

However, by simulations, he concludes that “it is not unrealistic to assume that

the mean μ = r 1−p
p

and the dispersion p are independent”. Then we can assume

that a priori

p(μi, pi) = Gamma(μi|aμ, bμ)Beta(pi|ap, bp),

which gives, after the transformation ri = μi
pi

1−pi
,

p(r1, p1, . . . , rK , pK) =
K∏

i=1

Gamma

(
ri|aμ, bμ

1 − pi

pi

)
Beta(pi|ap, bp).

Finally, prior on the transition matrix A is

p(A) =
K∏

j=1

Dir(aj |αj1, . . . , αjK).

Following inference presented in Cappé (2002), we have that parameters p1, . . . , pK

are conditionally independent with fully conditional distribution given by

p(pi|X,y, ri) ∝ Beta (pi|rini + ap, Si + bp) (2.5)

· Gamma

(
ri|aμ, bμ

1 − pi

pi

)

39
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where ni = #{1 ≤ t ≤ T : Xt = i} and Si is the sum of observations when

Xt = i.

The first term in (2.5) corresponds to the product of the likelihood by the

marginal prior on pi, whereas the second term is the prior on ri given pi. In

practical situation variations of the second term are rather small; then an effi-

cient simulation procedure consists of using a Metropolis-Hastings step, where

the proposed update p̄i is distributed according to a Beta (p̄i|rini + ap, Si + bp)

distribution and accepted with probability min(1, Ap), where

Ap =

(
p̄i

1 − p̄i

1 − pi

pi

)−aμ

e
−ri

�
bμ

1−p̄i
p̄i

−bμ
1−pi

pi

�
.

Before considering the full conditional distribution for ri we need to introduce a

computational remark; the log-likelihood of i.i.d. negative binomial observations,

(z1, . . . , zT ) can be computed in two different ways:

log(z1, . . . , zT |p, r) = Tr log(p) + S log(1 − p) − T log(Γ(r)) +
T∑

t=1

log(Γ(zt + r))

where S =
∑T

t=1 zt, or

log(z1, . . . , zT |p, r) = Tr log(p) + S log(1 − p) +

M∑
m=1

Cm log(r +m− 1)

where M = max(z1, . . . , zT ), Cm = #{1 ≤ t ≤ T : zt ≥ m} are the rank statistics

and with the convention that the sum is null if M = 0.

We can now state the full conditional distribution for ri:

p(ri|X,y, pi) ∝ r
aμ−1
i

{
Mi∏

m=1

(ri +m− 1)Cm,i

}
(2.6)

· exp

{
−
[
bμ

1 − pi

pi
− ni log

1

pi

]
ri

}
,

where Mi denotes the maximum value of observations when Xt = i and Cm,i are

the corresponding rank statistics. The full conditional in (2.6) is closely fitted

by a Gamma distribution; then we will use a Metropolis-Hastings algorithm with
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a Gamma proposal tuned to match the mode and the log-curvature of the full

conditional. Differentiating we obtain

∂ log p(ri|X,y, pi)

∂ri
= −

(
bμ

1 − pi

pi
− ni log

1

pi

)
(2.7)

+
aμ − 1

ri
+

Mi∑
m=1

Cm,i

ri +m− 1

∂2 log p(ri|X,y, pi)

∂2ri

= −
(
aμ − 1

r2
i

+

Mi∑
m=1

Cm,i

(ri +m− 1)2

)
. (2.8)

Find the mode κ of the full conditional distribution (2.6) and compute the log-

curvature at the mode, ι,

ι = −∂
2 log p(ri|X,y, pi)

∂2ri

according to (2.8). Use a Gamma distribution with mode and log-spread matched

to κ and ι with parameters a∗r = 1 + κ2ι and b∗r = κι; sample a Gamma(a∗r , b
∗
r)

distributed proposal r̄i, which is accepted with probability min(1, Ar) where

Ar =
r̄i

ri

aμ−a∗
r

{
Mi∏

m=1

(
r̄i +m− 1

ri +m− 1

)Cm,i
}

· exp

{
−
[
bμ

1 − pi

pi
− ni log

1

pi
− b∗r

]
(r̄i − ri)

}
.

Then, inference is based on the following algorithm
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Algorithm 2.2 MCMC for a negative binomial HMM

Start with some state sequence X(0) and repeat the following steps for l =

1, . . . , L0, . . . , L.

1. Sample each row of A from the Dirichlet posterior distribution

2. Sample the emission parameters trough the Metropolis-Hastings algorithm

3. Conditional of knowing the model parameters

a) – if μ
(l)
1 = r

(l)
1

1−p
(l)
1

p
(l)
1

< . . . < μ
(l)
K = r

(l)
K

1−p
(l)
K

p
(l)
K

go to step b)

– else order the mean vector ρ(μ) and ρ(A), ρ(r), ρ(p)

b) Compute the scaled backward variables

c) Sample a path X of the hidden Markov chain trough the global updating

sampler

4. Increase l and return to step 1.

2.3.2 Results

In order to implement the MCMC algorithm we need to specify the parameters

for the prior distributions, the number of iterations to consider and the number

of generated values to be discarded. Set parameters of the Dirichlet and Beta

distributions equal to 1; regarding the Gamma prior on the mean, we set aμ = 0.1

and bμ = aμ

μy
, where μy is the mean of the observed values.

As pointed out by Cappé (2002), MCMC sampler has a very slow convergence.

This feature is also verified in this study, in fact all stationarity diagnostics (qual-

itative and quantitative), introduced in Section 2.2 point out that the chain has

not achieved the stationarity even after 50 000 iterations. Moreover, the Raftery-

Lewis’s diagnostic estimates a very large dependence factor. This could be due

to the dependence of the parameters.

To obviate this convergence problem we hypothesized a common p for each

possible state. In this case the mixing problem seems to be kept down (even if

not completely solved) and the dependence factors are smaller. Anyway during
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the sampling process when p is almost equal to 1 (and this happens quite often),

values of r in states 3 and 4 become very large; in fact μ = r 1−p
p

and if p is

very close to 1, in order to increase the mean value, r becomes very large. When

p is a little bit smaller than 1, values of r precipitate to smaller values. As a

result of these two situations the algorithm slowly converges and the estimated

chain (with L0 = 30 000 and L = 55 000) is very similar to what obtained by the

Poisson HMM; this could be due to the fact that

lim
r→∞

NegBin

(
r,

r

λ+ r

)
= Pois(λ).

2.4 Compound Poisson hidden Markov model

2.4.1 Model and inference

Consider a compound Poisson HMM (more precisely we should say a Pólya-Aeppli

HMM):

Yt|Xt = xt ∼ CP(λxt, qxt),

{Xt}|A ∼ Markov chain(A).

Then

P (Yt = yt|Xt = i, λi, qi) = e−λi

yt∑
n=0

λn
i

n!

Γ(yt)

(yt − n)!Γ(n)
qn
i (1 − qi)

yt−n,

with Γ(0)
Γ(0)

= 1.

In the complete-data likelihood function is p(y,X|ϑ) = p(y|X,ϑ)p(X|ϑ),

where

p(X|ϑ) is, as before,

p(X|A) = πx0

K∏
i=1

K∏
j=1

a
nij

i,j ,

while

p(y|X,ϑ) =
K∏

i=1

∏
{t:Xt=i}

e−λi

yt∑
n=0

λn
i

n!

Γ(yt)

(yt − n)!Γ(n)
qn
i (1 − qi)

yt−n.
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The complete-data posterior distribution of the model parameters is

p(ϑ|X,y) ∝ p(y,X|ϑ)p(ϑ) (2.9)

where, assuming independence between parameters, the prior distribution is p(ϑ) =

p(A)p(λ)p(q); note that this independence hypothesis is not a strong assumption,

in fact given the interpretation of the compound Poisson distribution (in page 33),

it is possible to assume that the number of clusters is independent of the number

of objects per cluster.

Prior on the transition matrix is

p(A) =

K∏
j=1

Dir(aj |αj1, . . . , αjK);

assume prior independence of the Poisson means and a conjugate Gamma prior

on each λi,

p(λ) =
K∏

i=1

p(λi) =
K∏

i=1

Gamma(λi|a0, b0);

finally,

p(q) =

K∏
i=1

p(qi) =

K∏
i=1

Beta(qi|c0, d0).

Fix X0 = 1 and consider equation (2.9),
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p(ϑ|X,y) ∝
K∏

i=1

(
K∏

j=1

a
nij

i,j

∏
{t:Xt=i}

e−λi

yt∑
n=0

λn
i

n!

Γ(yt)

(yt − n)!Γ(n)
qn
i (1 − qi)

yt−n

· aαi1−1
i,1 · · ·aαiK−1

i,K λa0−1
i e−b0λiqc0−1

i (1 − qi)
d0−1

)

∝
K∏

i=1

Dir(ai|αi1 + ni1, . . . , αiK + niK)λa0−1
i e−b0λiqc0−1

i (1 − qi)
d0−1

·
∏

{t:Xt=i}
e−λi(1 − qi)

yt

yt∑
n=0

(
λiqi

1 − qi

)n
Γ(yt)

n!(yt − n)!Γ(n)

=
K∏

i=1

Dir(ai|αi1 + ni1, . . . , αiK + niK)λa0−1
i e−(ni+b0)λi

· qc0−1
i (1 − qi)

Si+d0−1
∏

{t:Xt=i}

yt∑
n=0

(
λiqi

1 − qi

)n
Γ(yt)

n!(yt − n)!Γ(n)

=

K∏
i=1

Dir(ai|αi1 + ni1, . . . , αiK + niK)e−(ni+b0)λiλa0−1
i

· qc0−1
i (1 − qi)

Si+d0−1
∏
ỹ∈Yi

[
ỹ∑

n=0

(
λiqi

1 − qi

)n
Γ(ỹ)

n!(ỹ − n)!Γ(n)

]nỹ,i

where, for i, j ∈ {1, 2, . . . , K},

nij = #{1 ≤ t ≤ T − 1 : Xt = i, Xt+1 = j}
ni = #{1 ≤ t ≤ T : Xt = i}
Si =

∑
{t:Xt=i}

yt

Yi = {set of different observed values when Xt = i}
nỹ,i = #{1 ≤ t ≤ T : Yt = ỹ, ỹ ∈ Yi, i = 1, . . . , K}

The rows of the transition matrix are independent a posteriori, and, for a

given trajectory X of the hidden Markov chain, are drawn from the posterior

Dirichlet distribution, Dir(ai|αi1 + ni1, . . . , αiK + niK), i = 1, . . . , K. Moreover,
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for all i,

p(λi|X,y, qi) ∝ e−(b0+ni)λiλa0−1
i (2.10)

·
∏
ỹ∈Yi

[
ỹ∑

n=0

λn
i

Γ(ỹ)qn
i

n!(ỹ − n)!Γ(n)(1 − qi)n

]nỹ,i

and

p(qi|X,y, λi) ∝ qc0−1
i (1 − qi)

Si+d0−1 (2.11)

·
∏
ỹ∈Yi

[
ỹ∑

n=0

qn
i

(1 − qi)n

λn
i Γ(ỹ)

n!(ỹ − n)!Γ(n)

]nỹ,i

Drawing some plots it appears that the full conditionals (2.10) and (2.11) are

closely fitted by, respectively, a Gamma and a Beta proposal. Thus we use a

Metropolis-Hasting algorithm with Gamma and Beta proposals tuned to match

the mode and the log-curvature of the full conditionals.

Let
ỹ∑

n=0

λn
i

Γ(ỹ)qn
i

n!(ỹ − n)!Γ(n)(1 − qi)n
= f(λi, ỹ);

the logarithm of the full conditional p(λi|X,y, qi) is

log p(λi|X,y, qi) ∝ −(b0 + ni)λi + (a0 − 1) logλi (2.12)

+
∑
ỹ∈Yi

nỹ,i log f(λi, ỹ).

Differentiating (2.12) yields

∂ log p(λi|X,y, qi)

∂λi

= −(b0 + ni) +
a0 − 1

λi

+
∑
ỹ∈Yi

nỹ,i
f ′(λi, ỹ)

f(λi, ỹ)

and

∂2 log p(λi|X,y, qi)

∂2λi

= −a0 − 1

λ2
i

+
∑
ỹ∈Yi

nỹ,i
f ′′(λi, ỹ)f(λi, ỹ) − (f ′(λi, ỹ))

2

f(λi, ỹ)2

(2.13)
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where

f ′(λi, ỹ) =

ỹ∑
n=0

nλn−1
i Γ(ỹ)qn

i

n!(ỹ − n)!Γ(n)(1 − qi)n

f ′′(λi, ỹ) =

ỹ∑
n=0

n(n− 1)λn−2
i Γ(ỹ)qn

i

n!(ỹ − n)!Γ(n)(1 − qi)n
.

As for the negative binomial case, find the mode μ of the full conditional distri-

bution (2.10) and compute the log-curvature at the mode, υ,

υ = −∂
2 log p(λi|X,y, qi)

∂2λi

according to (2.13). Use a Gamma distribution with mode and log-spread matched

to μ and υ with parameters γ = 1 + μ2υ and δ = μυ; sample a Gamma(γ, δ)

distributed proposal λ̄i, which is accepted with probability min(1, Aλ) where

Aλ = e−(ni+b0−δ)(λ̄i−λi)

(
λ̄i

λi

)a0−γ ∏
ỹ∈Yi

[
f(λ̄i, ỹ)

f(λi, ỹ)

]nỹ,i

.

Similar procedure for q. Let

ỹ∑
n=0

qn
i

(1 − qi)n

λn
i Γ(ỹ)

n!(ỹ − n)!Γ(n)
= g(qi, ỹ)

and consider the logarithm of the full conditional (2.11)

log p(qi|X,y, λi) ∝ (Si + d0 − 1) log(1 − qi) + (c0 − 1) log qi

+
∑
ỹ∈Yi

nỹ,i log g(qi, ỹ). (2.14)

First and second derivatives of (2.14) are

∂ log p(qi|X,y, λi)

∂qi
∝ −Si + d0 − 1

1 − qi
+
c0 − 1

qi
+
∑
ỹ∈Yi

nỹ,i
g′(qi, ỹ)
g(qi, ỹ)

(2.15)

and

∂2 log p(qi|X,y, λi)

∂2qi
∝ −Si + d0 − 1

(1 − qi)2
− c0 − 1

q2
i

(2.16)

+
∑
ỹ∈Yi

nỹ,i
g′′(qi, ỹ)g(qi, ỹ) − (g′(qi, ỹ))2

g(qi, ỹ)2
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where

g′(qi, ỹ) =

ỹ∑
n=0

nqn−1
i λn

i Γ(ỹ)

(1 − qi)n+1n!(ỹ − n)!Γ(n)

g′′(qi, ỹ) =

ỹ∑
n=0

nqn−2
i (n + 2qi − 1)λn

i Γ(ỹ)

(1 − qi)n+2n!(ỹ − n)!Γ(n)
.

Find the mode ρ of the full conditional distribution (2.11) and compute the log-

curvature at the mode, η,

η = −∂
2 log p(qi|X,y, λi)

∂2qi

according to (2.16). Use a Beta distribution with mode and log-spread matched

to ρ and η with parameters ϕ = ηρ2(1− ρ) + 1 and ω = ηρ(1− ρ)2 + 1; sample a

Beta(ϕ, ω) distributed proposal q̄i, which is accepted with probability min(1, Aq),

where

Aq =

(
q̄i
qi

)c0−ϕ(
1 − q̄i
1 − qi

)Si+d0−ω ∏
ỹ∈Yi

[
g(q̄i, ỹ)

g(qi, ỹ)

]nỹ,i

.

In each step of the MCMC sampler, given the model parameters, a path of

the hidden chain is sampled from p(X|y,ϑ), through the global updating scheme

(see Section 1.4).

Then, inference for a compound Poisson HMM is based on the following al-

gorithm
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Algorithm 2.3 MCMC for a compound Poisson HMM

Start with some state sequence X(0) and repeat the following steps for l =

1, . . . , L0, . . . , L.

1. Sample each row of A from the Dirichlet posterior distribution

2. Sample the emission parameters trough the Metropolis-Hastings algorithm

3. Conditional of knowing the model parameters

a) – if μ
(l)
1 =

λ
(l)
1

q
(l)
1

< . . . < μ
(l)
K =

λ
(l)
K

q
(l)
K

go to step b)

– else order the mean vector ρ(μ) and ρ(A), ρ(λ), ρ(q)

b) Compute the scaled backward variables

c) Sample a path X of the hidden Markov chain trough the global updating

sampler

4. Increase l and return to step 1.

2.4.2 Results

For the implementation of the MCMC we set parameters of the Dirichlet distri-

butions equal to 1, parameters for the Beta and Gamma prior, respectively on

each probability qi and on each Poisson mean λi, i = 1, . . . , 4, equal to 1.1.

The algorithm seems to reach the stationarity after 20 000 iterations. This is

confirmed by the Geweke’s and the Heidelberger-Welch diagnostics.

Considering 50 000 iterations of the MCMC algorithm, L = 50 000, and dis-

carding the first 20 000 generated values, L0 = 20 000, we obtain the following

results:

Â =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.9151 0.0761 0.0069 0.0019

0.1558 0.8208 0.0179 0.0055

0.0408 0.1777 0.7394 0.0421

0.0854 0.0571 0.1889 0.6686

⎞
⎟⎟⎟⎟⎟⎟⎠
,

q̂ = (0.9416, 0.9425, 0.8858, 0.6604)
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and

λ̂ = (0.107, 0.52, 1.43, 3.263).

Before considering results related to the estimated hidden Markov chain, let us

analyze implications of estimated model parameters. In states 1 and 2, because

probabilities are almost 1, emission distribution are approximately Poisson.

In fact, consider the compound Poisson distribution

P (Y = y) = e−λ

y∑
n=0

λn

n!

Γ(y)

(y − n)!Γ(n)
qn(1 − q)y−n. (2.17)

We know that when n = 0 the sum is equal to 1; if q → 1 other addends tend to

0, unless the last one, when n = y, (in fact (1 − q)0 = 1); then

P (Y = y)
q→1≈ e−λλy

y!
.

Also probability for the state 3, q3, is quite close to 1; this consideration does

not hold for state 4. Given the estimated emission parameters, the mean of the

(mixture) distribution in each state is equal to

μ̂ =
λ̂

q̂
= (0.1136, 0.5517, 1.6140, 4.9410)

while we recall that estimated means in the Poisson HMM, say λ̂POIS, were

λ̂POIS = (0.091, 0.596, 1.754, 5.817).

Means of the distributions in states 1, 2 and 3 are quite similar (in the compound

Poisson and the Poisson case), while they differ in state 4; in particular the mean

of the distribution in the exceptional state for the compound Poisson HMM is

smaller than in the Poisson HMM.

All those considerations explain results related to the estimated hidden Markov

chain, summarized in Table 2.5, where more observations are classified in the ex-

ceptional state than in the Poisson HMM (see Table 2.2).
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nxy 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18

1 5645 463 27 0 0 0 0 0 0 0 0 0 0 0 0 0

2 992 899 289 54 18 6 0 0 0 0 0 0 0 0 0 0

3 36 84 80 52 21 14 3 0 0 0 0 0 0 0 0 0

4 0 2 10 12 17 14 12 12 9 6 1 2 1 1 1 1

Table 2.5: Telecontrol center dr3, year 2004: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}.

2.5 Conclusions

In this Chapter we investigated the possibility to consider a parametric HMM in

the analysis of electrical faults.

Starting with the Poisson HMM and analyzing the results we found that the

instance that too many observations were classified in the exceptional state could

be due to the fact that the Poisson distribution in state 3 concentrates small

probability mass on large values.

Then we introduced the negative binomial and the compound Poisson HMMs.

In the negative binomial HMM, results obtained by adapting inference presented

in Cappé (2002) showed a very slow convergence of the sampling algorithm. Hy-

pothesizing a common probability p we improved the mixing problem, but results

were not better than the Poisson HMM.

We developed inference for the compound Poisson HMM, but results did not

satisfy our expectations. Anyway the compound Poisson model has an interpre-

tation more suitable for the analyzed problem and even if the algorithm needs

quite a lot of iterations to reach the stationarity, it does not seem to suffer the

mixing problem, encountered in the negative binomial model.

In the next Chapter we will investigate the applicability of the finite HMM.
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Chapter 3

A finite hidden Markov model for

the analysis of electricity supply

3.1 Introduction and data inspection

We now apply a finite HMM in order to identify the exceptional events. We briefly

recall notation and assumptions for the finite HMM: for each telecontrol center

the observed number of electrical service faults {Yt}t>0 depends on a four state

hidden Markov chain {Xt}t≥0. Fix X0 = 1, then the model can be characterized

by the transition matrix A = {ai,j}, with ai,j = P (Xk+1 = j|Xk = i), i, j ∈ X,

where X = {1, . . . , 4} is the state space of the Markov chain, and the emission

matrix B = {bi(y)}, with the conditional probabilities bi(y) = P (Yk = y|Xk = i),

i ∈ X, y ∈ Y, where Y = {0, . . . , q} is the set of the observable values.

As before we will study each combination of telecontrol center and year sep-

arately from the others; first of all we analyze two (randomly chosen) telecontrol

centers, denominated dg4 and dr3, for years 2004 and 2005. As 2004 was a leap

year, we have 8 784 and 8 760 observations respectively for year 2004 and 2005.

Consider Table 3.1, where the telecontrol centers’ principal characteristics are

summarized. The great majority of the observations is equal to 0, but there are

differences between the two centers: for center dg4, both years, about 90% of the

observations are equal to 0, while for center dr3 the percentage is about 75%.

Moreover, in center dr3 a quite large number of observations is equal to 1, 2 and

3 and the mean of the observed values is higher than the mean for center dg4.
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Finally, we underline that, taking into account these features, for center dg4 year

2005 seems to be a little bit better than year 2004; the opposite for center dr3.

No information regarding the telecontrol centers, such as location, size or

number of served consumers, are available. However, the final goal of the method

is to identify exceptional events only on the basis of the observed performance,

without taking into account external information (see Section 1.2). Moreover,

some information are “indirectly” taken into account by the model, during the

estimation process. In fact, because each telecontrol center is analyzed separately

from the others, the models evaluates as exceptional, interruptions of different

order of magnitude, regarding telecontrol center with different behavior; this fact

could be a way to incorporate information about the size of the center and/or to

reward “good” centers. Consider for example a center with at most 5 hourly in-

terruptions. If the maximum is observed during an instability condition, it could

be evaluated as due to an exceptional event by the model; the two situations are

possible: telecontrol center is small or it serves a small number of consumers, and

then 5 interruptions represent an emergence or the telecontrol center has an effi-

cient global system and it is rewarded, by considering exceptional an observation

that, compared with what observed in other centers, could be considered small.

In the following we will consider observations greater than 9 just as “many

interruptions”; because the finite HMM could be considered as a nonparametric

model, the introduction of this threshold does not affect the estimating method

and it allows us to compare not only different telecontrol centers, but also the

same center in different years. Finally, we underline that this hypothesis involves

a quite small number of observations (see the last column in Table 3.1).

Mean y = 0 y ∈ {1, 2, 3} y > 9

dg4 2004 0.16 89% 10% 0.08%

2005 0.12 90% 10% 0.01%

dr3 2004 0.39 76% 22% 0.08%

2005 0.42 75% 24% 0.2%

Table 3.1: Summarizing table with telecontrol centers’ principal characteristics.
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3.2 Model specification and results

In this Section we present and discuss results concerning the estimated model

parameters and the hidden chain, obtained respectively by the posterior mean

and the maximum a posteriori (MAP) estimation (see Section 1.4.5). Moreover,

in order to obtain the estimated Phase-type distribution (see Section 1.6), we

compute, for any MCMC iteration, l = 1, . . . , L, {p(l)
s }, s ≥ 1; then the estimated

probability density is {p̂s}, where ∀s ≥ 1

p̂s =
1

L− L0

L∑
l=L0

p(l)
s ,

where, as usual, L0 is the number of generated values to be discarded from the

estimation.

We consider as priors on each row of the transition matrix and the emission

matrix a Dirichlet distribution with all parameters equal to 1; we recall that

considering observations greater than 9 as “many interruptions” the emission

matrix is B = {bi(y)}, y ∈ {0, 1, . . . , 10+}, where 10+ is for values from 10 to the

maximum observed value.

Considering convergence diagnostics presented in Section 2.2.1, it seems that

the chain reached the stationarity. All estimates are obtained considering L =

30 000 generated values from the Gibbs sampler (see Section 1.4.5 for details),

after the initial L0 = 2 000 initial draws have been removed.

As for the parametric models, we will say “observation yt classified in state

i” to indicate that at time t the underlying estimated Markov chain is in state i,

XMAP
t = i, and it emits the observation yt.

Let us now present the results; we will first consider the telecontrol center dg4,

for years 2004 and 2005 and then the center dr3. For each combination of center

and year we will compare results with what obtained with the AEEG method,

presented in Section 1.2. Moreover, at the end of the discussion relative to each

center, a comparison between its performance in the two years will be provided;

at the end of Section 3.2.2 we will propose a way for comparing the telecontrol

centers.
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Results related to telecontrol center dg4, year 2004 are presented and discussed

in detail, while for year 2005 and for telecontrol center dr3 (years 2004, 2005)

comments are introduced when necessary to underline differences and similarities

eventually emerged.

3.2.1 Telecontrol center dg4

Year 2004

Model parameters for a finite HMM are the transition and emission matrices.

Figures 3.1 and 3.2 show the estimated transition and (transpose) emission ma-

trices, when the center dg4, year 2004, is analyzed; the value in parenthesis is

the estimate’s standard deviation. We recall that the emission matrix has eleven

columns, because we are considering observations greater than 9 in the same way.

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.983
(0.0048)

0.0156
(0.0048)

0.0009
(0.0007)

0.0005
(0.0004)

0.2246
(0.0419)

0.7481
(0.0457)

0.0183
(0.0135)

0.009
(0.0083)

0.0867
(0.0799)

0.3392
(0.1607)

0.309
(0.1819)

0.2651
(0.194)

0.062
(0.0594)

0.1845
(0.1343)

0.303
(0.2057)

0.4505
(0.2165)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3.1: Estimated transition matrix for center dg4, year 2004; the value in paren-
thesis is the estimate’s standard deviation.
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B̂T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9283
(0.0057)

0.4534
(0.0654)

0.0545
(0.0544)

0.0403
(0.0397)

0.0631
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0.397
(0.0405)
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(0.0705)

0.0591
(0.0536)
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(0.0012)

0.0974
(0.0248)

0.1591
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0.0859
(0.0685)

0.001
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0.0251
(0.0127)

0.1815
(0.0958)

0.1323
(0.0818)

0.0004
(0.0002)

0.0052
(0.005)

0.1339
(0.08)

0.1067
(0.0765)

0.0002
(0.0001)

0.0055
(0.0048)

0.1044
(0.0679)

0.1023
(0.0672)

0.0001
(0.0001)

0.0046
(0.0037)

0.0659
(0.0516)

0.0746
(0.0548)

0.0001
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0.0335
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(0.038)
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0.005
(0.0041)

0.0696
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0.1264
(0.0738)

0.0001
(0.0001)

0.0018
(0.0018)

0.0433
(0.0443)

0.1021
(0.0647)

0.0001
(0.0001)

0.0021
(0.0022)

0.0731
(0.0583)

0.1248
(0.0723)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3.2: Estimated emission matrix for center dg4, year 2004; the value in parenthesis
is the estimate’s standard deviation.

Consider Figure 3.1; the probability of staying in states 1, a1,1, is almost equal

to 1: when the global system is in state 1, it means that it is in the normal working

status and this is the most common situation. Also the probability of staying in

the exceptional state, a4,4 is quite high: this means that, when the system enters

in an exceptional operating status, it is highly probable that it remains in it for

some instants, before visiting other states.

Regarding the emission mechanism, by Figure 3.2 it emerges that: states 1

and 2 mainly “emit” observations equal to 0 and 1, when the chain is in state 3

it is highly probable to have from 3 to 5 faults and when the underling system is

in state 4, it is likely to observe higher values.

As we recalled in Section 2.2.1 an HMM is a generalization of a mixture

model. Each row of the estimated emission matrix (each column in Figure 3.2)

is a probability distribution and represents the mixture component. Each plot in

Figure 3.3 compares each probability mass functions with a Poisson distribution

with the same mean (i.e. each mean is equal to
∑10

j=0 j · bi(j), with i = 1, 2, 3, 4);
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a similar comparison, but from a different point of view, is provided in Figure 3.4.

Distributions in state 1 and 2 are similar, while distributions in states 3 and 4

are quite different; in particular, for the finite HMM, distributions in state 3 and

4 concentrate more mass on larger values, than the Poisson distributions. The

irregular form of the estimated mixture components in states 3 and 4 underlines

that the finite HMM is more flexible than the parametric one and suggests the key

to understand the reason that the parametric models did not provide satisfactory

results.
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Figure 3.3: Finite HMM mixture component and Poisson distribution with the same
mean for state 1 (top-left), state 2 (top-right), state 3 (bottom-left) and state 4 (bottom-

right).
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Figure 3.4: Finite HMM mixture components and Poisson distributions, with the same
means.

We now analyze in detail the estimated underlying Markov chain; to better

evaluate the model we consider the values really observed (in fact, we recall that

in the MCMC implementation we relabelled observations greater than 9 with 10).

Results concerning the hidden chain are represented in the Figure 3.5, where

observations have different colors based on the state of the Markov chain, and in

Table 3.2, where each value nxy is the number of observations equal to y, classified

in state x, i.e. nxy = #{1 ≤ t ≤ T : XMAP
t = x, Yt = y}.

Figure 3.5 could be misleading because the time dependence is hidden in the

sense that, even if the number of faults were observed in different hours, they

seem to be on the same line and then relative to the same time. Anyway, by this

plot it is possible to see when exceptional events occurred; for example for center

dg4 the exceptional periods are related to the second half of the year, unless a

peak in the first three months.

By Table 3.2 we would like to underline that observations classified in state

4 are not that one bigger than a threshold (as in the AEEG method), but the

scenario is more uneven.
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Figure 3.5: Telecontrol center dg4, year 2004: observations with different colors based
on the state of the estimated underling Markov chain.

nxy 0 1 2 3 4 5 6 7 8 9 10 14 15 16 25

1 7739 563 58 9 2 0 0 0 1 0 0 0 0 0 0

2 94 187 55 12 1 2 3 1 2 0 0 0 0 0 0

3 0 1 3 10 10 7 0 0 0 0 0 0 0 0 0

4 0 0 0 2 0 1 3 1 6 4 2 2 1 1 1

Table 3.2: Telecontrol center dg4, year 2004: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}. There is an observation (underlined in the table)
high, but classified in state 1: this is due to the fact that the previous and following

observations are equal to 0.
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Consider Table 3.2; the great majority of observations (about 95%) are classi-

fied in state 1, principally equal to 0, intermediate values are assigned to state 3,

24 observations are declared as due to an exceptional event. There is a quite high

number of interruptions (8, observation relative to 6th August, 5 PM) classified

in state 1; it is due to the fact that the previous and the following observations

are equal to 0 and that the probability of staying in state 1 is much higher than

the emission probability, corresponding to 8, in other states (3 and 4). Note

that the fact that the model does not consider as exceptional that observation is

coherent with the idea, incorporated in the AEEG method, that an exceptional

event causes several interruptions protracting in time.

Let us now focus our attention on the exceptional observations that are the

core of the analysis. The majority of the exceptional hours (13) are related to

February, while the others are referred to the second part of the year (in particular

to the period August - October).

The exceptional hours belong to eight exceptional excursions (introduced in

Section 1.6), represented in Figure 3.6. In each plot the title indicates the month

and the abscissa’s labels the day and the hour when the exceptional excursion

starts and finishes; for example first plot (top-left) shows an exceptional excursion

occurred in February, started the 28th at noon and ended the 29th at 5 PM.

The exceptional excursions describe the behavior of the system near an ex-

ceptional event. By Figure 3.6 we can see that the chain gradually reaches and

leaves the exceptional state 4; therefore it seems that before and after an excep-

tional event an instability condition, causing an intermediate number of faults,

occurs. Note that this feature is also taken into account by the AEEG method

(see Section 1.2) that considers exceptional also the 3 hours before the beginning

and after the end of an exceptional interval.
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Figure 3.6: Telecontrol center dg4, year 2004: exceptional excursions.

We now compare results obtained by the finite HMM and by the AEEG

methodology (see Section 1.2).

Results for the finite HMM are obtained considering the hourly number of

faults and without considering information relative to other years. Then in order

to compare results we compute the exceptionality threshold qα using the 6 hours

time-interval data (as in the AEEG method), but without considering the regres-

sion function; moreover we declare (label) the hours belonging to the obtained

exceptional periods as “AEEG exceptional”.

Exceptional excursions are related to the realization of the Markov chain (they

are not referred to the time), while by the AEEG method we obtain the excep-

tional hours. Then in order to compare results, given an exceptional excursion we
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label as “HMM Exceptional” - HE - the hours corresponding to that excursion.

By Figure 3.7 we can see that there is a concordance between the HMM and

the AEEG exceptional hours (respectively the first and the second row). Given

the large number of observations (8 784) and the differences, also conceptual, in

the applied methods it is almost impossible that the exceptional periods perfectly

overlap.

By Figure 3.7 we can deduce that some EPs have no intersection with any HE.

Subsequences corresponding to those EPs are presented in the following, where

the estimated hidden chain and the observed values are considered:

XMAP 1 2 2 2 2 2 2 2 2 1 1 1

y 0 1 2 8 0 1 1 1 2 0 0 0

in April

XMAP 2 2 2 2 2 2 2 2 1 1

y 0 1 1 2 8 1 1 0 0 1

in September

XMAP 1 1 1 2 2 3 3 3 3 1 1 1 1

y 0 0 0 2 0 4 4 5 4 0 0 0 0

in November and

XMAP 2 2 2 3 3 3 2 2 2 2 2 2

y 3 1 1 3 4 4 2 1 0 1 0 1

in December.

The Markov chain “recognizes” an instability condition (in fact the chain is in

states 2 or 3), but it does not consider the event exceptional.
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Figure 3.7: Telecontrol center dg4, year 2004: hours in the exceptional excursions and
the AEEG exceptional hours. The plot’s title indicates the month and the abscissa’s

label the considered days.
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In conclusion, the HMM-based method supports the methodology adopted

by the AEEG. In particular it identifies as exceptional, the events that cause a

large number of interruptions protracting in time; moreover it gathers the feature

that an exceptional situation (for example a particularly serious meteorological

disturbance) is preceded and followed by an instable situation. Moreover, by the

HMM approach we can also deduce considerations related to the behavior of the

system when an exceptional event occurs; this dealing in fact is described by the

transition matrix of the underlying Markov chain. As we said in Section 1.6 the

number of hours that the chain passes in state 4 has a geometric distribution

with parameter 1 − a4,4; for telecontol center dg4, year 2004, the expected value

is about 3. Moreover, considering the distribution of the length of the exceptional

excursions we analyze the time needed to the system to reestablish the normal

operating status. Figure 3.8 shows the estimated Phase-type distribution (pre-

sented and discussed in Section 1.6); in the legend the fundamental proprieties

of the distribution. Comparing the estimated Phase-type distribution and the

identified exceptional excursions, we can see that the mean of the Phase-type

distribution is much larger, while the mode is more of comparable size.
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Figure 3.8: Telecontrol center dg4, year 2004: estimated Phase-type distribution; in
the legend the fundamental properties.
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Year 2005

Consider now the results for telecontrol center dg4, year 2005. Considerations

similar to those described for the year 2004 are valid for the estimated transition

and emission matrices (displayed in Figures 3.9 and 3.10).

Results concerning the estimated hidden chain are represented in Figure 3.11,

where, as before, observations have different colors based on the state of the

hidden Markov chain, and in Table 3.3, where each value nxy is the number of

observations equal to y, classified in state x, i.e. nxy = #{1 ≤ t ≤ T : XMAP
t =

x, Yt = y}.
Just two observations are classified as due to an exceptional event and they

are in an exceptional excursion represented in Figure 3.12.

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.9881
(0.0045)

0.0113
(0.0045)

0.0003
(0.0003)

0.0003
(0.0002)

0.2763
(0.0528)
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⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3.9: Estimated transition matrix for center dg4, year 2005; the value in paren-
thesis is the estimate’s standard deviation.
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B̂T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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Figure 3.10: Estimated emission matrix for center dg4, year 2005; the value in paren-
thesis is the estimate’s standard deviation.

nxy 0 1 2 3 4 5 6 8 16

1 7850 646 55 4 0 0 0 0 0

2 42 88 53 8 2 3 0 0 0

3 0 0 0 2 4 0 1 0 0

4 0 0 0 0 0 0 0 1 1

Table 3.3: Telecontrol center dg4, year 2005: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}.
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Figure 3.11: Telecontrol center dg4, year 2005: observations with different colors based
on the state of the underlying Markov chain.

June

day. hour

N
um

be
r o

f f
au

lts

0

5

10

15

29. h19 30. h8

state 1
state 2

state 3
state 4

Figure 3.12: Telecontrol center dg4, year 2005: exceptional excursion; title indicates
the month and the abscissa’s labels the day and the hour when the exceptional excursion

starts and finishes.
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3.2 Model specification and results

By the AEEG methodology more than one period are considered exceptional

(see Figure 3.13); observations corresponding to those periods are presented in

the following subsequences:

XMAP 2 2 3 3 3 2 2 2 2 1 1 1 1

y 0 1 3 4 6 0 1 2 2 0 0 0 0

XMAP 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

y 0 0 0 0 1 1 5 1 2 5 1 5 0 0 0 0 0 0 0

XMAP 1 2 2 2 3 3 3 2 2 2 1 1 1

y 0 2 0 2 4 4 3 0 1 2 0 0 0
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Figure 3.13: Telecontrol center dg4, year 2005: hours in the exceptional excursion and
the AEEG exceptional hours. The plot’s title indicates the month and the abscissa’s

label the considered days.

Considering the estimated transition matrix we can deduce that the expected

number of hours that the underlying Markov chain passes in the exceptional state

is about 2; the estimated Phase-type distribution, describing the length of the

exceptional excursions, for center dg4, year 2005, is shown in Figure 3.14; as

before in the legend the fundamental proprieties of the distribution.
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Figure 3.14: Telecontrol center dg4, year 2005: estimated Phase-type distribution; in
the legend the fundamental properties.

Comparing the estimated transition matrices for center dg4, years 2004 and

2005 (see Figures 3.1 and 3.9), we could understand if the transition dynamic

of the underlying system is changing; however even if we could check that tran-

sition probabilities are “more or less similar” it is more difficult to understand

if situation is improving or not. The Phase-type distribution, obtained by the

transition probabilities, provides a more visible comparison and it has a technical

interpretation (in fact we recall that it is the distribution of the time needed to

the system to reestablish the normal operating status). Consider Figure 3.15,

where the estimated Phase-type distributions, for both years, are plotted: they

are quite similar, but the distribution relative to year 2005 concentrates more

probability on smaller values showing a (little bit) higher probability of having

shorter exceptional excursions. Note that the difference between the two years is

not so significant as we could expect just considering the number of observations

classified in state 4 or the exceptional excursions. In fact, we recall that 24 obser-

vations were considered as due to an exceptional event in 2004, while in 2005 just

2; moreover, those exceptional hours are in 8 exceptional excursions in 2004 and

in just 1 in 2005. This is due to the fact that given a transition matrix generated

paths could be very different and then even if the estimated Markov chains are
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quite different it does not necessarily imply that the relative transition matrices

are different.
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Figure 3.15: Telecontrol center dg4: estimated Phase-type distributions for years 2004
and 2005.

3.2.2 Telecontrol center dr3

Consider now the results concerning telecontrol center dr3.

Year 2004

As we have already underlined, observed values for this center are different

from that for center dg4 and this obviously affects the estimate of the model

parameters and the hidden chain.

In particular, as it can be seen in Figure 3.16, the instance that there is a

larger number of observations equal to 1, 2 and 3 influences the probabilities of

staying in state 2 and 3, that unlike center dg4, are quite high. This remark is

better explained considering the estimated emission matrix as well (Figure 3.17)

and noticing that when the chain is in states 2 and 3 it is highly probable to

have 1, 2, or 3 faults and because this often happens in the data, the resulting

probabilities of staying in states 2 and 3 become high.
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Figure 3.16: Estimated transiton matrix for center dr3, year 2004; the value in paren-
thesis is the estimate’s standard deviation.
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Figure 3.17: Estimated emission matrix for center dr3, year 2004; the value in paren-
thesis is the estimate’s standard deviation.
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Consider now the estimated hidden chain, and the summarizing Figure 3.18

and Table 3.4, that respectively represent the observations with different colors

based on the underlying chain, and the number of observations equal to y classified

in state x.

0 2000 4000 6000 8000

0
5

10
15

Center dr3 − 2004

Hours

N
um

be
r 

of
 fa

ul
ts

state 1
state 2

state 3
state 4

Figure 3.18: Telecontrol center dr3, year 2004: observations with different colors based
on the state of the underlying Markov chain.

nxy 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18

1 6312 870 112 4 6 4 1 1 3 0 0 0 0 0 0 0

2 360 575 271 88 20 13 3 0 0 0 1 0 0 0 0 0

3 1 3 23 25 29 9 11 0 1 3 0 0 0 0 0 0

4 0 0 0 1 1 8 0 11 5 3 0 2 1 1 1 1

Table 3.4: Telecontrol center dr3, year 2004: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}.

Figure 3.19 shows the exceptional excursions containing the 35 hours classified

as due to an exceptional event; as it can be also seen in Figure 3.4 exceptionality

are distributed in the whole year.
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Figure 3.19: Telecontrol center dr3, year 2004: exceptional excursions; in each plot title
indicates the month and the abscissa’s labels the day and the hour when the exceptional
excursion starts and finishes. Note that the last two excursions, related to the second

part of December, are plotted together in the last picture (bottom-right).

Comparing results with what obtained by the AEEG methodology we can see

that, on the contrary of what we had for the telecontrol center dg4 (both years), by

the HMM more periods are considered exceptional than the AEEG method does

(see Figure 3.20). Of course we do not consider observations and the estimated

state in those periods, because they are the corresponding exceptional excursions

(those relative to January, August, September and November) plotted in Figure

3.19.
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Figure 3.20: Telecontrol center dr3, year 2004: hours in the exceptional excursions and
AEEG exceptional hours. The plot’s title indicates the month and the abscissa’s label

the considered days.
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The expected number of hours that the underlying Markov chain passes in

the exceptional state is about 2. Figure 3.21 represents the estimated Phase-

type distribution, describing the distribution of the length of the exceptional

excursions, resulting from the L − L0 generated values by the MCMC; in the

legend the fundamental proprieties of the distribution.
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Figure 3.21: Telecontrol center dr3, year 2004: estimated Phase-type distribution; in
the legend the fundamental properties.

Year 2005

Considerations on the estimated model parameters (see Figures 3.23 and 3.22)

discussed for year 2004, remain valid for the year 2005.

From Figure 3.24 it emerges that the exceptional hours are concentrated in the

last part of the year; in fact, considering the exceptional excursions (represented

in Figure 3.25), it can be seen that the period containing exceptional excursions

is from July to December.
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Figure 3.22: Estimated emission matrix for center dr3, year 2005; the value in paren-
thesis is the estimate’s standard deviation.

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.9606
(0.0073)

0.0382
(0.0073)

0.0009
(0.0009)

0.0003
(0.0002)

0.1801
(0.0226)

0.7997
(0.0248)

0.0153
(0.0103)

0.0049
(0.0039)

0.1064
(0.1020)

0.4657
(0.1774)

0.232
(0.1432)

0.1959
(0.1379)

0.0436
(0.0435)

0.1377
(0.1007)

0.2151
(0.1322)

0.6036
(0.1299)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3.23: Estimated transition matrix for center dr3, year 2005; the value in paren-
thesis is the estimate’s standard deviation.
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Figure 3.24: Telecontrol center dr3, year 2005: observations with different colors based
on the state of the underlying Markov chain.

nxy 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 19 24 35

1 6276 1108 156 12 10 4 1 1 4 1 1 0 1 0 1 0 0 0 0

2 273 410 268 113 34 11 9 2 1 2 1 0 0 0 0 0 0 0 0

3 0 0 0 1 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 2 0 0 4 10 3 3 1 1 3 1 2 3 1 1 1

Table 3.5: Telecontrol center dr3, year 2005: summarizing table containing nxy =
#{1 ≤ t ≤ T : XMAP

t = x, Yt = y}.
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Figure 3.25: Telecontrol center dr3, year 2005: exceptional excursions; in each plot title
indicates the month and the abscissa’s labels the day and the hour when the exceptional

excursion starts and finishes.

As for 2004, by the HMM more periods are considered exceptional than the

AEEG method does (see Figure 3.26).
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Figure 3.26: Telecontrol center dr3, year 2005: hours in the exceptional excursions and
AEEG exceptional hours. The plot’s title indicates the month and the abscissa’s label

the considered days.
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3.2 Model specification and results

The expected number of hours that the chain passes in the exceptional state

4 is about 3; moreover the estimated Phase-type distribution is represented in

Figure 3.27).
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Figure 3.27: Telecontrol center dr3, year 2005: estimated Phase-type distribution; in
the legend the fundamental properties.

As for telecontrol center dg4, in Figure 3.28 we plot Phase-type distributions

for years 2004 and 2005: the form of the distribution is quite similar in both years,

but in year 2004 more probability is concentrated on small values, indicating that,

in 2004 it is more probable to have a faster recovering of the system.

With similar motivations and purposes we can compare Phase-type distribu-

tions for telecontrol center dg4 and dr3 both years; by Figure 3.29 it can be seen

that the distribution for center dr3 concentrates more probability on higher val-

ues. The fact that center dr3 needs more time to reestablish the normal situation

could be due to the geographical position, exposed to particularly persistent phe-

nomena, or to a weakness of the center, unable to tackle an exceptional situation.
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Figure 3.28: Telecontrol center dr3: estimated Phase-type distributions in years 2004
and 2005.

As we said in Section 1.1, Regulators have become more interested in control-

ling and evaluating the effectiveness and efficiency of utility restoration schemes.

Then by the comparison by means of Phase-type distributions we provide a

method for controlling the center’s restoration scheme between years (see Fig-

ures 3.15 and 3.28) but also a way for evaluating the restoration scheme between

telecontrol centers (see Figure 3.29).
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Figure 3.29: Telecontrol centers dg4 and dr3: estimated Phase-type distributions in
years 2004 (Left) and 2005 (Right).
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Chapter 4

Studying electricity distribution

utilities and clustering them via

hidden Markov models

4.1 Introduction

As we stated in Section 1.7, next analyzes will be performed considering, as

spatial units, province and company combinations instead of telecontrol centers,

so far studied. Analysis of results for a finite HMM applied to the telecontrol

centers (see Chapter 3) showed that the estimated hidden chain is able to identify

exceptional events. This encouraged us to identify exceptional hours in province

and company combinations by a finite HMM.

After analyzing each combination separately from the others we would like

to understand if provinces or companies are in some sense similar. Exceptional

events are the central point of our study and, given the interpretation of the

model, the hidden process is the mechanism that manages the occurrence of the

exceptional operating status experienced by the system. For this reason we will

investigate, by means of a Cluster analysis, if provinces or companies are similar

with respect to the underlying process.

The use of HMMs for clustering sequences appears to have first been men-

tioned in Juang and Rabiner (1985) and subsequently used in the context of

discovering subfamilies of protein sequences in Krogh et al. (1994). Methods
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for clustering can be coarsely categorized into two classes: distance and model-

based approaches. A method for calculating distance for clustering using HMMs

was proposed in Falkhausen et al. (1995), distance-based clustering methods us-

ing HMMs are investigated, for example, in Bicego et al. (2003); model-based

clustering methods with HMMs are, among the others, in Smyth (1997) and Li

and Biswas (2000); finally in Panuccio et al. (2002) a model-based approach for

calculating distance measures is considered.

In Section 4.2, after considering the model specification, we will present and

discuss results related to the analysis of all the province and company combina-

tions, for year 2004; in Section 4.3 we will present the proposed clustering method

and finally in Section 4.4 what obtained by the clustering analysis.

4.2 Model specification and general results

We briefly recall notation and assumptions for the finite HMM considered in

the study presented in Chapter 3: for each province and company combination

the observed number of electrical service faults {Yt}t>0 depends on a four state

hidden Markov chain {Xt}t≥0. If we assume that X0 = 1, the model can be

characterized by the transition matrix A = {ai,j}, with ai,j = P (Xk+1 = j|Xk =

i), i, j ∈ X, where X is the state space of the Markov chain and the emission

matrix B = {bi(y)}, with the conditional probabilities bi(y) = P (Yk = y|Xk = i),

i ∈ X, y ∈ Y, where Y is the set of the observable values.

Observations greater than 9 are considered as “many interruptions”, that is

Y = {0, 1, . . . , 10+}; as we already underlined in Section 3.1 this assumption

regards a small number of observations and permits the comparison not only

between provinces or companies, but also between the same province or company

in different years. Finally states have a physical meaning, in particular state 1

indicates the normal operating status, state 4 the exceptional one, while states 2

and 3 refer to an increasing degree of perturbation of the system operating status.

The data set includes the hourly number of faults relative to the three year

time span 2004 - 2006 for a total of 113 province and company combinations. As

for the telecontrol centers, each combination of province and company is studied

separately from the others.
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The 34 telecontrol centers (studied in Chapter 3) cover the whole national

territory. Given a year, the total number of observed faults is (more or less)

the same either if we consider, as spatial units, the 34 telecontrol centers or the

113 province and company combinations. This implies that a telecontrol center

could serve more than one province; note that this consideration does not hold

for companies, because they have one telecontrol center each and their territory

is always confined within a single province. Then we can expect that data for

the provinces are more sparse than data previously considered for the centers.

We incorporate this consideration considering a more vague prior on each row

of the emission matrix. More precisely, for centers we considered independent

Dirichlet distributions on each row, with all parameters equal to 1 (see Section

3.2), while for analyzing provinces data, parameters of the Dirichlet distribution

are set equal to 4/11. The expected value of each emission probability is, as with

parameters previously hypothesized, equal to 1/11, but the variance is larger

(approximatively 0.016 versus 0.007); in fact we recall that if Z = (Z1, . . . , Zg) ∼
Dir(c1, . . . , cg) and c0 =

∑g
j=1 cj then E(Zi) = ci

c0
and V (Zi) = ci(c0−ci)

c20(c0+1)
.

Finally, the prior on the transition matrix remains the same as for the telecon-

trol center’s analysis, i.e. independent Dirichlet distribution on each row, with

all parameters equal to 1.

Before considering the clustering analysis, let us concentrate our attention on

the exceptional events, estimated by the finite HMM, in all the 113 province and

company combinations.

First of all, considering together the 113 combinations for the whole year

2004 (i.e. a total of 113 × 8 784 = 992 592 observations), we have that the great

majority of observations - more than 97% - are classified in the normal state (i.e

the estimated underlying Markov chain is in state 1), the 2% and the 0.1% of the

interruptions are classified in the transitional states (respectively 2 and 3), while

just about the 0.09% of the faults - in particular 881 observations - is classified as

due to an exceptional event (i.e. the estimated hidden chain is in state 4). This

is not an astonishing result, given that for each province or company, about 90%

of observations is equal to 0.
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In order to understand if at the same hour the exceptionality involves more

than one province, consider the number of provinces and companies that con-

temporaneously are in the exceptional operating status; in other words for each

of the 8 784 hours in 2004 in which at least one province or company was in the

exceptional state, we count the number of provinces or companies that experi-

enced an exceptional operating status. By Table 4.1 we can see that at most 7

provinces or companies are contemporaneously in the exceptional status, whilst

often (in 312 hours) the exceptionality concerns one province or company.

# of provinces 1 2 3 4 5 6 7

Hours 312 108 39 26 14 8 2

Table 4.1: Number of province and company combinations contemporaneously in the
exceptional state: in 312 hours 1 province/company was in the exceptional operating
status, in 108 hours two provinces/companies were contemporaneously in the exceptional

state and so on.

Note that in Table 4.1, the point of view is different: before we considered the

data points (992 592 observations) while now we are considering the time points

(8 784 hours); then we have 881 exceptional observations and 509 exceptional

hours.

Let us concentrate our attention on province and company combinations that

were the only one in the exceptional operating status in those 312 “single excep-

tional hours”. In Figure 4.1 we can recognize the Italy; each point represents a

province’s capital or the reference province’s capital for the company; red circles

are centered on the province/company and the diameter is proportional to the

number of hours the province/company was the only one in the exceptional state.

Without considering any technical or morphological information, we could

expect that an exceptional event (think to a meteorological phenomenon) involves

more than one province/company; consequently we could conclude that provinces

or companies that more often are the only one in the exceptional operating status

are particularly sensible to changes in underlying conditions. Finally, note that

provinces or companies with “single exceptional hours” are mainly placed in the

South part of Italy.
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Figure 4.1: Distribution of the number of times in which each province or com-
pany was the only one in the exceptional operating status: each point represents the
province/company and the red circle centered on it has a diameter proportional to the
number of times the province/company was the only one in the exceptional state. Com-
panies are plotted a little bit displaced with respect to their province reference, in order

to have a more readable plot.

The situation just described changes if we consider the exceptional excursions

instead of the exceptional events. Given that an exceptional event occurs, we en-

large the interval in order to also consider the instability condition preceding and

following an exceptional event. Therefore it becomes more likely that different

provinces/companies are contemporaneously in an exceptional excursion. In fact,

by table 4.2 we can see that different provinces/companies experienced an excep-

tional instability situation in the same period; in particular in 1 hour (January

30th, 5 AM), 15 provinces/companies were managing an exceptional situation.

The corresponding of Figure 4.1, when the exceptional excursions are considered,

is shown in Figure 4.2. The plot shows a more uniform situation, with fewer

provinces/companies that were the only one in an exceptional excursion; however

the feature that provinces or companies with “single exceptional excursion“ are

mainly placed in the South part of Italy still holds.
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# of prov. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hours 796 291 170 111 85 81 57 24 11 5 10 8 7 2 1

Table 4.2: Number of province and company combinations contemporaneously in an
exceptional excursion: in 796 hours, 1 province/company was in an exceptional instability

situation and so on.

Figure 4.2: Distribution of the number of times in which each province or company was
the only one in an exceptional excursion: each point represents the province/company
and the red circle centered on it has a diameter proportional to the number of times
the province/company was the only one in the exceptional state. Companies are plotted
a little bit displaced with respect to their province reference, in order to have a more

readable plot.
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Information related to the spatial position of provinces and companies permit

us to make a spatio-temporal analysis of the exceptionality. In Figure 4.3 each

plot shows the situation at a certain time, the administrative area covered by a

province has a different color on the basis of the state of the estimated underlying

Markov chain (at that certain time); in other words each plot represents a photo

on the operating situation. In each plot if the system is in state 1 the area is

colored in pale blue, if it is in state 2 in green, in state 3 in orange and in state 4

in red. The Figure shows the temporal evolution of the situation since January

29th 2 PM to January 30th 1 PM; concentrating our attention on the red areas

that indicate an exceptional operating status, we can notice that the instability

started from the North/West and with the passage of time involved the Center and

finally the South-East part of Italy. Therefore it seems that with the model (even

if it was estimated separately for each province or company) we are gathering an

unsettled situation that plausibly was a meteorological phenomenon. We recall

that the identification of the exceptional event by a Force Majeure attribution

was experienced in the first regulatory period 2000 - 2003, but the application of

this criterion resulted in some practical cases quite difficult and ambiguous (see

Section 1.2).
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4.2 Model specification and general results

Figure 4.3: Spatio-temporal evolution of the exceptional events: the administrative area
covered by each province has a different color on the basis of the state of the estimated
underlying Markov chain; if the system is in state 1 the area is colored in pale blue, if it
is in state 2 in green, in state 3 in orange and in state 4 in red. In particular plots show
the situation from January 29th 2 PM to January 30th 1PM; time evolves from top to

bottom and from left to right.
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Consider Table 4.3 containing the number of observations classified as due to

an exceptional event by the model for each Region and each month.

First of all we can notice that in the South part of Italy about half of the total

number of exceptional events (433 on 881) occurred, while respectively the 32%

and the 19% of the exceptional observations are relative to the North and Center

part of Italy. In particular in Sicilia the largest number of exceptional events

occurred, followed by Puglia, Piemonte and Toscana.

Regarding the temporal aspect we can notice that in the Autumn/Winter

period a large number of exceptional events occurred; in particular the largest

number of exceptional observations is related to February, followed by November,

September and January. Moreover exceptional events in January and February

are mainly concentrated respectively in the South/Center and the North part of

Italy; the same structure is not so evident in the last part of the year, where

exceptional situations are distributed on all the national territory.
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4.3 The proposed clustering method

In this Section we present the clustering method introduced, in order to attend our

goal. All clustering algorithms begin by measuring the (dis)similarity between

the objects to be clustered.

As a by product of the application of an HMM we have, for each province

and company, estimated values for the transition matrix A, the emission matrix

B, the hidden Markov chain and the Phase-type distribution (see Section 1.6).

In order to reach the set goal we will consider estimated parameters related to

the hidden Markov chain. The Phase-type distribution has a “technical inter-

pretation” (in fact it is the distribution of the time needed for each system to

reestablish the normal situation) and it also permits a more visible comparison

between provinces/companies; nevertheless it is obtained by a transformation

of the transition probabilities and then it “contains less information” than the

transition matrix.

Therefore the transition matrix seems to be more adequate for our purpose. Of

course, given a transition matrix, generated paths can be different; in other words,

even if two transition matrices are quite similar the generated chains might be

different. Then a measure of the distance between probability distributions and

a dissimilarity measure between the estimated Markov chains, able to underline

if there are periods with a similar behavior, need to be introduced.

Dissimilarity measures

In literature different probability metrics are been proposed; for a complete a

clear presentation see Gibbs and Su (2002). Because each transition matrix is a

collection of K probability distributions (where we recall K = 4 is the number

of possible states) and rows with the same index are probability distributions

conditional on the same event (that is “the chain is in state i”), we consider

as a measure of dissimilarity the average of the symmetrized Kullback-Liebler

distance between corresponding rows (Ramoni et al., 2002). Let aq
i,j and ar

i,j

be the transition probabilities from i to j in two transition matrices Aq and Ar

(corresponding to province and companies combinations labeled with q and r).
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The Kullback-Liebler divergence between rows i, aq
i and ar

i , of these matrices is

dp(a
q
i ,a

r
i ) =

K∑
j=1

aq
i,j log

aq
i,j

ar
i,j

. (4.1)

The distance in equation (4.1) is not symmetric because dp(a
q
i ,a

r
i ) �= dp(a

r
i ,a

q
i );

the symmetric version of it is defined as Dp(a
q
i ,a

r
i ) = [dp(a

q
i ,a

r
i ) + dp(a

r
i ,a

q
i )]/2.

Then the average distance between provinces or companies labeled with q and r,

with respect to the transition matrices Aq and Ar is

Dp(q, r) =
1

K

K∑
i=1

Dp(a
q
i ,a

r
i ). (4.2)

Note that the distance becomes 0 if and only if Aq = Ar and it is otherwise

positive.

Consider now dissimilarity measure between the estimated Markov chains.

Given the physical interpretation of the states of the hidden Markov chain, as

increasing degree of system perturbation, we could consider a path of the chain

as a sequence of ordinal values.

First of all note that it could happen that an exceptional event starts in two

provinces in close, but different, hours. In the previous analysis by studying the

estimated Markov chain we verified that the system, before/after dealing with an

exceptional event, experiences situations with an increasing/decreasing degree of

perturbation. We analyzed this feature introducing the concept of exceptional

excursion (see Section 1.6).

Consider for example the following subsequences of the estimated Markov chain

relative to provinces Agrigento (AG) and Caltanissetta (CL), starting and ending

at the same time (September 6th, 1 PM and 7th, 3 PM in year 2004):

XAG = (4, 3, 3, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1)

XCL = (1, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1);

in particular note that XAG is an exceptional excursion (i.e. it contains all the

states visited by the chain after leaving and before reentering the normal state

1). It seems that provinces experienced the same instability condition, even if in
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Agrigento it started a little bit before and it ended later than in Caltanissetta.

Then we could consider similar XAG and XCL when the exceptional excursions

occurred at the same time.

Let us indicate with Ej the set containing the exceptional excursions EEj that

occurred in the estimated Markov chain for province/company j. To every ex-

ceptional excursion EEj an interval hj indicating when EEj started and ended

is associated; we indicate with Hj the set containing the time intervals hj .

Then for each j = 1, . . . , 113, given a path of length T of the chain, Xj =

(xj
1, . . . , x

j
T ), at each time t = 1, . . . , T set

Zj
t =

⎧⎨
⎩ 4 if t ∈ hj

xj
t otherwise;

in other words we relabel states in an exceptional excursion as exceptional. Note

that this relabelling process is conceptually similar to the AEEG procedure that

considers exceptional the three hours intervals preceding and following an excep-

tional interval - EI (see Section 1.2).

Given the relabelled paths Zq and Zr, relative to provinces or companies q and

r, consider the Spearman rank correlation coefficient ρ(Zq,Zr) (see Lehmann,

2006). The Spearman coefficient is a nonparametric measure of the strength of

the associations between two variables, when data in the form of rank orders

are available; like the Pearson correlation coefficient, the Spearman coefficient

lies between -1 and +1, but it does not search for a linear relation between the

variables.

Correlation coefficients, say c(i, j), can be converted to dissimilarities, say

d(i, j), by setting d1(i, j) = (1 − c(i, j))/2 or d2(i, j) = 1 − |c(i, j)|; Lance and

Williams (1979) compared these formulas and concluded that d1(i, j) is the best.

Then given the Spearman correlation coefficient, we set the dissimilarity between

q and r with respect to the estimated chain as

Do(q, r) =
1 − ρ(Zq,Zr)

2
. (4.3)

The two dissimilarity measures introduced in (4.2) and (4.3), Dp(q, r) and

Do(q, r), quantify distance between two different features of the provinces/companies.
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More specifically, Dp(q, r) measures the dissimilarity with respect to the possi-

ble transition dynamic of the system between the possible states, while Do(q, r)

takes into account the trajectories actually generated by the transition matri-

ces. In other words Dp(q, r) measures the “potential” dissimilarity between

provinces/companies, while Do(q, r) quantifies the “actual, observed” dissimilari-

ties. The adjective “observed”, referred to the hidden chain, creates an oxymoron,

but it is just to underline the difference between what we can potentially obtain

and what we effectively have from the estimates (see comparison between 2004

and 2005 for telecontrol center denominated dg4 at the end of Section 3.2.1).

Then two clustering methods will be implemented for grouping provinces/companies

“potentially” and “actually” similar.

Clustering algorithm

Given a generic dissimilarity matrix Δ = {δ(i, j)}, with i, j = 1, . . . , 113, a

classification method needs to be chosen in order to classify provinces/companies

in the same cluster. Two kinds of clustering algorithms, namely partitioning and

hierarchical methods, are usually considered in the classification literature (see

for example Mardia et al., 1979).

Very briefly hierarchical algorithms find successive clusters using previously

established clusters, while partitioning methods try to find a partition in k (fixed)

groups maximizing a measure of adequacy of the partition. Then hierarchical

methods do not need the specification of the number of groups, but they can never

repair what was done in previous steps; moreover a partitioning method tries to

select the best clustering with k groups, which is not the goal of a hierarchical

method.

In order to reach our goal, we will use a two steps procedure: we will first

choose the number of groups by an agglomerative hierarchical method, with the

distance between clusters calculated by the complete linkage method, and then

we will cluster provinces/companies by the Partitioning Around Medoids - PAM

algorithm (also called k-medoids method, Kaufman and Rousseeuw, 1990).
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Briefly this means:

Step 1 � start considering n = 113 clusters each containing just one

province/company (or company)

� at the first step fuse the two nearest (with the smallest dis-

similarity) provinces/companies obtaining n− 1 clusters

� at the second step fuse in the same cluster the two nearest

of the n− 1 clusters to form n− 2 clusters

� continue in this manner until at the (n− 1)th step the two

clusters left are fused into a single cluster of n provinces/companies

� at each step recalculate the dissimilarity matrix by the com-

plete linkage method: consider two clusters A and B con-

taining respectively nA and nB provinces/companies; then

the distance between A and B is defined by

δ(A,B) = max
i∈A, h∈B

δ(i, h).

This aggregation process may be represented by a two-dimensional

diagram, called dendrogram, which illustrates the fusion made at

each stage of the analysis. The horizontal axis displays the la-

bels of the points (provinces/companies), whereas the vertical

axis gives the distance between the clusters. “Cutting the tree”

at a level we choose the number of clusters k to be considered in

Step 2.

Step 2 � select k objects to be the initial cluster medoids

� assign each remaining objects to the nearest representative

object

� recalculate the position of the k medoids by minimizing the

average dissimilarity of the medoid to all the other objects

of the same cluster

� continue until the medoids become fixed.
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4.3 The proposed clustering method

Note that the k-medoids method is similar to the k-means method. The main

difference is that, rather than using the mean of each cluster as the centroid of

the cluster as in the k-means, it finds an observation to be the centroid; moreover

the k-medoids is more robust with respect to outliers and it also deals with

dissimilarity coefficients.

Output concerning each cluster obtained by the PAM method can be graphi-

cally represented by the Silhouettes introduced by Rouseeuw (1987); briefly Sil-

houettes provides a measure of how well a data point was classified when it was

assigned to a cluster by according to both the tightness of the clusters and the

separation between them. Consider an object i and denote by A the cluster to

which it has been assigned; calculate

a(i) = average dissimilarity of i to all other objects of A;

consider any cluster C different from A and define

δ(i, C) = average dissimilarity of i to all other objects of C.

After computing δ(i, C) for all clusters C �= A, let

b(i) = min
C �=A

d(i, C).

The cluster B such that δ(i, B) = b(i) is called the neighbor of object i and it is

like the second-best choice for object i. The silhouette s(i) is obtained as

s(i) =
b(i) − a(i)

max{a(i), b(i)} , (4.4)

and then

−1 ≤ s(i) ≤ 1.

Moreover by the definition of s(i) we can deduce that observations with a large

s(i) (almost 1) are very well clustered, a small s(i) (around 0) means that the

observation lies between two clusters, and observations with a negative s(i) are

probably placed in the wrong cluster.

k-medoids methods are implemented in the R package cluster (Maechler et al.,

2005), that also provides the silhouette plot and other diagnostic tools.
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4.4 The clustering results

We will first present what obtained by clustering province and company combi-

nations by means of the estimated transition matrices and then clustering results

relative to the estimated hidden Markov chain.

Clustering by means of the transitional dynamic

The clustering process obtained by the application of the Agglomerative Hi-

erarchical algorithm, with complete linkage, is plotted in Figure 4.9; this dendro-

gram suggests us to consider k = 3 clusters in the implementation of the PAM

method.

Figure 4.4 shows the silhouette plot, where, for each cluster Cj, j = 1, . . . , k,

the silhouette s(i), i ∈ Cj is plotted by a bar in decreasing order; then, because

values of s(i) are positive and quite close to 1, we can deduce that provinces are

well classified.

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot

Average silhouette width :  0.69

n = 113 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   65  |  0.74

2 :   32  |  0.56

3 :   16  |  0.76

Figure 4.4: Silhouette plot for the clustering by the transition matrices. For each cluster
the silhouette is plotted by a bar in decreasing order.
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The obtained clusters are described in Figure 4.5, where the administrative

area covered by each province is colored with a different color on the basis of the

cluster to which it has been assigned. There are provinces served by two distrib-

ution utilities (province and company); when there is a disagreement in terms of

assigned cluster the corresponding area is striped and colored with both colors,

otherwise the number “2” indicates that the two utilities have been classified in

the same cluster.

Figure 4.5: Clustering results by transitional dynamic. The administrative area covered
by each province is colored with a different color on the basis of the cluster to which it has
been assigned; striped areas are referred to disagreements in terms of assigned clusters,
while the number “2” indicates an agreement. White points just indicate the indicators’

starting point.

In order to understand which provinces or companies are classified in each

cluster we consider the Phase-type distribution, that, we recall, represents the

number of hours needed to the system to reestablish the normal operating sit-

uation. Figure 4.6 shows Phase type distributions for medoid of each cluster;

considering the graph where the distributions are plotted together (bottom-right)

we can see that for provinces in cluster 1 (red points) the Phase-type distribution
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concentrates more mass on larger values (that is they need more time to reestab-

lish the normal situation), followed by provinces in cluster 2 (blue points) and in

cluster 3 (green points).

Therefore a general classification could be:

provinces or companies in cluster 1 → “exceptional persistent”

provinces or companies in cluster 2 → “exceptional transitional”

provinces or companies in cluster 3 → “fast recovering”
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Figure 4.6: Phase-type distributions for medoids of each cluster; in the plot on bottom-
right the three distributions are plotted together.

Clustering by means of the underlying process

We now consider the clustering by means of the estimated hidden Markov

chains. In order to calculate the Spearman correlation coefficient we will not
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consider province and company combinations whose estimated Markov chain was

always in the normal state 1.

Dendrogram in Figure 4.10 obtained by the application of the Hierarchical

Agglomerative method does not clearly identify a number of clusters; anyway it

seems to suggest to consider k = 3 for the application of the PAM method.

Silhouette plot, shown in Figure 4.7, indicates that clusters are not strongly

defined and that there are provinces or companies in each cluster that have been

classified in the wrong cluster by the PAM algorithm. Provinces or companies

in each cluster are represented in Figure 4.8, plot on the left. As we said the

algorithm provides the neighbor cluster; then if we move provinces with a negative

silhouette to the neighbor we obtain a more uniform situation, shown in Figure

4.8, plot on the right. We underline that moving objects with negative silhouette

value in the neighbor cluster is not a general rule (in fact, the neighbor cluster is

the second-best choice); however we have information coming from the problem

under analysis and this helps us for having more understandable results.

Regarding the final interpretation, we recall that the dissimilarity measure

used in this clustering analysis, Do(q, r), defined in equation (4.3), quantifies

the dissimilarity between provinces related to operating status actually expe-

rienced by the provinces/companies. Then by Figure 4.8, plot on the right,

we could conclude that utilities are affected by some “spatial dependence”; in

fact Cluster 1 mainly contains provinces/companies in the South, Cluster 2

provinces/companies in the North and Cluster 3 provinces/companies in the Cen-

ter part of Italy. Considering this clustering evidence along with what caught

by analyzing Figure 4.3, it seems that exceptional events spread geographically.

However, given information at disposal, we could just presume that exception-

ality are caused by some external factor, such for example a very bad weather.

Nothing can be said regarding eventual technical aspect, such as interconnection

between the electricity transmission network, that could cause this geographical

structure.

Of course, results obtained by clustering provinces and companies by means

of the transition matrices and by means of the underlying estimated chains are

quite different (compare Figure 4.5 and Figure 4.8). In fact, as we said in Section
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4.3, given a transition matrix, generated paths can be very different. Therefore,

in the first case, if two provinces or companies are in the same cluster, this means

that the systems are similar with respect to the potential transition dynamic

between different states; in other words it means that they have more or less

the same probability to pass, for example, from the normal operating state 1 to

state 2. While if two provinces or companies are in the same cluster, when we

are considering the underlying process, this means that they actually experienced

more or less the same operating situation.

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot

Average silhouette width :  0.04

n = 105 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   31  |  0.05

2 :   45  |  0.04

3 :   29  |  0.03

Figure 4.7: Silhouette plot for the clustering by the estimated hidden Markov chains.
For each cluster the silhouette is plotted by a bar in decreasing order. Negative values

indicate a misclassification.
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Figure 4.8: Clustering results by estimated Markov chains. The administrative area
covered by each province is colored with a different color on the basis of the cluster to
which it has been assigned; striped areas are referred to disagreements in terms of as-
signed clusters, while the number “2” indicates an agreement. Provinces not considered
in the cluster analysis are colored in pale blue. White little squares just indicate the
indicators’ starting point. Left: clusters before the reallocation of misclassified provinces
or companies to the neighbor cluster. Right: clusters after the reallocation of the mis-

classified provinces or companies.
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Chapter 5

A model-based clustering

method: the hidden mixture

Markov model

5.1 Introduction

In the previous Chapter 4 we analyzed each province and company combination

separately from the others and then we introduced a method for clustering them;

given our purpose and the physical meaning of the adopted model we proposed a

method based on estimated values of the transition matrices and the underlying

Markov chain.

Another way for identifying groups, alternative to the data-driven Cluster

analysis previously introduced, is to consider Mixture models; this model-based

approach assumes that data are drawn from a mixture of underlying probability

distributions and observations drawn from the same probability distribution be-

long to the same cluster. However a difficulty in mixture analysis is choosing the

number of mixture components. The Dirichlet process mixture model (Antoniak,

1974; Escobar and West, 1995; Neal, 2000; Ischwaran and James, 2001), using

the intrinsic clustering property of the Dirichlet process allows for this possibility:

an infinite mixture model (i.e. a mixture model with an infinite number of pos-

sible components) is considered and the Dirichlet process will reveal the proper

number of groups existing in data.
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The Dirichlet process has been applied as prior in Bayesian HMMs in different

ways and with different purposes. In the infinite hidden Markov model (Beal et

al., 2002), also called hidden Markov Dirichlet process (Xing and Sohn, 2004) or

hierarchical Dirichlet process hidden Markov model (Teh et al., 2006), an observed

sequence is studied by an HMM, the state space of the hidden Markov chain

is assumed to be countably infinite and each row of the infinite dimensional

transition and emission matrices is modeled by a Dirichlet process. While in the

hidden Markov mixture models (Yuting et al., 2007) N sequences of observations

are considered, each data sequence drawn from a mixture of HMMs; the assumed

Dirichlet process as common prior on the parameters of the individual HMMs

will reveal the number of HMMs that explains the complexity in data.

In Section 5.2 we will overview fundamentals of the Dirichlet process and the

Dirichlet process mixture model useful for our discussion; then in Section 5.3

we will briefly present how these processes were been used in an HMM frame-

work. Finally in Section 5.4 we will introduce a hidden mixture Markov model

for clustering provinces, by assuming that the underlying process is drawn from

a mixture of Markov chains, with exchangeable transition matrices modeled by a

Dirichlet process prior.

5.2 Dirichlet process and Dirichlet process mix-

ture models

The Dirichlet process is a random measure on measures, i.e. each draw from a

Dirichlet process is itself a measure. Distributions drawn from a Dirichlet process

are discrete, but cannot be described using a finite number of parameters, thus

the classification as a nonparametric model. The nonparametric nature in the

Dirichlet process mixture model translates to mixture models with a countably

infinite number of possible components.

Dirichlet process

The Dirichlet process was first formalized by Ferguson (1973) as a flexible prior

for Bayesian nonparametrics.
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5.2 Dirichlet process and Dirichlet process mixture models

A random distribution G is distributed according to a Dirichlet process if its

marginal distributions are Dirichlet distributed. Specifically, let G0 be a distri-

bution over Θ and γ be a positive real number. Then for any finite measurable

partition C1, . . . , Cr of Θ, G is Dirichlet process distributed with base distribution

G0 and scaling parameter γ, written DP(γ,G0), if

(G(C1), . . . , G(Cr)) ∼ Dir(γG0(C1), . . . , γG0(Cr)). (5.1)

The Dirichlet process provides a conjugate family of priors over distributions

that is closed under posterior updates given observations: let θ1, ..., θn be a se-

quence of independent draws from G, then the posterior distribution of G given

values of θ1, ..., θn is a Dirichlet process with updated scaling parameter γ+n and

base distribution
γG0+

�n
i=1 δ(θi)

γ+n
, where δ(θi) denotes a point mass located at θi.

Then the posterior Dirichlet process can be rewritten as

G|θ1, ..., θn ∼ DP

(
γ + n,

γ

γ + n
G0 +

n

γ + n

∑n
i=1 δ(θi)

n

)
; (5.2)

the posterior base distribution is a weighted average between the prior base dis-

tribution G0 and the empirical distribution
�n

i=1 δ(θi)

n
. The weight associated with

the prior base distribution is proportional to γ, while the empirical distribution

has weight proportional to the number of observations n. Then if the Dirichlet

process is used as nonparametric prior over distributions in a Bayesian nonpara-

metric model, γ represents the strength associated with the prior; for this reason

γ is also called the strength parameter.

This interpretation of the scaling parameter is more evident in the formulation

in Blackwell and MacQueen (1973), where a Pólya urn scheme is introduced in

order to generate an exchangeable sequence of random variables, whose de Finetti

measure is a Dirichlet process. Consider an urn containing balls with colors given

by the values in the (infinitely countable) space Θ; the number of balls of colors

θ ∈ Θ initially contained in the urn is equal to γG0(θ). At each stage n ≥ 1 a

ball is sampled from the urn and replaced in it along with another ball of the

same color. Then, if we denote with P (θi = j) the probability of drawing a ball

of color j ∈ Θ at the step i, we obtain

P (θ1 = j) =
γG0(j)∑

θ∈Θ γG0(θ)
=
γG0(j)

γ
= G0(j)
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P (θ2 = j|θ1) =
γG0(j) + δ(θ1 = j)

γ + 1

and so on till we get

P (θn+1 = j|θ1, . . . , θn) =
γG0(j) +

∑n
i=1 δ(θi = j)

γ + n
.

With G marginalized out we obtain the predictive distribution

θn+1|θ1, . . . , θn ∼ γ

γ + n
G0 +

1

γ + n

n∑
i=1

δ(θi). (5.3)

The predictive distribution (5.3) makes more evident the clustering property of

Dirichlet process: since the values of draws can be repeated, let θ∗1, . . . , θ
∗
m be the

different values among θ1, . . . , θn, and nh be the number of repeats of θ∗h; then

the predictive distribution can be equivalently written as

θn+1|θ1, . . . , θn ∼ γ

γ + n
G0 +

1

γ + n

m∑
h=1

nhδ(θ
∗
h). (5.4)

Then θn+1 is either equal to a previously seen θ∗h with probability proportional

to nh or it is a value independently drawn from G0; thereof the name of γ as the

innovation parameter.

Sethuraman (1994) provides a constructive definition of G in terms of a stick-

breaking construction; this construction is given as follows:

vh|γ ∼ Beta(1, γ), ph = vh

h−1∏
k=1

(1 − vk), θh|G0 ∼ G0 (5.5)

then

G =

∞∑
h=1

phδ(θh) ∼ DP(γ,G0), (5.6)

with the convention that
∏0

i=1 = 1. The mixing weights ph for θh are given by

successively breaking a unit length stick into an infinite number of pieces: starting

with a stick of length 1, break it at v1, assign p1 to be the length of the broken

stick and recursively break the other portion to obtain p2, p3 and so on.

By (5.6) we can notice that support of G consists of an infinite set of atoms lo-

cated at θh, drawn independently from G0; then measures drawn from a Dirichlet

process are discrete (with probability one).
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The construction in (5.6) can be truncated at S by setting vS = 1; Ishwaran

and James (2001) gave conditions for choosing S in order to obtain a good ap-

proximation of measure in (5.6).

Dirichlet process mixture models

Roughly speaking a Dirichlet process mixture model arises when a Dirichlet

process is introduced as prior on parameters of an infinite mixture model. Con-

sider a set of observations z1, . . . , zn and assume that they are exchangeable, or

equivalently, that they are independently and identically drawn from some un-

known distribution. The distribution from which the zi are drawn is a mixture

of distributions of the form F (θi), parameterized by θi, which are drawn inde-

pendently and identically from a Dirichlet process G, with parameters γ and

G0:

zi|θi ∼ F (θi)

θi|G ∼ G

G|γ,G0 ∼ DP(γ,G0). (5.7)

Because G is discrete, multiple θi’s can take the same value simultaneously, and

the model (5.7) can be seen as a mixture model, where zi’s with the same value

of θi belong to the same cluster.

In the following we present the representations in terms of Pólya urn mecha-

nism and of stick breaking constructions, which are the core of two possible meth-

ods for sampling from the posterior distribution of the parameters, presented in

the next Section 5.2.1.

If we integrate over G the model in (5.7) we obtain a representation in terms

of successive conditional distributions, arising from the Pólya urn scheme:

θi|θ1, . . . , θi−1 ∼ γ

i− 1 + γ
G0 +

1

i− 1 + γ

i−1∑
h=1

δ(θh). (5.8)

Consider the stick breaking construction in (5.5) and (5.6), let ci be a cluster

assignment variable (label), which takes value h with probability ph. Then (5.7)

can be equivalently expressed, in the usual representation of mixture models, as

zi|ci, θ ∼ F (θci
) (5.9)
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where

θh|G0 ∼ G0,

vh|γ ∼ Beta(1, γ), ph = vh

h−1∏
k=1

(1 − vk),

ci|p ∼ Mult(p), G =

∞∑
h=1

phδ(θh);

Mult(p) is the multinomial distribution with parameter vector p. From the per-

spective of infinite mixture models, p = {pi}i=1,...,∞ comprise the infinite mixing

proportions and θ = {θi}i=1,...,∞ are the infinite number of mixture components.

5.2.1 Gibbs sampling for Dirichlet process mixture mod-

els

In the Dirichlet process mixture model the posterior distribution of the parame-

ters of the component distributions is intractable to compute. However Markov

chain Monte Carlo (MCMC) methods have been developed for sampling from

these posteriors.

Making a general distinction we could say that the two different ways of

sampling presented in literature can be classified as: one based on the Pólya urn

representation in (5.8) (Escobar, 1994; MacEachern, 1994; Escobar and West,

1995) and the other one based of the stick breaking construction (Ishwaran and

James, 2001) in (5.9). Each of those methods allows for the case with non-

conjugate priors (West et al., 1994; MacEachern and Müller, 1998; Walker and

Damie, 1998; Neal, 2000).

Following the notation in Ishwaran and James (2001) we will refer to the

first method as Pólya urn Gibbs sampler and to the second one as blocked Gibbs

sampler ; both methods will be presented only in the conjugate case.

Pólya urn Gibbs sampler

The simplest method for sampling from the posterior distribution of θ1, . . . , θn

is Gibbs sampling (Neal, 2000). This method repeatedly draw values for each θi

from its conditional distribution given both data and the θj , with j �= i, written
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θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). Given the exchangeability we can write the prior

in (5.8) as

θi|θ−i ∼ γ

n− 1 + γ
G0 +

1

n− 1 + γ

n∑
j=1

j �=i

δ(θj); (5.10)

then combining (5.10) with the likelihood, written F (zi, θi), we obtain

θi|θ−i, zi ∼ bγG0(θi)F (zi, θi) + b
n∑

j=1

j �=i

F (zi, θj)δ(θj). (5.11)

The quantity b in (5.11) is the normalizing constant given by

b =

⎛
⎜⎜⎝γq0 +

n∑
j=1

j �=i

F (zi, θj)

⎞
⎟⎟⎠

−1

where

q0 =

∫
θ

F (zi, θ)dG0(θ).

Equation (5.11) can be written in terms of the posterior H(θi|zi) = G0(θi)F (zi,θi)�
θ F (zi,θ)dG0(θ)

as

θi|θ−i, zi ∼ bγq0H(θi|zi) + b

n∑
j=1

j �=i

F (zi, θj)δ(θj). (5.12)

For this Gibbs sampling method to be feasible, computing the integral in q0 and

sampling from H must be feasible operations. This is generally be so when G0 is

the conjugate prior for the likelihood.

This method is used by Escobar (1994) and by Escobar and West (1995), but

MacEachern (1994) suggested a more efficient algorithm that works in terms of

the number of distinct values m, the labels c = (c1, ..., cn) and the set of distinct

parameter values θ∗ = (θ∗1, . . . , θ
∗
m). First of all, equation (5.12) can also be

written in terms of θ∗ as

θi|θ−i, zi ∼ bγq0H(θi|zi) + b
m∑

j=1

j �=i

n−i
j δ(θ

∗
j )F (zi, θ

∗
j ), (5.13)
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where n−i
j is the number of parameters equal to θ∗j in (θ∗1, . . . , θ

∗
i−1, θ

∗
i+1, . . . , θ

∗
m).

Then Gibbs sampling for ci is based on

P (ci = c|c−i, zi, θ
∗) = bn−i

c F (zi, θ
∗
c ) (5.14)

if c = cj for some j �= i, otherwise

P (ci �= cj, ∀ j �= i|c−i, zi, θ
∗) = bγ

∫
θ∗
F (zi, θ

∗)dG0(θ
∗). (5.15)

When a value for ci different from any other cj is sampled, a value for θ∗ci
is

chosen from H(θ∗|zi), the posterior distribution of θ∗ based on the prior G0 and

the single observation zi.

Then the Gibbs sampling method can be summarized as follows: consider

c = (c1, . . . , cn) and θ∗ = {θ∗c : c ∈ c}, then

Algorithm 5.1 Pólya urn Gibbs sampler

Iterate L times between the following steps:

1. for i = 1, . . . , n if the present value of ci is associated with no other observation

(n−i
ci

= 0), remove θ∗ci
and draw a new value for ci from equations (5.14) and

(5.15); if the new ci is not associated with any other observation, draw a value

for θ∗ci
from the posterior H and add ci to indicators c;

2. for all c ∈ c draw a new value for the parameter from the posterior θ∗c |zi such

that ci = c.

Blocked Gibbs sampler

In the previous Pólya urn Gibbs sampler the c variables are updated one at a

time, which can slow down the algorithm; starting by this consideration Ishwaran

and James (2001) proposed the blocked Gibbs sampler.

Consider the stick-breaking construction in (5.5) and (5.6) truncated in S,

where the Beta variables v = (v1, . . . , vS) determine the mixing proportions,

p1, . . . , pS, by the expression ph = vh

∏h−1
k=1(1 − vk) and the parameters θ =
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(θ1, ..., θS) are associated with S mixture components. The “truncated version”

of the Dirichlet process mixture model in (5.9) can be written as:

zi|c, θ ∼ F (θci
) (5.16)

θh|G0 ∼ G0

vh|γ ∼ Beta(1, γ)

ci|p ∼ Mult(p)

for i = 1, . . . , n and h = 1, . . . , S. Note that introducing a truncation level we fix

the maximum number of possible mixture components.

So far we have considered distinct values of the parameters by defining θ∗; the

concept remains similar if applied to the labels: let {c∗1, . . . , c∗m} denote the set of

current m unique values of c. Then the blocked Gibbs sampler can be summarized

as follows:

Algorithm 5.2 Blocked Gibbs sampler

Iterate L times between the following steps:

1. Simulate θk ∼ G0 for each k ∈ c \ {c∗1, . . . , c∗m}; conditioned on c and z,

the mixture components θk, for k = 1, . . . , m, are sampled from the posterior

distribution p(θk|c, z).

2. Conditioned on v, θ and data z the labels ci, for i = 1, . . . , n, are sampled

independently from

ci|v, θ, z ∼
S∏

k=1

pk,iδ(k)

where

p1,i, . . . , pS,i ∼ (p1F (zi, θ1), . . . , pSF (zi, θS))

and pj = vj

∏j−1
h=1(1 − vh), for j = 1, . . . , S.

3. Conditioned on c and z, the vj variables, for j = 1, . . . , S − 1, (while vS = 1)

are independently sampled from Beta(1 + nj , γ +
∑S

l=j+1 nl), where nj is the

number of ci equal to j.
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5.3 Dirichlet process and Hidden Markov Mod-

els

In the discussion regarding the Dirichlet process essentially two important prop-

erties emerged: the nonparametric nature and the clustering property. Making

a very general classification we could say that the infinite hidden Markov model

profits by the first property while the hidden Markov mixture model by the sec-

ond.

We recall the notation relative to the HMM: let {Yt}t>0 be the observable

process taking values in Y, with |Y| = q and {Xt}t≥0 be the hidden Markov chain

with state space X = {1, . . . , K}. As in the previous presentation we fix X0 = 1;

then the HMM can be characterized by the transition matrix A = {ai,j}, where

ai,j = P (Xk+1 = j|Xk = i), i, j ∈ X and the emission matrix B = {bi(y)}, with

the conditional probabilities bi(y) = P (Yk = y|Xk = i), i ∈ X, y ∈ Y.

We now briefly present those models, then we introduce the hidden mixture

Markov model and describe a method for making inference.

Infinite hidden Markov models

An HMM represents a dynamic variant of the finite mixture model, in which there

is one mixture component corresponding to each value of the hidden process: the

state at time t, xt, indexes a specific row of the transition matrix, with the

probabilities in this row serving as the mixing proportions for the choice of the

state at time t + 1, xt+1; in a similar way given xt+1, by the corresponding row

of the emission matrix, the observation yt+1 is drawn.

In the infinite hidden Markov model a countable infinite state space of the

Markov chain is considered; then this model could be seen as a dynamic variant

of an infinite mixture model. As for the infinite mixture model, the infinite

hidden Markov model was introduced for avoiding the choice of the number of

possible states of the hidden chain. So far we did not discuss the topic of the

unknown number of states in an HMM, because we considered cases in which it is

gathered from the physical interpretation of the underlying process; in particular

we fixed the number of states by attending the final goal of identifying exceptional

events. However methods for dealing with this problem by a Bayesian point of
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view were proposed in literature and they are essentially based on the reversible

jump method (see, Robert et al., 2000; Cappé et al., 2005 - Chapter 13) or on

the Bayes factor method (Kass and Raftery, 1995); moreover a different approach

was proposed in Chopin (2001) and Chopin and Pelgrin (2004).

For dealing with this nonparametric variant of the HMM each row of the tran-

sition and emission matrices are modeled by a Dirichlet process. By the Blackwell

and MacQueen construction (in Section 5.2) we realized that new draws are more

likely to be one of the most popular state. Consider now the same construction

with the infinite state space case; that is consider an urn for each possible state

(because we have a Dirichlet process for each row of the transition matrix) with

balls from an infinite collection of colors (corresponding to the states). When a

ball is sampled, given that we can choose between a huge number of balls, is highly

likely that a ball with a color never seen before could be sampled. Then with the

“simple” Dirichlet process prior, with probability 1, a new state is visited from

the chain.

Beal et al. (2002) deals with this feature by considering a two-level Dirichlet

process hierarchy (hierarchical Dirichlet process): at the first level the probability

of transitioning from state i to state j is proportional to the number of times the

same transition is observed at other times, while with probability proportional

to γ0 an “oracle” process is invoked. At this second level, the probability of

transitioning to state j is proportional to the number of times state j has been

chosen by the oracle (regardless of the previous state), while the probability of

transitioning to a novel state is proportional to γ. The same for the emission

process.

Hidden Markov mixture models

In an hidden Markov mixture model the mixture structure is introduced in an

higher level, in fact it assumes that the HMM generating data is itself chosen

between a mixture of models. More precisely, the hidden Markov mixture model

with m components, as defined in Yuting et al. (2007), may be written as

p(z|π1, . . . , πS,Θ1, . . . ,ΘS) =
S∑

k=1

πkp(z|Θk), (5.17)
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where z = {zt}t=1,...,T is a sequence of observations, p(z|Θk) represents the kth

HMM component with associated parameters Θk and πk represents the mixing

weight for the kth HMM, with
∑S

k=1 πk = 1.

Let Z = {zd}d=1,...,D be the set of D sequences of data. Each zd is assumed

to be drawn from an HMM with parameters Θd = (Ad, Bd); i.e. yd ∼ H(Θd),

where H(Θd) indicates the HMM. Assume that the set of associated parameters

{Θd}d=1,...,D are independently and identically drawn from a shared prior G, i.e.

they are exchangeable. The distribution G is assumed to be drawn by a Dirichlet

process; then, given the clustering property of the Dirichlet process, the parame-

ters {Θd}d=1,...,D will be clustered and each such cluster corresponds to an HMM

mixture component in (5.17). Finally inference is made by a variational Bayes

approach (Blei and Jordan, 2004).

5.4 The hidden mixture Markov model

Coming back to our purpose of clustering provinces/companies, we said that we

are searching for clusters with provinces/companies similar with respect to the

transition dynamic.

Let Y = {yd}d=1,...,D be the set containing sequences (of length T ) rela-

tive to the D = 113 province and company combinations. Each sequence of

data yd = (Yd,1 = yd,1, . . . , Yd,T = yd,T ) is assumed to be drawn from an HMM

with parameters (Ad, Bd), i.e. yd ∼ H(Ad, Bd). Indicate with Xd = (Xd,0 =

xd,0, . . . , Xd,T = xd,T ) the underlying Markov sequence associated with province

d, where, as before, Xd,0 = 1 for all d = 1, . . . , D; in the following this assump-

tion will be taken for granted. Assume that the set of associated transition ma-

trices {Ad}d=1,...,D are independently and identically drawn from a shared prior

G, i.e. they are exchangeable. Note that we are not assuming that provinces

(in the administrative sense) are exchangeable; we are assuming that the transi-

tion dynamics between different operating status of the underlying systems are

exchangeable.

Assume that the distribution G is drawn from a Dirichlet process with concentra-

tion parameter γ and base distribution G0; each emission matrix Bd is assumed
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to be a priori distributed as a product of independent Dirichlet distributions (the

same hypothesis introduced for the analysis in Chapter 4).

Then the hidden mixture Markov model with Dirichlet (process and distrib-

utions) priors can be written as:

yd|Ad, Bd ∼ H(Ad, Bd) (5.18)

Ad|G ∼ G

G ∼ DP(γ,G0)

Bd|β1, ...,βK ∼
K∏

i=1

Dir(βi)

where K is the number of possible states of the underlying Markov chain and βi

is the vector of length q+1 (where q+1 = |Y|, with Y = {0, 1, . . . , q} is the set of

different observable values) containing parameters of the Dirichlet distribution,

corresponding to the ith row of the emission matrix; we underly that we are

considering the same Dirichlet parameters for each province/company.

Consider the “truncated version” of the Sethuraman construction in (5.5) and

(5.6); introduce labels c = {cd}d=1,...,D, where cd = h indicates that Ad takes the

value Ah, with h = 1, . . . , S. Then the model in (5.18) can also be written as

yd|c, {Ah}h=1,...,S, Bd ∼ H(Acd
, Bd) (5.19)

cd|p ∼ Mult(p)

vh|γ ∼ Beta(1, γ)

Ah|G0 ∼ G0

Bd|β1, ...,βK ∼
K∏

i=1

Dir(βi)

where p = (p1, . . . , pS) is determined by (v1, . . . , vS).

For computation convenience we use conjugate priors and assume that

G0 =
K∏

i=1

Dir(αi)

where αi is the vector of length K with parameters of the Dirichlet distribution

corresponding to the ith row of the transition matrix.
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5.4.1 Inference by the blocked Gibbs sampler

Consider now inference for the hidden mixture Markov model. First of all we

recall the Gibbs sampler for the standard (i.e. without the mixture level) finite

HMM, when a sequence of data y is analyzed (see Section 1.4, Algorithm 1.2):

Algorithm 5.3 Gibbs sampler for the finite hidden Markov model

Iterate L times between the following steps:

1. Parameter simulation conditional on the state sequence X

1.a) Sample A from the complete-data posterior distribution p(A|X).

1.b) Sample the emission matrix B from the complete-data posterior

p(B|y,X).

2. Conditional of knowing the model parameters A,B sample a path X of the

hidden Markov chain from the conditional posterior p(X|A,B,y).

In a hidden mixture Markov model D sequences of data are considered (and

not just one); for each province/company d = 1, . . . , D the estimating algorithm is

similar to that one just presented, but (of course) sampling the transition matrix

(step 1.a)) changes, in order to consider the mixture structure.

The model in (5.19) can be represented in the following way, where the nature

of the HMM is underlined. For d = 1, . . . , D consider

• the hidden process:

Xd|c, {Ah}h=1,...,S ∼ Markov chain (Acd
) (5.20)

Ah|G0 ∼ G0

vh|γ ∼ Beta(1, γ)

cd|p ∼ Mult(p)

where h = 1, . . . , S;
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• the observable process:

yd|Xd, Bd ∼ Bd (5.21)

Bd|β1, ...,βK ∼
K∏

i=1

Dir(βi).

The hidden process in (5.20) has a structure similar to the model (5.16) and then

inference can be made by the blocked Gibbs sampler.

As before let {c∗1, . . . , c∗m} denote the set of current m unique values of c. Given

that G0 is a conjugate prior for the transition matrix, for each h = 1, . . . , m the

posterior distribution is

p (Ah|{Xd s.t. cd = h}) =
K∏

i=1

Dir

(
αi +

∑
d:cd=h

nd,i

)
, (5.22)

where nd,i = {nd,ij}j∈X, with nd,ij = #{0 ≤ t ≤ T − 1 : Xd,t = i, Xd,t+1 = j},
i, j ∈ {1, . . . , K}.

The posterior distribution for the emission matrix associated with a province/company

d is

p(Bd|Xd,yd) =

K∏
i=1

Dir(βi + ed,i), (5.23)

where ed,i = {ed,iy}y∈Y, with ed,iy = #{1 ≤ t ≤ T : Xd,t = i, Yd,t = y}, for

i ∈ {1, . . . , K} and y ∈ Y.

The blocked Gibbs sampler (see Algorithm 5.2) involves a quantity, F (zi, θh),

that is the likelihood of the observation zi when the mixture component is θh. In

this context it becomes F (Xd, Ah), that is the likelihood of a sequence of states

Xd = {Xd,t}t=0,...,T , associated with the province/company d, when the transition

matrix matrix is Ah. Let us indicate Ah = {ah
j,k}j,k∈X; then, for h = 1, . . . , S

F (Xd, Ah) =
K∏

j=1

K∏
k=1

(ah
j,k)

nd,jk , (5.24)

where nd,jk = #{0 ≤ t ≤ T − 1 : Xd,t = j,Xd,t+1 = k}, d = 1, . . . , D, j, k ∈ X.

So now we can state the MCMC algorithm for estimating the hidden mixture

Markov model.
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Algorithm 5.4 Blocked Gibbs sampler for the hidden mixture Markov model

Iterate L times between the following steps:

1. Transition matrix simulation conditional on the state sequence Xd:

1.a) Simulate each row i, i = 1, . . . , K of Ah from the prior Dir(αi) for each

h ∈ c \ {c∗1, . . . , c∗m}; for h = 1, . . . , m draw each row i of Ah from

the posterior Dirichlet distribution with parameters αi +
∑

d:cd=h nd,i (see

equation (5.22))

1.b) Conditioned on v = (v1, . . . , vS), A1, . . . , AS and Xd the label cd is

sampled from

P (cd = h|v, A1, . . . , AS,Xd) ∝ phF (Xd, Ah)

where ph = vh

∏h−1
j=1 (1− vj), for h = 1, . . . , S and F (Xd, Ah) is given in

equation (5.24).

1.c) Conditioned on c and Xd, the vj variables, for j = 1, . . . , S − 1, (while

vS = 1) are independently sampled from Beta(1 + nj , γ +
∑S

l=j+1 nl),

where nj is the number of ci equal to j.

2. Sample each row i of the the emission matrix Bd from the posterior Dirichlet

distribution with parameters βi + ed,i (see equation (5.23)).

3. Conditional of knowing the model parameters Acd
, Bd sample a path Xd of the

hidden Markov chain from the conditional posterior p(Xd|Acd
, Bd,yd).

4. Repeat steps from 1. to 3. for each d = 1, . . . , D.

Note that because S is the maximum number of possible mixture components,

the relation m ≤ S ≤ D holds.

5.4.2 Model specification and results

In this Section we will present results obtained by the application of the hid-

den mixture Markov model to the available datasets. Before that, we need to

introduce some comments, especially related to the model specification.
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The implementation of Algorithm 5.4, for the analysis of the hourly number

of interruptions for the 113 province and company combinations, is very time

consuming. For this reason we reduce the dimensionality of the problem by

considering the 6 hours time-interval data (used in the AEEG method).

This (computationally motivated) assumption induces us to rethink the spec-

ification of the finite HMM and in particular the choice of the number of possible

states of the hidden Markov chain. The physical interpretation of the underlying

process, as the system operating status, and the final goal to compare groups

resulting from this model-based method with the Cluster analysis presented in

Chapter 4, lead up to still consider K = 4. Of course estimated model para-

meters remain not comparable and also the Phase-type distribution needs to be

interpreted and treated in a different way. In fact, we could expect that the ex-

ceptional excursions will be shorter than that one so far obtained. We underline

that the application of the finite HMM, with 4 states, to each province and com-

pany combination (i.e. each province/company is studied separately from the

others), using the 6 hours time interval data gives interesting results in terms of

observations deemed as exceptional.

As previously pointed out S is also the number of possible clusters; for this

reason and given the obtained clustering results (Section 4.4) we set S = 10.

As in Chapter 4, we consider, for each province and company combination,

observations greater than 9 in the same way; note that also considering this

dataset, this assumption involves a small number of observations (almost the

0.2% of the total). Moreover, priors on the model parameters are the same so far

considered (see Section 4.2).

For each d = 1, . . . , D path of the hidden Markov chain Xd are sampled by

the single updating scheme, in order to avoid the time consuming calculation of

the backward variables, required in the global updating scheme, so far considered

(see Section 1.4.3 for details).

We set Dirichlet distribution parameters and the innovation parameter γ equal

to 1.

Results suggest that there exists a big cluster containing all the province and

company combinations. How to interpret this result? First of all the dataset
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used in the application of the hidden mixture Markov model is different from

the one used in Chapter 4 (6 hours time-interval data and hourly observations).

Anyway if we run the MCMC sampler with the hourly number of interruptions,

after few iterations (more or less 10) all the province/company are classified

in the first cluster (i.e. cd = 1, for all d = 1, . . . , 113); for the other cluster

the corresponding transition matrix is generated from the prior, without any

information from the data, and essentially from a product of uniform distribution

(because the Dirichlet parameters are equal to 1). Then it becomes improbable

that in the following iterations the classification will change; of course this is a

general (naive) consideration because the chain generated by the algorithm is not

stationary and everything could happen during the sampling process.

Moreover the estimated transition matrices seen in Chapter 3 (Figures 3.1,

3.9, 3.16. 3.23) have the same structure, that is the probabilities of staying in

state 1 and 4 are quite large, probabilities to go from state 1 to 4 and viceversa

are small and so on. Then it could be that the model recognizes this general

structure and it does not catch other differences.
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Chapter 6

Urn processes and prior

specification in Bayesian hidden

Markov models

6.1 Introduction

As we anticipated in Section 1.7, in this Chapter we will consider Reinforced Urn

Processes, introduced by Muliere et al. (2000), in the prior specification when an

HMM is analyzed by a Bayesian point of view. A perspective on the prior speci-

fication aims to characterize the prior through assumptions on the process {Xt};
this is what in the de Finetti school is often referred as the “predictive approach”.

In HMMs this means characterizing the prior on the transition probability of the

Markov chain {Xt} from assumptions on the predictive structure of the process.

Reinforced urn processes (RUPs) adopt this predictive perspective. A RUP

{Xt}t≥0 is a random walk on a state space of Pólya’s urn and defines a partially

exchangeable sequence (in the sense of Diaconis and Freedman, 1980); when it

is recurrent, {Xt} is, conditionally on M, a Markov chain with transition matrix

M and M has a probability law induced by the RUP, namely, the rows of M are

independent Dirichlet processes.

RUPs have been applied in a variety of interesting fields such as survival

analysis (Muliere et al., 2000), credit default probability estimation (Amerio et

al., 2004) and clinical trials (Mezzetti et al., 2007); to our knowledge they have

129



6. URN PROCESSES AND PRIOR SPECIFICATION IN
BAYESIAN HIDDEN MARKOV MODELS

not been considered for HMMs. Our aim is to consider RUPs and their extensions

to construct priors for Bayesian HMMs.

In Section 6.2, we review basic notions of RUPs and their properties. In

Section 6.3 and 6.4 we begin to explore how RUP can be of interest for respectively

parametric and finite HMMs.

6.2 Reinforced Urn Processes

In this Section, we introduce Reinforced Urn Processes - RUPs - as presented in

Muliere et al. (2000). These processes represent a generalization of the result of

Blackwell and MacQueen (1973), who consider a Pólya’s urn with a continuum

of colors generating an infinite exchangeable sequence of real random variables,

whose de Finetti measure is a Dirichlet process. RUP is a class of partially

exchangeable processes on a state space of Pólya’s urns. By specifying appropriate

elements some processes used in Bayesian nonparametrics, like Pólya trees and

beta-Stacy processes, can be recovered from RUPs.

Definition 6.1. Consider:

1. A countable state space X

2. A finite set of colors C = {c1, . . . , ck}, with cardinality |C| = k ≥ 1

3. An initial urn composition function U : X → R
k
+ such that for all x ∈ X,

there is an urn with composition

U(x) = (nx(c1), . . . , nx(ck))

where nx(c) represents the number of balls of color c contained in the urn,

and
k∑

i=1

nx(ci) > 0

4. A law of motion q : X × C → X such that, ∀x, z ∈ X there is at most one

color c(x, z) ∈ C such that q(x, c(x, z)) = z
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The stochastic process {Xt} on X is constructed as follows: fix an initial state

x0 ∈ X; for all t ≥ 1, if Xt−1 = x ∈ X, a ball is picked at random from the urn

associated with x and returned to it along with another of the same color. If c ∈ C

is the color of the sampled ball, set Xt = q(x, c).

The process is called {Xt} ∈ RUP(X,C, U, q) with initial state x0.

In other words, with every state x ∈ X is associated an urn and we construct a

reinforced random walk with the law of motion q. For example, we sample a ball

from the urn associated with x0, i.e. X0 = x0; if it is of color c0, we return the ball

in the urn with another of the same color (reinforcement), set X1 = x1 = q(x0, c0)

and move to x1; next we pick at random a ball from the urn associated with x1;

say it is of color c1 we return it in the urn along with another of the same color,

set X2 = x2 = q(X1, c1) and move to x2 and so on.

The resulting process, {Xt} ∈ RUP(X,C, U, q), satisfies some properties.

{Xt} is partially exchangeable in the sense of Diaconis and Freedman (1980).

Following these authors, two finite sequences σ and ρ of elements of X are equiv-

alent if they begin with the same element and, for every x, z ∈ X the number

of transitions from x to z is the same in both sequences. A process defined on

X is partially exchangeable (in the sense of Diaconis and Freedman, 1980) if for

all n ≥ 0 and all equivalent sequences, σ = (s0, . . . , st) and ρ = (r0, . . . , rt), of

elements of X, P (X0 = s0, . . . , Xt = st) = P (X0 = r0, . . . , Xt = rt). As proved by

Muliere et al. (2000) (Theorem 2.3) given a finite sequence of elements of X, the

finite-dimensional law of the RUP {Xt} depends only on the number of transitions

from a state to another one in X and therefore it is partially exchangeable.

By Theorem 7 of Diaconis and Freedman (1980) if a partially exchangeable

process is also recurrent then it is a mixture of Markov chains.

Therefore a recurrent process {Xt} ∈ RUP(X,C, U, q) is a mixture of Markov

chains. More precisely, for all x ∈ X, set Rx = {z ∈ X : nx(c(x, z)) > 0} the

set of states z ∈ X that the process reaches from x; define R(0) = {x0} and

R(n) =
⋃

i∈R(n−1) Ri the set of states that the RUP, starting in x0, can reach

with positive probability in n steps and finally R =
⋃∞

n=0R
(n). Note that by an

appropriate choice of the law of motion q and the urn composition function U ,

we can have R = X or R ⊂ X.

Since with probability one the states visited by the process {Xt} are elements of
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R, there is a probability distribution μ on the set M of stochastic matrices on

R×R, such that, for all t ≥ 1 and all finite sequences (x0, . . . , xt) of elements in

R,

P (X0 = x0, . . . , Xt = xt) =

∫
M

t−1∏
j=0

m(xj , xj+1)μ(dm).

Let M be a random element of M with probability distribution m; for all x ∈ R,

let M(x) the xth row of M and α(x) be the measure on R which assigns mass

nx(c) to q(x, c) for each c ∈ C such that nx(c) > 0 and mass 0 to other elements

of R.

Theorem 6.1 (Muliere et al. (2000)). If {Xt} is recurrent, the rows of M are

mutually independent random probability distributions on R and, for all x ∈ R,

the law of M(x) is that of a Dirichlet process with parameter α(x).

Moreover if {Xt} ∈ RUP(X,C, U, q) is recurrent, the sequence {Bt} of x0-

blocks (i.e. finite sequences which begin by x0 and contain no further x0, as

defined in Diaconis and Freedman, 1980) is exchangeable. This implies that if ψ

is a measurable function, the sequence {ψ(Bt)} is also exchangeable; ψ(Bt) can

be, for example, the length of Bt or the last coordinate.

The de Finetti measure of the exchangeable sequence {ψ(Bt)} is characterized

by the properties of the recurrent urn process which generated it. Important

examples are, for instance, beta-Stacy priors (Walker and Muliere, 1997) and

Pólya tree priors (Mauldin et al., 1992).

6.3 Reinforced Urn Processes for parametric hid-

den Markov models

In this Section we consider RUPs in order to construct priors when a parametric

HMM is studied from a Bayesian point of view. More specifically we want to

take a predictive approach and to characterize the distribution of the rows of the

transition matrix A by assumptions on the underlying Markov chain {Xt}.
In the following we will indicate with Markov chain (π,A) a Markov chain

with initial state distribution π and transition matrix A.
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Consider a parametric HMM

Yt|Xt = i ∼ f(y|ξi) (6.1)

{Xt}|π,A is Markov chain (π,A) on a countable state space X

Unknown model parameters are ϑ = (π,A, ξ) and a prior on them needs to

be specified; let ξi
i.i.d∼ G0 and define a RUP in order to construct the prior on π

and A.

Consider the state space X, a finite set of colors C and a Pólya’s urn Ui for

each possible state i ∈ X, containing ni(c) ≥ 0 balls of color c ∈ C. Set X0 = x0

and construct the process {Xt} by a law of motion q.

As in Section 6.2, let R(n) be the set of states that the process reaches with

positive probability in n steps and R =
⋃∞

n=0R
(n). So we can state the following

result

Proposition 6.1. The HMM’s underlying process {Xt} ∈ RUP(X,C, U, q) with

initial state x0 and then the process is partially exchangeable. When it is recurrent

the rows of A are mutually independent random distributions on R and, for each

x ∈ R, the law of the xth row of A, A(x), is that of a Dirichlet process, whose

parameter α(x) is the measure which assigns mass nx(c) to q(x, c) ∀c ∈ C such

that nx(c) > 0 and mass 0 otherwise.

Note that, setting X0 = x0, we have that the HMM’s initial state distribution

π = δ(x0), where δ(x) denotes the distribution concentrated at point x.

In the previous presentation we have not specified if X is finite or not; however,

as we already said, the state space of the hidden Markov chain is often assumed

to be a finite set, say X = {1, . . . , K}.
In this case we can be more precise in the specification of the RUP’s elements,

in particular of the set of colors C and the law of motion q.

Consider a Pólya’s urn Ui for each possible state i ∈ X, containing ni(x) ≥ 0

balls labeled with each x ∈ X, i.e. C = X. For all n ≥ 1, if Xn−1 = i ∈ X, a ball

is picked at random from the Pólya’s urn associated with i; if j ∈ C is the label

of the sampled ball, we set Xt = q(i, j) = j. In other words, the law of motion q

simply says that the next state is the label of the picked ball.

The generated process is partially exchangeable and then we can consider the

finite version of Proposition 6.1:
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Proposition 6.2. If {Xt} is recurrent, the rows of A are independent and, since

the state space X is finite, each row A(x) is a Dirichlet distribution with α(x) =

(α1(x), . . . , αK(x)) = (nx(1), . . . , nx(K)).

Consider now a more general HMM formulation (than the one in (6.1))

Yt|Xt = ξi ∼ f(y|ξi) (6.2)

{Xt}|π,A, ξ1, . . . , ξK is Markov chain (π,A) on X = {ξ1, . . . , ξK} (random)

In other words the underlying Markov chain is (directly) defined on the parameter

space and this permits us to avoid the label-switching problem (see Section 1.4.4).

Of course if we consider labels

St = j ⇐⇒ Xt = ξj

we obtain the usual formulation (6.1), with Yt|St = j ∼ f(y|ξj).
As before, given the state space X = {ξ1, . . . , ξK} the RUP’s construction for

the prior on the transition matrix remains the same as described above and the

law of each row A(ξi) is a Dirichlet distribution, with parameter α(ξi), where the

jth component, say αj(ξi), is equal to nξi
(ξj) ≥ 0, ξj ∈ C (in fact we have C = X).

Consider a finite sequence of length T , X = (X0 = x0, . . . , XT = xT ). Then

P (XT+1 = ξi|X) =
nxT

(ξi) + t(xT , ξi)∑K
j=1 nxT

(ξj) + t(xT )
,

where, for x, z ∈ X, t(x, z) counts the number of transitions from x to z and t(x) is

the number of transition from state x in the sequence X, i.e. t(x) =
∑

z∈X t(x, z).

Now let (y,X) be the complete data, (Y0 = y0, . . . , YT = yT , X0 = x0, . . . , XT =

xT ); inference on the model parameters and on the hidden chain is based on the

posterior distribution

p(X,ϑ|y) ∝ p(y,X|ϑ)p(ϑ), (6.3)

with

p(y,X|ϑ) = δx0

K∏
k=1

( ∏
t:Xt=ξt

f(yt|ξt)
)

K∏
i=1

K∏
j=1

a
t(ξi,ξj)
ξi,ξj

,
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and, assuming independence between the transition matrix and the emission pa-

rameters,

p(ϑ) =

K∏
i=1

G0(ξi) Dir(α1(ξi), . . . , αj(ξi), . . . , αK(ξi)).

Sampling from the posterior (6.3) is commonly carried out by the Markov Chain

Monte Carlo (MCMC) sampling scheme; in particular a Gibbs sampling algo-

rithm, similar to that one presented in Section 1.4, can be considered:

Algorithm 6.1 Gibbs sampling algorithm

Start with some state sequence X(0) and repeat the following steps for l =

1, . . . , L0, . . . , L.

1. Parameter simulation conditional on the state sequence X(l−1)

1.a) Sample A from the complete-data posterior distribution p(A|X(l−1)) and

store the values.

1.b) Sample the emission parameter from the complete-data posterior

p(ξ|y,X(l−1)) and store the values.

2. Conditional of knowing the model parameters ϑ(l), sample a path X of the

hidden Markov chain from the conditional posterior p(X|ϑ(l),y) and store all

generated states.

3. Increase l and return to step 1.

L0 is the number of burn-in samples to be discarded from the estimate.

The full conditional distribution of A is

p(A|X(m−1)) =

K∏
i=1

Dir(α1(ξi) + t(ξi, ξ1), . . . , αK(ξi) + t(ξi, ξK)).

The full conditional distribution p(ξ|y,X(m−1)) depends on the prior G0 on

ξi; if for example we consider a Poisson HMM (i.e. Yt|Xt = ξi ∼ Poi(ξi)) and G0

is a conjugate Gamma prior, Γ(a0, b0), then

p(ξ|X,y) =

K∏
i=1

Γ(a0 + t(ξi) yi, b0 + t(ξi))
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where t(ξi) = #{1 ≤ t ≤ T : Xt = ξi} and yi is the mean of the observations

when Xt = ξi.

Finally a path of the hidden chain is sampled from p(X|y,ϑ), through the

global updating scheme (see Cappé et al., 2005).

Let yt+1:T = (yt+1, . . . , yT ) and consider the backward variable, βt(ξj) =

p(yt+1:T |Xt = ξj,ϑ), inductively computed as follows:

a) Initialize with

βT (ξj) = 1, 1 ≤ j ≤ p,

b) and for t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ p,

βt(ξi) =

K∑
j=1

ai,jp(yt+1|Xt+1 = ξj)βt+1(ξj).

Then the conditional distribution p(X|y,ϑ) is

p(X|y,ϑ) ∝
T∏

t=1

p(yt|Xt = xt)axt−1,xtβt(xt)

and Xt is sampled from

Pr(Xt = ξj|Xt−1 = xt−1,y,ϑ) =
p(yt|Xt = ξj)axt−1,ξj

βt(ξj)∑K
i=1 p(yt|Xt = ξi)axt−1,ξi

βt(ξi)

for 2 ≤ t ≤ T ,

Pr(X1 = ξj |X0 = x0,y,ϑ) =
p(y1|X1 = ξj)ax0,ξj

β1(ξj)∑K
i=1 p(y1|X1 = ξi)ax0,ξi

β1(ξi)

for t = 1.

Note that no ordering step (often considered in order to avoid the label switch-

ing problem, see Sections 1.4.4 and 1.4.5) was introduced in the Algorithm 6.1.

The label switching problem is a feature that HMM shares with Mixture mod-

els; in this last framework it is studied in Teicher (1963), Yakowitz and Spragins

(1968), Chandra (1977), Redner and Walker (1984), and Crawford (1994); the

temporal spectrum of the existing works shows that it is a challenging problem.

In the HMM framework the label switching is studied in Chopin (2007).
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6.4 Reinforced Urn Processes for finite hidden

Markov models

Let us consider RUPs in order to construct a prior for the unknown parameters

in a finite HMM:

P (Yt = y|Xt = i) = bi(y) y ∈ Y, i ∈ X (6.4)

{Xt}|π,A is Markov chain (π,A) on X

The HMM’s structure can be traced out by a RUP’s construction; however in

this case two processes are considered and then a (slightly) different RUP needs

to be introduced.

Definition 6.2. Consider:

1. Two finite state spaces X = {1, . . . , K} and Y = {1, . . . , q}

2. Two sets of labels L1 = X and L2 = Y

3. Two initial urn composition functions U1 : X → R
K
+ and U2 : X → R

q
+ such

that for all x ∈ X, there are two urns with composition

U1(x) = (nx(1), . . . , nx(p)) = nx

U2(x) = (mx(1), . . . , mx(q)) = mx

where nx(i) represents the number of balls labeled with i ∈ L1 = X contained

in one urn, andmx(y) represents the number of balls labeled with y ∈ L2 = Y

in the other one;

K∑
i=1

nx(i) > 0,

q∑
i=1

mx(i) > 0

4. A law of motion τ : X×L1 → X and a law of emission ε : X×L2 → Y such

that, ∀x, z ∈ X, τ(x, z) = z and, ∀x ∈ X, y ∈ Y, ε(x, y) = y.

The bi-dimensional stochastic process {Zt} = {Xt, Yt} is constructed as follows:

fix an initial state x0 ∈ X; for all t ≥ 1, if Xt−1 = x ∈ X, a ball is picked at
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random from each of the two urns associated with x and returned to them along

with another with the same label. If i ∈ L1 and y ∈ L2 are the labels of the

sampled balls, set Xt = τ(x, i) = i and Yt = ε(x, y) = y.

The process is called {Zt} ∈ bi-RUP(X,Y,L1,L2, U1, U2, τ, ε) with initial state x0.

In other words, two urns are associated with every state x ∈ X, a “transition

urn” Ux and an “emission urn” Uy(x); at each time t ≥ 0 the ball drawn from

the urn Ux gives the transition to the next state at time t + 1, through the law

of motion τ , while the ball drawn from the urn Uy(x) gives the emitted value at

the same time t, through the law of emission ε. The described sampling scheme

is graphically represented in Figure 6.1.

{Yt} y0 y1 y2 · · ·
↑ε ↑ε ↑ε

Uy(x0) Uy(x1) Uy(x2)

Ux0 Ux1 Ux2

↘τ ↘τ ↘τ

{Xt} x0 x1 x2 x3

t 0 1 2 3 . . .

Figure 6.1: Bi-RUP’s sampling scheme: fix x0 ∈ X with which two urns are associated,
Ux0 and Uy(x0); sample a ball from Uy(x0) and if the label of the sampled ball is y0

set Y0 = y0 = ε(x0, y0); sample a ball from Ux0 and if the label of the sampled ball is
x1 move to X1 = x1 = τ(x0, x1). At time t = 1 sample a ball from Uy(x1) and set
Y1 = y1 = ε(x1, y1); sample a ball from Ux1 and move to X2 = x2 = τ(x1, x2) and so on.

For any T ≥ 0 and any finite sequence Z = (Z0 = z0, . . . , ZT = zT ) = (X,y)

P (Z) = P (y|X)P (X). (6.5)

Let tn(i, j) and en(i, y) respectively be the number of transitions from i ∈ X to

j ∈ X and the number of emitted values equal to y ∈ Y from state i ∈ X, in a

sequence of length n; then

P (X) =

T−1∏
i=0

nxi
(xi+1) + ti−1(xi, xi+1)∑

x∈X(nxi
(x) + ti−1(xi, x))

(6.6)
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P (y|X) =
T∏

i=0

mxi
(yi) + ei−1(xi, yi)∑

y∈Y(mxi
(y) + ei−1(xi, y))

(6.7)

with t−1(·, ·) = e−1(·, ·) = 0.

We can now state the following result.

Theorem 6.2. The process {Xt} is partially exchangeable.

Proof. In order to show that the generated process {Xt} is partially exchangeable

we need to prove that, given two equivalent sequences, σ = (s0, . . . , sT ) and

ρ = (r0, . . . , rT ), of elements of X,

P (X0 = s0, . . . , XT = sT ) = P (X0 = r0, . . . , XT = rT ). (6.8)

By the definition in Diaconis and Freedman (1980), two sequences are equivalent if

they begin with the same element and, for every i, j ∈ X, the number of transition

from state i to j is the same in both sequence. Then because P (X) only depends

on the number of transition (see equation (6.6)) condition (6.8) follows.

Theorem 6.3. The bidimensional process {Zt} = {Xt, Yt} generated by the

bi-RUP(X,Y,L1,L2, U1, U2, τ, ε) is a finite HMM. Moreover:

- if the process {Xt} is recurrent then it is a mixture of Markov chains

and each xth row of the transition matrix is independently distributed as

a Dirichlet distribution with parameters nx;

- the conditional probabilities P (Yt|Xt = x), x ∈ X are Dirichlet distributions

with parameters mx, x ∈ X

Proof. In order to prove that the generated process is an HMM we need to show

that the process {Xt} is a Markov chain and that conditional on {Xt}, {Yt} is a

sequence of independent random variables such that the conditional distribution

of Yt only depends on Xt.

In Theorem 6.2 we have shown that the process {Xt} is partially exchangeable;

then, by Diaconis and Freedman (1980), if it is recurrent it is a mixture of Markov

chains. While the dependence structure of the process {Yt} (i.e. dependence of

{Xt} and conditional independence of {Yt}) comes from the construction of the

process.
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Moreover, given that in the construction of the bi-RUP the emission process

does not affect the transition matrix, the process {Xt} ∈ RUP. Then by Propo-

sition 6.2 (if it is recurrent) the rows of the transition matrix A are independent

and each row A(x) is a Dirichlet distribution with parameters nx.

Let us now consider the last part of the Theorem. Instead of sampling a

ball, at each time, from both the transition urn Ux and the emission urn Uy(x)

we can first sample the whole state sequence from 1 to T and subsequently for

t = 1, . . . , T draw from the emission urn associated with xt. Moreover, given the

state sequence X, for each state i ∈ X we can compute t(i), that is the number

of transitions in state i; the quantity t(i) is also the number of times we draw

from the emission urn associate with i. Then given i the t(i) draws from Uy(i)

are independent of draws from others Uy(j), with j �= i and moreover they form

a Pólya sequence and therefore they are exchangeable. Finally given results in

Blakwell and MacQueen (1973) the conditional probability P (Yt|Xt = i) is a

Dirichlet distribution with parameters mi.

We can also consider the predictive distribution

P (ZT+1 = zT+1|Z) = P (YT+1 = yT+1, XT+1 = xT+1|y,X)

= P (YT+1 = yT+1|y,X0:T+1 = x0:T+1)

P (XT+1 = xT+1|y,X),

with

P (XT+1 = xT+1|y,X) =
nxT

(xT+1) + t(xT , xT+1)∑
x∈X(nxT

(x) + t(xT , x))

and

P (YT+1 = yT+1|y,X0:T+1) =
mxT+1

(yT+1) + e(xT+1, yT+1)∑
y∈Y(mxT+1

(y) + e(xT+1, y))
, (6.9)

where X0:T+1 = (X0 = x0, . . . , XT+1 = xT+1).

6.5 Conclusions

In this Chapter we adopted a completely different approach in the prior specifi-

cation of the HMM parameters; in fact by fixing the predictive structure of the
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process, we characterized the prior on parameters arising from the parametric

and the finite HMMs.

Results stated in Proposition 6.2 and in Theorem 6.3 contains priors usually

used in the Bayesian HMM framework (and that we also used in the first five

Chapters of this work). However the starting motive for thinking in RUP’s terms

was to highlight assumptions on the processes implied by the “usual priors” (in

terms for example of the recurrence of the process).

Moreover by RUP’s theory we know that the so called x0-blocks are exchange-

able and if the RUP’s parameters are set in a suitable way we have the de Finetti

measure; then the idea, actually not investigated in the present work, was to

point out also this implication and to study the distribution of these x0-blocks.
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Chapter 7

Conclusions and further research
topics

We have presented different hidden Markov models for identifying exceptional

events in electricity distribution: the Poisson HMM, the zero-inflated Poisson

HMM, the Negative Binomial HMM, the compound Poisson HMM and the finite

HMM. The application of a finite HMM to two telecontrol centers showed that

the model fits well the data and the estimated hidden chain is able to identify

exceptional events as those where a large number of faults protracting in time

occurs. Comparison with the AEEG method is provided and, even if there is not

a perfect agreement between periods declared exceptional by the two methods,

we can conclude that results obtained by the HMM are satisfactory.

Inspection of the posterior distribution of the transition matrix showed that

before and after entering the exceptional operating status, the system is in a

transitional operating status; we called exceptional excursion the sequence of

states visited by the system before reentering the normal state. The time length

of exceptional excursions has a discrete Phase-type distribution. In our context

this distribution represents the distribution of the time needed to the system to

reestablish the normal operating status; then we employed the estimated Phase-

type distributions to achieve information related to the efficiency and effectiveness

of utility restoration schemes and to make a comparison between the behavior of

the utility in different years and between utilities.

We analyzed all province and company combinations, for year 2004; we em-

ployed the obtained results to understand if there are similarities between the
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underlying processes, that manage the occurrence of the exceptional events. In

particular, we used the estimated transition matrices and the estimated paths

of Markov chain. Two dissimilarity measures have been proposed (based on the

Kullback-Leibler distance and the Spearman correlation coefficient) and used in

a two steps clustering algorithm.

Clustering results by means of the transition matrices showed that three

groups could be identified and the analysis of the Phase-type distributions helped

us to characterize province/company in each cluster as: “exceptional persistent”,

“exceptional transitional”and “fast recovering”. Clusters obtained by means of

the estimated paths of the hidden chain mainly contain province/company in the

North, Center and South part of Italy, suggesting a spatial dependence between

provinces.

Moreover, we introduced the hidden mixture Markov model, a model-based

approach for clustering province/company, by means of the transitional dynamic.

Results suggest that there is a single big cluster.

In order to improve results in the parametric models we could consider com-

binations of the proposed models; for example we could assume that faults in

state 1 and 2 are distributed according to Poisson distributions and observations

in states 3 and 4 are emitted by negative binomial or compound Poisson distri-

butions. However we need to be careful when we consider the ordering step in

the sampling algorithm, introduced for avoiding the label switching problem; in

fact we could obtain nonsensical results and ordered parameters vector could not

respect the model assumption. Roughly speaking, in the case with the first two

states emitting observations according to a Poisson distribution, after the order-

ing step we could have that the Poisson means are referred to states 3 and/or

4.

Let us briefly recall interpretation of the compound Poisson distribution for the

electricity distribution problem: it arises in a model formed by supposing that

the faults occur in cluster, the number of clusters having a Poisson distribution,

while the number of interruptions per cluster varies according to a geometric

distribution. In other words the Poisson distribution says for how long the insta-

bility situation occurs (in fact it says how many geometric values we have to add)
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while the number of interruptions (for each hour) is distributed according to a

geometric distribution. Instability period does not necessarily mean exceptional

event; in the four state Markov chain the instability period refers to states 2, 3

and 4.

But what about observations equal to zero? They are not due to an instability

period. Then we could assume that observations in a normal situation (state 1)

are distributed according to a Poisson distribution, while given that an instability

period occurred, its duration is managed by a Poisson distribution, the number

of faults is managed by the geometric distribution, and parameters vary on the

base that a minimum, medium or exceptional instability period occurred.

In the performed analyzes we considered data relative to year 2004 for the

province and company combinations; however we have at disposal also data for

2005 and 2006. Then we should trace out analysis performed for 2004 also for the

other two available years, especially to understand if there are changes in terms

of the generated clusters.

In the clustering method we employed a modification of the Spearman correlation

coefficient to evaluate distance between the estimated paths of the Markov chain;

however another possible way for computing distances between two estimated

paths, that we could investigate, is the sequence alignment. In bioinformatics, a

sequence alignment is a way of arranging the primary sequences of DNA, RNA, or

protein to identify regions of similarity that may be a consequence of functional,

structural, or evolutionary relationships between the sequences; a general global

alignment technique is called the Needleman-Wunsch algorithm (Needleman and

Wunsch, 1970) and is based on dynamic programming.

Results from the Cluster analysis by means of the estimated path of the Markov

chains suggested that provinces/companies are affected by spatial dependence;

then we should try to introduce a model with spatial dependence.

To better understand results from the hidden mixture Markov model we could

analyze each province and company combinations separately from the others us-

ing the 6 hours time interval data, perform the Cluster analysis by means of the

transition matrix and see if there are changes in the conclusions. Moreover we

know that the parameter γ in the Dirichlet process is also called the innovation

145



7. CONCLUSIONS AND FURTHER RESEARCH TOPICS

parameter, because it manages the generation of new values; then we could con-

sider larger values of this parameter (in the considered application it was set to

1) using also the information deriving from the performed Cluster analysis, that

revealed the presence of three clusters.

Another further aspect that could be very interesting to investigate is the

predictive problem.

Finally, we considered RUPs for the prior specification in Bayesian HMMs

when a predictive perspective is adopted; in particular we applied those processes

in order to avoid the label switching problem in the parametric HMM and we

proved that the process generated by the introduced bi-RUP is a finite HMM.

Of course the RUP’s general theory remains the same also if we consider an

infinite state space of the Markov chain; however in this case we need to specify in

a suitable way RUP’s parameters in order to have the recurrence of the generated

process.

An Hoppe’s urn (Hoppe, 1984 and 1987) is a Pólya-like urn containing one black

ball with positive mass and various numbers of other balls having assorted colors

(non-black) each of mass one. At each instant a ball is drawn at random and if

the selected ball is black it is returned together with one additional ball of a color

not already in the urn. In the HMM framework, the assumption of considering

an infinite state space of the Markov chain is introduced in order to avoid the

choice of the number of possible states; then the generalization of a RUP with an

Hoppe’s urn instead of a Pólya’s urn could reveal the number of states supported

by the data.

We know that in an HMM, observations depend on the underlying process. Then

we could consider a RUP where for each x ∈ X is associated an urn, but the state

space is Z = X × Y; in other words we could introduce a RUP were the number

of urns is lesser than the number of possible states and investigate properties of

the generated process.

In RUP’s discussion we mentioned that the sequence of x0-blocks is exchangeable

and changing RUP’s parameters important processes as beta-Stacy and Pólya

trees priors are recovered. How translates this feature in the HMM framework?
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Could we obtain the same results in terms of exceptional excursions and Phase-

type distributions by the RUP setting?
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unione Scentifica SIS, Società Italiana di Statistica 2008. Arcavacata di Rende

(CS). 25-27 Giugno 2008. CLEUP (ITALY).

AEEG, Autorità per l’energia elettrica e il gas, Regulatory Order n. 333/07,

Available (in Italian) on the web site www.autorita.energia.it.

Albert, J.H. and Chib, S. (1993). Bayes inference via Gibbs sampling of autore-

gressive time series subject to Markov mean and variance shifts. Journal of

Business and Economic Statistics, 11, 1-15.

Amerio, E., Muliere, P. and Secchi, P. (2004). Reinforced urn processes for mod-

elling credit default distribution, Internat. J. of Theoret. and Appl. Finance,

7

Antoniak, C.E. (1974). Mixtures of Dirichlet processes with application to

Bayesian nonparametric problems. Annals of Statistics, 2, 1152-1174.

Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions

of finite state Markov chains, Annals of Mathematical Statistics, 37(6), 1554-

1563.

Baum, L.E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximization tech-

nique occurring in the statistical analysis of probabilistic functions of Markov

chains. The Annals of Mathematical Statistics, 41, 164-171.

149



REFERENCES

Beal, M.J., Ghahramani, Z. and Rasmussen, C. E. (2002). The Infinite Hidden

Markov Model. Advances in Neural Information Processing Systems, 14, 577-

584.

Beal, M.J., (2003). Variational Algorithms for Approximate Bayesian inference,

PHD Thesis, Gatsby Computational Neuroscience Unit, University College

London

URL: http://www.cse.buffalo.edu/faculty/mbeal/papers.html

Besag, J. (1989). Towards Bayesian image analysis. Journal of Applied Statistics,

16, 395-407.

Bicego, M., Murino, V. and Figueiredo, M.A.T. (2003). Similarity-Based Clus-

tering of Sequences Using Hidden Markov Models, Lecture Notes in Computer

Science, Springer, Berlin.

Blackwell, D. and MacQueen, J.B. (1973). Ferguson distributions via Pólya urn
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