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Abstract
Long-term mitigation scenarios developed by integrated assessment models underpin major
aspects of recent IPCC reports and have been critical to identify the system transformations that
are required to meet stringent climate goals. However, they have been criticized for proposing
pathways that may prove challenging to implement in the real world and for failing to capture the
social and institutional challenges of the transition. There is a growing interest to assess the
feasibility of these scenarios, but past research has mostly focused on theoretical considerations.
This paper proposes a novel and versatile multidimensional framework that allows evaluating and
comparing decarbonization pathways by systematically quantifying feasibility concerns across
geophysical, technological, economic, socio-cultural and institutional dimensions. This framework
enables to assess the timing, disruptiveness and scale of feasibility concerns, and to identify
trade-offs across different feasibility dimensions. As a first implementation of the proposed
framework, we map the feasibility concerns of the IPCC 1.5 ◦C Special Report scenarios. We select
24 quantitative indicators and propose feasibility thresholds based on insights from an extensive
analysis of the literature and empirical data. Our framework is, however, flexible and allows
evaluations based on different thresholds or aggregation rules. Our analyses show that institutional
constraints, which are often not accounted for in scenarios, are key drivers of feasibility concerns.
Moreover, we identify a clear intertemporal trade-off, with early mitigation being more disruptive
but preventing higher and persistent feasibility concerns produced by postponed mitigation action
later in the century.

1. Introduction

What drives the feasibility of the systemic transform-
ations required to reach the more ambitious climate
goals? The discussions pertaining to feasibility are
heating up, with some observers calling the 2◦Cworld
a ‘fantasy’ (Tollefson 2015), and others, like Christi-
ana Figueres, the former Executive Secretary of the
UN Framework Convention on Climate Change, sug-
gesting that reaching 1.5◦C largely depends on polit-
ical will (Figueres 2018). Our paper contributes to
these discussions by demonstrating how to evaluate
feasibility concerns in a systematic way, and by put-
ting more emphasis on tracing the trade-offs over

time and dimensions rather than simply concluding
that a certain pathway is not feasible.

Low-carbon scenarios of IAMs and other sys-
temic approaches are widely used to shed light on
the mitigation strategies to decarbonize the economy,
energy and land-use systems (Weyant 2017, Bosetti
2021). Although these models have grown to repres-
ent an increasing number of features of reality, they
fall short of including many of the processes, actors
and incentives that affect the transformation in the
real world (Trutnevyte et al 2012, Geels et al 2016, Li
and Strachan 2019, Turnheim and Nykvist 2019, De
Cian et al 2020, van Sluisveld et al 2020). Therefore,
it is important to explore their feasibility in terms
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of the wide-ranging transformational changes they
entail, and offer insights on when, where and what
type of concerns are to be expected and how they can
possibly be overcome (Rogelj et al 2013, Riahi et al
2015, Kriegler et al 2018, Jewell and Cherp 2020).

In this paper, we bridge insights from the
literature on the concept of feasibility (Majone
1975a, Gilabert and Lawford-Smith 2012, Turnheim
and Nykvist 2019, Jewell and Cherp 2020, Nielsen
et al 2020), the IAM scenario comparison literature
(Loftus et al 2015, van Sluisveld et al 2015, 2018, von
Stechow et al 2016, Gambhir 2017, Napp et al 2017)
and empirical work pertaining to different feasibility
dimensions.

Conceptual contributions highlight how feas-
ibility evaluations should consider the context of
transformations (Gilabert and Lawford-Smith 2012,
Schubert et al 2015, Jewell and Cherp 2020, Nielsen
2020). Actors, sectors, and regions involved in the
transformation might have different levels of capa-
city, and capacitymight be changing over time. Build-
ing on these considerations, we define feasibility as
the degree to which scenarios lie within the boundar-
ies of societal capacities for change in a given period.
We stress the importance of a conceptual and opera-
tional distinction between feasibility and desirability
(Jewell and Cherp 2020). While feasibility is a plaus-
ibility evaluation of what could be achieved, given
societal capacities within a specific geographical and
temporal context (Gambhir 2017, Napp et al 2017),
desirability is a normative evaluation of the degree of
compatibility with key societal goals, such as the Sus-
tainable Development Goals (von Stechow et al 2016,
Lamb and Steinberger 2017).

We present an operational framework that allows
a systematic assessment and comparison of scen-
arios along key dimensions of feasibility identified in
the 2018 IPCC Special Report (IPCC 2018). Import-
antly, our framework should not be interpreted as
a final judgement on feasibility but rather as a tool
to map out areas of concern and highlight enabling
factors which can mitigate them. Drawing from
earlier studies comparing scenarios (Loftus et al 2015,
van Sluisveld et al 2015, 2018, von Stechow et al
2016, Gambhir 2017, Napp et al 2017), we map sev-
eral key indicators onto geophysical, technological,
economic, socio-cultural and institutional feasibility
dimensions.We employ indicatorsmeasuring decadal
changes, which allow us to assess the timing, dis-
ruptiveness and scale of the required transforma-
tion both across the century and at specific points in
time (Kriegler et al 2018). We derive thresholds for
all indicators and for increasing levels of feasibility
concerns based on historical data and insights from
empirical and scenario studies. Our paper presents a
novel evaluation of institutional feasibility concerns
at the regional level, thus addressing calls to bring in
insights from the social sciences into scenario com-
parison efforts (Geels et al 2016, Nielsen 2020).

As the first implementation of our framework, we
evaluate the scenarios from the 2018 IPCC Special
Report, since they are the most comprehensive and
up-to-date collection of scenarios available in the lit-
erature. Importantly, the set includes not only 1.5◦C
scenarios, but also scenarios that aim at 2◦C and
above, which allows exploring differences across dif-
ferent temperature goals. We show how our method
allows a flexible aggregation of feasibility concerns
within and across dimensions and time, and what
type of insights can be gained. We also make avail-
able an interactive visual tool that allows the user to
perform sensitivity analyses by assessing how feas-
ibility evaluations change when selecting different
thresholds for different indicators.

2. Systematic framework for scenario
evaluation

From an interdisciplinary perspective, feasibility
assessments can be defined as evaluations of different
types of constraints (Majone 1975a, 1975b). IAMs
scenarios highlight under which conditions certain
climate goals can be feasible or infeasible (Riahi et al
2015), and provide insights on geophysical, economic
and technological constraints of mitigation options
based on stylized assumptions. However, what is feas-
ible in models might not be feasible in the real world
and vice versa (Kriegler et al 2018, Rogelj et al 2018).

To evaluate the feasibility of scenarios generated
by models one can either focus on model validity,
assessing models’ underlying assumptions and input
data (Krey et al 2019), or evaluate model output data,
benchmarking them to the current knowledge regard-
ing different types of constraints that might affect
the feasibility of climate scenarios (Wilson et al 2013,
van Sluisveld et al 2015, 2018). We present a frame-
work that follows the latter approach. This requires
deciding first what type of dimensions should be con-
sidered.

The 2018 IPCC report (2018) introduced a feasib-
ility assessment of mitigation and adaptation options
along six dimensions: (a) geophysical, focusing on
physical potentials and scarce resources; (b) techno-
logical, focusing on technical scalability and maturity
of technologies; (c) economic, focusing on economic
viability; (d) socio-cultural, focusing on acceptance
of policies and behavioral changes; (e) institutional,
focusing on institutional capacity; and (f) ecolo-
gical, focusing on environmental co-benefits and
trade-offs. We argue that ecological impacts, such
as impacts on biodiversity, water and other natural
resources, as well as impacts on human health, hun-
ger, poverty, and inequality, pertain to desirability
evaluations. Given our focus on feasibility instead
of desirability, we omit the ecological dimension
from our analysis and propose to analyze it as part
of desirability evaluations (von Stechow et al 2016,
Luderer et al 2019, Lamb et al 2020).
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Figure 1. Steps and details of our general framework for scenario evaluation.

While feasibility evaluations present in the 2018
IPCC report focused on specific mitigation and
adaptation options (for example having high shares
of wind or solar technology as a keymitigation option
on the supply side), our framework is devised to com-
pare scenarios. Themajor stepswithin our framework
are summarized in figure 1. Employing data repor-
ted by IAMs scenarios, (a) we define five key feasib-
ility dimensions; (b) for each dimension, we select a
set of relevant indicators measuring decadal changes
(using either indicators reported by scenarios or per-
forming additional calculations where necessary); (c)
based on past literature and empirical data, we pro-
pose thresholds to define low,medium, and high feas-
ibility concerns for each indicator in each decade; and
(d) based on the feasibility evaluations of each indic-
ator in each decade, we can then compute aggregated
feasibility concerns both within or across dimensions
and time.

By employing indicatorsmeasuring changes at the
decadal level, which is currently the lowest available
time period in most IAM scenarios, our approach
allows capturing the timing (the specific decade), dis-
ruptiveness (the level of transformation in a given
point in time) and scale (the level of transformation
over the whole period of time) of the transformat-
ive change required within each dimension (Kriegler
et al 2018). In the following section we provide
more details for each dimension and indicator,
with additional explanations and figures provided in
the SM.

Importantly, our framework is extremely flexible.
It allows performing feasibility evaluations based on
different sets of thresholds, and other dimensions and
indicators can be added in the future, also depend-
ing on which variables are available in the scenario set
under evaluation. We developed an interactive visual
tool that allows the user to define different thresholds
for all indicators and see how this impacts feasib-
ility evaluations within and across dimensions and

time for different climate categories. The visual tool
is publicly available online at https://data.ece.iiasa.ac.
at/climate-action-feasibility-dashboard/

3. Data andmethods

3.1. Scenario data
We employ our framework to perform a first multi-
dimensional feasibility evaluation of the set of scen-
arios developed for the 2018 IPCC Special Report
on 1.5◦C (Forster et al 2018, IPCC 2018), which
also includes scenarios that aim at 2◦C and above
(Huppmann et al 2018, 2019). To ensure the com-
parability of scenarios, we evaluate scenarios that
belong to the same climate target category and
make the same underlying assumptions about socio-
economic drivers (belonging to the same so-called
Socio-economic Pathways (SSPs) (formore details on
the assumptions see (Kriegler et al 2017, Riahi et al
2017)). In section 4, we present a possible implement-
ation of our framework focusing on scenarios reach-
ing the 1.5◦C temperature target and following SSP2,
assuming current trends in population, GDP, energy
demand, and governance.We present results for other
temperature targets in the visual tool that supple-
ments this paper. Overall, we show that, as expected,
more ambitious climate targets systematically raise
more feasibility concerns.

3.2. Method and indicators
We define thresholds for each indicator by review-
ing the relevant literature and historical data (see
table 1, sections 3.2.1–3.2.5, and sections 1–6 of the
SM for more analyses and details (available online at
stacks.iop.org/ERL/16/064069/mmedia)). Based on
these thresholds, we assign low (a), medium (b) and
high (c) feasibility concern levels to each indicator in
each decade. We compute aggregate feasibility con-
cerns across time and across the five feasibility dimen-
sions employing the geometric mean, which reduces

3
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the level of compensation across dimensions (and is
also used for the Human Development Index and in
many other contexts, as shown in the overview by Van
Puyenbroeck and Rogge (2017)). Table 1 shows that
the majority of the thresholds were derived based on
our own empirical analyses but also that for some
indicators the empirical evidence is still scarce. This
is especially true for the socio-cultural dimension,
where we focus on demand side changes and for the
emerging technologies.

3.2.1. Geophysical feasibility
To assess the geophysical feasibility of scenarios
determined by the availability of resources, we focus
on key mitigation technologies and evaluate for each
decade the levels of primary energy generation from
biomass and solar, and the levels of secondary energy
generation using wind in electricity (de Vries et al
2007, Moomaw et al 2011). Similarly to the assess-
ments in the 2018 IPCC Special Report, which also
relied on the insights from past literature (Moowaw
et al 2011), we conclude that while some scenarios are
close to the upper (optimistic) limits of the technical
potential estimates for biomass (Slade 2011, Skea et al
2019), none of them exceeds the technical potential of
solar and wind energy generation (see SM, section 2
for more details). Overall, we conclude that the vast
majority of the pathways do not violate geophysical
limits (which however do not include any desirability
considerations), and thus focus the rest of paper on
the other four feasibility dimensions.

3.2.2. Economic feasibility
Mitigation costs and efforts are another import-
ant determinant of the feasibility of decarbonization
pathways and have been utilized in many inter-model
comparison studies (Tavoni and Tol 2010, Paltsev and
Capros 2013). To assess the economic feasibility of
scenarios, we select four established indicators com-
monly employed to capture mitigation costs, meas-
uring (a) carbon prices, (b) GDP losses; (c) energy
investments, and (d) stranded coal generation (see
SM, section 3 for more details for each indicator and
threshold).

While there are reasons to argue that carbon
prices are also relevant to socio-cultural feasibility,
IAMs employ carbon prices as a measure of mitig-
ation effort (Paltsev and Capros 2013, Rogelj et al
2013) andmostly only report them at the global level.
As public attitudes towards carbon pricing mech-
anisms crucially depend on highly contextual social
and political factors and specific policy design fea-
tures (Bristow et al 2010, Drews and Bergh 2016,
Klenert et al 2018, Beiser-McGrath and Bernauer
2019), assessing the socio-cultural feasibility of car-
bon prices is currently hampered by the data provided
in the set of scenarios under consideration.

3.2.3. Technological feasibility
Under the technological feasibility dimension, we
evaluate, from a purely technological and supply-side
perspective (not accounting for institutional or social
constraints), whether scenarios display rates of trans-
formation of the power generation and transport sec-
tors that are likely to be concerning (for details on
each indicator and threshold, see SM, section 4). For
the electricity sector, we select a first set of indicat-
ors measuring the scale-up of more established low-
carbon energy technologies (including solar, wind
and nuclear). As many scenarios also rely on tech-
nologies that are not yet established to reach ambi-
tious climate goals (Rogelj et al 2018), we include
a second set of indicators measuring the scale-up
of energy production from emerging technologies,
including biomass, the scale-up of CCS with coal
and of bioenergy with CCS (BECCS). We build on
the insights from a recent study on the granular-
ity of technologies (Wilson et al 2020) and propose
stricter thresholds for the so-called ‘lumpy’ technolo-
gies (nuclear andCCS) as compared the granular ones
(wind and solar). For the transport sector, we select
indicators measuring the scale-up of electricity and
biofuels.

3.2.4. Socio-cultural feasibility
Past research shows that climate policies and the
pace of transformation are affected not only by
institutional factors (see section 3.2.4) but also by
people’s attitudes and behaviors (Kachi et al 2015,
Andrijevic et al 2020a). Thus, it is plausible to assume
that climate action should be easier in societies with
more pro-environmental attitudes, even thoughmore
research is required to better understand the relation-
ship between attitudes and climate action (Steg 2018).
As IAMs currently do not include any variables that
quantify this dimension, we base our socio-cultural
feasibility evolution on proxies related to shifts in
lifestyles which could be substantially affected by
changes in attitudes and behaviors.

The current dominant approach in the IAMs
community is to proxy changes in lifestyles by assum-
ing substantial reductions in demand across different
sectors (van den Berg et al 2019). Here we consider
transformations affecting the energy sector (includ-
ing reductions in energy demand within key sectors)
and transformations affecting the land sector (includ-
ing reductions in carbon-intensive food demand and
changes in forest and pasture cover). In section 5.1 of
the SM we report some exploratory analyses assess-
ing the relationship between environmental perform-
ance and proxies that were found to be key correl-
ates of environmental attitudes and behavior, such
as education levels (Muttarak and Lutz 2014, Kachi
et al 2015, Hoffmann andMuttarak 2020) and gender
equality (Mavisakalyan and Tarverdi 2019, Andrijevic
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Figure 2. Distribution of feasibility concerns across the 1.5 ◦C pathways included in the IPCC SR1.5.
Note: Figure 2 shows the distributions of feasibility evaluations for each dimension aggregated over time using the geometric
mean. These scenarios include those belonging to the ‘below 1.5◦C’ (9 scenarios), ‘1.5◦C low overshoot’ (44 scenarios), and
‘1.5◦C high overshoot’ (37 scenarios) temperature target categories. We show the aggregation of feasibility concerns for 2◦C
scenarios in the SM, section 7.2.2. The count of scenarios indicates how many scenarios report at least half of the indicators for a
given dimension.

et al 2020a). We discuss this finding in more detail in
section 4.1.

3.2.5. Institutional feasibility
To assess institutional feasibility concerns, we
developed an indicator that allows tracing whether
the assumed mitigation effort in a given scenario and
decade is matched by the projected governance capa-
city in the region under consideration. We rely on the
governance projections for different SSPs developed
by Andrijevic et al (2019) and identify a governance
level associated with high environmental perform-
ance (see SM, section 6 for more details). We define
low, medium and high institutional feasibility con-
cerns based on the combined consideration of gov-
ernance levels and decadal decrease in per capita CO2

emissions observed in countries that achieved signi-
ficant mitigation goals. We evaluate feasibility con-
cerns at the regional level and then aggregate them to
define global institutional feasibility concerns.

When developing the institutional feasibility
indicator, we explored different dimensions of gov-
ernance, such as government effectiveness and regu-
latory quality (see SM, section 6.1). However, as for
our purposes and given our set of scenarios looking at
different governance dimensions does not lead to new
insights, we employ an aggregate governance meas-
ure. We hope that future research will build on our
insights and explore different governance dimensions
with more granular data that might become available
with a new generation of climate scenarios.

4. Implementation of the framework

Wepropose here a first implementation of our frame-
work, employing the selection of indicators and
thresholds described above. We quantify the feasibil-
ity concerns across time and dimensions for scenarios
reaching the 1.5◦C target. Sensitivity analyses based
on stricter thresholds across all indicators do not
change the overall trends but might increase overall
feasibility concerns (see SM, section 7 and the inter-
active visual tool). Rather than making claims about
which pathways are feasible or not feasible in the real
world, we focus on the trade-offs over time and across
dimensions. As has been pointed out by many schol-
ars in the past, the feasibility frontier might quickly
shift, and what seems challenging from today’s point
of viewmight become attainable in the future (Rogelj
et al 2018, Jewell and Cherp 2020).

4.1. Trade-offs across feasibility dimensions
A key question that has already motivated a large part
of feasibility research is which feasibility concerns
might be of key relevance (Jewell and Cherp 2020).
Our framework helps to systematize and operation-
alize such efforts and offers some insights into trade-
offs across different dimensions. Indeed, many path-
waysmight appear feasible on one dimension (such as
supply upscaling) at the expenses of another dimen-
sion (such as demand shifts).

Figure 2 offers a broad overview of the IPCC
SR1.5 scenarios when all of the feasibility indicators
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are aggregated over time for the different dimen-
sions. The institutional dimension is clearly stand-
ing out, suggesting that in many scenarios there is
a mismatch between assumed levels of mitigation
effort and mitigation capacity. Our additional empir-
ical analysis (SM, section 6.1) shows that the key gov-
ernance dimension driving environmental perform-
ance is government effectiveness, i.e. the quality of
public and civil service provision, which is independ-
ent of political regime type. Institutional constraints
are often defined as ‘soft’ constraints (Gilabert and
Lawford-Smith 2012), and enabling factors such as
international cooperation and foreign aid through
financial support and capacity building can contrib-
ute to overcoming them.

Developed countries have currently pledged to
provide $100 bln every year to support countries
with low mitigation and adaptation capacity (Pauw
et al 2020). However, a recent study suggests that
this might be insufficient given that mitigation meas-
ures listed in conditional NDCs amount to at least $3
trillion (Pauw et al 2020). Traditionally, foreign aid
is allocated based on equity principles, targeting the
poorest countries, but tackling climate change might
require additional focus on regions and areas where
aid can have the highest impact on mitigation efforts.
Moreover, while aid measures related to technology
were dominating in the past (Kim 2019), it might
be necessary to rethink which sectors and measures
should get more attention.

Our analysis of socio-cultural proxies highlights
the correlation of mitigation capacity not only with
good governance but also with high levels of educa-
tion and gender equality (see SM, sections 5 and 6).
We therefore suggest that international cooperation
efforts might be most effective with a balanced port-
folio of investments and capacity building in low car-
bon infrastructure, governance, gender equality and
education in regions with limited mitigation capacity
(Muttarak and Lutz 2014, Hoffmann and Muttarak
2020).

Focusing on economic feasibility, Figure 2 also
shows that the overall distribution of mitigation cost
profiles is relatively wide in the assessed ensemble of
scenarios. This is in part driven by different model
types with different macro-economic assumptions
(Kriegler et al 2015), but is also due to model sens-
itivity to economic specifications (Emmerling et al
2019).

Both the technology and the socio-cultural
dimensions do not raise major feasibility concerns.
This finding is not surprising because many mod-
eling teams focus on incorporating information
about technology maturity, costs, and other con-
siderations, especially at the global level (Wilson et al
2013). However, it is important to emphasize that the
technological dimension focuses on what is plausible

from a technological diffusion perspective and does
not incorporate concerns that might arise based on
public attitudes and preferences with respect to dif-
ferent technologies.

Socio-cultural feasibility concerns are also relat-
ively low. There are two possible explanations for
this finding. First, few scenarios rely on demand-
side mitigation strategies, which might face higher
socio-cultural challenges due to the required beha-
vioral and attitudinal changes (Creutzig et al 2016,
2018). Second, manymodels report a limited number
of indicators relevant to the socio-cultural dimension.
Since in the set of scenarios that we analyze, the socio-
cultural dimension has the lowest coverage (only 64
scenarios report at least 5 indicators out of 7), our
confidence in the assessment of feasibility concerns in
this dimension is the lowest.

4.2. Institutional feasibility and trade-offs across
regions
We evaluate institutional feasibility at the regional
level, which is critical for assessing where major feas-
ibility concerns might arise and to take into account
the context-dependence of this dimension (Gilabert
and Lawford-Smith 2012, Jewell and Cherp 2020,
Nielsen 2020).

Our assessment shows that institutional feas-
ibility concerns are comparatively modest in the
OECD region (see figure 3). Across all pathways,
Asia (R5ASIA), the Reforming Economies including
Russia (R5REF) as well as theMiddle East andAfrican
region (R5MAF) show major institutional concerns
around mid-century. Institutional feasibility is also
more challenging in the short and medium term, as
governance is projected to improve in many regions
over time (Andrijevic et al 2019). Recent studies high-
light the large share of committed emissions in the
Asian region and the relatively young coal power fleet
(the current average coal fleet age is 11.1 years in
China and 12.2 years in India), which increases the
challenges of decarbonizing the electricity sector in
these regions (Cui et al 2019, Tong et al 2019).

4.3. Trade-offs over time
One of our framework’s major advantages is that it
allows exploring intertemporal trade-offs and thus
contributes to answering the question of when (Jewell
and Cherp 2020) to expect major feasibility concerns
in the pathways that are under evaluation. In panel
A of figure 4, we display the evolution over time of
aggregated feasibility concerns across major climate
categories. A clear insight of this exercise is that path-
ways pursuing ambitious climate goals and imme-
diate policy action are associated with a disruptive
transformation early on but then present fewer chal-
lenges and risks later, as well as less volatility and
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Figure 3. The evolution of regional institutional feasibility concerns of scenarios reaching the 1.5◦C temperature target.
Note: The lines illustrate general trends in scenarios that fall into the category under consideration after performing locally
weighted smoothing.

Figure 4. Illustration of feasibility concerns and trade-offs over time for the period 2020–2100. Panel A shows the time evolution
of aggregated feasibility concerns across climate categories. Panel B compares 1.5◦C scenarios with immediate and delayed policy
action. The lines illustrate general trends in scenarios that fall into the category under consideration after performing locally
weighted smoothing.

thus less uncertainty. Additionally, less ambitious cli-
mate targets require less radical system transforma-
tions and raise fewer feasibility concerns (though they
do raise desirability concerns). Reaching 1.5◦C with
high overshoot raises challenges for most of the cen-
tury: overshoot pathways require deeper transform-
ation across carbon-intensive sectors in the second
part of the century, and present higher reliance on
risky negative emission technologies (Bosetti et al
2009, Clarke et al 2009, Krey and Riahi 2009, Bertram
et al 2015).

In panel B of figure 4, we compare scenarios
that reach the 1.5◦C target and are classified as
either immediate policy action (i.e. with a global

commitment to mitigate as of 2020) or delayed policy
action. This comparison highlights the vital role of
enabling factors, in line with many studies that have
shown the importance of the timing of international
cooperation to support global mitigation action. Our
framework confirms that jump-starting international
climate policy action instead of delaying it for another
10 years can smooth out feasibility concerns. Con-
ducting a simple statistical test, we find that delayed
policy action significantly increases aggregate feasib-
ility concerns compared to immediate action. This
result is robust to controlling for model family and
holds true across different model types (see SM,
section 7).
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Figure 5. Illustration of feasibility concerns aggregated over all dimensions for the period 2020–2100 for four illustrative pathways
from the 1.5 ◦C scenario ensemble.

4.4. Trade-offs across scenario archetypes
In this section, we focus on specific scenario ‘arche-
types’, or pathways that are illustrative of a prominent
mitigation strategy to reach the 1.5◦C target (for
more details and see Forster et al 2018). In the
following illustration (figure 5), we compare the
evolution over time of overall feasibility concerns of
four illustrative pathways from the 2018 IPCC Spe-
cial Report that reach the 1.5◦C goal (RCP 1.9): the
SSP-2 scenario developed by MESSAGE-GLOBIOM
1.0, which relies on supply-side mitigation and
technological carbon dioxide removal (S2/P3); the
low energy demand scenario (Grubler et al 2018),
which relies on demand-side mitigation and neg-
ative emissions only from afforestation (LED/P1);
the S1 scenario developed by AIM/CGE 2.0, which
represents assumptions from SSP1, the sustainable
development pathway with high levels of governance
and more resource-efficient lifestyles (S1/P2); and
the S5 scenario developed by REMIND-MAgPIE
1.5, which follows SSP 5 assumptions, with high
levels of governance but highly resource-intensive
lifestyles (S5/P4).

As mentioned earlier, the evidence about
demand-side mitigation options is limited (Grubler
et al 2018, Mundaca et al 2019, van den Berg et al
2019). The LED scenario, however, illustrates how
a rapid and disruptive demand-side transformation
by 2030 might avoid decarbonization challenges later
in the century, significantly reducing also long-term
feasibility risks and the associated uncertainties of the
burden of climate mitigation for future generations.
S1/P2, which assumes better governance levels, is less
disruptive in the near term, and represents a relatively
smooth transformation with low/intermediate feas-
ibility concerns in the medium and long term. Feas-
ibility concerns of S2/P3 are also smooth but slightly
higher than in S1/P2, presenting more concerns later
in the century due to higher reliance and investments

into negative emissions technologies. Finally, S5/P5
presents the most volatile pathway, requiring major
disruptions around mid- and late century. This is,
similarly to S2/P3, mostly driven by a high level of
negative emissions that are deployed in the second
half of the century in order to reach the climate target
of 1.5◦C.

5. Conclusion

This paper fills a knowledge gap by presenting a new
conceptual and operational framework with quant-
itative indicators for the multidimensional feasibility
evaluation of IAMs scenarios. We show that a holistic
and systematic framework taking into account geo-
physical, technological, economic, socio-cultural and
institutional dimensions and assessing trends over
time is essential for understanding the trade-offs that
mitigation pathways might entail. Our framework
allows highlighting for instance how some scenarios
might lie within the boundaries of what is considered
feasible from a technological perspective but assume
rapid decarbonization in regions with low institu-
tional capacity.

Employing our framework to analyze the 1.5◦C
scenario ensemble, we find that significant concerns
are related to the institutional feasibility dimension.
There is scarce empirical work quantifying the role
of governance capacity in the implementation of cli-
mate policies supporting supply- and demand-driven
transformations. This presents an opportunity for
future research to systematically explore the role of
governance and link it to the discussion on enabling
conditions for a faster transition. This finding also
highlights the importance of performing feasibility
analyses at the regional level. In the future, feasibility
evaluations should develop regional thresholds not
only for institutional feasibility indicators but also for
other dimensions and indicators, taking for instance
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into account regional technology potentials or con-
textual socio-cultural constraints to the scale-up of
carbon prices. This would constitute another major
step to take into due account fundamental contextual
factors (Jewell and Cherp 2020, Nielsen 2020).

Our analyses also highlight that scenarios are
conservative with respect to their assumptions on
demand-side transformations (or the implied behavi-
oral changes), suggesting that the power of demand-
side changes might be underexplored in existing
IAMs scenarios (Creutzig et al 2018, Grubler et al
2018). Future research should explore demand-side
mitigation strategies more systematically, employing
robust empirical evidence.

Moreover, our article provides the policy-relevant
insight that delaying emission reductions amplifies
overall feasibility concerns, postponing and increas-
ing transition challenges rather than avoiding them.
Taking into account temporal trade-offs is thus essen-
tial and future research should explore whether rapid
and disruptive or incremental and persistent trans-
formations are more feasible.

Finally, desirability remains an important dimen-
sion to explore. Besides identifying scenarios that
might cross feasibility boundaries, it is essential to
identify scenarios that impair key societal goals like
poverty or hunger reduction and biodiversity pro-
tection. Since not all feasible scenarios are desirable,
investigating and systematically assessing the trade-
offs between feasibility and desirability is also essen-
tial.
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