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Introduction

This introduction outlines the common idea behind the following three essays and

gives a brief introduction to each of them. If one abstracts from the specific field of

application, all three essays deal with econometric modeling and statistical inference

in different empirical financial contexts. Modeling and inference are closely related

in the sense that modern statistical inference algorithms allow for more freedom in

specifying an empirical model. Typical examples include data augmentation type algo-

rithms that tackle the problem of complicated likelihood maximizations due to unob-

served components like stochastic volatility or regime-switching. Another example are

simulation-based filtering methods which allow to infer the latent states in nonlinear

and non-Gaussian state-space models online. All three essays make use of such inno-

vative econometric techniques. The empirical applications are pairs trading, unbiased

estimation of implied volatility surfaces and term structure of interest rates modeling

under particular consideration of public debt and time-varying market expectations.

The general idea underlying each of the three essays is to provide a novel modeling

framework by applying modern (mostly Bayesian) econometric methods. The ideas

are diverse though.

The first essay deals with a novel approach to identify pairs trading opportunities.

Defining a nonlinear state-space model in the spirit of Newtonian dynamics, an MCMC

particle filter is applied to jointly infer the latent group structure and model parame-

ters. If objects are grouped, they establish a center of gravitation which attracts them.

The expected direction for future movements is hence towards the group mean. In

that essay this idea is exploited to model asset price series which exhibit a tendency to

move together even if this equilibrium is temporarily pertubated. Those short-termed

spreads can be used to generate statistical arbitrage profits by executing an investment
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strategy which is known as pairs trading.

The second essay takes a close look at implied volatility surface modeling. The main

difficulty is to provide an estimator that simultaneously avoids either kind of bias in-

duced by an insufficient fit through sparsely parameterized regression models or by

potential dents in classical smoothing estimators that arise in areas of the domain of

the surface where few, if any, options are observed. The proposed usage of a Bayesian

model averaging estimator addresses this issue and does not suffer from neither of

these biases. In addition, it does not render the computation of the state-price density

as complicated as semiparametric methods do and it provides an easy way to compute

pointwise confidence bands.

The third essay is a joint work with Carlo A. Favero. We analyze the effects of economic

shocks to the Italian sovereign debt. The yield curve is not viewed independently but

in relation to a reference yield curve. The yield spreads are explained by fiscal and

monetary policy variables. Around this centerpiece we model the relation between the

economic variables. Market expectations are explicitly modeled by a binary Markov-

chain which induces two latent regimes.

Pairs Trading and State Space Models

Pairs trading is an investment strategy which could generally be labeled as an attempt

to generate statistical arbitrage profits. It has been introduced by Wall Street quants at

Morgan Stanley in the 1980s. Pairs in this context are defined as assets that exhibit a

long-run equilibrium. Once found, the strategy suggests to exploit temporary devia-

tions from that equilibrium. If two normalized assets are considered both assets trade

at (nearly) the same price in the equilibrium. If a spread occured, the rich asset would

be shorted and the cheap bought. Unwinding of the two positions when the equilib-
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rium is re-established would generate a profit. Jegadeesh and Titman (1995) analyze

contrarian investment strategies that exploit such spreads. They find that a possible

explanation for the existence of such spreads is non-synchronous trading. This justifies

spreads in intraday asset prices but not over several days. Their findings also support

the conjecture that the prevailing reason may be an overreaction of investors to the re-

lease of individual corporate information that affect one of the stocks.

Methods to find pairs have been proposed in the literature. Many authors suggest to

use cointegration analysis to find such assets. That approach can be understood as a

linear, Gaussian state space model. The necessary portfolio weights follow from the

cointegration vectors.

In the first essay I extend the linear, Gaussian to a nonlinear, non-Gaussian model and

demonstrate how this can be used as a very flexible tool to identify pairs trading oppor-

tunities. The inference algorithms are a particle filters which allow on-line inference of

the latent states. Online inference is paramount in algorithmic trading which could be

used to execute pairs trading. This approach will prove to have many advantages. Most

importantly, the time series that are considered do not need to be integrated which

makes it suitable for volatility series and the like. But it also amplifies the flexibility in

modeling the dependence and allows better for managing the risk of the positions in

the portfolio.

Since particle filters are not yet among the standard tools in econometrics, this para-

graph gives a brief introduction to the main ideas which are required for an under-

standing of the first essay. In general, a state space model can be summarized by a

likelihood function for the observation yt, a transition for a state vector xt as well as

priors for the initial state and the parameter θ,

p(yt|xt, θ), p(xt|xt−1, θ), p(x0|θ), p(θ).
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The aim of online inference is to sequentially compute the posterior distribution of

the states and parameters, p(x0:t, θ|y1:t). If the model was linear and Gaussian, as in

the cointegration case, optimal inference could be achieved with the Kalman (1960)

filter, see e.g. Harvey (1989) for an exhaustive review. In nonlinear and non-Gaussian

models other techniques may yield better estimates. To sequentially obtain the filtering

distribution of the states, particle filters have been introduced by Gordon et al. (1993).

Particle filters are named after their particular approximation of the posterior distri-

bution by a set of Np random draws (called particles) x
(i)
0:t with associated importance

weights w
(i)
t ,

p̂(x0:t|y1:t) =
Np∑

i=1

w
(i)
t δ{x(i)

0:t}
(x0:t).

This distribution is recursively updated, that is when new data become available the

past particle paths remain unchanged and are merely extended.

The critical question is how new particles are proposed. p(xt|yt, x
(i)
t−1, θ) is optimal but

often difficult to compute. An easy way is to use the state transition which is then

called Sample Importance Sampling. This will result in a very inefficient propagation

of the particles and consequently in sample impoverishment as only a few particles re-

ceive a significant weight. This can be remedied by resampling the particles according

to their importance weights which is known as Sample Importance Resampling. How-

ever, the problem remains that only a few particles represent the current posterior.

More elaborate methods are the Resample-Move particle filter by Gilks and Berzuini

(2001) and the Auxiliary particle filter by Pitt and Shephard (1999). The former moves

all particles after resampling by a Markov-kernel that is invariant with respect to the

filtering distribution. As a result the particle become more diversified without amend-

ing the distribution. The latter exchanges the order of resampling and proposing by

extending only promising particle paths. Hereto the filtering distribution is decom-

posed into p(xt|y1:t) ∝
∑Np
i=1w

(i)
t−1p(xt|x

(i)
t−1)p(yt|xt). Setting g

(i)
t ∝ w

(i)
t−1p(yt|µ

(i)
t ) with
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µ
(i)
t = E(xt|x

(i)
t−1) one samples an Np indices j(1), . . . , j(Np) with probabilities propor-

tional to g
(i)
t . The new particles are then proposed from the state transition conditional

on the states indexed by j(k).

Yet it has been implicitly assumed the parameter θ is known. In most economic appli-

cations this is not the case. Prominent solutions that have been proposed are Storvik

(2002) and Polson et al. (2008). Probably the most popular method has been devel-

oped by Liu and West (2001) which is to include the parameters in the state vector

constraining its mean and variance to be constant. Since the particles for the param-

eter components in that case would be sampled from the prior and not be refreshed

over time the degenerate distribution is regularized by assigning kernels to the point

masses. Each kernel is shrunk towards the overall mean and the bandwidth is set as to

maintain the original posterior variance.

Implied Volatility Surface Estimation

An inherent feature of financial assets is time-varying volatility. An understanding of

an asset’s volatility pattern is crucial for any investor. Volatility is an essential ingredi-

ent in asset allocation, in pricing derivative contracts and in risk management.

The Black&Scholes option pricing model, which is commonly used to price financial

derivatives, can be inverted to retrieve the volatility. This has led to the market prac-

tice of quoting option prices in terms of percentage volatility. The implied volatility

surface has to be estimated from the options that are actually traded. The data appears

in strings along the moneyness axis with different maturities, see figure 1.

It should be stressed that the analysis of IV is restricted to plain vanilla options. It has

been shown (e.g. Shaw, 1998) that for more complex derivative securities, such as Asian

or Barrier options, the B&S equation cannot be uniquely inverted with respect to the
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Fig. 1 An example of implied volatility data.

volatility and thus in such case no reliable IV could be inferred from the option prices.

The aim of estimating the implied volatility surface can be considered a task of inter-

polation between observations. In practice, this is important to price over-the-counter

options with strike and maturity different from options that publicly traded. The sur-

face is hence an artificial construct. It is believed to be continuous and smooth.

A rich class of estimators for the implied volatility surface have been offered in the lit-

erature. Each of which has its advantages and disadvantages. The classical Nadaraya-

Watson kernel estimator is defined as σ̂BS(K, T ) =
∑
i wi(K, T )σBS(Ki, Ti) with weights

wi proportional to the (bivariate) kernel. This approach has sufficient flexibility to pro-

vide an excellent fit. It is easy to compute and implemented in virtually every statistical

package. But, if the bandwidth is chosen too small, it can induce dents in areas of the

domain where no or only few options are observed. A too large bandwidth smoothes

out features of the surface. Furthermore, if for instance the state-price density is of in-

terest, derivatives of the surface with respect to strike and maturity need to be taken

which can be numerically imprecise.

More recently a strain of literature has focused on dynamic semiparametric factor mod-

els, σ̂BS(K, T ) = m0(K, T ) +
∑L
l βt,lml(K, T ) where ml are smooth basis functions. Yet
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another method to interpolate the surface is a simple regression model where the im-

plied volatilities are projected on moneyness and its square as well as on time to matu-

rity. The disadvantage is its limited flexibility and hence insufficient fit with the data.

Regression models that include more variables to overcome this problem lack statisti-

cal motivation.

The second essay makes use of another statistical approach which is known as Bayesian

model averaging. It reduces the model selection to the selection of covariates in a lin-

ear regression y = Xβ + e. The standard approach is to choose a full specification

which contains many regressors. George and McCulloch (1993, 1995) propose to draw

submodels by MCMC techniques and then estimate each submodel. These steps are

repeated and the estimates averaged over the drawn submodels. For variable selec-

tion, one usually defines a selection variable γ ∈ {0, 1}K where γi = 1 means that the

ith regressor is selected. The selection method is employed and leaves a smaller model

which has to be estimated, that is given a model γ a linear regression y = Xγβγ + e

is estimated. Since the parameterization of the actual model is a priori not known and

it is referred to as Bayesian nonparametric modeling. In a sense, the model is strictly-

speaking parametric but nonparametric regarding its flexibility and ability to fit the

data. The second essay discusses the advantages that this approach offers for estimat-

ing the implied volatility surface compared to the aforementioned methods.

Econometric Modeling of the Term Structure and Public Debt

The third essay deals with an econometric model of the Italian term structure, its re-

lation to a reference term structure and the country’s public debt. The focus is on the

dynamics implied by economic shocks such as monetary policy or government spend-

ing shocks. In the literature the issue that there may exist different market expectations

regimes and how these may affect the implied dynamics, has not been addressed.
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A government will issue bonds to finance its outstanding debt. The yields it has to pay

on those bonds depend on the yields on reference bonds. In the Euro-area, markets
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Fig. 2 Yields on German and Italian bonds with 10 years time to maturity.

charge the smallest risk premium on German government bonds and thus we explic-

itly consider the spread between those two yield curves. In figure 2 the yield time series

on German and Italian government bonds with 10 years to maturity are depicted. To-

wards the EMU period the spread narrows significantly.

The yield differential is composed of three risk factors, which are exchange rate, liq-

uidity and default risk, and is also determined by the bond’s tax treatment. With the

inception of a common currency, in the EMU regime the exchange rate risk dimin-

ishes. Bonds may be less liquidly traded if the country is small or has little public

debt. The German and the Italian bond markets are the two largest in Europe and thus

liquidity is likely to play a minor role. Consequently, the main focus can be directed

towards the default risk. The risk premium hinges crucially on fiscal policy and mar-

ket expectations. Fiscal policy in this context can be measured by the public debt ratio

and its evolution. The effect of fiscal policy can be amplified in either way according

to the market expectations about the sustainability of the fiscal policy. If they were

pessimistic, they would charge a larger risk premium even if the public debt had not
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changed. Expectations are not observed and thus incorporating them into the model is

not straightforward. Another challenge is, however, to put all building blocks together,

to link them properly and to simulate the model.

Motivated by the decomposition theorem of Wold (1954) that every covariance-stationary

time series can be written as an infinite order moving average process, VAR are mul-

tivariate parsimonious approximations. They are particularly useful in computing the

expected path of the variables if the system is pertubated by a shock. These functions

are known as impluse responses. These are important to policy makers as well as to

other market participants because they reveal how the projected path of economic vari-

ables deviates from their steady-state if a non-anticipated shock occurs. They do, how-

ever, not address the issue of instability in the behavioral assumption. See e.g. Favero

(2001) for a discussion. Despite this drawback, impulse response functions have be-

come the standard tool in analyzing VAR.

We use VAR to model the dynamics of the Italian macroeconomic variables, the fiscal

reaction function and the German yield curve factors. In particular, we analyze the ef-

fects of policy shocks on the dynamics of those variables in dependence on the market

expectations regime. The focus of our analysis is the dynamics of the Italian public

debt.

References

Favero, C. (2001). Applied Macroeconometrics, Oxford University Press.

George, E. and McCulloch, R. (1993). Variable selection via gibbs sampling, Journal of

the American Statistical Association 85: 398–409.

George, E. and McCulloch, R. (1995). Approaches for bayesian variable selection, Sta-

tistica Sinica 7: 339–373.

9



Gilks, B. and Berzuini, C. (2001). Following a moving target - monte carlo inference for

dynamic bayesian models, Journal of the Royal Statistical Society, Series B 63: 127–146.

Gordon, N., Salmond, D. and Smith, A. (1993). A novel approach to nonlinear and

non-gaussian bayesian state estimation, IEEE Proceedings 140: 107–113.

Harvey, A. (1989). Forecasting, Structural Time Series Models and Prediction Theory, Cam-

bridge University Press.

Jegadeesh, N. and Titman, S. (1995). Overreaction, delayed reaction, and contrarian

profits, Review of Financial Studies 8: 973–993.

Kalman, R. (1960). A new approach to linear filtering and prediction problems, Journal

of Basic Engineering 82(1): 35–24.

Liu, J. and West, W. (2001). Combined parameter and state estimation in simulation-

based filtering, in A. Doucet, N. DeFreitas and N. J. Gordon (eds), Sequential Monte

Carlo Methods in Practice, Springer.

Pitt, M. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters,

Journal of the American Statistical Association 94: 590–599.

Polson, N. G., Stroud, J. R. and Müller, P. (2008). Practical filtering with sequential

parameter learning, Journal of the Royal Statistical Society, Series B 70: 413–428.

Storvik, G. (2002). Particle filters in state space models with the presence of unknown

static parameters, IEEE Transactions of Signal Processing 50(2): 281–289.

Wold, H. (1954). A Study in the Analysis of Stationary Time Series, 2 edn, Almqvist&

Wiksell, New Jersey.

10



11



12



Chapter 1

Particle-Based Clustering of Financial Time Series:

A Novel Approach to Identify Pairs Trading Opportunities

Abstract

In this paper we present a novel approach to identifying financial assets which

can be used for pairs trading. In contrast to the existing literature, we model the

dependence of the considered time series explicitly. Hereto a latent grouping vari-

able is introduced, which indicates membership to a group of assets. If an asset

is assigned to a group, it will exhibit a long-run tendency to level with the other

group members. The group structure model can be assumed either static or time-

varying. To estimate the model in the latter case, we use the MCMC particle filter

by Pang, Li and Godsill (2008) and extend it to static parameter learning. In the case

of a constant group structure, we employ a regularized auxiliary particle filter. This

proves to be computationally less efficient, but it is easily parallelizable. The prob-

lem of dimensionality, which occurs in the case that many assets are considered, is

discussed and solved by proposing a pairs-only group model. The framework is

flexible enough to accomodate more sophisticated strategies such as volatility pairs

trading. In an empirical section the methodology is applied to a number of stock

and implied volatility time series. It is shown how the algorithm tracks those that

are suitable for pairs trading. An investment exercise illustrates how the proposed

methods can be used to generate excess returns that are up to three percentage

point larger than those obtained by standard techniques.

Key words: Pairs Trading, Online Group Tracking, Sequential Parameter

Estimation

JEL classification: G11, C15



1 Introduction

In this paper we propose a novel flexible modeling framework for pairs trading and

an inference algorithm which allows jointly to track on-line which assets are suitable

for this investment strategy and to estimate the model parameters. As opposed to the

current literature, which focuses on standard econometric techniques (see e.g. Gatev

et al., 2006), the proposed method allows to model the dependence of time series ex-

plicitly and permits real time inference, which is particularly important in algorithmic

trading.

Pairs trading is a contrarian investment strategy based on the relative prices of two

assets. A comprehensive review of this strategy and traditional methods to identify

pairs can be found in Vidyamurthy (2004) and Ehrman (2006). In short, pairs trad-

ing assumes that two assets have a joint long-run equilibrium which at some times is

pertubated. The resulting spread can be exploited by short selling the rich asset and

buying the cheap. Once both have leveled again, one unwinds both positions and thus

realizes a profit. The profit depends on the time when the positions are taken because

the cash flow occurs already at the beginning of the strategy, and not at the end. This

point stresses the main difference to many other quantitative trading strategies. Pairs

trading translates the common forecast of an asset’s direction into a prediction about

its relative position to another asset. That prediction is usually made in a static way.

If two assets have been identified as a pair, it is assumed that this property will also

apply in the future.

The principle of pairs trading can be generalized to more than two assets. If a group

of assets exhibits an equilibrium, a portfolio can be formed that utilizes any occuring

spread to generate a profit. Most of the algorithms in this paper are designed for groups

of assets. An explicit constraint to pairs can be made to circumvent problems with the

dimensionality.
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The co-movements of certain assets can be found in numerous markets. In figure 1

a pair of normalized stock prices of two German companies is depicted. A common

pattern and temporary deviations from it can be observed. Interestingly, the two com-

panies do not share the same industry and thus will not be found by pure economic

arguments. This emphasizes the need for statistical tools that help to find such pairs.

There exist several statistical approaches to identify pairs of assets. A trivial way to
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Fig. 1. Pair of Stock Prices: Deutsche Bank AG and Siemens AG from January 2000 until

December 2004.

find an asset S2 from a set S that forms a pair with another asset S1 is to choose the one

that minimizes the mean squared difference between the historical observations. More

precisely, S2 is assumed a candidate for establishing a pair with S1 iff

S2 ∈ arg min
S∈S

T∑

t=0

(S1t − St)
2. (1)

This methodology has been applied for instance by Gatev et al. (2006) who claim that

this approach is preferred by many traders in practice. Their findings support the on-

going success of pairs trading and report estimated excess returns of up to 11% using

15



(1) to identify pairs.

The definition of pairs leads to a more statistical approach based on time series meth-

ods. As described by Bossaerts (1988), the most natural way to model pairs of asset

prices is to use cointegration regressions. For example, if only two assets are consid-

ered and both of them can be assumed to be I(1), a regression of the form

S1t = a + bS2t + vt (2)

is run. If the residual appears to be stationary, any spread that occurs between S1 and S2

should be of temporary nature. This procedure can be extended in a straight forward

fashion to more than two assets by considering a vector error correction model,

∆St = c + αβ′St−1 +
p−1∑

i=2

AiSt−i + vt. (3)

The estimate of the cointegration matrix β contains the information about the group

structure in the data set. In particular, the number of cointegration relationships indi-

cates the number of different portfolios that can be formed to perform pairs trading.

To identify groups of assets, we model the dependence of the time series explicitly

conditional on a latent variable that indicates group membership. This provides a very

general framework. For instance, in addition to a drift force that pulls the asset prices

together, those time series that are assigned to the same group could share a common

stochastic volatility component. This allows for a great degree of freedom in modeling.

Moreover, in contrary to cointegration, in our approach the time series need not to be

integrated in the first place, which becomes particularly relevant if volatility series are

considered.

The paper is organized as follows. The second section outlines the statistical model.

Some simulation results illustrate typical patterns that the proposed model can gen-

erate. In the third section, we present the inference algorithms and illustrate them on

simulated data. A pseudo-code of the baseline algorithm is provided in the appendix.
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A detailed discussion about the group structure and its dynamics is given. Moreover,

possible extensions of the presented framework are discussed. In the fourth section, the

proposed methodology is empirically tested by applying it to a number of stock price

and implied volatility time series. It is shown how the algorithm identifies groups and

in an investment exercise the relative performance of the method is compared to tradi-

tional approaches. The final section concludes.

2 Statistical Model

2.1 Asset Dynamics and Dependencies

A set of normalized asset price time series Sit, i = 1, . . . , N , over a period t = 1, . . . , T

and their associated returns rit are considered. The latter are modeled as

rit = µi − Fit + elit/2εit (4)

with individual stochastic log-variances lit which evolve according to

lit ∼ N(αi + βilit−1, σ
2
i ), li0 ∼ N

(
αi

1− βi

,
σ2

i

1− β2
i

)
. (5)

Thus far the time series are independent. To model the dependence between the time

series a latent group variable Gt = (g1t, . . . , gNt) ∈ {1, . . . , N}N is introduced which

assigns every asset to a group. Λ(Gt, d) = {i : git = d} denotes the index set of members

of group d and λit = λ(Gt, git) =#Λ(Gt, git) is the number of members in the group of

asset i. By nt the number of different groups is denoted. Note that a group may consist

of a single member. Essentially, if G = (1, . . . , N) all assets are independent and the

model reduces the N univariate stochastic volatility models.

The force that connects the returns of group members is Fit in (4). The mean return of
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an asset, µi, is reduced by the group-correction term Fit. If asset i trades above the other

group members, its mean return is reduced and thus it pulls the asset price towards

the group mean of all members. Consequently, the force can be defined as to satisfy

SitFit = ηi(Sit −N−1 ∑N
j=1 Sjt) or

Fit = η


1− 1

λit Sit

∑

j∈Λ(Gt,git)

Sjt


 (6)

with parameter η > 0 that controls the velocity of the adjustment and is equal for all

group members.

The best way to understand the choice of Fit is to consider the expected asset dynamics

E(Sit+1|Sit) = (1 + µi)Sit + ηi(λ
−1
it

∑

j∈Λ(Gt,git)

Sjt − Sit).

The expected time-t + 1 price is a mixture of the current asset price compounded by

its mean return and a term whose sign depends on the relative location of the assets.

Other functions for the drift force can be chosen (see Pang, 2009, for a discussion).

It is essentially a kind of mean reversion to a stochastic mean that is determined by all

targets in the same group. The idea is similar to an Ornstein-Uhlenbeck-type process

with a time-varying mean, which is frequently applied to model short-rate dynamics.

The instantaneous covariance of the drift forces of two group members i and j is given

by

cov(Fit, Fjt) = (η/λit)
2

∑

k∈Λ(Gt,git)

∑

l∈Λ(Gt,gjt)

cov
(

Skt

Sit

,
Slt

Sjt

)
.

Writing ∆Sit = Sitrit and substituting (4) for rit it can be seen that the model can be un-

derstood as a multivariate Euler-discretized diffusion process which in the continuous

time limit, ∆t → 0, satisfies

dSi(t) = Si(t) [(µi − Fi(t)) dt + exp(lit/2) dWi(t)] ,
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Fig. 2. Simulated time series with G = (1, 1, 2, 3).

where Wi(t), i = 1, . . . , N , are independent standard Brownian motions.

Figure 2 illustrates the pattern of time series that can be generated by (4) and (5). In

this example, the group structure is constant and equal to G = (1, 1, 2, 3) which cor-

responds to group structure 5 (see appendix B). The first and second asset constitute a

pair whereas the third and fourth behave individually. The time horizont is T = 120.

The strength of the reversion towards the group mean is set to η = 0.4.

2.2 Group Dynamics

The general idea behind clustering in state space model is to introduce a latent variable

G, which assigns each object to a group. In table B in the appendix, all possible group

structures for four targets can be found. For identifiability the first target is always la-

beled 1, the second 1 or 2, and so on. This normalization has to be applied whenever a

new group structure is drawn. For instance, if G = (4, 1, 3, 1) has been sampled it needs
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to be transformed into (1, 2, 3, 2). Consequently, nt = max Gt.

It can be either assumed that the group structure of the objects is constant or that it

may evolve over time resulting in a stochastic process (Gt)t=1,...,T . The former may in-

tuitively seem more appealing because an investor will not execute the strategy if the

group structure can suddenly change. The latter can be justified by understanding that

it also allows for staying in the same group structure. Short-termed deviations that

stem from a temporary disequilibrium will not thward finding the correct group struc-

ture. Moreover, a time-varying group structure yields more significant results because

its likelihood function has a larger degree of freedom. In the sequel, we study both

approaches.

The inference algorithms are different but both are sequential Monte Carlo methods

(see Doucet et al., 2001, for a review). For the static group structure model we apply

the standard auxiliary particle filter (Pitt and Shephard, 1999) which can be easily ex-

tended to joint state and parameter learning (Liu and West, 2001). In case of a dynamic

group structure we use an MCMC particle filter (Pang et al., 2008) and extend it by the

aforementioned regularization to allow for joint state and parameter estimation.

To model the dynamics of the group structure, a distribution for the group transition,

p(Gt|Gt−1), needs to be specified. It proofs to be convenient to introduce an auxiliary

variable πt which captures the distributional characteristics of Gt and hence to consider

the joint dynamics p(Gt, πt|Gt−1, πt−1). The first to introduce this kind of group transi-

tion model using Dirichlet distributions were Wei et al. (2007). We use a version that

has been further refined by Pang (2009). The probability of being in a certain group k

is p(git = k|πt) = πt,k. These probability weights are random and Dirichlet distributed

with base distribution αt, πt ∼ D(αt). 1 The base parameter of the Dirichlet distribu-

1 There exist different parameterizations of the Dirichlet distribution. We use a single parameter

version where the base distribution is not required to be normalized. The normalizing constant

determines the reciprocal of the variance.
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tion, αt, evolves over time as a mixture of the previous realization of the probability

weights and the initial parameter α0,

αt = ξα0,Cπt−1 + (1− ξ)α0.

The weights α0,i initialize the prior distribution and α0,C =
∑

i α0,i sets the variance of

the initial distribution. The autoregressive parameter ξ controls the dependence of the

dynamic Dirichlet distribution.

3 Sequential Inference

In this section the inference algorithms for both dynamic and static group learning are

presented. This is followed by a proposal for solving the curse of dimensionality in this

context. Moreover, it is demonstrated how the algorithm can be used to cluster assets

according to their volatilities. The section concludes with a check for the robustness of

the algorithm against false pairs.

3.1 Dynamic Group Learning

The model for the group structure is now assumed dynamic, (Gt)t=1,...,T , and the tran-

sition p(Gt, πt|Gt−1, πt−1) is given by the dynamic Dirichlet distribution as introduced

in the previous section.
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3.1.1 MCMC Particle Filter

There exists a number of particle filters which use Markov chain Monte Carlo (MCMC)

methods. The first to introduce MCMC in a sequential setting were Gilks and Berzuini

(2001) who apply a Markov kernel, that is invariant with respect to the current pos-

terior distribution, to the resampled particles in a standard Sampling Importance Re-

sampling algorithm. This step further diversifies the location of the particles. To acco-

modate group dynamics efficiently in this context, Khan et al. (2005) consider the joint

posterior of t− 1- and t-states. They use an MCMC scheme to compute the integral in

p(Zt|S1:t) =
∫

p(Zt, Zt−1|S1:t) dZt−1

where S1:t = (S1, . . . , St) and Zt = (Gt, πt, lt) is the full set of states. This is compu-

tationally demanding because in every time step the predictive distribution has to be

computed. Pang et al. (2008) propose a more efficient MCMC particle filter that re-

quires less computational power. It is similar to the Resample Move particle filter but

it differs in that the particles are not moved after resampling to achieve a larger number

of distinct particles but the MCMC algorithm is used to propose new particles. Hereto

a number of Metropolis-Hastings iterations are performed in a sequential fashion. The

joint filtering distribution

p(Zt, Zt−1|S1:t) ∝ p(Zt, St|Zt−1, St−1) p(Zt−1|St−1). (7)

is considered as the target distribution for the MCMC algorithm. This yields a sequence

of draws (Z
(m)
t , Z

(m)
t−1 ). A burn-in sample is discarded from the MCMC output to ensure

convergence and the remaining chain is thinned to reduce the autocorrelation between

drawn particles. Only the first component Z
(p)
t is kept, 2 which can be considered as a

draw from the marginal distribution of (7). This distribution coincides with the desired

2 The distinction between the indices m and p is made to distinguish iterates from the MCMC

scheme and those draws that are kept as particles. Hence, m = 1, . . . , NMCMC , p = 1, . . . , Np
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filtering distribution p(Zt|S1:t). A comparison of some variants of this algorithm can be

found in Pang (2009, chapter 4).

All those algorithms allow for state filtering given parameters. In economic and finan-

cial practice, model parameters are unknown and need to be estimated. During the

last decade, a number of methods to estimate parameters in a state-space framework

online have been proposed, see Kantas et al. (2009) for a recent review. We implement

the (static) parameter learning procedure originally proposed by Liu and West (2001)

which uses a regularization of the parameter distribution and thereby generates an ar-

tificial parameter evolution.

Including the parameter vector θ in the target distribution (7) one obtains

p(Zt, Zt−1, θt, θt−1|S1:t) ∝ p(St|Gt, lt, θt, St−1) p(lt|lt−1, Gt, θt)×
p(θt|Gt, θt−1, S1:t−1) p(Gt, πt|Gt−1, πt−1) p(θt−1, Zt−1|S1:t−1). (8)

The time-subscript on the parameters emphasizes the information set it is conditioned

upon, that is, a particle θt approximates the distribution of θ given S1:t. In other words,

through its artificial evolution the estimator is time-varying whereas the estimand is

not.

All terms that appear in the joint filtering distribution (8) can be easily evaluated and

sampled from. The first term

p(St|Gt, lt, θt, St−1) =
nt∏

d=1

p(SΛ(Gt,d),t|lt, SΛ(Gt,d),t−1, θt) (9)

is a product of normal distributions

p(SΛ(Gt,d),t|lt, SΛ(Gt,d),t−1, θt)

= N(SΛ(Gt,d),t−1(1 + µΛ(Gt,d) − FΛ(Gt,d),t−1), S
2
Λ(Gt,d),t−1e

lΛ(Gt,d),t)

and Np = NMCMC−NBurnIn
thin where thin is a thinning constant.
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The transition of the log-variances, p(lt|lt−1, Gt, θt), is independent of the group struc-

ture. Also this distribution takes the form of a product of normal distributions

p(lt|lt−1, Gt, θt) =
N∏

i=1

p(lit|li,t−1, θt) =
N∏

i=1

N(lit|αi + βili,t−1, σ
2
i ).

The term p(θt|Gt, θt−1, S1:t−1) is the regularized distribution of the model parameters. It

is normal with mean equal to the previous parameter particles shrunken towards their

overall mean. The covariance equals the estimated covariation between the parameter

particles at the previous time step multiplied by a factor that depends on the strength

of shrinkage in the mean specification. This procedure maintains the first and second

moments of the time-t− 1 parameter particle approximation.

The regularization of the parameter particle distribution with normal kernels makes

sense only if all parameter components have the whole real line as domain. Therefore

we transform the parameters before updating their particles and vice versa before they

are used. Standard deviations are considered in logarithms. We impose stationarity

of the scedastic equation which has been justified e.g. by Jacquier et al. (1994). Also

to our best knowledge, no empirical study has ever found a negative autoregressive

coefficient in the stochastic log-variance equation. Hence, we transform β logistically

and thereby constrain it on (0, 1). When transformed on that domain, all parameters

are assigned normal priors.

The term p(Gt, πt|Gt−1, πt−1) is the dynamic Dirichlet distribution as discussed above.

The last term can be approximated by the previous set of particles

p̂(θt−1, Gt−1, πt−1, lt−1|S1:t−1) = (1/Np)
Np∑

p=1

δ{(θt−1,Gt−1,πt−1,lt−1)(p)}(θt−1, Gt−1, πt−1, lt−1).

Finally, it should also be noted that in the current context the model parameters are

not of particular interest per se. They could be labeled nuisance parameters since the

only interesting result for a trader, who looks for suitable pairs, is the estimated group

structure. However, obtaining precise parameter estimates will facilitate the algorithm
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to track the ’true’ group structure.

3.1.2 Simulation Experiment

We simulate a process from the (4) and (5) using G = (1, 1, 2, 3), and run the algorithm

on the simulated data. For the MCMC algorithm 13 000 iterations are used, a burn-in of

1 000 iterations is discarded and the chain is thinned by every other, resulting in 6 000

particles. The results are displayed in figure 3.

The algorithm finds the correct group structure 5 after an initial learning period of

about 30 observations. Pairs, as shown in the right hand panels, are computed on the

basis of the estimated group structure. 3 In practice, such strong evidence cannot be

expected. This point results from the fact that when the algorithm is applied in an

empirical context, the data generating process will differ from the one that is embedded

in the algorithm. Moreover, the filtering results are not to be understood as a general

statement about the distribution of the estimate. We run the filter only on a single

realization. To obtain an estimate of the distribution of the filtering results, a Monte

Carlo study would be necessary. Hereto a large number of realizations of the error

term needed to be simulated and the algorithm to be run on each of the realizations.

However, on a typical Intel-machine with 2 GHz a Matlab program that runs the filter

on four assets using 13 000 MCMC iterations takes about 320 seconds per update and

thus on a sample with 120 observation per series more than 10 hours. Consequently, a

full Monte Carlo study with only 1 000 replications will take more than a year.

3 It should be noted that only those groups are counted as pairs that have exactly two members.

For instance, Gt = (1, 1, 1, 2) contains no pair whereas Gt = (1, 2, 2, 1) has two pairs. For first

group structure uses three assets to compute the drift force which in general will not coincide

with the corresponding pair means.)
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Fig. 3. Results with Drift-Only Clustering Algorithm.

3.2 Static Group Learning

Generally, the sequential estimation of static parameters in a nonlinear state space

model imposes a number of difficulties. If the parameters are treated as states the most

severe obstacle is that once the particles are sampled from the prior they are never

updated but only their importance weights. If prior and posterior have different areas

of concentration, the particles estimate might be biased. Fortunately, the group struc-

ture distribution is discrete and has only a finite number of possible realizations. Thus,

when sampling from the prior, one needs to ensure that a sufficient number of particles

are placed on each of the possible group structures. The updated importance weights

yield an unbiased particle representation of the time-t posterior of the groups.

26



3.2.1 Auxiliary Particle Filter

The algorithm to infer a static group structure is simply the APF for a given initial

group structure G. The joint time-t posterior of states and parameters is decomposed

into

p(Zt, θ|S1:t) ∝ p(St|lt, G, θ, St−1) p(lt|G, θ, S1:t−1) p(θ|G,S1:t−1) p(G|S1:t−1) (10)

where p(lt|G, θ, S1:t−1) =
∫

p(lt|G, θ, lt−1) p(lt−1|G, θ, S1:t−1) dlt−1.

Since G does not evolve over time the particle filter does not reallocate particles be-

tween group structures. Therefore it is important that the prior on G allocates a suffi-

cient number of particles to every possible group structure. A non-informative prior on

the group structure G is to assume independent uniform distributions, that is p(G) =
∏N

i=1 p(gi) where p(gi) = U({1, . . . , N}) = N−11{1,...,N}(gi) which assigns every object in-

dependently to a group with equal probability. In practice, one will start with an equal

number of particles for each group structure.

When time-t data become available, for each of the series the corresponding drift force

is computed and the log-variance predicted. The likelihood takes the same form as in

the dynamic group learning case (9). Hence, the likelihood ratios that determine the

importance weights are easy to evaluate. Particles are resampled within each group

structure, which prevents less likely group structures from not receiving any particles.

This would hinder them to load up any probability when it should receive a higher

posterior probability. Summing all normalized importance weights within each group

structure yields its posterior probability.

3.2.2 Simulation Experiment

The results for the APF for static group learning are displayed in figure 4. We use

15 · 4 000 = 60 000 particles. The true group structure 5 receives the largest posterior
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Fig. 4. Filtering results for the auxiliary particle filter.

probability. All other pairs possibilities have negligible probabilities. Apart from some

noise, when the algorithm does not indicate the true group structure, it finds none,

that is Ĝ = (1, 2, 3, 4), which can be interpreted as being conservative on investments.

No grouping will support an investor’s decision of not executing pairs trading. By

contrast, finding an incorrect group structure would be hazardous for the investor.

This algorithm clearly requires a larger number of particles. The reason is that the

number particles of very unlikely group structures is maintained as the algorithm does

not allow for cross-model jumps.

3.3 Dimensionality and Pairs Dynamics

The algorithms of the previous two sections cluster time series into groups of arbitrary

size. A problem, which will occur in financial practice, is the rapidly growing num-
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ber of possible group structures. For N assets the number of possible group structures

is the N th Bell (1934) number which is recursively defined by BN =
∑N−1

n=0

(
N−1

n

)
Bn,

B0 = 1. For only ten assets there exist B10 = 115 975 many group structures. This im-

poses an excessive number of particles. In practice, many assets will be considered so

that numbers such as N = 100 will not be uncommon. This maligns the proposed

method to be computationally infeasible for such practical purposes. If only pairs

rather than general groups are considered the dimensionality can be reduced.

If only goups of at most two members, then named pairs, are considered the magni-

tude of the possible dependencies reduces from exponential to quadratic. For instance,

if N = 100 only (N − 1)N/2 = 4 500 possibilities for pairs exist. To circumvent any

problems from possible redundancies in the pairs structure, each asset can be assigned

to at most one pair for every particle. Effectively, the reduction of the dimensionality

comes at the cost of less generality. This becomes particularly relevant if it can be ex-

pected that more than two assets exhibit a grouping behavior as will be the case, for

instance, if fixed income instruments are considered.

Let P ⊂ {1, . . . , N}2 denote the set of all possible pairs. We associate every pair with a

number in the following order: (1, 2) is always 1 and (N − 1, N) is H := (N − 1)N/2.

The mapping f1, that maps p = (p1, p2) ∈ P to that number, is given by

f1(p) =
p1∑

i=1

(N − i)− (N − p2)

= (p1 − 1)N − p1(p1 + 1)

2
+ p2. (11)

Similarly, if I denotes the power set of P , then for I ∈ I define f2(I) =
∑

i∈I 2i−1, which

is the unique number associated with this pairs structure. Every group structure Gt has

the same dimension N ×1 whereas the dimension of pairs is mt×2 where 0 ≤ mt ≤ H .

Hence, when proposing the new pairs structure, also the number of pairs has to be

proposed. To this end, we specify a mixture distribution of a uniform distribution over

all numbers and a point distribution in the previous number mt−1. The autoregressive
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parameter αm controls the dynamics of the number of pairs whereas αp determines

how likely it is to propose the same assets that have been part of a pair in the previous

time step. The inverse of f1 can be easily sequentially computed by identifying the

first component using its possible range and the second component by finding the

difference in (11).

Summing up, given hyperparameters and a t − 1 pairs structure (Pt−1,mt−1) the new

pairs structure is proposed in the following way

(1) P (mt = j|mt−1 = i) ∝ exp(−αm|j − i|), j ∈ {1, . . . , H}
(2) define Nl = 1(∃ i : Pi,t−1 = l}, l = 1, . . . , N

(3) create weights wl = 1 + αpNl

(4) for i = 1 : mt draw pair members:

P (P 1
it = l|Pt−1) ∝ wl and P (P 2

it = l|Pt−1) ∝ wl, l ∈ L

L is the set of indices, that is, initially,L = {1, . . . , N}. Once P 1
1t is drawnL = {1, . . . , N}\

{P 1
1t} and so on. The MH acceptance probabilities are analogous to A1 to A3 in (A.1) -

(A.3) of the baseline algorithm.

As before, we demonstrate the pairs tracking algorithm on a simulated dataset with

N = 4 assets with a single pair (1, 2) which previously has been referred to as group 5

or Gt = (1, 1, 2, 3). The results are shown in figure 5. It takes about 35 periods until it in-

dicates the true pair and from about the 90th period the correct pairs structure is found

with a posterior probability of mostly more than 50%. The only competing model that

receives a significant weight is the model where all assets are independent. Again, this

is not virulent because it will yield a more conservative investment rule.
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Fig. 5. Filtering results for the dynamic pairs structuring model for the pair (1, 2).

3.4 Model Extensions and Robustness

3.4.1 Implied Volatility Pairs Trading

Pairs trading as described in the introduction exploits temporary deviations of an as-

set price from an equilibrium that is defined by its group members. Another way to

conduct pairs trading is to consider an asset’s volatility rather than its price.

In practice volatility pairs trading is executed by taking positions in derivative con-

tracts on the underlying pairs (see e.g. Mougeot, 2005). The Vega of a European op-

tion on a stock is positive and given by K e−rτφ(d2)
√

τ where φ denotes the pdf of the

normal distribution and K the strike price. Hence, an option on a stock with a larger

volatility will trade at a higher price. A spread in the volatility can thus be exploited

by taking a long-short position in the respective options. For instance, if assets 1 and 2
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establish a volatiltiy pair and if σS1 > σS2 then the strategy is to buy a S1 and sell a S2

call or put option with equal moneyness and equal maturity. It should be noted that

the other ’greeks’ have to be hedged so that the only effect on the portfolio stems from

the volatility (see e.g. McMillan, 2002).

Using the framework for dynamic and static group learning, volatility pairs trading

means no challenge and it works just as for stock prices. It should be noted, how-

ever, that with cointegration techniques this task could not be addressed since implied

volatilities are usually not found to be integrated and consequently cannot be cointe-

grated.

In appendix C a preliminary model to cluster assets with respect to their latent stochas-

tic volatility is presented.

3.4.2 Alternative Contrarian Investment Strategies via Group Tracking

Contrarian investment strategies build upon the empirical observation that some stock

prices exhibit a systematic pattern in relation to some other stocks. A typical example

is a lag-1 cross-correlation between stock returns. This may be due, for instance, to

nonsynchronous trading (see Tsay, 2002, chapter 5).

Lo and MacKinley (1990) discuss another case of contrarian investments which exploits

the lead-lag-effect frequently found in some pairs of stocks. They find that some trade

reactions on some stocks are faster than on others. This observation, which in effect is

similar to non-synchronous trading, induces a stock price behaviour, which is known

as lead-lag-effect. For instance, if good news is made public, some stock prices may

increase before others. Thus a strategy that exploits this effect, could be to buy (short)

an asset if its leader has increased (decreased) previously. What before has been the

strengh of the reversion to the group mean, η, is here the length of the lag-period.
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3.4.3 Robustness to False Pairs

If a potential pair is not found, it will not be exploited and no arbitrage profit will be

realized. However, finding a pair that actually exhibits no long-term tendency to close

the spread is virulent because it potentially generates losses.

A typical false pair will exhibit highly correlated returns but without any force to level.

As such, we simulate a normally distributed return series

rt
iid∼ N(µ, Σ). (12)

The false pairs are assigned a correlation of ρ12 = 0.9 and the other correlations are set

to zero. A return series is simulated from (12) for T = 120 and the drift-only model with

dynamic group learning is run on that simulated dataset. The results are displayed in

figure 6. The algorithm initially finds pairs but for less than 20 periods. This occurs

as a result of temporaneous comovements between the two prices of the ’fake pairs’.

After the 75th observation the algorithm clearly indicates that there exists no pair in

the dataset. Estimating the VECM (3) on the simulated data yields that the null of no

cointegration between S1 and S2 is not rejected at 5% but at 10% with the maximum

Eigenvalue test. Consequently, it appears that neither method finds the false pair. The

rejection by standard cointegration seems, however, less convincing.

4 Empirical Analysis

In the previous sections we have presented alternative models and corresponding in-

ference algorithms to identify pairs. On simulated data all algorithms have proven to

work well. In this section we apply the statistical framework to real data. First, we

demonstrate that we are able to track pairs both in price and in implied volatility se-

ries. Second, in an investment exercise we show how the output of the algorithm can
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Fig. 6. Filtering results for dynamic group structure model with a simulated false pair [1 2].

be used for executing pairs trading and how the excess returns compare with the tra-

ditional approaches.

4.1 Identifying Pairs

In each of the following two examples three time series are considered. We choose the

series as to have one pair and an obviously independent series.

4.1.1 Example: Pairs of Asset Prices

We consider three stock price series for the period from December 4, 2006 until April

20, 2007 sampled at a daily frequency. All prices are taken at market closing. The three

stocks are of the two Italian banks Banca Intesa SanPaolo and Banca UniCredit, as well
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Fig. 7. Stock price series of Banca Intesa SanPaolo (Ita), Banca UniCredit (Ita) and Google

Corp (US).

as the US internet and software corporation Google. These are chosen since it can be

economically justified that the first two stocks might be a pair since these two com-

panies share the same industry, face the same market conditions and their stocks are

traded on the same stock exchange. The normalized stock prices series are depicted in

figure 7. By purely visual inspection it seems indeed reasonable to assume that Intesa

and UniCredit establish a pair over the whole sample period.

We use the basic clustering algorithm with time-varying group structure. All priors

are empirical Bayes. After the transformation, each parameter is assigned a normal

distribution. We use a pre-sample period of six months. The means of the drifts equal

the mean returns over that period. For the stochastic volatility component, we center

the prior of the autoregressive term on 0.9 and the intercept so that the long-run log-

variance α/(1−β) equals the pre-sample estimate of the variance for each of the series.

The prior of the volatility of the error term in the log-variance equation is centered at
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Fig. 8. Empirical results for the three stocks: Intesa SanPaolo, UniCredit and Google Corp.

0.1. For η we use a uniform prior distribution over [0, 1].

Aside from some noise, from the 40th observation on, the algorithm indicates that as-

sets 1 and 2 are likely to establish a pair.

4.1.2 Example: Pairs of Implied Volatilites

In this example we consider three German companies: Bayrische Motoren Werke (BMW)

and Daimler Benz are automotive producers and Hypo Real Estate (HRE) is a mortgage

bank. All series are sampled daily from January 1, 2009 until May 20, 2008 which, as

before, corresponds to 100 trading days. The series are depicted in figure 9. Through

the credit crunch turmoil the implied volatilities of all three stocks are large but even

more extreme for the HRE. Both, economically and from a pure visual inspection of

the data, it is clear that the first two volatility series establish a pair whereas the third

36



should be independent of the former. 4

The filtering results are displayed in figure 10. It takes only a few periods until the

Jan 1, 2009 May 20, 2009
0

0.5

1

1.5

2

2.5
BMW
Daimler
HRE

Fig. 9. At-the-money implied volatility time series of BMW, Daimler and HRE.

algorithm identifies the BMW - Daimler pair. The only competing group structure that

receives a significant weight is 5, that is all volatilities are independent.

4.2 Investing in an Identified Pair

Suppose a pair has been identified as demonstrated in the previous subsection. The

excess returns on executing the pairs trading strategy depend not only on which assets

4 The BMW-Daimler pair has been discussed in Mougeot (2005) and is a typical example of an

implied volatility pair.
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Fig. 10. Empirical results for the ATM-IV series of BMW, Daimler and HRE.

have been selected as a pair but also on the underlying statistical model. The prac-

tioners’ investment rule is to exploit a spread if the deviation of both assets from the

equilibrium is larger than twice the estimated standard deviation of the spread. In the

bivariate cointegration framework (2), the estimated stationary residual

v̂t = S1t −
(
â + b̂S2t

)
(13)

has a different variance. Thus, for the traditional approaches to pairs trading, the po-

sition is locked into if the spread exceeds twice the volatility either of the spread or of

the residual of the cointegration regression (13).

The group tracking model allows for a different definition of an opening of the pair.

We define the pair to be open if the probability of not being a pair is increasing and

exceeds a threshold pthres. This is motivated by the observation that this probability

decreases if the assets depart from another. When both approach again the probability
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increases. The lower this threshold probability pthres, the larger the spread between the

assets that the investor requires to take the positions. A larger value of pthres will more

frequently indicate that the pair is open.

By τ we denote the residual difference on the closing of the pair. The positions are un-

wound at the first time that |S1t − S2t| ≤ τ . The effect of τ is similar to the effect of

choosing pthres. A larger value of τ closes the pair more frequently and thus allows for

more trades.

Computing the excess returns on exercising pairs trading is a non-trivial task. For the
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Fig. 11. Comparison of investment strategies with respect to the open-close identification of the

pair.

details on the specific computations we refer to Andrade et al. (2005). Essentially, if the

pair opens one dollar is invested in the pair. The resulting pay-off can be interpreted

as an excess return. The pairs are found on the basis of the mid-price, whereas trading

is executed using bid and ask prices. This accounts for the per trade transaction cost.

The larger the number of trades, the higher the transaction costs that are associated

with that strategy. This is particularly important because the number of trades may

substantially differ across strategies. We neglect fixed costs as these can be assumed

equal across strategies.

We illustrate this point empirically by considering two German stocks, Siemens and
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Deutsche Bank, from January 2000 until December 2004. We consider end-of-day prices,

resulting in 1270 observations per stock. The data series have been depicted in the in-

troduction in figure 1.

In figure 11 the three investment rules are compared. A value different from zero in-

Strategy t.costs Basic Pairs Cointegration Group Tracking

τ = 0.001, pthres = 0.25 n 9.9% 13.1% 12.5%

y 9.9% 13.0% 12.4%

Number of trades 2 4 4

τ = 0.005, pthres = 0.25 n 10.0% 13.3% 14.7%

y 9.9% 13.0% 14.4%

Number of trades 2 4 5

τ = 0.005, pthres = 0.30 n 10.0% 13.3% 13.7%

y 9.9% 13.1% 13.6%

Number of trades 2 4 5

τ = 0.005, pthres = 0.40 n 10.0% 13.3% 13.6%

y 10.0% 13.1% 13.5%

Number of trades 2 4 5

τ = 0.01, pthres = 0.25 n 9.9% 13.0% 14.4%

y 9.8% 12.8% 14.2%

Number of trades 2 4 5

τ = 0.025, pthres = 0.25 n 9.7% 12.6% 13.8%

y 9.6% 12.3% 13.4%

Number of trades 2 4 5

τ = 0.025, pthres = 0.40 n 9.7% 12.6% 12.6%

y 9.7% 12.3% 12.3%

Number of trades 2 4 5

τ = 0.05, pthres = 0.35 n 12.2% 13.8% 12.8%

y 12.0% 13.4% 12.5%

Number of trades 3 5 6

τ = 0.05, pthres = 0.40 n 12.2% 13.8% 13.8%

y 12.0% 13.5% 13.5%

Number of trades 3 5 6

Tab. 1. Excess returns on pairs trading strategies using the Deutsche

Bank - Siemens pair between 2000 and 2004. In each cell, upper line: no

transaction cost; lower line: including transaction costs.
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dicates an open spread. The sign denotes the direction. If the spread is positive, a long

position in Siemens and a short position in Deutsche Bank is taken, and vice versa if

the spread is negative. Some similarities across the strategies appear immediately.

Table 1 shows the excess returns on executing different pairs trading strategies on the

Deutsche Bank - Siemens pair. The first column refers to the model where the invest-

ment rule depends on the variance of the spread, the second to the cointegration ap-

proach and the third to the group tracking model. In each row, the excess returns for all

three rules are shown without and with transaction costs. In addition, the numbers of

trades are shown. It appears that group tracking suggests more frequently that the pair

is open. Since the variance of the cointegration residual is smaller than the estimated

variance of the spread, the former approach proposes more transactions than the latter.

The results favour the group tracking methodology. Cointegration delivers excess re-

turns that are about 2 percentage points higher than the ordinary investment rule. Pairs

trading using group tracking yields even higher excess returns than cointegration. In-

deed, only in a single case (τ = 0.05, pthres = 0.35), the performance of the group

tracking pairs trading rule is worse than cointegration. However, even in that case, it

still outperforms the basic pairs trading rule.

5 Conclusions

In this paper we present an alternative, flexible real-time econometric model to iden-

tify pairs trading opportunities and inference algorithms to estimate the parameters

and the group structure of a multivariate financial time series. Both static and dynamic

group structure estimation appear successful on simulated data. The results with the

dynamic group structure model seem even more convincing. When the model is ap-

plied to real data, we find that the algorithm selects reasonable pairs. Moreover, invest-
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ment rules that are based on the output of the algorithm can generate excess returns

that are larger than those generated by pairs trading rules based on cointegration. The

group tracking methodology also allows to track non-integrated time series such as

volatilities and thereby opens a number of new possibilities in pairs trading.

The only drawback of the proposed methodology is the curse of dimensionality when

an asset is part of more than one pair, or when it is part of a group with more than two

members. This will be the case, for instance, for fixed income instruments. This issue

will be part of our future research agenda.
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A Algorithm Details

Let (Zt−1, θt−1)
(m), m = 1, . . . , Np be the t − 1 filtering estimate. The MCMC algorithm

to propose particle to estimate the updated filtering distribution is given by

(1) set m = 1.

(2) randomize: with probability PL do

(a) propose (G∗
t , π

∗
t , l

∗
t , θ

∗
t , G

∗
t−1, π

∗
t−1, l

∗
t−1, θ

∗
t−1) jointly from 5

(G∗
t−1, π

∗
t−1, l

∗
t−1, θ

∗
t−1) ∼ (1/Np)

Np∑

p=1

δ(Zt−1 − Z
(p)
t−1),

(G∗
t , π

∗
t ) ∼ p(Gt, πt|G∗

t−1, π
∗
t−1),

θ∗t ∼ N(c
(p∗)
t , (1− a2)Vt)

l∗t ∼ p(lt|l∗t−1, G
∗
t , θ

∗
t )

where

c
(p∗)
t = aθ

(p∗)
t−1 + (1− a)θ̄t−1 and Vt =

1

Np − 1

Np∑

p=1

(θ
(p)
t−1 − θ̄t−1)(θ

(p)
t−1 − θ̄t−1)

′

(b) accept the joint proposal with probability ρ1 = min(1, A1) where

A1 =
p(St|St−1, G

∗
t , l

∗
t , θ

∗
t )

p(St|St−1, G
(m−1)
t , l

(m−1)
t θ

(m−1)
t )

(A.1)

and set (Z
(m)
t , θ

(m)
t ) = (G∗

t , π
∗
t , l

∗
t , θ

∗
t ) else keep (Z

(m−1)
t , θ

(m−1)
t )

(3) else do (with probability 1− PL)

(a) set (G
(m)
t−1, π

(m)
t−1) = (G

(m−1)
t−1 , π

(m−1)
t−1 )

(b) propose π∗t from

π∗t ∼ q3(πt|π(m−1)
t−1 ) = p(πt|π(m)

t−1)

5 The proposals are based on an initial proposal of a particle p∗ ∼ U(1, . . . , Np).
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and accept with ρ2 = min(1, A2) where

A2 =

∏N
i=1 p(g

(m−1)
i,t |g(m−1)

i,t−1 , π∗t )∏N
i=1 p(g

(m−1)
i,t |g(m−1)

i,t−1 , π
(m−1)
t )

(A.2)

(c) propose g∗i,t ∼ p(gi,t|g(m)
i,t−1, π

(m)
t ) and accept with ρ3 = min(1, A3) where

A3 =
p(St|St−1, l

(m)
t , G

(m′)
\i,t , g∗i,t)

p(St|St−1, l
(m)
t , G

(m′)
t )

(A.3)

where G
(m′)
t is the vector of the current MCMC iterate with updated compo-

nents and G\i denotes group structure except the ith component. Such MH-

step requires a Gibbs cycle.

(d) sample a random particle p and then θ
(m)
t ∼ N(c

(p)
t , (1− a2)Vt) where

c
(p)
t = aθ

(p)
t−1 + (1− a)θ̄t−1 and Vt =

1

Np − 1

Np∑

p=1

(θ
(p)
t−1 − θ̄t−1)(θ

(p)
t−1 − θ̄t−1)

′

(e) sample l
(m)
t ∼ p(lt|lt−1, G

(m)
t , θ

(m)
t )

(4) until m ≥ NMCMC , increase m → m + 1 and return to (2)

(5) keep only Z
(p)
t = Z

(bm/thinc)
t

(6) compute particle representation of time-t filtering density

p̂(Zt, θt|S1:t) = (1/Np)
Np∑

p=1

δ(Zt,θt)(p)(Zt, θt)

The algorithm with the presented hyperparameters yields an MH acceptance rate of

25% to 67% after the burn-in period. In all applications we have set thin = 2.

The randomization in steps (2) and (3) selects either the joint or the individual draw.

It allows the algorithm to move out of region where joint proposals are likely to be

rejected. This refinement also permits to explore regions of the state space that are

unlikely to reach with a joint move. This produces more diversified particles.

In all setups we have set the discount factor in the Liu and West (2001) procedure to

0.95.
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B Group and Pairs Structure

Structure Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Asset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Asset 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

Asset 3 1 1 2 2 2 1 1 1 2 2 2 3 3 3 3

Asset 4 1 2 1 2 3 1 2 3 1 2 3 1 2 3 4

Tab. A.1: Group Structure for 4 Assets.

Pair Number 1 2 3 4 5 6

Pair (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

Tab. A.2: Pairs Structure for 4 Assets.

C Clustering with Respect to the Latent Volatility

In the main text we describe how to group assets according to their implied volatility.

The full flexibility of the framework can be understood by considering a grouping with

respect to the latent stochastic volatility. Noting the close relation between the latent

and realized volatility a possible trading strategy takes positions in variance swaps.

Each asset i is assumed to satisfy

rit = µit + elit/2εit. (C.1)

The individual log-variances lit are assumed to follow a stationary AR(1) process with

long-run mean l̄i = αi

1−βi
. If the assets in a group have a similar long-term behavior with

a mean location that is determined by the overall group average l̄i can be replaced by

Vi,t−1 = (1/λit)
∑

j∈Λ(Gt,git) lj,t−1. The resulting volatility dynamics read

∆lit = (1− βi)(Vi,t−t − li,t−t) + σlieit. (C.2)
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It should be noticed that Vi,t−1 is computed for the time-t group structure Gt. This is for

the reason that Gt must determine the dynamics of lt whose mean evolution is com-

puted on the basis of lt−1. The group structure model is the same as in the main text

and can be also substituted by the pairs dynamics. From (C.2) it becomes clear that the
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Fig. C.1. Simulated Volatility Pairs with Group Structure (1,1,2,3). Upper panel: normalized

stock price series, lower panel: log-variance series.

intercept and the autoregressive coefficient of the scedastic equation have new mean-

ings. The larger βi the slower the speed of reversion towards the group volatility. If a

group consists of only a single asset, Vi,t−1 is substituted by l̄i to ensure the stationarity

of the volatility equation. Otherwise, the volatility would be considered equal to its

mean at every point in time and thus the process became a random walk.

Figure C.1 illustrates a pattern of sample paths that the model can generate. The up-

per panel shows the simulated normalized stock prices and the lower panel the log-

variances with G = (1, 1, 2, 3). In figure C.2 the results for these series are depicted.

These appear weaker, but the algorithm clearly indicates the correct group structure.
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Fig. C.2. Filtering Results for Simulated Volatility Pairs with Group Structure (1,1,2,3).

48



49



50



Chapter 2

Flexible Bayesian Modeling

of Implied Volatility Surfaces

Abstract

In their Bayesian approach to nonparametric bivariate regression, Smith and Kohn

(1997) propose a regressor selection algorithm to fit a flexible surface to data. In this

paper we demonstrate how this methodology can be applied to estimate implied

volatility surfaces and why it should be considered an alternative to classical esti-

mators. The implied volatility surface is modeled by a spline regression on many

functions of moneyness and time to maturity. Covariates are selected by an MCMC

algorithm and the estimate is obtained by averaging the estimates of each draw. In

contrary to the majority of the literature on IVS modeling, we also assume a more

financial perspective and consider option pricing as opposed to volatility fitting.

Moreover, we show how the dependency of the surfaces over time can be modeled

in this framework. Empirically the approach is illustrated through an application

to plain vanilla European style options on the S&P500 index.

Key words: Implied Volatility Surface, Bayesian Model Averaging, Unbiased

Estimation, Flexible Modeling

JEL classification: C51, G13



1 Introduction

Knowledge about the volatility of an asset is paramount to practioners in the financial

industry. First, an asset’s volatility is an essential parameter in pricing options which

have that asset as underlying. And second, since implied volatilities are a forward-

looking measure, they can be also used to predict future realized volatility which is a

key factor in asset allocation.

Volatility is unobserved and thus has to be estimated. There are two distinct approaches.

Either a statistical model for the volatility process is specified and subsequently esti-

mated, or the traditional Merton (1973) and Black and Scholes (1973) (henceforth B&S)

model is used to infer the volatility that has been used to price options that are cur-

rently traded. The volatility estimates that are obtained in the latter way are referred to

as implied volatilities (IV). If these are considered on a domain of strike prices and ma-

turity times an extrapolation of those points yields a ”smile”- or ”smirk”-shaped sur-

face. An estimator of the IV surface (IVS) must be able to capture its nonlinear shape.

One of the peculiarities of IVS data is that options are usually issued only for certain

maturities and strike prices. IVS data thus look like a number of chains along the strike

price axis with no data in between observed maturities. Also less liquid options are not

traded every day and thus leave observational gaps. Implied volatility estimates in be-

tween such maturities are, however, extremely important since many over-the-counter

derivatives are hedged using options with maturities and strikes that are not quoted.

This paper advocates the use of Bayesian regressor selection (George and McCulloch,

1993, 1995) and subsequent model averaging (Raftery et al., 1996, 1997) to estimate IVS.

In Bayesian model averaging posterior inference is conducted in two steps. The poste-

rior probability of the parameter is computed for each possible model. Thereafter the

models are integrated out over their respective posterior probabilities. More precisely,

given a full model M which can be written as a number of submodels M = {Mi}N
i=1
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inference about the parameter of interest, say β, is based on the mixture estimate

p(β|y,M) =
N∑

i=1

p(β|Mi, y) · p(Mi|y). (1)

Applied to the estimation of IVS there are three main advantages of this approach.

First, it is nearly as flexible as kernel smoothers but, because of its parametric form, it

yields a global estimate and thus does not suffer from biases in region of the surface

where no data are observed. Second, in order to compute the state price density of the

underlying one has to differentiate the implied volatility function twice with respect

to moneyness. Further derivatives may be needed to test for jumps in the underlying.

If a parsimonious model is used the estimate might be imprecise. If the model is non-

parametric taking the derivatives numerically can cause instability in the subsequent

computations. A similar argument applies to the computation of the local volatility

surface, which can be easily computed for parametric models. Third, the procedure

reveals which functions of moneyness and maturity are necessary to explain the shape

of the surface. This provides further evidence that parsimonious regression models are

miss-specified.

This paper is structured as follows. The second section gives a formal definition of the

IVS and the statistical model that we use to estimate it. A short review of previous

work on the estimation of the IVS is given and the issue of no-arbitrage in IV mod-

els is discussed. In the third section the MCMC algorithm by Smith and Kohn (1997)

is briefly summarized and how the dependence between sequential surfaces can be

modeled. The prior distributions for the Bayesian analysis are discussed. The fourth

section deals with the empirical analysis. In- and out-of-sample results of the method

when applied to European options on the S&P500 index are reported. The final section

concludes. Some details on the practical implementation of the MCMC algorithm is

given in the appendix.

53



2 Regression-type Modeling of Implied Volatility Surfaces

2.1 Implied Volatilities

Implied volatility is the volatility of an asset which is derived from options written

on that asset. Throughout this paper we refer simply to implied volatilities but more

precisely by this B&S implied log-normal volatilities are meant. These assume that the

option from which the IV is computed has been priced with the B&S formula with a

standard geometric Brownian motion describing the stochastic dynamics of the under-

lying. If the underlying, which is denoted by St, is log-normally distributed, it satisfies

dSt

St

= (rt − δt) dt + σ dWt, S0 = s0, Wt a Brownian motion

under the pricing measure. 1 The other variables are the risk-free interest rate rt, the

dividend rate δt and σ denotes the volatility of the process. For this dynamics of the

underlying asset, the price of a European style call option Ct with a strike price K and

maturity T on the underlying St is given by the B&S formula

C(St, σ, t, K, T, rt, δt) = e−δtτSt N(d1)−Ke−rtτN(d2) (2)

with

d1 =
log(St/K) + (rt − δt + σ2/2)τ

σ
√

τ
, d2 = d1 − σ

√
τ and τ = T − t. (3)

1 Implied volatilities are obtained by inverting the B&S pricing formula and hence apply under

the risk-neutral measure. However, since log-normal asset dynamics are considered, Girsanov’s

theorem ensures that the volatility is the same under both measures.
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N stands for the cumulative distribution function of the standard normal distribution.

In the B&S formula (2) all parameters are known except for the volatility. 2 The crucial

assumption in the B&S framework is that the volatility is constant. Formula (2) is bijec-

tive in the volatility and thus can be numerically inverted for all observed options, that

is for different strikes and times-to-maturity. In this sense, implied volatilities rather

than true volatilities are observed. The IVS at time t is defined by the mapping

σBS
t : (K, T ) −→ σBS

t (K,T )

for a strike K and maturity T . Frequently a reparameterized version in relative coordi-

nates is chosen

It(κ, τ) := log
(
σBS

t (κSt, t + τ)
)

(4)

where κ = K/St denotes moneyness and τ time-to-maturity. This reparametrization is

advisible since the trading frequency of an option is usually determined by its mon-

eyness rather than its absolute strike price. The domain of the IVS shall be denoted by

D = [τmin, τmax]× [κmin, κmax] ⊂ R2
+. The logarithm is applied to stabilize the estimation

in two respects. First, more extreme and less likely values for the IV are lowered. And

second, the observations are less skewed (Fengler et al., 2005).

2.2 Statistical Model

Based on the definition of the IVS (4) an estimate must satisfy certain conditions. Most

importantly, the IVS estimate must be smooth. One way to ensure a smooth surface

estimate has been proposed by Smith and Kohn (1997) by assuming that the surface

2 Actually, the dividends of an equity index are not quoted in the market. This can be estimated

easily using the Put-Call-parity as shown in the appendix.
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can be approximated by a function f which lies in the span of the tensor product of

two univariate function bases with an additive error term,

It(κ, τ) = f(κ, τ) + εt, f ∈ span
[
{1, b1

j(κ)|j ∈ I1} ⊗ {1, b2
j(τ)|j ∈ I2}

]
. (5)

The terms in the tensor product are univariate function bases which here are taken to

be splines. The span of the tensor product is a bivariate function basis in which the

approximating function f lies. As univariate bases we use (truncated) cubic regression

splines, but other specifications are possible as well.

To be more specific, if only one spline knot in each dimension is chosen, Kκ = Kτ = 1,

the full specification of the regression model (5) reads

It(κ, τ) = β1 + β2κ + β3κ
2 + β4κ

3 + β5τ + β6τκ + β7τκ2 + β8τκ3 + β9τ
2

+ β10τ
2κ + β11τ

2κ2 + β12τ
2κ3 + β13τ

3 + β14τ
3κ + β15τ

3κ2 + β16τ
3κ3

+ β17(κ− κ1)
3
+ + β18τ(κ− κ1)

3
+ + β19τ

2(κ− κ1)
3
+ + β20τ

3(κ− κ1)
3
+

+ β21(τ − τ1)
3
+ + β22κ(τ − τ1)

3
+ + β23κ

2(τ − τ1)
3
+ + β24κ

3(τ − τ1)
3
+

+ β25(τ − τ1)
3
+(κ− κ1)

3
+ + εt. (6)

As standard in the financial literature, (·)+ = max{·, 0}.

In general, the number of parameters to be estimated in (5) is q = (Kκ + 4)(Kτ + 4) for

cubic splines or (Kκ + 3)(Kτ + 3) for quadratic splines. This may seem rather overpa-

rameterized at a first glance. However, the posterior probabilities of those submodels

that include many regressors will be small in practice. The model posterior probabili-

ties also establish which terms are actually needed to model the IVS.

All 2q submodels are identified by a binary selection variable γ ∈ {0, 1}q. Let X be

the matrix with all covariates in the regression (6).By Xγ we denote the submatrix that

consists only of those columns of X which are included through γ.
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2.3 Related Literature

The analysis of implied volatilities has gone in two directions. One strand of research,

which has attracted attention more recently, considers market models for implied volatil-

ities, see e.g. Jacod and Protter (2006) and Schweizer and Wissel (2008). These models

are not primarily motivated by empirical modeling but by the possibility of enforcing

no-arbitrage conditions. These are imposed by restricting the drift of a diffusion for the

IV, similar to term structure of interest rate models.

The main strand of research has followed statistical specifications that range from para-

metric, e.g. Ané and Geman (2006) and Guidolin and Goncales (2006), over semipara-

metric, e.g. Fengler (2004), to fully nonparametric, e.g. Cont and da Fonseca (2002).

The first class of models consists of parsimonious regression models that do not pro-

vide a fit with the data as good as the latter two classes do and thus induce a bias.

To overcome that problem some authors, e.g. Fanone and Russo (2009), suggest to use

regression models with many covariates. Such approaches lack statistical justification.

Audrino and Colangelo (2007) apply tree-boosting to IVS data and find a significant

improvement in its predictability. It has been shown by Smith and Kohn (1997) that

their method outperforms boosting techniques in terms of efficiency. Modeling the IVS

by a time-varying parameter cubic polynomial in forward moneyness, Hodges and

Bedendo (2009) demonstrate that the Kalman filter can be applied to obtain accurate

forcasts of the IVS. Cont and da Fonseca (2002) estimate the IVS nonparametrically

with the kernel smoothing estimator that has been originally proposed by Nadaraya

(1964) and Watson (1964), and show how its dynamics can be modeled by specifying

a functional basis and decompose each surface into its functional principal compo-

nents to reduce the dimensionality. The authors describe the dynamics of the IVS by

its first three functional component time series. Kernel smoothing entails the difficulty

of choosing the bandwidth. A too large bandwidth can smooth out interesting features
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of the IVS whereas a too narrow kernel can induce dents in the surface. Fengler et al.

(2005) use a dynamic semiparametric model and employ a VAR to model the dynamics

of the time-varying functional principal components. Semiparametric models remedy

the problem of biases but may also cause numerical problems when differentiating the

implied state price density or when computing confidence intervals.

2.4 No-Arbitrage Considerations

The regression model (6) imposes no constraints on the surface. Despite the empirical

observation that there exist plenty of arbitrage opportunities, which can be observed in

IV data, a financial model of the IVS should exclude severe violations of no-arbitrage

(NA) to avoid misspricings.

The most obvious NA condition states that a call option price shall not exceed the

dividend-corrected stock price and must be greater than the difference between stock

and strike price. More precisely, the price of a call option must satisfy

(Ste
−δtτ −Ke−rtτ )+ ≤ Ct ≤ Ste

−δtτ . (7)

This is a weak necessary but not sufficient condition. Stricter NA conditions for IV have

been proposed in the more theoretical literature as mentioned before. The focus of this

paper is, however, on achieving strong in- and out-of-sample fit while not allowing

for unnecessary biases. Therefore we do not essentially enforce the estimate of the IVS

to be arbitrage-free in a stricter sense because it will deteriorate the in-sample fit and,

as shown in the context of term structure models, the evidence on the advantage in

predictions is mixed (Niu et al., 2007; Christensen et al., 2007). We use the weak no-

arbitrage bounds (7) to ensure that naive arbitrage is excluded in the estimated surface.
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3 Estimation and Prediction

3.1 Prior Distributions

The prior distributions should reflect any pre-sample information that are available.

The model parameters of (5) are the regression parameters β and σ as well as the

selection-variable γ. The prior is hierachical and uses the decomposition p(β, σ2, γ) =

p(β|σ2, γ) p(σ2|γ) p(γ). Since the regressors are not orthogonal, we remain uniformative

about γ,

p(γ) = 2−q.

We also assign flat prior distribution to the log-variance,

p(σ2|γ) ∝ σ−2. (8)

Conditional on σ2 and γ, the regression parameter is normal distributed with mean

zero and variance proportional to the Fisher information,

p(βγ|σ, γ) = Nq(γ)(0, cσ
2(X ′

γXγ)
−1) (9)

where c is a constant to tune the impact of the prior distribution on the posterior esti-

mates. The covariance matrix in (9) exhibits the desirable property of taking collinear-

ity into account. Those components of β that are most affected by highly linearly de-

pendent covariates are assigned a larger prior variance.

The prior distributions (8) and (9) are known as G-prior which has been introduced

and developed by Zellner (1971, 1987). It is worth noting that this prior setup for the

linear regression model has led to substantial criticism. Most critics argue that if X is

not deterministic its use in the prior (9) may violate the likelihood principle because a

part of the data is used twice. Robert (2001) finds that debate ’rather vacuous’ for sev-
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eral reasons. First, the whole regression model (5) is conditional on the covariates and

the prior (9) can be viewed as a first-stage posterior with respect to X . Second, it avoids

any unrealistic choice of the prior. And third, the prior suggests a constant distribution

on the mean of the implied volatility rather than on the regression parameter. More-

over, Robert (2001) argues that the true drawback of this prior setup is not addressed

in those criticisms which is that the prior does not depend on true prior information.

The last point is particularly true when a sufficiently large value of c is considered

in which case the subsequent estimation is purely based on the likelihood. However,

in our view this prior setup does allow to utilize a sufficient amount of prior infor-

mation on the shape of the surface. Since the coefficients are shrunk towards zero, a

larger weight of the prior implies smaller posterior mean coefficients and thus a flatter

surface. This can be used, for instance, to impose the weak NA condition (7). If the

data violate the condition and therefore imply too steep wings of the surface, a smaller

value of c can pull them down. This is as much prior information as we may wish to

include in the model.

Other non-sample information that could be used in this prior are e.g. that index op-

tions have a steeper smile than options on a single stock (see e.g. Branger and Schlag

(2004) for a theoretical justification). In such case, if the IVS of an index has to be es-

timated and previous estimates with the same base model on a single stock IVS are

available, the prior mean could be set accordingly and the variance parameter set small

enough to assign it some weight.

3.2 Posterior Analysis á la Smith and Kohn (1997)

The estimation of regression model (6) follows Smith and Kohn (1997) and is carried

out for each trading day individually. The authors propose the use of a Gibbs’ sampler

to obtain a sample from the posterior of the parameters:
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(1) initialize the selection variable γ[0]

(2) for m = 1 : M̃ + M

for i = 1 : q draw γ
[m]
i from

p(γi|y, γj 6=i) ∝ (1 + c)−q(γ)/2S(γ)−n/2 (10)

where

S(γ) = y′y − c

1 + c
y′Xγ(X

′
γXγ)

−1X ′
γy

and q(γ) =
∑

i γi the number of selected regressors

(3) for m = M̃ + 1 : M

estimate y = Xγ[m]βγ[m] + e[m] to obtain a sequence of distributions for {βγ[m]}

The iterates γ[m] are drawn from p(γ|y) and thus the general version of Bayesian model

averaging (1) becomes

p(β|y) =
∫

p(β|y, γ) p(γ|y) dγ ≈ (1/M)
M̃+M∑

m=M̃+1

p(β|y, γ[m]).

Using this model averaging strategy, we obtain a smoothed IVS by evaluating the re-

gression model (6) with β̂ = Ê(β|y) and plugging κ and τ for an equidistant grid on

the domain D.

3.3 On the Choice of the Loss Function

The inclusion probability in (10) is based on a residual sum of squares. For c → ∞,

S(γ) = y′(I − PXγ )y. Hence, the loss function that is implied by the model setup above

is ‖Ît − IBS
t ‖2. In financial practice not an optimal fit of the surface with the IVS data is

sought, but the avoidance of option miss-pricings. Therefore, from a financial point of

view, a loss function in terms of option prices is desired. This can be computationally
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efficiently done by noting that pricing errors are the result of an unprecise estimate of

the IVS in regions where the option price varies a lot with the volatility. That measure

of sensitivity is frequently summarized by the greek letter Vega V = ∂C/∂σ. The Vega

is analytically available for European style options. Accordingly, this leads to a mod-

ification of the loss function. We weight each observation with the option implied V .

Hereto the IV and the covariates are multiplied by the square root of the correspond-

ing option’s Vega. In this way, the surface will have a stronger fit near ATM since those

options exhibit the largest Vs.

3.4 Dynamics and Prediction

In a Bayesian framework all forecasts are based on the predictive distribution of the

random variable of interest. Generally, the predictive distribution of a set of observa-

tions β1, . . . , βT , whose distribution depends on a parameter θ, is computed as p(βT+1|β1:T ) =
∫

p(βT+1|β1:T , θ)p(θ|β1:T ) dθ where βs:t := βs, . . . , βt. If no closed-form solution is avail-

able, one simulates draws of the parameter from its posterior and subsequently from

the distribution of the T + 1th observation given these draws and averages them out.

The dependence over time p(βT+1|β1:T , θ) needs to be modeled explicitly. As in Guidolin

and Goncales (2006), we model the dynamics of the posterior means by a VAR

vec(β) = (Iqe ⊗ β(−1))b + e,

where b = vec(B), Iqe denotes an identity matrix of dimension qe, β = (β̂p+1:T − β̄) and

β(−1) is its lagged version as well as β̄ = T−1 ∑T
t=1 β̂t. The effective dimension qe ≤ q

denotes the size of the VAR. Only variables that are frequently included are labeled

essential.

In this paper we use p = 1 for the sake of computational simplicity. Endogenizing p will

come at the cost of many more iterations to either compute Bayes factors for a number
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of possible lag lengths or for running a reversible jump MCMC algorithm.

Whether the posterior distribution of B is analytically tractable or not, depends on

the prior specification. Despite the fact that the Minnesota prior (Litterman, 1986) has

become a frequent choice among applied economists, we use the Normal-Wishart prior

because Kadiyala and Karlsson (1997) find that it performs superior in forecasting. It

is hierachical and given by

b|Se ∼ N(b,Se ⊗ Sβ), Se ∼ iW (Se, α). (11)

The marginal posterior of the parameters B is matrix-variate Student-t

p(B|β̂1:T ) = t(S̄−1
β , S̄e, B̄, T + α) (12)

with

B̄ = S̄β

(
Sβ

−1B + β′(−1)β(−1)B̂
)−1

and S̄β =
(
S−1

β + β′(−1)β(−1)

)−1
.

The IVS at time T +h, h > 0, is reconstructed from the predicted parameters. It is useful

to marginalize out the error covariance matrix since it does not appear in the chosen

forecasting function. The resulting 1-step ahead predictor is

β̂T+1|T = β̄ +
∫

(β̂T − β̄)B · p(B|β̂1:T ) dB (13)

for which the distribution p(B|β̂1:T ) has been stated above. In the sequel we focus on

the posterior mean prediction.
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4 Empirical Results

4.1 Data

For the estimation of the model we use European options on the S&P 500 index. The

data have been provided by the Chicago Board of Options Exchange. The data series

contain daily observations from January until December 2005. This corresponds to 252

trading days. The period does not contain any abnormal jumps or high-volatility peri-

ods. The time-to-maturity is computed using the 30/360-daycount convention.

In figure 1 the data together with the volatility index VIX 3 (lower panel) are illus-

Jan 3 Apr 1 Jul 1 Oct 3
1100

1200

1300
S&P500

Jan 3 Apr 1 Jul 1 Oct 3
−0.02

0

0.02
Returns on S&P500

Jan 3 Apr 1 Jul 1 Oct 3
10

15

20
VIX

Fig. 1 upper panel: S&P500 (level), middle panel: S&P500 returns,

lower panel: VIX. All data are from 2005.

3 The VIX data are as of the most recent update in 2003 since when the VIX is based on

options on the S&P500 rather than S&P100. More options are used which make it a more stable

estimate of market volatility.
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trated. The upper and middle panel show the S&P500 level and returns, respectively.

Obviously, the VIX peaks up simultaneous with increased volatility of the returns of

the S&P 500 in April/May and in October/November. Generally, it has been a tran-

quile period. All returns are within a ±2%-margin. 4 The number of observations per

day ranges from 119 to 224 and is 175 on average.

In figure 2 a sample estimate of the IVS on the closing of May 11, 2005 is depicted.
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Fig. 2 Cubic Spline Regression Estimate of the S&P500

IVS on closing of May 11, 2005.

On the left axis is the moneyness on the right axis is time to expiry. One can easily see

the smirk along the moneyness axis. Options were priced with approximately 15% to

30% volatility on the considered domain. Figure 3 shows the estimate of the IVS of the

same day but with the Nadaraya-Watson kernel smoother. The bandwidth is chosen

according to the rule-of-thumb proposed by Scott (1992).

4 For a comparison, in 2002 the VIX reached over 40% and in the second half of 2008 above 80%

whilst in the considered period the VIX never exceeded 20%. A daily volatility of 1% corresponds

to about 16% annual volatility.
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Fig. 3 Nadaraya-Watson Estimate of the S&P500 IVS

on closing of May 11, 2005.

4.2 Model Specification Revisited

Besides yielding flexible estimates, the regressor-selection-algorithm has the advan-

tage of revealing which regressors, i.e. functions of κ and τ are necessary to explain the

IVS. This can be seen by inspecting the time series of inclusion probabilities for each

regressor. Some functions are included nearly in every draw and some hardly ever.

Figure 4 shows the 144 time series of inclusion probabilities for each regressor. It re-

veals that the constant, κ, κ2, κ3, τ , τ 2, τ 3, κτ , κ2τ , κ3τ , κ3τ 2, κ3τ 3, (κ − kκ
1 )3

+, (κ − kκ
2 )3

+,

(κ−kκ
3 )3

+, (κ−kκ
4 )3

+, τ(κ−kκ
1 )3

+, τ(κ−kκ
2 )3

+ and τ 2(κ−kκ
1 )3

+. 5 All other terms are selected

less than 5% over all draws and days. The terms which contribute the most to the ex-

planation of the shape are primarily functions of the moneyness and interaction terms

with time to maturity. The large number of regressors that contribute significantly to

5 From right to left and up to down the numbers of these time series are 1, 2, 3, 4, 5, 6, 7, 8,

11, 14, 15, 16, 17, 18, 19, 20, 25, 26 and 33.
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the explanation of the shape of the IVS indicate that simple parismonious models are

miss-specified.

Rather than letting the algorithm pick the essential covariates, one can enforce the in-
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Fig. 4 Time series for inclusion probabilities for the 144 potential regressors.

clusion of certain variables. Such variables are referred to as focal variables (Pesaran

and Timmermann, 2000). In the framework of thick modeling (Granger and Jeon, 2003),

which is basically the frequentist counterpart to Bayesian model averaging, this has

been employed. For instance, to forecast the returns on the S&P500 Aiolfi and Favero

(2005) set those covariates as focal that define the long-run equilibria of the stock mar-

ket. In all empirical setups, we set the constant focal to ensure a zero mean residual.

Other covariates could be set focal, too, if desired. This reduces the dimensionality and

thus the required computational effort. A typical example in the current context could
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be to include the covariates of the basic model β1 + β2κ + β3κ
2 + β5τ + β6τκ always.

4.3 In-Sample Performance

In the current context, the in-sample analysis is twofold as explained in section 3.3.

From a statistical perspective, a good fit of the IVS with the observed IV is desired.

From a financial perspective, small pricing errors are in the focus.

4.3.1 Statistical Perspective

From a purely statistical perspective, the in-sample fit of the IVS estimate at every

trading day is measured by the average mean squared error of the posterior mean IVS

in the domain D,

AMSEt =
1

Nt

∑

{i:(κt,i,τt,i)∈D}

(
σ̂BS

t,i − σBS
t,i

)2
(14)

where Nt is the cardinality of the summation set. The posterior mean smoothed IV σ̂BS

are computed using β̂. As before, σBS denote the observed IV. Averaging the AMSE

over all trading days yields

AMSE =
1

T

T∑

t=1

AMSEt (15)

which is used as a model evaluation criterion.

In table 1 the results for the in-sample fit for the regression model with Kκ = 8 and

Kτ = 8 knots in the full specification are reported. Throughout this paper c = 106

which in all constellations delivered the best results. In theory, the more the posterior

is based on the likelihood the closer the predicted surface should be to observations.

All of the estimated surfaces exhibit no arbitrage as defined in the weak no arbitrage

condition (7). For a comparison, in the last row of table 1 the in-sample results for a
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parsimonious model as advocated e.g. by Guidolin and Goncales (2006) are reported. 6

It should be noted that the fit of the Nadaraya-Watson estimator can be tuned as to de-

method
√

AMSE
√

AMSE25%

√
AMSE50%

√
AMSE75%

cubic spline 0.0157 0.0118 0.0142 0.0175

cubic spline (fin) 0.0258 0.0191 0.0232 0.0294

simple 0.0190 0.0143 0.0170 0.0215

Nadaraya-Watson 0.0126 0.0099 0.0115 0.0138

Tab 1. Comparison of model setups for in-sample fit with Kκ = 8 and Kτ = 8.

liver an arbitrarily good fit by decreasing the bandwidth. However, this will increase

the unmeasurable bias in between observations. To measure its insample fit, we use

the rule-of-thumb bandwidth proposed by Scott (1992), hκ/τ = n−1/6σ̂κ/τ , which has

become a standard method in practice. With the so-chosen bandwidth, the Bayesian

model averaging spline-regression lies in between the performance of the simple re-

gression model and the kernel-regression.

4.3.2 Financial Perspective

From a financial perspective, not the fit of the IVS estimate matters, but the fit with the

corresponding option prices. Hence, the financial measure reads

OAMSEt =
1

Nt

∑

{i:(κt,i,τt,i)∈D}


C(σ̂BS

t,i )− C(σBS
t,i )

C(σBS
t,i )




2

(16)

6 Such parsimonious model takes the form It = β1 + β2κ + β3κ
2 + β4τ + β5τκ + εt. Guidolin

and Goncales (2006), however, use forward moneyness.
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where, as before, Nt is the cardinality of the summation set and OAMSE = 1
T

∑T
t=1 OAMSEt.

The results in table 2 reveal a similar picture to that in the previous section. The ex-

ception, however, is that the Vega-weighted spline-model yields significantly lower

pricing errors than the unweighted model. The pricing errors are marginally larger

than with the Nadaraya-Watson estimator and smaller than with the simple or the

unweighted spline-selection model. Again, the kernel-smoother can suffer from miss-

pricings for option maturities that are not observed. This emphasizes the point we

method
√

OAMSE
√

OAMSE25%

√
OAMSE50%

√
OAMSE75%

cubic spline 0.6902 0.6619 0.6947 0.7153

cubic spline (fin) 0.3104 0.2857 0.3054 0.3250

simple 0.6018 0.3886 0.4898 0.6605

Nadaraya-Watson 0.2698 0.2213 0.2542 0.3070

Tab 2. Comparison of model setups for in-sample fit with Kκ = 8 and Kτ = 8.

made in the estimation section. A statistical model for the IVS is not necessarily a good

financial model. A strong fit of the IVS does not imply small pricing errors and thus

the model that weigths observations with respect to their sensitivity to the implied

volatility is perferable.

4.4 Out-of-Sample Forecasts

Out-of-sample forecasts of the IVS can be used as an investment decision support tool:

if accurate enough, IVS predictions can generate profits by taking a long (short) posi-

tion in options whose IV is predicted to increase (decrease).

For the out-of-sample forecast exercise, we use a rolling window of 100 trading days.
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A rolling window is advisable when structural breaks in the underlying process may

be present. Over time the parameter estimates adjust faster to the new values. Here it

is applied to maintain the precision of the parameter estimates and hence the forecast

over time.

We concentrate on 1-step-ahead forecasts. After each, the next observation is added to

and the oldest is discarded from the dataset. We are interested in whether the forecast

is biased and what kind of IVS movement can be possibly predicted. The performance

measure (15) serves us to compare to quality of the forecasted IVS.

As pointed out in e.g. Cont and da Fonseca (2002), market practioners use the sticky

moneyness rule to predict the IVS. The rule claims that the IVS does not alter over short

time horizonts,

It(κ, τ) ≈ It+∆t(κ, τ) ∀(κ, τ) ∈ D.

This rule applies both in the original and in relative coordinates (Cont and da Fonseca,

2002). It is implemented by using the same smoothed surface parameters for the fore-

cast as for the previous trading day. Thereby it avoids the use of a time series model

for predictions. More precisely, Xβ̂t−1 is compared to Xβ̂t|t−1 as predictors for log(σBS
t ).

In table 3 the mean squared predicition errors and its quartiles are reported. Moreover,

the size of the VAR for different inclusion threshold values and the corresponding re-

sults for the sticky-moneyness rule (last row) are shown.

The performance of the VAR prediction depends on the chosen effective dimension qe.

It appears that the best forecast is achieved for a value of about 5% or 19 variables. In

that case the forecast using a VAR is still marginally inferior to sticky moneyness.
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probi qe

√
MSPE

√
MSPE25%

√
MSPE50%

√
MSPE75%

10% 5 0.0481 0.0243 0.0307 0.0443

7.5% 9 0.0253 0.0223 0.0241 0.0275

5% 19 0.0229 0.0209 0.0226 0.0265

3.5% 26 0.0259 0.0226 0.0251 0.0285

2.5% 33 0.0265 0.0208 0.0260 0.0293

1% 53 0.0431 0.0220 0.0243 0.0300

sticky κ 0.0226 0.0209 0.0226 0.0243

Tab 3. Comparison of out-of-sample performances for difference effective dimension qe.

4.5 Highest Posterior Bands

An intrinsictly strong point of Bayesian analysis is that posterior simulation methods

deliver highest posterior intervals (HPI) as a by-product. The two inference stages re-

quire some attention though. At the first accounts for the uncertainty from the model

and the second for the uncertainty associated with the regression parameter. The gen-

eral procedure is to randomly pick a model and for that model simulate the regression

parameter from its conditional posterior. With the drawn parameter a set of implied

volatility can be predicted. Repeating the same procedure a large number of times and

sorting the predicted IV, the 5th and 95th percentile are taken as pointwise highest pos-

terior interval.

Figure 5 shows such 90%-HPI for the IVS estimate of May 11, 2005. For that particu-

lar day the interval ranges from 5% around ATM to about 20% deep ITM and OTM

options. The surface is evaluated on the same grid that is spanned by the original ob-

servations.
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If kernel estimators are used, only asymptotic confidence intervals are available.

Fig. 5 Pointwise highest posterior intervals for the IVS of May 11, 2005.

4.6 State Price Density

A precise estimate of the state price density (SPD) can be useful for numerous reasons.

It is mostly used for pricing exotic derivatives. It can also be employed to test whether

the model for the underlying should include jumps. To this end Aı̈t-Sahalia and Jacod

(2009) derive a statistical test which is based on the second cross derivative of the SPD

with respect to St and St+τ which, if estimated by classical nonparametric techniques,

can be very unstable. The state price density can be obtained from option prices by

computing ρ(K, T |St, t) = erτ∂2C(K,T )/∂K2 (Breeden and Litzenberger, 1978). For the

B&S model the derivative can be expressed in terms of the volatility function (Shimko,
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1993) and in relative coordinates

ρ(κ, τ |St, t) = N ′(d2)


 1

κStσBS
t

√
τ

+
2d1

σBS
t

∂σBS
t

∂κ

1

St

+
d1d2κSt

√
τ

σBS
t

(
∂σBS

t

∂κ

)2
1

S2
t

+κSt

√
τ
∂2σBS

t

∂κ2

1

S2
t

)
. (17)

N ′ denotes the pdf of the standard normal distribution. The partial derivatives of the

IV with respect to moneyness can be analytically computed once the posterior model is

chosen and estimated because it is parametric. Let the model It(κ, τ) be selected after

discarding non-relevant regressors (fixing corresponding coefficients at zero). Obvi-

ously,

∂σBS
t

∂κ
=

∂It(κ, τ)

∂κ
σBS

t and
∂2σBS

t

∂κ2
=


∂2It(κ, τ)

∂κ2
+

(
∂It(κ, τ)

∂κ

)2

 σBS

t . (18)

The derivative ∂It(κ, τ)/∂κ is found by noting that ∂(κ−κ1)3+
∂κ

= 3(κ−κ1)
2
+ and ∂2(κ−κ1)3+

∂κ2 =

6(κ − κ1)+. The use of cubic splines renders the resulting estimate twice continuously

differentiable. In the quadratic spline case one would have ∂2(κ−κ1)2+
∂κ2 = 2 · 1{κ≥κ1},

which would introduce a discontinuity. Hence, the SPD (17) can be estimated from

the smoothed IVS without resorting to numerical methods. Applying formulas (18) to

Ît the resulting 8-week SPD (17) for March 30, 2005 is plotted in figure 6 together with

the SPD estimate from a parsimonious model like that used by Guidolin and Goncales

(2006). Since the in-sample performance of the regressor-selection method is better than

the one achieved with the parsimonious model, the resulting SPD is also more accu-

rate. Furthermore, in contrast to classical nonparametric methods, cross-derivatives

with respect to start and end point as needed for the testing procedure in Aı̈t-Sahalia

and Jacod (2009) are computed with no numerical problems.
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Fig. 6 15-days state price density of the S&P500 as of March 30,

2005. solid: regressor-selection, dotted: parsimonious regression

5 Conclusions

This paper advocates the use of Bayesian model averaging of spline-regressions to es-

timate the IVS because it avoids any kind of unnecessary bias in the estimation. The

effect of the prior to shrink the wings of the estimated surface in order to exclude naive

arbitrage in the surface has been discussed. Moreover, it does not suffer from numer-

ical deficiencies when computing the state price densitiy or testing for jumps in the

underlying. It also allows for finite sample pointwise highest posterior intervals.

Out-of-sample forecasts based on a Bayesian VAR reveal no improvement over a sim-

ple practioners’ rule. Since Guidolin and Goncales (2006) find that there is a fore-

castable component in the IVS, there is space of further research. First, the trade-off

between neglecting regressors and reducing the dimension of the VAR can be further

investigated. Second, the Karhune-Loeve decomposition to extract functional principal

components could be used. This has been proposed by Cont and da Fonseca (2002) but
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they do not provide any empirical evidence of its power in forecasting.
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Université Paris IV and Cornell University.

Kadiyala, K., R. and Karlsson, S. (1997). Numerical methods for estimation and infer-

ence in bayesian var-models, Journal of Applied Econometrics 12: 99–132.
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A Appendix: Practical Aspects of the Implementation

The spline knots kκ
i and kτ

j are set equidistantly set in D. For the MCMC algorithm, the

number of iterations is M̃ +M = 120 000 of which nine tenth are taken as burn-in sam-

ple. The chain is thinned by taking only every 10th iterate to reduce the autocorrelation

among draws.

A.1 Probability of Including a Regressor

As pointed out in Smith and Kohn (1996), the probability p(γi|y, γj 6=i) is computed by

evaluating the expression for γi = 0 and γi = 1, and subsequent normalizing. Since the

direct computation can become numerically unstable, it can be simplified to

1

1 + (1 + c)1/2(S(γi = 1)/S(γi = 0))n/2)

which behaves numerically more stable. The expression is easily found by computing

the ratio of expressions (10) with γi = 0, 1.

As proposed in Roberts and Sahu (1997), it is advantagous to randomize the order of

drawing in the Gibbs’ sampler. Let π be a random permutation of the numbers 1, . . . , q

and πi be its ith component. Then for i = 1 : q:

γ[m]
πi
∼ p(γπi

|y, γπj 6=πi
).

Another parameter in selecting a new regressor is the threshold level of the new moment-

matrix’s determinant. When a new regressor is highly correlated with another already

included covariate, the resulting moment-matrix X ′
γ1

Xγ1 will be near-singular. There-

fore, a threshold level t̃ should be introduced such that if det(X ′
γ1

Xγ1) < t̃ the new

potential regressor is not included. We set t̃ = 10−20 to ensure that it does not severly

affect the algorithm.
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A.2 MCMC Convergence Diagnostics

To test whether the sequence of draws of the selection variable γ[i] are from the sta-

tionary distribution, that is, whether the algorithm has converged, we apply the test

statistic proposed by Geweke (1992) to test for the equality of two ergodic averages.

The statistic is given by

CD =
γ̄A − γ̄B√
σ̂2

A + σ̂2
B

where γ̄A denote the mean of nA consequent draws at the beginning of the drawn se-

quence and σ̂A
2 its estimated variance. γ̄B is defined analogously but with draws from

the end of the sequence. Usually A and B are chosen to be the first and the last 30% of

draws. Under the null of convergence the test statistic CD is asymptotically standard

normal distributed for fixed ratios nA/N and nB/N . For the test we use the first and

last 1000 draws after the burn-in sample has been discarded. With a few exceptions all

values are within the 95%-bands.

A.3 Hyperparameters in the VAR Dynamics

The variables in the VAR can change from day to day since they depend on the estima-

tion results over the selected period which here is a rolling window. Thus it is hardly

possible to specify informative hyperparameters. We choose, as for the estimation of

each surface, a shirkage prior, B = 0, with a large prior covariance matrix, Sβ = sβI

and sβ = 106.
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A.4 Dividends

In order to derive a reliable estimate of an IVS, also the dividend stream δt that the

underlying asset pays is needed. Unfortunately, there exists no such market quotation

for the S&P500 index. This quantity can be estimated from market data with a cross-

section regression using the well-established put-call-parity (see e.g. Lindström et al.,

2008), 7

δi,t = −(1/τi)
(
log(Ct(Ki, τi)− Pt(Ki, τi) + Kie

−rtτi)− log(St)
)

+ ei,t.

This equation can be estimated along the cross-section dimension by the sample mean. 8

In figure A.1 the estimate for the whole sample period is plotted. We use these raw esti-

mates. Instead, one could also model them as constant and use their estimated average

annual dividend of about 1.5%.

Jan 1 Apr 1 Jul 1 Oct 3
0

0.005

0.01

0.015

0.02

0.025

0.03
Estimated Dividends

Fig. A.1 Estimated dividend stream on the S&P500

index.

7 Actually, Lindström et al. (2008) do not estimate the dividends themselves but the dividend-

corrected price of the underlying, Ste
−δtτ .

8 We do not take a simple average but truncate the lower and upper 20% of the ordered dividends

to avoid outliers.
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Chapter 3

An Econometric Framework for Simulating the Effects of

Policy Shocks on the Dynamics of the Italian Sovereign Debt

This chapter is a joint work with Professor Carlo A. Favero,
CEPR, IGIER and Department of Finance, Universitá Bocconi, Milan, Italy.

Abstract

In this paper we develop an econometric model for simulating the Italian sovereign

debt in a European context. We model the dependence between the sovereign debt

and the term structure of interest rates as well as policy variables. The Italian

yield curve is modeled throough the spread to the German yield curve. The factor

spreads between the two curves are explained by monetary and fiscal policy vari-

ables as in the novel approach proposed by Favero and Giglio (2006). Noting that

the yields at medium and long maturities are significantly affected by market ex-

pectations about the sustainability of the Italian fiscal policy, we distinguish an op-

timistic and a pessimistic market expectations regime. The Italian public debt dy-

namics are predicted under different policy and market expecations scenarios. The

estimation results indicate that the monetary and the expectations regimes virtu-

ally coincide. Solving the whole model numerically forward, we provide impulse

response functions for a European monetary and an Italian fiscal policy shock in

either regime. We find that the public debt absorbs shocks better in the optimistic

regime which allows us to conclude that joining the EMU has also brought fiscal

stability to Italy.

Key words: sovereign debt prediction, yield curve dependence, market

expectations

JEL classification: E60, C50



1 Introduction

A government that faces a primary deficit can finance it through the issuance of bonds.

Auctions that place these bonds in the market are usually held at the end of each fiscal

year. The price for such bonds, or equivalently their yields, depend on their term but

also on country specific risk factors. For most countries these interest rates are quoted

in terms of the spread to a reference yield curve. That spread reflects the market view

on the bonds effective return, that is after an adjustment for default and currency risks

as well as for the bonds’ liquidity and how these are taxed. Most of these factors cannot

or only marginally be influenced by a government. Among those that the government

can target the default risk is often the most important. The risk of a credit event be-

comes larger when the market sees an increasing chance that the government does not

follow a sustainable debt path which is determined by the government’s fiscal deci-

sions. In this paper we develop an econometric model that describes the interdepen-

dencies between the yield curve, public debt and policy variables. We focus our atten-

tion on the Italian economy. The model is tailored to simulate the effects of economic

shocks on the main aggregate Italian economic variables, in particular the sovereign

debt.

Before the inception of the common currency EURO in the European Economic and

Monetary Union (EMU) in 1999, yield spreads on government bonds were determined

by the exchange rate risk, the tax treatment in the corresponding country, the sovereign

credit risk and the liquidity of these bonds. In the EMU period only the latter two fac-

tors remain as all bonds are denominated in the same currency and differences in tax

treatments have been eliminated well before 1999. Gómez-Puig (2008) provides empir-

ical evidence that in the EMU such domestic factors dominate in explaining the yield

spreads rather than international risk factors which are commonly referred to as the

main drivers of yield spreads on sovereign bonds issued by emerging economies. In
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Europe German government bonds are commonly referred to as the benchmark. Ger-

many is the largest European economy and has been mostly in line with the Maastricht

criteria. 1 The country risk premium that is charged on those bonds is negligibly small.

Since 1999 the European Central Bank (ECB) conducts a unified monetary policy for

the whole Euro area. The ECB overnight-rate applies to all Euro-member countries

and thus the short-ends of the term structures are equal for all Euro-member countries

since then. Consequently, we will refer to the European-German (EG) as the reference

yield curve at times. Even before January 1999 Banca d’Italia could not set the Italian

overnight-rate entirely independently. It had to keep the exchange rate in a target zone.

That period is known as the European Monetary System (EMS). Hence, we consider

two monetary regimes.

Also at the medium and long maturities the Italian yield curve does not move inde-

pendently of the German. However, as pointed out e.g. by Dai and Philippon (2005)

at these maturities the yields are dominated by fiscal rather than by monetary policy.

A sustainable fiscal policy will ceteris paribus narrow the spread whereas running up a

large public debt ratio will increase it. In this sense, fiscal policy variables are used to

proxy the likelihood of a credit event.

In figure 1 we sketch the building blocks and their interdependencies. One-sided ar-

rows indicate simple dependencies whereas double-sided arrows denote an interac-

tion. We take the German yield curve as exogenous and model the spread to the Italian

yield curve. The yields on Italian government bonds determine the cost of financing

its primary deficit and thus affect the public debt. This has an impact on the medium

and long term yields. But it also affects the public spending and taxation. Moreover, its

fiscal policy decisions depend also on GDP and inflation. The model is closed by not-

ing that the output gap and inflation explain the short term spread of the yield curves

1 These basically comprise targets for inflation, annual deficit and sovereign debt, exchange rate

and long-term interest rates.
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Fig. 1. Sketch of the economic variables and their interdependences within our model.

as these are typical Taylor (1993) rule variables. To model the dependence between

the Italian yield curve and the German term structure of interest rates, we employ the

novel approach proposed by Favero and Giglio (2006), in which the authors explain

the three factor spreads by monetary and fiscal policy variables. The medium term

and the long term factors are dominated by fiscal policy and the market expectations

about it. In this context they use the debt ratio and its first difference to capture its

evolution. Market expectations enter the specification through regime-dependent co-

efficients. The NS approach is a convenient way to model the spreads between the

two yield curves. One might claim that the NS approach leaves the possibility of arbi-

trage opportunities, but we do not aim at bond pricing but to model and predict the

curve’s dynamics and its impact on the public debt. And, as shown in Diebold and Li

(2006) and Niu et al. (2007), the NS approach to modeling the yield curve performs well

regarding these issues. Furthermore, the NS parameterization permits to disentangle

short-, medium- and long-term factors which allows to model market expectations in

the equations for the latter two factor spreads with Markov-switching coefficients. This

is used to capture time-varying effects of fiscal variables on the term structure of inter-

est rates.
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The aim of this paper is to simulate different economic shocks to our model and to

compute impulse responses (IR) of the main Italian aggregates to these shocks. We are

particularly interested in the effects across the different regimes.

Among others, recently published empirical models for a country’s public debt can be

found in Bergström and Holmlund (2000) for the Swedish economy and Pick and An-

thony (2006) for the United Kingdom. In contrast to those models, we have to account

for the fact that Italy joined the EMU and thus in 1999 has introduced the Euro. The re-

lation between the term structure of interest rates and macroeconomic policy has been

analyzed, for instance, by Turnovski (1989) using an IS-LM type model and by Fisher

and Turnovski (1992) using a representative agent model. Our model, however, has a

more empirical focus.

The paper is structured as follows. In the second section the model for the German

yield curve and its dynamics are described. The third and fourth section discuss the

model for the Italian yield spreads and the economy. This is followed by an impulse

response analysis. The last section concludes. The majority of estimation results is de-

ferred to the appendix.

2 German Yield Curve

In the Euro-area the risk premium on German government bonds is the smallest and,

hence, yields on bonds of other countries are quoted in terms of the spread between

the corresponding yields. The number of different maturities of bonds can be large

and thus it is beneficial to summarize the yield curve by a model that represents the

curve with a low number of factors. Nelson and Siegel (1987), or NS for short, use an

unrestricted model with three factors and one loading-related variable. At a given time

t the NS model of the term structure of interest rates for yields on bonds with maturity
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τ is given by

rEG
t (τ) = LEG

t +
1− e−τλ

τλ
SEG

t +

(
1− e−τλ

τλ
− e−τλ

)
CEG

t + eEG
t,τ (1)

where the three factors Lt, St and Ct refer to the level, slope and curvature of the

term structure. We use a reparameterized version of (1), which has been proposed

by Diebold and Li (2006). The new factors are fEG
1t = LEG

t + SEG
t , fEG

2t = LEG
t and

fEG
3t = CEG

t . It is easy to see that limτ→0 rt(τ) = fEG
1t and limτ→∞ rt(τ) = fEG

2t . Thus fEG
1t

is referred to as the monetary policy instrument and fEG
2t to as long-term factor. The

curvature fEG
3t loads medium-term maturities. Specification (1) becomes

rEG
t (τ) =

1− e−τλ

τλ
fEG

1t +

(
1− 1− e−τλ

τλ

)
fEG

2t +

(
1− e−τλ

τλ
− e−τλ

)
fEG

3t + eEG
t,τ . (2)

The loadings of these factors are depicted figure B.1 in the appendix.

The loading parameter λ controls the exponential decay of the slope and curvature in

the original specification (1). It could be jointly estimated using nonlinear least squares

or simply be calibrated a priori. In the literature (e.g. Diebold and Li, 2006) it has been

proposed to set it equal to the maximizing argument of the medium-term factor at a

medium maturity such as τ = 30 months and it keep it constant over time. This results

in λ = 0.0609. We adobt this approach since cross-sectional estimates of λ may not be

very precise since usually a realtively small number of bond prices in observed. Also,

some authors (e.g. Yu and Zivot, 2008) claim that the factor loadings are not extremely

sensitive to different values of the loading parameter. More recently, Koopman et al.

(2007) have focussed on the dynamic nature of λ and model it as a stochastic process.

However, in that case the factor loadings become time-varying, too, which renders

their economic interpretation more difficult.

To model the dynamics of yield curve we specify a time series model for its three fac-

tors. All three factors are integrated of order one. Applying the Johanson (1988) test

for cointegration we find one cointegrating relation (equally with the maximum eigen-
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value and the trace test) for either regime.

Eventually, we do not discriminate the monetary regimes for the reference term struc-

ture due to the fact that both the Bundesbank and the ECB pursued similar monetary

policies. In an analysis of comparing the costs of four countries of joining the EMU,

Fair (1998) concludes that it can be assumed that ’the behavior of the European mone-

tary authority is (...) the same as the historically estimated behavior of the Bundesbank,

except the response is now to the total variables of the four countries rather than just

the German variables’.

As the factors are integrated, we cannot not solve the model forward to compute im-

pulse response functions using a plain VAR for the factors. We consider the factors in

differences and specify a vector error correction model (VECM). Hence, stacking the

factors as fEG
t = (fEG

1t , fGer
2t , fGer

3t )′,

∆fEG
t = a1 + αfβ

′
f f

EG
t−1 +

3∑

i=1

Ai∆fEG
t−i + eEG

t . (3)

The cointegration matrices αf and βf are both of dimension or 3-by-1 (estimation re-

sults in table 4). The lag-length is chosen such as to avoid residual autocorrelation

(table 5). The VECM is not extended by Taylor (1993) rule variables but is a simple pro-

jection of the three factors. The forecasting performance of this specification without

additional macroeconomic variables has been superior to models that included such

variables.

In figure 2 the impluse response functions (IR) of the three factors of the German term

structure to a monetary policy shock are shown. Since all factors are I(1) changes ap-

pear permanent. The first factor is increased. Its new steady state level is reached after

about 8 quarters and is about twice as large as the original shock. The second factor

needs about the same time as the first to stabilize at its new level. It is, however, neg-

ative. In summary, given a shock to the first factor, short and medium term interest

rates increase and long term rates decrease. Thus a monetary policy shock turns the
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Fig. 2. Impulse Response Functions of the German Yield Curve Factors to a Monetary Policy

Shock.

yield curve.

3 Italian Yield Curve and Market Expectations

The Italian yield curve model is exactly the same as for the German yield curve. The

estimates of the three yield curve factors for the two countries are depicted in figures

B.3 - B.5 in the appendix. The relation between both curves is modeled by the spreads

between the three factors which are explained by economic variables. This part of our

model is adopted from Favero and Giglio (2006) where details on the MCMC algorithm

to estimate the equations jointly can be found.

At the short end the two monetary regimes ard labeled by Rt ∈ {0, 1} for the EMS and

EMU, respectively. The spread is explained by the Taylor (1993) rule variables inflation

and output gap. It is assumed that Banca d’Italia targeted Germany’s inflation. The

specification reads

f Ita
1t − fEG

1t = αR + γR
1 (f Ita

1t−1 − fEG
1t−1) + γR

2 (πIta
t−1 − πEG

t−1) + γR
3 yIta

t−1 + e1t. (4)
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Similarly, at medium and long terms two regimes are distinguished. These regimes

are labeled pessimistic and optimistic market expectations regime. All coefficients are

super-scripted by S to denote their dependence on the regime which, since unob-

served, is modeled as a latent Markov chain with stationary transition probabilities

P (St = i|St−1 = j) = pij , i, j ∈ {0, 1}. Hence, each coefficient can take two values de-

pending on the current regime. In economic terms, time-varying coefficients account

for the market’s opinion about the sustainability of the government’s fiscal policy. Over

most of the sample period government spending exceeded tax revenues (see figure B.2

in the appendix).

For the long-term and for the medium-term factor Favero and Giglio (2006) specify

f Ita
2t − fGer

2t = δS
1 (dt − dt−1) + δS

2 (dt − 0.6) + e2t (5)

and

f Ita
3t − fGer

3t = θS
1 (dt − dt−1) + θS

2 (dt − 0.6) + e3t, (6)

respectively. No intercept is needed in (5) and (6) because any constant difference is

already captured by the first factor as it already contains the level of the yield curve.

Liquidity is an important factor in determining the yield spread (see e.g. Gómez-Puig,

2008). However, here it plays no role because the Italian and German sovereign debt

markets are the two largest in the Euro-area. For this reason the yield spread model (4)

- (6) contains no factors such as the size of the market or the bid-ask spread.

The estimated factor spreads are shown in the appendix in figures B.3 - B.5. The co-

efficient estimates for the two regimes are displayed in table 1. The regimes are iden-

tifiedby the size of the coefficient estimates. If the regime shows larger estimates that

translates into a larger risk premium that is charged on Italian government bonds for

a given public debt ratio and its first difference and hence is labeled pessimistic. In

the optimistic regime the coefficients of the f1-spread are constrained to zero since the

91



short rates are equal by definition. This is empirically confirmed by observing the con-

vergence of the short-term rates in figure B.3.

In figure 3 the filtered probabilities of being in the pessimistic regime are depicted.

coefficient on pessimistic optimistic

α 0.0079 0

γ1 0.7641 0

γ2 0.1025 0

γ3 -5.971·10−4 0

δ1 0.1818 0.0268

δ2 0.0654 0.0177

θ1 0.1897 0.0575

θ2 0.0998 -0.0069

Tab 1. Coefficient estimates the term structure factors.

The figure shows that until 1996 markets were pessimistic and turned optimistic after-

wards.

It should be noted that in (5) and (6) dt − 0.6 is used which is the deviation from the

Maastricht criterion. In the Maastricht treaty it is determined that the threshold ratio of

debt to GDP is 60% and should not be exceeded. Furthermore, it should be noted that

∆dt can be interpreted as the difference between the actual deficit, gt − τt, and the debt

stabilizing deficit, −itdt−1. 2

The importance of modeling market expectations not constant but time-varying has

2 The latter can be easily seen by solving ∆dt = 0 in the debt dynamics (9) for the surplus

gt − τt.
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Fig. 3. Probability of being in the pessimistic regime.

been pointed out by Engen and Hubbard (2004) who argue that the effect of fiscal pol-

icy on yield curve cannot be assumed constant over time.

In the sequel we distinguish only two rather than four regimes (pre-EMU/pes, EMU/pes,

pre-EMU/opt, EMU/opt). These two regimes are called pessimistic and optimistic and

refer to the time of the pre-EMU when markets were pessimistic and to the EMU-era

with optimistic expectations. In our dataset these two regimes are found until mid-

1996 and from 1999 onwards. This is motivated by the fact that the period of jointly

observing pre-EMU and optimistic markets is short (only 10 quarters) and the other

combination is not observed at all. Also the switch of the expectations from pessimistic

to optimistic in 1996 could be interpreted as an anticipation of joining the EMU.

4 Macroeconomy and Public Debt Dynamics

The model for the Italian economy consists of three parts: macroeconomic fundamen-

tals, fiscal policy and public debt.

First, inflation and output gap respond to short and long term rates and are autore-
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gressive. Moreover, they may depend on their reference counterparts. More precisely,

the extended VECM for the Italian macroeconomic variables inflation and output gap

reads



∆yt

∆πt




= b1 + B1




yt−1

πt−1




+ B2




∆yt−1

∆πt−1




+ b2f
Ita
1t + b3f

Ita
2t + B3




yEG
t

πEG
t




+ emp
t , (7)

where B1,B2 and B3 are 2×2 parameter matrices and b1,b2 and b3 are 2×1 parameter

vectors (estimation results in tables 7 and 8). The output gap is stationary by construc-

tion whereas inflation is not (tables 3 and 4). In specification (7) the variables appear on

the left-hand side in differences. This allows the nonstationary inflation to cointegrate

with its reference counterpart πEG
t .

Second, the fiscal policy variables react to the average borrowing cost and to its debt ra-

tio as well as to its first difference. The government is assumed to respond to macroeco-

nomic and fiscal information. It does not consider yield curve movements themselves.

It only takes a single variable summary of the yield curve, it, into account which we

will refer to as the average borrowing cost. To avoid the problem of simultaneity, we

use its lag. Consequently, for the government we specify the following fiscal reaction

function



∆gt

∆τt




= c1 + C




∆gt−1

∆τt−1




+ c2it−1 + c3(dt−1 − 0.6) + c4∆dt−1 + efp
t (8)

with parameters C and c1, . . . , c4 of dimensions 2×2 and 2×1, respectively (estimation

results in tables 9 and 10). The fiscal policy variables are written in differences as they
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appear to be integrated of order 1 if written in levels. No cointegration has been found

neither with the maximum eigenvalue nor with the trace test in either regime.

In the literature (see e.g. Bohn, 2005) single equation models for the primary surplus are

employed. Indeed, the fiscal reaction enters only the public debt dynamics in form of

the deficit. Our specification includes the single equation model for the first difference

of the primary surplus as a special case if for the entries of C held c11 − c21 = c12 − c22.

We test that null hypothesis with a likelihood-ratio test and find that it can be rejected

in both the EMS and EMU regime.

When setting fiscal policy variables, the government faces a budget constraint iden-

tity. 3 In terms of ratios it states that the debt ratio dt equals the present value of the

previous debt ratio plus the current deficit ratio,

dt =
1 + it

(1 + ηt)(1 + πt)
dt−1 + gt − τt (9)

where ηt denotes the real growth rate and (1+ ηt)(1+πt) = (Yt−Yt−1)/Yt−1 is the nom-

inal growth rate. Each of the following building-blocks can be estimated seperately as

a standard VAR/VECM with exogenous variables without considering the debt dy-

namics and hence without the average borrowing cost equation and the term structure

dynamics. However, simulating the model without the debt dynamics yields biased

estimates of the impulse response functions (Favero and Giavazzi, 2007).

The actual development of the debt ratio is depicted in figure 4. During the whole

sample period the Italian public debt ratio clearly exceeds the Maastricht reference

criterion. Furthermore, the data do not support the view that the Italian government

aimed at achieving that target. In 1995 the debt ratio peaked at almost 120%. Since 2000

a stabilization towards a level of slightly more than 100% is visible.

The term structure of interest rates enters the public debt dynamics through the aver-

age borrowing cost it. This is the average interest rate that the Italian government has

3 Identity refers to not including an error term in the econometric specification.
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Fig. 4. Evolution of the Italian public debt ratio.

to pay on the bonds that it has issued to finance to debts. It depends on previous yields

because the government must still serve interest payments on bonds which it has sold

at times s < t. More formally, let n denote the number of bond issuances with different

times to maturity τi and their proportions in the current debt structure ρi then

it = f(rIta
s (τi), s ≤ t, ρi, i = 1, . . . , n) (10)

with rIta
s (τi) being the time-s yield on a τi-time-to-maturity bond. Equation (10) has

a complex input and is thus difficult to compute. For policy recommendations it will

be useful to distinguish between short and long term bond issuance strategies. Here

our focus is different and the financing structure is ignored. We therefore approximate

its dependence on previous yields by adding an autoregressive term and write it ≈
f(it−1, f

Ita
1t , f Ita

2t , f Ita
3t ). To further simplify the structure we estimate a first-order Taylor

expansion of it which results in the following linear regression as approximation to

equation (10)

it = ai + biit−1 + cif
Ita
1t + dif

Ita
2t + eif

Ita
3t + εt. (11)
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We estimate the average borrowing cost equation by least squares. The estimates for

this regression are reported in table 2. An extended version of this specification that

includes inflation yields an insignificant coefficient and hence we use the specification

(11).

coefficient on pessimistic optimistic

const 0.005850 0.004012

it−1 0.962379 0.802180

f Ita
1t 0.064456 0.132175

f Ita
2t 0.021153 0.022279

f Ita
3t -0.019617 -0.018894

Tab 2. Coefficient estimates for the average borrowing cost approximation.

A remarkable property of the estimation results is that the coefficients almost exactly

sum to unity in both regimes. Hence, as one would have expected, a parallel shift of the

yield curve will lead one-to-one to a shift of the average borrowing cost in the long-run.

5 Impulse Response Analysis

In this section the model that we have set up in the previous sections is simulated

with exogenous shocks. In empirical studies simulated exogenous shocks are given to

an econometric model in order to analyze the effects of deviations from the estimated

rule. Alternatively, one could consider deviations from the systematic rule. We focus on

the former which avoids problems arising from reduced form VAR. See Favero (2001)

for a discussion.
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Our simulation model consists of ten equations: two in each of the two VAR, the debt

dynamics, the HP-filter relation for the output gap and GDP, the average borrowing

cost and the three factor spreads. The IR for the model are carried out using general-

ized impulse response functions as introduced by Pesaran and Shin (1998). Its use is

advantageous if no clear order of the variables is given by economic theory and thus it

avoids the typical identification problem of the Choleski-decomposition. Generalized

impulse response functions start from the original definition of ordinary IR. The only

assumptions are normality and no serial correlation in the error terms. The former can

be relaxed. Formally, the generalized IR for a variable xt to a shock to a variable zt at

some horizont h is defined as

GIx(h) = E(xt+h|εz,t = 1, It)− E(xt+h|It) (12)

where It denotes the time.t information set and εz the error term in the equation that

determines zt. In practice equation (12) can be computed by adding a unit shock to one

equation and a corresponding shock to all other equations in the same VAR. The size of

those shocks equals the covariance between the error terms over the variance of orig-

inal shock term. This procedure takes into account the contemporaneous correlations

between the series in the VAR/VECM to which the shock is added.

The general procedure for computing the IR in this kind of model has been taken from

Favero and Giavazzi (2007). First, the VARs, the yield spread equations and the average

borrowing cost equation are estimated. Then the model is numerically solved forward

and the residual series are saved. Second, the model is solved two more time with

the calibrated series: once with a shock a described above and once with no shocks at

all. Last, the difference between both solutions is computed. These differences corre-

spond to the IR functions. The confidence bands are estimated by standard bootstrap-

ping of the residuals. At every iteration each resampled residual series is added to the

corresponding data series. The VARs are re-estimated on the bootstrapped data and
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thereafter the aforementioned procedure is run again for one thousand times. For each

observation over time the 5- and 95- percentile are taken as lower and upper bound

and thus represent 90% pointwise confidence intervals. In all of the following figures

the green line marks the original solution and the two blue lines are the confidence

bands. The same procedure has been applied to both regimes accounting for the differ-

ent covariations of the VAR and VECM residuals in both periods.

5.1 European Monetary Policy Shock

A European monetary policy shock is simulated by giving a unit percentage point

shock to the first equation of the VAR (3) which we earlier referred to as the European

/ German monetary policy instrument. The other two factors in the same equation are

also assigned shocks according to the methology explained above. Since we have mod-

eled that VAR independent of the monetary regime, there is no change in the statistical

model or the data and thus not in the residual covariance matrix. Consequently, the

shocks are the equal across both regimes.

The IR are depicted in figures 5 and 6. In the optimistic regime the first and third yield

curve factor are increased whereas the second factor decreases. That fall does not off-

set the increment of the other two factors and thus the average borrowing cost rises

permanently. Consequently, also the public debt ratio elevates slightly over time. Gov-

ernment spending and taxation do not change significantly. The output falls marginally

below its natural level. Inflation remains unaffected.

For the pessimistic regime the impulse responses are depicted in figure 6. All three

yield curve factors are increased. As a result, the average borrowing cost rises by a

quarter percentage point within four years. Since the predicted fall in tax revenues is

larger than the decrement of government spending, the public debt rises sharply. After

four years its mean predicted increment is almost 10%. Output and inflation remain
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Fig. 5. IR to a European monetary policy shock in the optimistic expectations regime.
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Fig. 6. IR to a European monetary policy shock in the pessimistic expectations regime.
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unaffected.

In summary, the European/German monetary policy shock scenario reveals a clear dif-

ference across expectations regimes: in the pessimistic regime the predicted increase in

public debt is larger, which stems from a larger rise in the average borrowing cost and

a widening spread between taxes and government spending.

5.2 Government Spending Shock

To simulate the effects of an Italian government spending shock, we assign a unit per-

centage increment to the residual of ∆gt in the VAR for the Italian fiscal policy vari-

ables (8). In contrary to the IR analysis of the monetary policy shock, in the fiscal shock

setup the shock itself changes. The Italian macroeconomy and fiscal policy are esti-

mated seperately for both regimes. Hence, the covariance matrices of the error terms

change and entails different shocks in both regimes. The IR are shown in figures 7 and

8.

In the optimistic regime the first yield curve factor is fixed as we have assumed that the

European monetary authority does not respond to Italian economic variables. Effec-

tively all other variables change insignificantly. The marginal increase in government

spending is offset by an equal increase in tax revenues. All other effects are not statis-

tically significant.

In the pessimistic regime, the short end of the Italian term structure is allowed to

react to changes in the macroeconomic variables and so it does. The monetary pol-

icy instrument decreases slightly whereas the medium and long term factor reveal an

upwards trend. The two effects on the average borrowing cost almost offset each other

and it increases only slightly. However, the predicted spread between tax revenues and

government spending increases and therefore also the public debt ratio rises. Again,

output gap and inflation remain unchanged.
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Fig. 7. IR to a government spending shock in the optimistic expectations regime.

In summary, the public debt ratio stabilizes in the optimistic regime whereas it does not

in the pessimistic regime. This can be mostly ascribed to the predicted widening spread

between expenditures and taxes. But also the medium and long term yield curve fac-

tors increase in the pessimistic regime and hence affect the cost of financing the debt.

6 Conclusions

In this paper we have set up an econometric model that allows to analyze the effects

of economic shocks on the Italian public debt. Binary latent market expectations are

considered and two monetary regimes are distinguished. As these roughly coincide

we merge them into two distinct regimes. The comparison of the impulse responses

in these two regimes, named optimistic and pessimistic, reveals significant differences.

Under both simulated scenarios the impulse respose analysis shows that in the op-

timistic regime the public debt ratio evolves more stable than in the pessimistic ex-
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Fig. 8. IR to a government spending shock in the pessimistic expectations regime.

pectations regime. This indicates that being a member of the Euro area has brought

economic robustness to the Italian economy.

Further research could extend the paper regarding the set of scenarios. For instance,

simulating an expectations shock, that is an increase in the long-term interest rates, or

an inflation shock might be of particular interest. Another strain of research could aug-

ment the model to different maturity bonds and thus to an optimal issuance strategy

for the government. Clearly, the strategy will depend on the market expectations on

the future fiscal policy as those affect the factors of the Italian yield curve. Hence, this

strain of research will further analyze the dependencies between the variables in the

model.
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A Data

For the estimation and simulation of our model we use quarterly data for the Euro-

pean, German and Italian variables. All times series are taken from the OECD Country

Statistical Profiles. The debt data are provided by the Italian Treasury. All ratios are
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computed with respect to the nominal GDP. The expenditure data do not contain the

interest payment on current public debt. The average borrowing cost, that is the artifi-

cial interest rate the Italian government has to pay for its debts, is computed as interest

payment over lagged debt.

The output gap is computed with the Hodrick and Prescott (1997) filter with a smooth-

ing parameter λ = 1600 as usual for quarterly series, that is yt = Yt − Y HP
t where Y HP

t

is the long-run trend of the GDP. 4 All data have been sampled from 1991:1 to 2005:4 at

the end of each period.

For the short-end of the yield curve which we denote by fEG
1t it holds

fEG
1t =





fEur
1t if t ≥ 1999:1,

fGer
1t if t < 1999:1

and analogously for the inflation πEG
t and the output gap yEG

t . In either monetary

regime, German term structure of interest rates has been reference to the Italian and

only the short-end is regime-dependent.

B Data Statistics, Estimation Results and Figures

In this appendix all estimation results from the models that are not presented in main

text are given. Values in squared brackets denote t-statistics.

4 Since we model inflation and output gap jointly in a VAR the output gap is re-scaled as to

have approximately the same magnitude as inflation.
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variable p-value conclusion p-value conclusion

yt 0.0012 I(0) 0.0005 I(0)

πt 0.5619 I(1) 0.2008 I(1)

gt 0.3664 I(1) 0.3467 I(1)

τt 0.1064 I(1) 0.6040 I(1)

Tab 3. p-values from testing the hypothesis of nonstationarity in the
optimistic (left) and pessimistic (right) regime with augmented Dickey-
Fuller test.

fEG
1,t−1 1

fEG
2,t−1 -0.4827

[-3.2756]

fEG
3,t−1 -0.7949

[-13.6912]

c -0.028483

[-3.2457]

Tab 4a. Estimates for error correction part of the EG-factor VECM.
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variable ∆fEG
1 ∆fEG

2 ∆fEG
3

αf -0.08896 0.5459 0.5864

[-0.7626] [ 4.5483] [ 0.82253]

∆fEG
1,t−1 0.2963 0.2121 -0.4275

[ 1.2009] [ 0.8357] [-0.2835]

∆fEG
1,t−2 -0.06400 0.2383 -1.7689

[-0.2676] [ 0.9685] [-1.2103]

∆fEG
1,t−3 0.3022 -0.2986 1.2894

[ 1.49926] [-1.4394] [ 1.0466]

∆fEG
2,t−1 -0.2980 -0.1155 -2.3485

[-1.5709] [-0.5918] [-2.0257]

∆fEG
2,t−2 0.2019 -0.1390 1.0022

[ 1.2437] [-0.8325] [ 1.0104]

∆fEG
2,t−3 0.28064 0.09497 0.9482

[ 1.79609] [ 0.59070] [ 0.99310]

∆fEG
3,t−1 0.05949 0.23142 0.37211

[ 0.6929] [ 2.6197] [ 0.7093]

∆fEG
3,t−2 0.01722 0.1219 0.0004666

[ 0.2746] [ 1.8877] [ 0.00122]

∆fEG
3,t−3 0.04039 0.1066 0.3203

[ 0.7965] [ 2.0438] [ 1.0334]

Tab 4b. Estimates for lagged variables of the EG-factor VECM.
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lag test-statistic p-value lag test-statistic p-value

1 8.7385 0.4618 11 7.7217 0.5624

2 13.7864 0.1301 12 9.2804 0.4118

3 8.1827 0.5158 13 8.2252 0.5116

4 7.8263 0.5517 14 6.7522 0.6629

5 3.8227 0.9227 15 10.0748 0.3445

6 8.0725 0.5269 16 13.1622 0.1554

7 6.4023 0.6991 17 9.4532 0.3965

8 13.0390 0.1608 18 10.4554 0.3149

9 7.5087 0.5843 19 8.9244 0.4443

10 7.0488 0.6320 20 14.5988 0.1026

Tab 5. p-values from testing the hypothesis of no autocorrelation for the
residual of the EG-VECM.

variable ∆τt ∆gt

∆τt−1 0.292653 -0.098654

[ 1.03029] [-0.15746]

∆gt−1 0.018331 0.477389

[ 0.16145] [ 1.90619]

c 0.002750 0.006258

[ 2.06840] [ 2.13358]

it−1 0.044203 0.256647

[ 0.74245] [ 1.95430]

∆dt−1 0.004331 0.001534

[ 1.16699] [ 0.18735]

dt−1 − 0.6 -0.007107 -0.019449

[-2.12430] [-2.63559]

Tab 6. Estimated for the fiscal policy VECM (optimistic regime).

109



variable ∆τt ∆gt

∆τt−1 0.761425 0.192958

[ 1.29743] [ 0.39707]

∆gt−1 -0.005712 0.498249

[-0.01018] [ 1.07194]

c 0.011949 -0.002658

[ 0.92788] [-0.24924]

it−1 -0.240110 0.113757

[-0.83924] [ 0.48018]

∆dt−1 -0.008456 -0.022711

[-0.47067] [-1.52664]

dt−1 − 0.6 -0.009518 -0.000568

[-0.92001] [-0.06636]

Tab 7. Estimated for the fiscal policy VECM (pessimistic regime).
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variable variable/estimate estimate

yt−1 1

πt−1 -0.000633

[-0.132]

c -0.0832

[-1.40]

∆yt ∆πt

αm -0.3516 -24.49

[-3.94] [-2.76]

∆yt−1 0.4868 -6.940

[ 2.698] [-0.388]

∆πt−1 -0.00219 -0.228

[-1.086] [-1.138]

f Ita
1t -0.00232 -0.1060

[-2.15] [-0.992]

f Ita
2t 2.45·10−5 -0.0316

[-0.0218] [-0.284]

yEG
t 0.0649 3.940

[2.28] [1.40]

πEG
t 0.0270 0.1880

[3.74] [2.63]

Tab 8. Estimates for the macroeconomic VECM (optimistic regime).
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variable variable/estimate estimate

yt−1 1

πt−1 0.1417

[5.44]

c 0.01206

[3.54]

∆yt ∆πt

αm -0.00899 -21.05

[-2.08] [-3.48]

∆yt−1 0.8720 24.397

[5.95] [1.19]

∆πt−1 0.00088 0.3216

[0.695] [1.82]

f Ita
1t 0.00089 0.1327

[0.885] [0.939]

f Ita
2t -6.06·10−6 -0.00249

[-0.081] [-0.0238]

yEG
t -0.0091 1.113

[-0.164] [0.144]

πEG
t 0.00021 0.0455

[2.17] [3.35]

Tab 9. Estimates for the macroeconomic VECM (pessimistic regime).
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Fig. B.1. Diebold-Li-factor loadings: : f1 (blue), f2 (red), f3 (green).
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Fig. B.2. Italian government spending (red) and tax revenue (blue) to GDP ratios.
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Fig. B.3. Short-term interest rate spread between Italian and German yields.
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Fig. B.4. Long-term interest rate spread between Italian and German yields.
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Fig. B.5. Medium-term interest rate spread between Italian and German yields.
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