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Abstract

Is more novel research always desirable? We develop a model in which
knowledge shapes society’s policies and guides the search for discoveries. Re-
searchers select a question and how intensely to study it. The novelty of a
question determines both the value and difficulty of discovering its answer. We
show that the benefits of discoveries are nonmonotone in novelty. Knowledge
expands endogenously step-by-step over time. Through a dynamic externality,
moonshots—research on questions more novel than what is myopically optimal—
can improve the evolution of knowledge. Moonshots induce research cycles in
which subsequent researchers connect the moonshot to previous knowledge.
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1 Introduction
In a letter to Franklin D. Roosevelt, Vannevar Bush (1945) pleads with the president
to preserve freedom of inquiry by federally funding basic research—the “pacemaker of
technological progress.” That letter paved the way for the creation of the National
Science Foundation (NSF) in 1950. The NSF today, like the vast majority of gov-
ernments and scientific institutions, cherishes scientific freedom and allows academic
researchers to select research projects independently.

With scientific freedom comes the responsibility to select the right research ques-
tions. However, what are the right questions? Biologist and Nobel laureate Peter
Medawar (1967) famously notes that “research is surely the art of the soluble. . . . Good
scientists study the most important problems they think they can solve.” Finding the
most important yet soluble question is nontrivial. One reason is that both importance
and solubility depend on the current state of knowledge.

In this paper, we develop a microfounded model of knowledge creation through
research. We conceptualize research as a costly search process that may fail. The
researcher picks a question and an intensity with which to search for its answer. The
cost of search depends on how well existing knowledge guides the researcher’s efforts.
If the researcher discovers the answer, her gross benefits depend on how much society’s
decision-making improves due to the discovery—both through answering a particular
question and the spillovers on related questions. The discovery is then added to the
stock of knowledge and future researchers can build on the additional knowledge.
We characterize the researcher’s optimal choice for arbitrary existing knowledge, and
find that researchers work on questions that are too narrow and fail too often. The
questions chosen are neither novel enough to maximize the instantaneous value of
knowledge for decision-making nor novel enough to inspire future generations. By
incentivizing distant discoveries, a designer can reduce the researchers’ failure rate
and improve the evolution of knowledge.

We model the value of knowledge as the extent to which knowledge improves
decision-making. We represent society by a single decision-maker who can use existing
knowledge to address a variety of problems. Existing knowledge is the set of questions
to which the answer has already been discovered. Because answers to similar questions
are correlated, knowledge also provides the decision-maker with conjectures regarding
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Figure 1: Existing knowledge and conjectures.

questions to which the answer is yet undiscovered. The precision of a conjecture
depends on the question’s location relative to existing knowledge.1

We conceptualize the correlation by assuming that answers to questions follow
the realization of a Brownian path. Figure 1 depicts that idea. Questions are on
the horizontal axis, and the gray line represents the answers to all questions. Dots
( ) represent existing knowledge. Because of the assumption of a Brownian path,
all conjectures follow a normal distribution. The mean and the variance depend on
existing knowledge. The solid black lines in Figure 1 represent the mean; the dashed
lines provide the band of the 95% prediction interval.2

Our first contribution is to characterize how adding a discovery improves the value
of knowledge. To see what we have in mind, consider the left panel of Figure 1.
Only the answer to question xr is known. Assume that a researcher discovers the
answer to question xl. Knowledge is now depicted in the right panel. Decision-making
improves in three ways. First, the decision-maker has precise knowledge about the
answer to xl. Second, her conjectures about all questions to the left of xl improve.

1The protein folding problem in structural biology provides a case in point. Spillovers from other
proteins led to Moderna’s development of the COVID-19 vaccine, which “took all of one weekend”
(only). For more on the protein folding problem see Hill and Stein (2020, 2021).

2The 95% prediction intervals describe the following relation: for each question, with a probability
of 95%, the answer lies between the respective dashed lines given existing knowledge. For visual
clarity, we selected a Brownian path that leaves the 95% prediction interval in the negative branch
when we condition on it passing through the origin only.
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Third, her conjectures improve in the area [xl, xr]. For all questions in that area, the
decision-maker now has two pieces of knowledge that help her form the conjecture.

How much decision-making benefits from discovering the answer to xl depends on
xl’s distance from xr. The decision-maker cares about the range of questions she has
a good conjecture about and the actual precision of each conjecture. Increasing the
distance between xl and xr is similar to the effect of output expansion by a monopolist.
Consider two alternatives for a discovery x′

l < xl. Knowing x′
l instead of xl implies

that more questions lie inside the area [x′
l, xr] than in [xl, xr]—a marginal gain in

the range of questions with precise conjectures. At the same time, the conjectures
about each question in [xl, xr] become less precise with x′

l—an inframarginal loss. The
benefits of a discovery are maximized at an intermediate distance.

If both xl and xr are known initially, discoveries expand knowledge beyond the
frontier if the discoveries concern questions x /∈ [xl, xr]. Expanding beyond the frontier
works in the manner described in the previous paragraph. Alternatively, discoveries
deepen knowledge if they concern questions x ∈ [xl, xr]. Depending on the distance
between xl and xr, expanding knowledge or deepening knowledge may be optimal. If
xl and xr are close, the conjecture about any question in [xl, xr] is already precise. In
this case, expanding knowledge provides larger benefits than deepening knowledge
does. If xl and xr are far apart, conjectures about questions in [xl, xr] are imprecise.
Obtaining an answer to a question x ∈ [xl, xr] divides this single area of imprecise
conjectures into two areas with precise conjectures. In this case, deepening knowledge
provides larger benefits than expanding knowledge.

Overall, the decision-maker benefits most from deepening knowledge between
distant, yet not too distant, pieces of knowledge. Expanding knowledge beyond the
frontier beats deepening knowledge only if all available areas are short.

Our second contribution is to characterize a researcher’s optimal choice of which
question to tackle and how much effort to invest in studying that question for arbitrary
existing knowledge. We assume that the researcher’s benefits of a finding are propor-
tional to the benefits for the decision-maker we have discussed above. In addition, we
conceptualize the research process as the search for an answer. We assume that it
requires effort to search for an answer and that the cost of effort is increasing and
convex. We propose a microfounded cost function that captures the following idea: For
a given amount of effort, search is more likely to result in a discovery if the conjecture
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about the answer is more precise. Because conjectures depend on the distance to
existing knowledge, our cost function naturally links novelty (the distance to existing
knowledge) and research output (the probability that search results in a discovery).

Regarding the researcher’s choices, we show that novelty and output are nontrivially
related. Depending on the structure of existing knowledge, the two can substitute or
complement each other. Thus, in some cases selecting a more novel question actually
decreases the risk of failure. Overall, the researcher creates more output when she
deepens knowledge than when she expands beyond the frontier. Output peaks for
deepening knowledge in areas of intermediate length. This suggests that researchers
prefer areas that contain a limited number of questions, even though they benefit from
improving decision-making across a wide range of problems. They mainly do this for
two reasons: First, discoveries in smaller areas lead to more significant improvements
on each question in that area. Second, it is less costly to obtain a discovery.

Our third contribution is to apply our previous insights to study the evolution
of knowledge. We turn to a setting in which research is done sequentially and show
that if a researcher expands knowledge, no future researcher will deepen knowledge.
Therefore, the evolution of knowledge takes on a ladder structure.

Starting from this observation, we study a simple policy intervention. Suppose
a long-lived designer can direct the choices of one researcher. The designer aims to
improve decision-making by enhancing the evolution of knowledge. Under natural con-
ditions, the designer induces a research cycle by encouraging a moonshot discovery—a
discovery far from existing knowledge. Moonshot discoveries are suboptimal in the
short run. They create knowledge that is too disconnected from existing knowledge
and therefore provides little immediate benefit. However, moonshots guide future
researchers aiming at questions between the moonshot and previously existing knowl-
edge. As a result of the moonshot, future researchers increase their output and pursue
different questions. The knowledge they create becomes more valuable than otherwise.
If the designer is patient and the cost of research is intermediate, the positive dynamic
externality of moonshots dominates the implied myopic loss. Thus, moonshots have
the flavor of an infrastructure investment. By themselves, they provide little value,
yet they enable future researchers to thrive by setting the stage.

To summarize, we make three contributions. First, we offer a microfounded
framework to study knowledge and research in a complex world. We quantify the
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value of a discovery when society extrapolates from knowledge to address a wide range
of questions. Second, we shed light on the nontrivial relation between the novelty of
a question and the probability that a researcher discovers its answer. Novelty and
the probability of discovery are endogenously linked through a microfounded cost
function. Third, we provide novel insights into a classical question in the economics
of science funding: should a funder incentivize research far beyond the frontier even
if the immediate benefits of such a discovery are low? Yes, if the cost of research is
intermediate and society is patient. The research cycle that such a moonshot induces
leads to researchers addressing more novel questions and producing more output.
Related Literature. The premise of our model is rooted in a large literature origi-
nating in the philosophy of science that studies how scientific research evolves; Kuhn
(1962) is the most prominent contribution therein. Kuhn (1962) distinguishes between
two phases in the evolution of knowledge: normal science and scientific revolutions.
While his focus and, therefore, his hypotheses differ from ours, our findings share some
similarities with his description of the dynamics of science. Our main distinction to
the literature building on Kuhn (1962) is that we study how past discoveries shape
today’s choice of research questions and the search for answers rather than how an
overreaching theory is used to tackle a given question. Building on Kuhn (1962),
Kitcher (1990) introduces a model of researchers choosing between different theories.
Further developing that idea, Brock and Durlauf (1999) show that social factors, such
as the desire for conformity, affect whether a superior theory will outcompete an
inferior theory over time. Strevens (2003) argues that the priority reward system,
as described in Merton (1957), can achieve an efficient allocation of resources across
approaches. Akerlof and Michaillat (2018) provide a dynamic economic model of
competing paradigms and show that a false paradigm may survive due to homophily
across generations of researchers. Relatedly, philosophers of science have studied how
researchers uncover the most significant approach to a research topic (Weisberg and
Muldoon, 2009; Alexander et al., 2015). They formalize approaches as locations in
an epistemic landscape and their significance as the unknown height at that location.
None of these ideas is our focus, yet our model connects naturally and provides a
complementary perspective on cumulative research.

Closer to an economic approach is a growing literature that leverages large-scale
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data sets to shed light on researchers’ decision-making (see Fortunato et al., 2018, for an
overview). Foster et al. (2015) empirically analyze researchers’ strategies in biomedical
chemistry and find that conservative research strategies, akin to little novelty and
deepening knowledge in our setting, are more widespread than risky strategies, akin
to high novelty and expanding knowledge in our setting. They emphasize a tension
between being productive and making novel contributions. Building on these ideas,
Rzhetsky et al. (2015) simulate how risk-taking speeds up the evolution of knowledge.
Myers (2020) discusses the effectiveness of policy instruments to encourage more
novelty in research. We view our work as complementary to this literature. We
provide a theoretical model that, in its baseline static version, generates outcomes in
line with their empirical findings. The tractability of our model allows us to generate
further insights from making it dynamic and by adding policy tools to the picture.

An adjacent literature on innovation in corporate R&D studies the allocation of
resources to different innovative strategies. Our key departure from this literature lies
in the value of the findings. In corporate R&D, discovery is rewarded by a product’s
market value. In science, the value of a finding is the knowledge it generates, for
example, to guide decision-making. In the innovation literature, the direct spillovers
of findings on the value of related questions are rarely the main driver of incentives.
However, in our model the benefits of a finding specifically derive from improved
knowledge about related questions. Hopenhayn and Squintani (2021), for example,
study the competitive dynamic allocation of researchers to different questions, but
assume the value of projects is independent of the stock of completed projects. Bryan
and Lemus (2017) analyze a similar problem. In their setting, innovations may relate,
but, in contrast to our setting, the sequence in which innovations can be achieved is
exogenously fixed.

A key aspect of our model is that the benefits and costs of addressing a research
question depend on existing knowledge. The theoretical literature on scientific discov-
eries does not explicitly model this aspect, yet it incidentally captures parts of the
scientific process we have in mind. Aghion et al. (2008) consider a setting in which
they assume that knowledge evolves in an exogenous step-by-step structure, whereas
Bramoullé and Saint-Paul (2010) provide a model of research cycles albeit without
considering an intensive margin. In our framework, intensive margins are relevant.

Conceptually, we contribute to the literature modeling search as discovery on a
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Brownian path that builds on Callander (2011). Our focus on modeling scientific
research leads us to depart from the canonical ideas in the existing literature—most
notably in two dimensions.

First, our decision-maker aims to understand the entire Brownian path, as any
question can become a potential problem to act on. In contrast, in Callander (2011)
and Garfagnini and Strulovici (2016) knowing the location of the optimal realization
along the path suffices for their decision-maker. Closer to us are Bardhi (2022) and
Callander and Clark (2017). Still, in Bardhi (2022), being informed about a summary
statistic of the Brownian path suffices to make an optimal decision. In Callander and
Clark (2017), being informed about the roots of the Brownian path suffices to make
an optimal decision. In all of their models, the discovery of realizations beyond the
frontier declines in value over time. Callander et al. (2022) is an exception where
market competition slows this decline. Nevertheless, knowledge expansion eventually
halts. In our model, there is a constant and endogenous desire to expand knowledge.3

Second, we conceptualize discovering the realization of the Brownian motion at a
particular point as a costly search process that may fail. This generates an endogenous
link between novelty and output, leading to a trade-off: should the researcher choose
more novel questions or higher research output? The existing literature ignores this
link between novelty and output.

Combining both differences to the literature, a new reason why learning stops
emerges: the stochastic process taking an unexpected turn. Such turns prevent
researchers from discovering the resulting unexpected answers, as their search optimally
focuses on the most likely answers. This reason differs from those present in the
literature where search tends to stop because further search becomes less valuable;
e.g., due to very informative or valuable discoveries.

Finally, the endogenous growth literature is related in that research and innovation
generate value for society. Typically, the value of successful research derives from
improvements in the product market, which is usually modeled in one of two ways:
by expanding the set of available varieties (e.g., Romer (1990)) or by climbing a

3Jovanovic and Rob (1990) study a related problem. There, expanding knowledge implies an i.i.d.
draw at a fixed cost, while deepening knowledge is costless. Here, all questions are connected. See
Callander and Hummel (2014), Callander and Matouschek (2019), Callander et al. (2021), Bardhi
and Bobkova (2022), and Urgun and Yariv (2023) for unrelated applications in a related framework.
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quality ladder, that is, by replacing old products or processes with improved ones
(e.g., Grossman and Helpman (1991) and Aghion and Howitt (1992)). In our model,
a ladder structure of knowledge expansion somewhat reminiscent of the quality ladder
model as described in Klette and Kortum (2004) arises as well. However, there is a
crucial difference. Knowledge advances horizontally in step sizes, but new steps leave
the value of old ones unaffected. In that sense, the ladder structure arising in our
model is closer to the expansion of product varieties as in Romer (1990). Yet, we show
that the ladder structure may be suboptimal.4

2 A Model of Knowledge and Research
There are two players: society—represented by a single decision-maker—and a re-
searcher. The researcher observes initial knowledge Fk and chooses two actions: a
question, x, and a probability, ρ, with which she discovers the answer, y(x), to ques-
tion x. With probability ρ, knowledge is augmented by the question-answer pair and
becomes Fk ∪ {(x, y(x))}. With complementary probability, knowledge remains Fk.
Finally, the decision-maker observes current knowledge and decides for every question
whether to apply knowledge or to select an outside option.

2.1 Knowledge and Conjectures

Questions and answers. We represent the universe of questions by the real line. A
question is an element x ∈ R. Each question x has a unique answer, y(x) ∈ R.
Truth and knowledge. The answer y(x) to question x is determined by the truth.
The truth is the graph of the realization of a random variable Y (x) that follows a
standard Brownian motion defined over the entire real line.5 This assumption captures
the following notion: the answer to question x is likely to be similar to the answer to
a close-by question x′. As the distance between x and x′ increases, the uncertainty
increases. However, a correlation remains.

Knowledge is the finite collection of known question-answer pairs. We denote it by
Fk = {(xi, y(xi))}k

i=1. For notational convenience, we assume that Fk is ordered such
4It is important to keep in mind that questions in our model are related and have informational

spillovers. This relation is absent in models with product varieties.
5As in Callander (2011), the realized truth Y is a random draw from the space of all possible paths

Y generated by a standard Brownian motion going through an initial knowledge point (x0, y(x0)).
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that xi < xi+1. We refer to x1 and xk as the frontiers of knowledge. Knowledge Fk

determines a partition of the real line consisting of k + 1 elements

Xk := {(−∞, x1), [x1, x2), · · · , [xk−1, xk), [xk, ∞)}.

Each element of the partition Xk is an area. We call (−∞, x1) area 0, [x1, x2) area
1, and so on until area k, which is [xk, ∞). The length of area i ∈ {1, .., k − 1} is
Xi := xi+1 − xi, and X0 = Xk = ∞.
Conjectures. A conjecture is the cumulative distribution function Gx(y|Fk) of the
answer y(x) to question x given knowledge Fk. Because Y (x) is determined by a
Brownian motion, the conjecture about y(x) is a cumulative distribution function of
a normal distribution with mean µx(Y |Fk) and variance σ2

x(Y |Fk). Both µx and σ2
x

follow from the properties of the Brownian motion.
Property 1 (Expected Value). Given Fk, the conjecture Gx(y|Fk) has mean:

µx(Y |Fk) =


y(x1) if x < x1

y(xi) + x−xi

Xi
(y(xi+1) − y(xi)) if x ∈ [xi, xi+1), i ∈ {1, ..., k − 1}

y(xk) if x ≥ xk.

Property 2 (Variance). Given Fk, the conjecture Gx(y|Fk) has variance:

σ2
x(Y |Fk) =


x1 − x if x < x1

(xi+1−x)(x−xi)
Xi

if x ∈ [xi, xi+1), i ∈ {1, ..., k − 1}

x − xk if x ≥ xk.

2.2 Actions and Payoffs

Decision-maker. For each question x, the decision-maker either applies knowledge,
or takes an outside option. The decision-maker’s payoff from taking the outside option
is normalized to zero. If she applies knowledge, her expected payoff is

1 − σ2
x(Y | Fk)

q
,
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with q > 0 exogenously given.6 Abstracting from any prioritization of questions, the
decision-maker values all questions equally. Her value of knowing Fk is

v(Fk) :=
∫ ∞

−∞
max

{
1 − σ2

x(Y |Fk)
q

, 0
}

dx.

The decision-maker’s outside option. A key element of our model is that the
precision of knowledge determines whether the decision-maker applies it to address
problems or prefers the outside option, ∅. This feature captures what is referred to
as the “precautionary principle”: if uncertainty is large, prudence trumps risking poor
application of knowledge. How often the decision-maker reverts to the outside option
is governed by the parameter q, the size of which is not essential to our results as long
as q ∈ (0, ∞). Yet, q gives knowledge creation a meaning. To see this, consider the
two limiting cases. As q → 0, the decision-maker does not apply knowledge unless she
is certain about the answer. As knowledge is finite, but problems are uncountably
infinite, the decision-maker chooses the outside option almost everywhere for any
knowledge: knowledge becomes irrelevant to decision-making. At the other extreme,
q → ∞, the decision-maker prefers to apply knowledge no matter how vague the
conjecture. In that case, the emphasis the decision-maker puts on the precision of her
answers must be low: knowledge becomes irrelevant to decision-making.
Researcher. The researcher builds on initial knowledge Fk and decides to search for
an answer to a question x. Another key element of our model is that the researcher
decides how much effort to exert to find the answer. Given a choice of question x, we
posit a one-to-one relationship between the level of effort exerted and the resulting
probability ρ of discovering the answer y(x). Thus, (x, ρ) is a sufficient statistic to
summarize the researcher’s choice.

To save on notation, we allow the researcher to choose ρ directly. We aim to
capture that increasing the probability of discovery requires costly effort. In Section 4,
we provide details and a microfoundation. For now, we assume the researcher’s cost
to be

ĉ(ρ; x) := η
(

erf−1(ρ)
)2

σ2
x

(
Y |Fk

)
,

6One microfoundation to attain these payoffs is to assume that the decision-maker’s preferences
are represented by an affine transformation of a quadratic loss function and she aims to match the
truth. She would then choose µ(x) as her best reply. Normalizing the outside option to zero, choosing
an intercept of one and a slope of 1/q provides our payoff formulation.
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where η ≥ 0 is an exogenous cost parameter and erf−1(·) is the inverse error function
of the normal distribution. The cost scales in uncertainty: discovering y(x) with a
given probability ρ is more costly if the conjecture about y(x) is less precise.

On the benefits side, we assume that the researcher is aligned with the decision-
maker. The researcher’s total payoff is

ρ

(
v
(

Fk ∪ {(x, y(x))}
)

− v(Fk)
)

− η
(

erf−1(ρ)
)2

σ2
x

(
Y |Fk

)
.

Economically, our assumption entails that the researcher benefits from her discovery
through its impact on the decision-maker’s payoff. We revisit this assumption and
its implications when we get to the researcher’s problem (Section 4) and again in a
dynamic version of the model in Section 5.

3 The Benefits of Discovery
In this section, we describe the benefits of a particular discovery. That is, we ignore
how the discovery came about and focus on the marginal value it creates.

Discovery occurs whenever an answer is found and the new question-answer pair
is added to existing knowledge, Fk. The (gross) benefits of discovering y(x) are the
marginal increase in the value of knowledge from adding (x, y(x)) defined as

V (x; Fk) := v(Fk ∪ {(x, y(x))}) − v(Fk).

We distinguish two scenarios: expanding knowledge and deepening knowledge. A
discovery y(x) expands knowledge if x /∈ [x1, xk]. A discovery y(x) deepens knowledge
in area i if x ∈ [xi, xi+1].

The benefits of a discovery are determined by the length of the research area, X,
the discovery occurs in, and how distant the question, x, is from existing knowledge.
Definition 1 (Distance). The distance of question x from knowledge Fk is the minimal
Euclidean distance to a question to which the answer is known:

d(x) := min
ξ∈{x1,x2,...xk}

|x − ξ|.

Definition 2 (Variance). The variance of a question with distance d in an area of
length X is σ2(d; X) := d(X − d)/X.

Note that σ2(d; X) = σ2
x(Y |Fk) for d(x) = d and x in an area of length X. Abusing
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Figure 2: Benefits-maximizing (left) and too large (right) distance of x given F1.

notation, we define for any X ∈ R ∪ {∞} and d ∈ [0, X/2]

V (d; X) := 1
6q

(
2Xσ2(d; X) + 1d>4q

√
d(d − 4q)3/2

+ 1X−d>4q

√
X − d (X − d − 4q)3/2

− 1X>4q

√
X(X − 4q)3/2

)
,

where V (d; ∞):= limX→∞ V (d; X).
Proposition 1. V (d; X) describes the benefits of a discovery (x, y(x)) with distance
d(x) = d to existing knowledge when the question x lies in an area of length X.

Proposition 1 shows that the benefits of a discovery depend only on the parameters
d and X of a question, not its precise location. To gain some intuition on V (d; X),
note that the terms without an indicator function measure the direct reduction in
uncertainty about answers due to the discovery. The indicator that enters negatively
becomes active if the decision-maker chose the outside option for some question in the
area before discovery. The indicators that enter positively become active only if the
decision-maker chooses the outside option for some question after discovery.
Expanding Knowledge. Suppose we expand knowledge by discovering a question-
answer pair (x, y(x)) with x < x1. Our discovery pushes the knowledge frontier to the
left generating the area [x, x1). The benefits of this knowledge expansion come from
the value of the new area [x, x1)—the dark-shaded area in Figure 2’s left panel.7

7More precisely, the conjectures about questions to the left of the old frontier are replaced by
conjectures inside the new research area, and conjectures to the left of the new frontier also become
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Figure 3: The benefits of discovery. The dark-shaded area illustrates the benefits of discovery; the
light-shaded areas illustrate the value of initial knowledge. In the left panel, knowledge is expanded.
In the right panel, knowledge is deepened.

The value of the new area depends on the amount of questions with conjectures
based on two discoveries and the degree of improvement in those conjectures relative to
the outside option. The benefits-maximizing question resolves a marginal-inframarginal
trade-off. Increasing the length of the newly created area has two opposing effects on
the value: (i) a positive marginal effect because the amount of questions in the new
area increases, and (ii) a negative inframarginal because the degree of improvement
decreases.

Figure 2 and Figure 3 illustrate the benefits of discovery from creating ideal (left
panel of Figure 2), too large (right panel of Figure 2), and too short (left panel of
Figure 3) areas. The largest benefits come at an intermediate level at which all
conjectures have a variance strictly smaller than q.
Deepening knowledge. Deepening knowledge differs conceptually. Instead of creat-
ing a new area, discoveries replace an existing area with two shorter ones. Discovering
the answer to y(x) replaces an area, [xi, xi+1) with the new areas [xi, x) and [x, xi+1).

Areas of length 3q provide the largest benefits, the one depicted in the left panel
of Figure 2. Thus, the benefits-maximizing discovery inside an area of length Xi = 6q

is naturally at the midpoint, replacing the area by two areas of length 3q.
Finding the benefits-maximizing discovery for areas of length Xi 6= 6q is less

more precise. As can be seen in the left panel of Figure 3, the variance reduction to the left of the
frontier is always the same. Hence, the benefits are the same as if only the new area was added.
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Figure 4: The benefits of discovery. The dashed line in the left panel plots the benefits of discovery
V (d0(X); X) against X < ∞. The solid line shows the maximum benefits from expanding knowledge.
The right panel plots V (d; X) for different X.

straightforward. There are two forces at play. First, there is a benefit to replacing
the old area with two symmetric new areas. The intuition echoes that of expanding
knowledge: the inframarginal loss increases when an area becomes too large. Choosing
symmetric area lengths reduces the inframarginal losses compared with asymmetric
area lengths. Second, benefits decline if the area length is greater than 3q because
conjectures inside the area become imprecise.

If the initial area length Xi was small, the first force would dominate. Selecting
the midpoint at d = Xi/2 is optimal. However, if Xi was large, the trade-off would
be resolved in favor of creating one high-value area at the cost of having imprecise
conjectures in the other. A cutoff, X̃0, determines which force dominates.
Expanding vs. Deepening Knowledge. Finally, there is a trade-off between ex-
panding knowledge and deepening knowledge. On the one hand, expanding knowledge
means that no area is replaced and a new area is created. On the other hand, deepening
knowledge means creating two areas with precise conjectures. Expanding knowledge
provides higher benefits than deepening knowledge in some existing area only if all
existing areas are shorter than a cutoff X̂0. Figure 4 illustrates this observation.

We now summarize our findings. We define the optimal distance as

d0(X) := arg max
d

V (d; X).
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Proposition 2. A distance of d0(∞)=3q maximizes the benefits of expanding knowl-
edge. When deepening knowledge in an area with length below a cutoff X̃0, the midpoint
of the area maximizes the benefits, d0(X) = X/2. Otherwise, a distance between 3q

and the midpoint maximizes the benefits of deepening knowledge, d0(X) ∈ (3q, X/2).
Expanding knowledge is only benefits-maximizing if all available bounded areas

are shorter than a cutoff, X̂0, with X̂0 < X̃0. The benefits from optimally deepening
knowledge are single peaked in the area length with the peak at qX0 ∈ (X̂0, X̃0).

4 The Researcher

4.1 The Researcher’s Objective

In this section, we analyze the researcher’s optimal choice. Recall that the researcher
only benefits from research if it culminates in a discovery.8 The researcher’s expected
payoff given a choice of question x and success probability ρ can be written as

uR(d, ρ; X) := ρV (d; X) − η c̃(ρ)σ2(d; X)︸ ︷︷ ︸
=c(ρ,d;X)

,

where c̃(ρ) := (erf−1(ρ))2. To obtain this expression, we replaced the question x by its
sufficient statistics (d, X).

The cost of research, ηc(ρ, d; X), derives from conceptualizing research as the
search for an answer. We assume that, given a question x, the researcher chooses a
sampling interval [a, b] ∈ R in the y-dimension. She discovers the answer if and only
if y(x) ∈ [a, b]. We interpret the interval length as the amount of effort the researcher
invests in finding an answer. For simplicity, we assume a quadratic cost η(a−b)2.
Lemma 1. For knowledge Fk, probability ρ, and question x, the minimal cost of
obtaining an answer to question x with probability ρ is

ηc(ρ, d; X) = ηc̃(ρ)σ2(d; X).

The intuition behind Lemma 1 is straightforward. Conjectures are normally
distributed and it is optimal to center the search effort around the mean. Given a
success probability ρ, the more precise the conjecture, the shorter the expected search

8This is a direct consequence of the assumption that the decision-maker only has access to Fk

when addressing problems. One rationale is a moral-hazard concern: science is complex, and it is
impossible to distinguish the absence of a finding from the absence of a (proper) search.
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around the mean, and thus, the lower the cost. For a given variance, the higher the
desired success probability, the larger the respective sampling interval.

Our cost function exhibits the following properties: It is (i) multiplicatively
separable in ρ and (d; X), (ii) increasing in d and X, and (iii) concave in d; the
concavity decreases in X and becomes linear in d in the limit as X → ∞.9

The cost of research links output and novelty. To see this, consider a researcher
who chooses a question x and aims to discover its answer with probability ρ. If that
researcher increases ρ by a given amount, ε, she needs to increase her search effort,
that is, expand her sampling interval, [a, b], which is optimally centered around the
mean. The additional effort required to increase ρ depends on the variance of the
conjecture about y(x), and hence, on the novelty of the question. If the variance
is low, the density at the boundaries of the sampling interval is high—a moderate
increase in effort gets the success probability to ρ + ε. If, instead, the variance is high,
the density is low and the increase in effort must be larger.

4.2 The Researcher’s Choice

We now characterize the researcher’s optimal choice and elaborate on the resolution
of the novelty-output trade-off. The researcher solves

max
X∈{X0,...,Xk}

max
d∈[0,X/2],

ρ∈[0,1]

ρV (d; X) − ηc(ρ, d; X)

︸ ︷︷ ︸
=:UR(X)

.

Without cost (η = 0), we can apply Proposition 1 to derive the researcher’s optimal
choice. For any research area of length X, the researcher selects distance d0(X) and
discovers an answer with certainty.

However, for positive cost, η > 0, the researcher’s optimal decision on output,
ρη(X), is nontrivial and linked with her decision on novelty, dη(X). Choosing a question
close to existing knowledge allows for a high probability of discovery at a low cost. The
researcher’s initial conjecture about the answer is already precise. Nevertheless, her
payoff is low, as such a discovery provides little benefits. By increasing the distance,
the researcher increases both benefits and cost, ceteris paribus. The effect on the
optimal probability of discovery is ambiguous. Depending on which effect dominates,

9More complex cost functions are possible, we discuss two alternatives in the Supplemental
Appendix (Carnehl and Schneider, 2024).
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the distance and the probability of discovery are substitutes (the researcher optimally
reduces the success probability when answering a more novel question) or complements
(she increases the success probability when answering a more novel question).
Optimal choice within a research area. The following proposition captures the
key aspects of the researcher’s choice within a research area.
Proposition 3. Suppose η > 0. Researchers fail with positive probability, ρη(X) ∈
(0, 1). There is a cutoff area length X̃η < X̃0 such that researchers choose the benefits-
maximizing distance, dη(X) = d0(X), in area X if and only if X ≤ X̃η. Otherwise,
researchers choose a question strictly less novel than that, dη(X) < d0(X).

Proposition 3 shows that when expanding knowledge the researcher chooses a
question closer to existing knowledge than the benefits-maximizing distance 3q. This
is because novelty and output are substitutes. The marginal cost of increasing ρ rises
with d, while the marginal benefits of increasing d approach zero as d → 3q. The
researcher balances novelty and output and selects a question less novel than 3q.

That trade-off is less pronounced when the researcher deepens knowledge. The
reason is that inside an area moving away from one boundary implies moving closer
to the other boundary. Thus, the marginal cost of the success probability flattens in
distance and becomes zero at d = X/2. Whether this effect is strong enough to make
novelty and output complements depends on area length.
Optimal choice among areas. The following proposition characterizes the re-
searcher’s optimal choice among intervals.
Proposition 4. Suppose η > 0. There are cutoffs 2q < X̂η < Ẋ < qXη < X̃η < 8q

such that the following claims hold:

1. The researcher expands knowledge if and only if knowledge is dense, that is, if
and only if all bounded areas are shorter than X̂η < X̂0.

2. Both novelty and output are nonmonotone in area length. Novelty attains a
maximum at X̃η. Output attains a maximum at Ẋ.

3. The researcher’s expected payoff from conducting research in an area X, UR(X),
is single peaked and attains a maximum at qXη.

Proposition 4 shows that the pattern in distance is qualitatively the same as in
Proposition 2. However, the cost adds another dimension: the researcher’s choice of
success probability interacts with both the choice of distance and research area.
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Consider a short area. The scope of improving the decision-maker’s policies is
small because conjectures are already precise and investing in discovery thus provides
a limited payoff. Consequently, the researcher does not invest much in the search for
an answer despite the low cost. She opts for a low success probability. A marginal
increase in the area length provides larger increase in the benefits than in the cost. In
response, the researcher increases both distance and success probability.

By contrast, consider a large area. The benefits of discovery trump those of the
small area, yet the cost is higher. The researcher does not invest much in discovery
due to the high marginal cost of increasing the success probability. As a result, the
probability of discovery is low. If, in this case, the area length increases marginally,
the researcher responds by decreasing both the distance and the success probability.

Finally, consider an area of intermediate length. The benefits of discovery are
high, yet the associated cost is limited. The return on investment is large, and the
probability of discovery is high. As the area length further increases, the marginal
return of increasing the distance declines, while the marginal cost rises. Eventually,
the researcher faces a trade-off: should she reduce the success probability to maintain
maximal distance? It turns out that she should. While the researcher wants to remain
at a boundary in her choice of distance, she mitigates the increased cost by lowering
the success probability.

The researcher’s preferred area length, qXη, is in a region in which a trade-off
between output and novelty exists. While the researcher would prefer a larger research
area to increase the benefits of research, she would prefer a smaller research area to
reduce her cost. Thus, distance is increasing and the success probability is decreasing
at the point at which the researcher’s payoff is maximal.

Thus far, we have not taken into account which research areas are available, which
is determined by existing knowledge Fk. Computing the optimal among the available
areas is straightforward.

5 The Evolution of Knowledge, Moonshots, and
Research Cycles

In this section, we consider a dynamic extension of our baseline model to study the
endogenous evolution of knowledge. Through the lens of our dynamic model, we find
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that forward-looking interventions, which induce research cycles through moonshot
discoveries, can improve the evolution of knowledge.

5.1 Sequential Research

Our starting point is a setting in which knowledge is F0 = {(x0, y(x0))}. At any time
t = 1, 2, . . . , a short-lived researcher Rt arrives, observes current knowledge, Ft−1, and
selects (x, ρ). If a discovery occurs, knowledge updates and a decision-maker updates
the application of knowledge accordingly.

To retain focus, we make three assumptions: All researchers have the same cost
parameter η > 0, break ties identically, and condition their decision (x, ρ) only on
current knowledge. While we impose the first two assumptions for simplicity only, the
last assumption is more meaningful.10 We discuss our modeling choice in Section 6.

Moving forward, keep in mind that, given our symmetry assumptions, we can
invoke Proposition 4 to describe knowledge as dense whenever Fk is such that all
bounded areas are shorter than X̂η. For any dense knowledge Fk, each researcher’s
incentives are identical and in particular identical to the incentives of a researcher
facing the initial knowledge F0. As a benchmark, we first show that knowledge
evolves in knowledge-expanding steps.
Proposition 5. For any η ≥ 0, knowledge is dense in any period. Specifically, every
researcher aims to expand knowledge by the same distance dη(∞) ∈ (2q, 3q] with the
same probability of discovery ρη(∞) ≤ 1. Moreover, both the distance dη(∞) and the
probability of discovery ρη(∞) strictly decrease in the cost parameter η.

Proposition 5 shows that no short-lived researcher endogenously inspires future
researchers to deepen knowledge. The intuition follows from Propositions 1 and 4:
Researchers are rewarded for their immediate contribution to the value of knowledge.
Therefore, no researcher expands knowledge beyond the benefits-maximizing d0(∞) =
3q. Deepening knowledge within areas of X ≤ 3q, however, is unattractive as it creates
too little value. Thus, all researchers aim to expand knowledge, and the stepsize
depends on η. The larger η, the smaller the stepsize dη(∞). Moreover, if η > 0,
researchers fail at each step with probability 1 − ρη(∞) > 0 if the Brownian takes an
unlikely turn. If one researcher fails, all later researchers fail too. By symmetry, they

10In particular, once a researcher fails, all subsequent ones ignore those failures because they
condition their decision only on current knowledge, and—by symmetry—fail again.
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make the exact same choice as the initially failing researcher and thus fail to discover
the realization.

5.2 Interventions

In reality, we see that societies invest in affecting scientists’ choices. The most
prominent incentive schemes are large ex-ante cost reductions through grants from
funding institutions, such as the NSF or the ERC, and high-prestige ex-post rewards
for successful research, such as the Nobel Prize or the Fields Medal. These incentives,
however, are often awarded to scientists pushing the frontier considerably.

A natural question is whether a designer (a funder, a government, . . . ) has an
incentive to interfere with the knowledge production process in our model. Here, we
consider a designer whose per-period payoff is a weighted average of the decision-
makers’ and the researchers’ payoffs,

E
[ ∞∑

t=1
δt−1

(
(1 − α)v(Ft+1) + α (v(Ft+1) − v(Ft) − ηĉ(d, ρ))

)]
, (1)

where α ∈ [0, 1] measures the designer’s weight on the researchers’ payoffs. This
formulation introduces two potential frictions between the designer and the researcher.

First, their per-period payoffs differ. The only meaningful difference between the
researcher’s and the decision-maker’s payoff is that the researcher bears the cost of
research.11 Therefore, we can think of the designer as having a modified cost parameter
η̂ ∈ [0, η], where η̂ = 0 corresponds to full alignment with the decision-maker, and
η̂ = η to full alignment with the researcher. We can interpret η̂ either as a degree of
research cost internalization or, alternatively, as a measure of the appropriability of the
benefits of research. Second, the time horizons of the researcher and the designer differ.
Researchers are rewarded for their discoveries only through the immediate benefits
they generate in the value of knowledge. However, a researcher’s discovery alters the
landscape of knowledge indefinitely and thereby the future value of knowledge as well.
We assume that the designer discounts the future value of knowledge by δ ∈ [0, 1).

For now, we assume that the designer can intervene at most once and proceed
by studying a set of natural benchmarks to understand the forces at play. First, we
isolate the time-horizon friction by assuming that research is costless (η = 0) and

11Note that the term αv(Ft) is, within a period, a constant as the knowledge at the beginning of
period t, Ft is exogenously given.
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that the designer is forward-looking (δ > 0). Second, we isolate the cost friction by
considering positive research cost (η > 0) but a myopic designer (δ = 0).
Forward-looking designer and costless research. First, consider a forward-looking
designer, δ ∈ (0, 1), in an environment with costless research, η = 0. Note that this
designer’s payoff is

E
[ ∞∑

t=1
δt−1 (v(Ft+1) − α · v(Ft))

]
. (2)

A researcher without cost chooses d0(∞) = 3q and ρ0(∞) = 1 (Proposition 2).
Moreover, by Proposition 5, knowledge remains dense under these choices. From
Proposition 2, we know that adding an area of length 3q to any given set of areas Xk

dominates adding a single bounded area of any other length. Because every researcher
adds such an area, it follow that knowledge expands in 3q-steps and without failure.
Irrespective of (α, δ), the designer has no reason to intervene , and a sequence of short-
lived researchers without cost implements the forward-looking designer’s optimum .
Thus, it is not the researcher’s short-livedness alone that causes inefficiency in the
evolution of knowledge.
Myopic designer and costly research. Second, consider a myopic designer, δ = 0,
in an environment with costly research, η > 0, that is not fully aligned with the
researcher, α < 1. Such a designer has, in any period t, payoffs similar to this period’s
researcher, albeit with a smaller cost parameter, η̂. It follows that, in each period, the
researcher’s choices are suboptimal from the designer’s perspective. In particular, the
designer prefers a larger distance and a higher success probability.

Straightforwardly, such a myopic designer wants to align the researcher’s cost
parameter, η, with his own, η̂, whenever given the chance. If the designer aligns
the cost, the researcher implements the designer’s preferred research. Whether the
designer aligns η and η̂ depends on whether she needs to pay an additional cost to do
so. If not, the designer intervenes by reducing the researcher’s cost parameter directly,
yet the evolution of knowledge remains qualitatively unchanged.12 Knowledge evolves
through step-by-step expansions albeit with larger stepsizes and fewer failures. This
observation also provides an answer to the question of how heterogeneous researchers

12Because η governs the relative weight of benefits and cost, increasing the researcher’s benefits or
decreasing her cost is the same.
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would change the picture. In fact, heterogeneous researchers are researchers that
incorporate the cost at different weights, thus observationally indistinguishable from
cost-internalizing designers.

To achieve a better outcome, the designer could, for example, award a grant to
the researcher which effectively lowers that researcher’s cost by allowing her to hire
personnel or reduce her teaching load. However, such subsidies may come at a cost
to the designer not reflected in (1). If such a cost was present, the designer would
subsidize the researcher only until the marginal cost of doing so exceeds the marginal
benefits.13

Moonshots. The preceding benchmarks provide a rationale for moderate interventions
at most that encourage researchers to invest more into the search for answers to more
distant questions. These observations highlight that it is neither the researcher’s short-
livedness nor her cost of research alone that warrants more substantial interference
with the scientific production process. To rationalize more drastic interventions that
qualitatively change the evolution of knowledge, we now turn to a forward-looking
designer in an environment with research cost.

We focus on a particular simple model in which the designer does not internalize the
researcher’s cost (α = 0). We allow the designer to fully control the first researcher’s
actions at no cost. We are interested in whether such a designer has an incentive to
induce a moonshot, a discovery more distant than the myopically optimal distance, 3q,
to the knowledge frontier. Because a distance of exactly 3q maximizes the value of the
area generated (by Proposition 2), a moonshot can only be beneficial if it “inspires”
future researchers to deepen knowledge in the newly created area; that is, if it is larger
than X̂η. The next proposition states that a designer finds it optimal to launch a
moonshot if and only if he is sufficiently patient and the researcher’s cost friction is
intermediate.
Proposition 6. Suppose α = 0. There are cost parameters 0 < η < η < ∞ and
a critical discount factor δ(η) < 1 such that for η ∈ (η, η) the designer optimally
launches a moonshot if and only if δ > δ(η). If η = 0 or η → ∞, a moonshot is
suboptimal for any δ.

13A realistic model would need to develop a theory of supply of grants, awards, or teaching
reductions, which we expect to result in a non-trivial cost function to the designer. We thus leave it
for future research.
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Figure 5: Evolution of knowledge for different choices in t = 1. The dots show which questions
have a known answer at each time t, assuming that discovery has been successful. The designer’s
choice for R1 (•) is given, R2’s choice (◦) is a best response. F0 = 0, y(0), η = 1. The left panel
assumes discovery of question x = 3q in period t = 1, the right panel x = 6q.

Proposition 6 incorporates the no-cost case. As we have argued above, moonshots
are of no use in that case. The same is true if the researchers’ costs are high. Then, ρη

is low, and already the second researcher most likely fails to discover an answer. Thus,
the designer expects little progress from t = 2 onward and focuses on maximizing the
value of knowledge at the end of t = 1 inducing the myopic optimum d = 3q which,
unless η = 0, still implies more novelty than what the researcher chooses herself.

For intermediate cost parameters, however, moonshots generate valuable spillovers.
Without intervention, intermediate cost parameters lead to successful but too narrow
research that fails too often. Researchers expand knowledge in a ladder-type structure
but select questions too close to existing knowledge and too low success probabilities.
In anticipation, the designer initiates a research cycle through a moonshot. The next
researcher builds on both the initial knowledge F0 and the moonshot discovery and
deepens knowledge in the newly generated area in an attempt to close the gap between
moonshot and initial knowledge.

A completed research cycle may lead to a more valuable landscape as Figure 5
illustrates. Once the cycle is complete and knowledge is dense again, knowledge is
in a better state than with one optimal area of length 3q and subsequent knowledge-
expanding steps following Proposition 5. As time moves on, the better landscape
remains and generates further rents.

Figure 6 illustrates a second positive effect of a moonshot. The probability that
the evolution of knowledge ends because the next researcher fails is smaller after the
moonshot than after a myopic disclosure. The moonshot opens a research area of
considerable size. In t=2, the second researcher aims to fill it, but can use both the
initial frontier and the moonshot discovery to fine-tune her research. This reduces her
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Figure 6: Hazard rate of science. Cumulative probability that science stops by time t for different
initial disclosures given η = 1.

cost—in particular when the moonshot is not too far from initial knowledge. As a
consequence of this logic, “marsshots” very far from existing knowledge are not optimal.
They are too disconnected to inspire the following researchers to be productive.

While moonshots always reduce the hazard rate of science, sometimes they do
not lead to a better landscape conditional on success. Suppose, for example, that
η is close to but below η from Proposition 6 (and δ not too small). Then, the risk
of not producing anything beyond the first discovery is large. However, a moonshot
significantly reduces the risk of failure in t = 2, in particular, if it is only marginally
above the cutoff for deepening research, X̂η. Such a moonshot does not improve
the landscape, but focuses on making R2 succeed. If R2 completes the cycle, the
knowledge landscape is worse than completing the counterfactual two steps 3q (through
the designer) and dη(∞) (through R2). Yet, because R2 becomes more likely to succeed
after a moonshot, the moonshot remains profitable. If, instead, η is small but above
η, a moonshot will provide benefits both in output and in the value of knowledge.
Taking costs into account. One, seemingly crucial, assumption of our moonshot
analysis is that the designer does not bear the costs of the initial moonshot or does
not directly care about the costs exerted by future researchers. Taking these costs into
account complicates the model significantly, as the designer needs to trade off several
paths with potentially different costs. Analytically, we consider it beyond scope for
this paper. However, numerically, it turns out that incorporating these costs and/or
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the costs of future researcher generations does not affect Proposition 6.14

Research cycles. As we have seen above, with infrequent interventions, a designer
may improve the evolution of knowledge by inducing a research cycle through an
initial moonshot, which provides a higher payoff than the same number of steps when
expanding knowledge stepwise. A natural question to ask is what happens if the
designer has multiple but infrequent opportunities to intervene. There are several
ways to model infrequent interventions. We opt for the simplest, which is that, in each
period, the designer gets to control the researcher with probability λ > 0. For the sake
of clarity, we are particularly interested in the case in which such opportunities are
rare. This assumption allows us to circumvent that future opportunities play a large
role in the designer’s decision today, which would obfuscate our trade-off of interest.

For our analytical result, we consider environments that (i) are promising in the
sense that the discount factor δ and the cost parameter η are such that δρη(∞) > 1/2,
and (ii) feature optimal one-time moonshots of intermediate length, that is, the optimal
moonshot has length X ∈ [4q, min{2X̂η, X̃η}].15 Then, after a moonshot in t, the
next researcher, Rt+1, aims to complete the cycle and chooses the midpoint of the
area created by that moonshot.

Having fixed the environment for the single moonshot, continuity implies that,
for rare moonshot opportunities, the designer starts a moonshot whenever given the
opportunity as long as science did not get stuck before due to failed research. However,
the question is less clear when science is stuck. Specifically, we may consider the
following scenario. The designer had created a moonshot in the past, but due to an
unexpected turn of the truth, the researchers have failed to complete the research
cycle. In that case, should the designer abandon the incomplete cycle and start a new
one, or, should he use his opportunity to complete the incomplete cycle?
Proposition 7. Assume α = 0 and a promising environment with moonshots of
intermediate length. The designer strictly prefers completing an open cycle over
initiating a new research cycle when interventions are sufficiently rare.

14This and other numerical results we allude to here can be obtained using the code we provide
as supplementary material to this paper. Since our static model has effectively only one (relevant)
parameter, η, we can provide comprehensive numerical results.

15Numerically, there is a wide range of parameters (δ, η) satisfying both conditions. For example,
when δ = 0.95, η ∈ [0.01, 0.5] suffices. The lower bound, 4q, is directly implied by the environment
being promising.
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The intuition behind Proposition 7 is straightforward. The environment is promis-
ing and researchers are unlikely to fail while expanding research. If, in addition, the
designer is patient, his effective discount factor is high. A high effective discount
factor implies that leaving a cycle incomplete leads to a severe reduction in long-run
research output. Moreover, the immediate payoff from completing a cycle is large.

Providing analytical solutions for the general case proves difficult, because the
researcher’s problem is two-dimensional and the disclosure probabilities ρη(∞) can
only be implicitly defined. Numerically, however, we can show that the logic of
Proposition 7 holds if the initial optimal moonshot is sufficiently large. The reason is
intuitive. If the moonshot is large, there are two benefits. First, once filled up, the
knowledge landscape is better than if it evolved through knowledge-expanding steps.
Second, a moonshot lowers the probability that researchers get stuck by increasing the
success probability of the next researchers. If, instead, the moonshot is short, the sole
reason behind the moonshot is to lower the risk of researchers getting stuck. But then,
if the optimal moonshot is short, researchers are likely to fail outside of moonshots.
Thus, completing the cycle provides little benefits and likely leads to immediate failure
thereafter. A new moonshot, on the other hand, improves the chances of a discovery
in the next period. Thus, the designer opts for the latter option.

6 Final Remarks
We propose a tractable and flexible model based on three simple premises: (i) the
pool of available research questions is large, (ii) questions close to existing knowledge
are easier to answer than questions far from existing knowledge, and (iii) society
applies knowledge when selecting policies. Our model endogenously links novelty
and research output and highlights the importance of existing knowledge for research
and knowledge accumulation. A dynamic extension delivers rich insights into how
interventions can improve the accumulation of knowledge over time.

We close with a discussion along two dimensions: First, we revisit our model-
ing choices, and discuss extensions and alternative assumptions. Then, we discuss
implications of our findings for designing institutions and research environments.
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6.1 Modeling Choices

To model the evolution of knowledge as close as possible to the static setting, we
made a set of modeling assumptions that may appear strong. We now revisit these
assumptions and briefly discuss alternatives.
Beyond the real line. For illustrative purposes, we assume that the set of questions
is the real line which implies that there are exactly two directions in which the research
frontier may be expanded. In reality, we would expect that, at least in some fields,
there is a plethora of directions in which a given researcher could expand the frontier.
It turns out, however, that as long as the partitioning of the question space into
areas is attainable, our analysis and findings remain unchanged. We provide a formal
extension in the Supplemental Appendix (Carnehl and Schneider, 2024). There, we
also discuss the case of “seminal discoveries” that open up new fields of questions.
Observing failure. In the limit, when researchers can select from a continuum of
directions, it becomes hard for others to find previous failed attempts. For example,
suppose that there is some cost of finding out whether a past researcher has done
expanding research in the direction the current researcher contemplates. Because there
is an entire ocean of potential directions, the probability that someone has worked in
the contemplated direction is zero. Hence, it is not worth paying the cost and past
failures remain unobserved.

While our baseline model is perhaps too restrictive on the set of directions, an
ocean may be too open. Thus, indeed, there are settings in which observing past failure
becomes relevant. Generally, observing a failed attempt provides information about
an unexpected turn of the Brownian motion and, therefore, increases the variance
at that point. Assuming some coherence in the search for an answer (for example,
by restricting search to a connected interval of answers), digging deeper on previous
failed attempts proves unattractive: The failed attempt has revealed that the answer
is complicated. In response, researchers would aim to answer a different question
rather than resolving that failed attempt.
Getting knocked off the ladder. Proposition 5 shows that knowledge expands
in steps without interventions. Because X̂η > 3q for all η, researchers, even if
heterogeneous, will not deviate from the ladder structure. Instead, with heterogeneous
researchers, we would only get ladders with unequal step sizes.
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Serendipity, on the other hand, may lead to researchers leaving the ladder for
some time. Imagine some random discovery far from existing knowledge. Then,
the next generations will work to connect it to the existing bulk of knowledge by
Proposition 4 until knowledge is dense again. Only then do researchers return to the
knowledge-expanding steps of Proposition 5.

Other forces with the potential to break the ladder structure are long-lived re-
searchers who would act similar to a cost-internalizing designer and have an incentive
to set moonshots, or exogenous shocks to the importance of questions. In our baseline,
all questions have the same relevance. However, real-world shocks may cause an
elevated interest in particular questions. Our model predicts that such temporary
interest can have long-lasting effects. Once the interest fades, researchers use the
improved conjectures to bridge old knowledge and new findings.
Other frictions. We assume that, besides the cost friction, the market for ideas works
well and researchers are paid their marginal contribution to the value of knowledge.
In reality, several known frictions hinder that process. Well-known examples include
publication bias (Andrews and Kasy, 2019), the emphasis on priority (Bobtcheff
et al., 2017; Hill and Stein, 2020, 2021), or researchers’ career concerns (Akerlof and
Michaillat, 2018; Heckman and Moktan, 2020). While the question of optimal market
design is beyond our scope, our framework is flexible enough to incorporate these
frictions. It may thus be a stepping stone toward structural models of science funding
that include such frictions.

6.2 Implications

Although our dynamic model is stylized, we reconcile empirical findings in the eco-
nomics of science (see, for example, Rzhetsky et al., 2015; Fortunato et al., 2018,
documenting a lack of novelty in research) and the economics of innovation (e.g.,
Jaffe et al., 2003, documenting the inspiring nature of the original moonshot). In
reality, a researcher’s value of any given discovery, especially in the basic sciences,
depends on the institutional framework a researcher operates in. Our findings in
Section 5 suggest that focusing only on immediate policy relevance when designing
researchers’ incentives is suboptimal for patient societies. In the following, we discuss
some alternative incentive structures.
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Future-oriented rewards. No short-lived researcher selects a question novel enough
to initiate a research cycle, even when research is costless to her. The reason is that
researchers exclusively care about the value of their research today but not about its
indirect value in guiding future researchers.

To incentivize moonshot discoveries, researchers need future-oriented rewards that
go beyond the instantaneous value of their findings. Apart from prizes for novel
findings, the value of citations for promotion decisions or scientific reputation may
serve such purpose. That insight is reminiscent of recent empirical work on firm-level
R&D. Frankel et al. (2023) estimate the value of dynamic spillovers from discoveries
of drugs. In line with our model, they provide suggestive evidence that the lack of
appropriability of these spillovers harms novelty in pharmaceutical innovation.
Research consortia. The idea of research consortia has been put forward in some
fields of basic science to improve the evolution of knowledge. Research consortia
formed by scientists of different backgrounds operate on missions different from the
“publish or perish” or “marketability” paradigms. Hill and Stein (2021) document
that the incentives and choices of consortia in structural biology differ from those of
university researchers. In line with our model, they find that consortia provide more
novel discoveries but also discoveries of lower immediate value.

Our findings suggest that the underlying reason is not particular to structural
biology. Establishing institutions that alleviate some researchers from the need to
provide immediate benefits can guide those in traditional incentive schemes. In fact,
our findings in Section 5 suggest that a mix in incentives may be key to improving
the evolution of knowledge.
Direction of science. As we noted above, funding measures that only target the
researcher’s cost do not alter the way knowledge progresses qualitatively. However, it
may alter the direction of science. Recall that a researcher’s question choice in our
model can be interpreted as choosing from a set of directions and then picking novelty
along that direction. Reducing the cost of research in one of the available directions
distorts the marginal researcher in favor of the subsidized direction.

Recent empirical work is consistent with this observation. Nagaraj and Tranchero
(2023) suggest that data availability affects the direction of sciences. Kim (2023) finds
that novel technologies can incentivize researchers to focus on more explored rather
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than unexplored areas. Myers (2020) shows that topic-specific grants can lead to a
change in the direction of science. These findings can be interpreted in our model as a
change in the cost of research: some directions become less cost intensive than others.

When a researcher chooses a moonshot in some direction, she affects future
generations through the implied research cycle, suggesting that the effect is persistent.
Moonshots determine the direction science takes in the medium run. That coordination
may provide additional network benefits, which are currently outside our model. A
potential counterforce has been identified in the literature in corporate R&D which
emphasizes the role of competition.16 While beyond our scope, combining competition
and dynamic spillovers within our framework is an exciting avenue for future research.

A Proofs
Pure algebraic reformulations are relegated to the Supplemental Appendix (Carnehl
and Schneider, 2024). There, we also review the properties of c̃(ρ) = (erf−1(ρ))2. We
use subscripts to denote partial derivatives; df(x,y)

dx for the total derivative; and omit
function arguments when clarity is preserved.

A.1 Proof of Proposition 1

The value of knowing Fk is
∫∞

−∞ max {1 − σ2
x(y|Fk)/q, 0} dx. No matter which point

of knowledge (x, y(x)) is added to Fk, the value of knowledge outside the frontiers is
identical for both Fk and Fk ∪ {(x, y(x))}. Area lengths X1 = Xk = ∞ do not depend
on Fk and neither does the variance for a question x < x1 or x > xk with a given
distance d to Fk. The conjectures about all questions outside [x1, xk] deliver a value
of 2

∫ q
0 (q − x)/qdx = q, which is independent of Fk.

Moreover, if a question x̂ ∈ [xi, xi+1] is answered, it deepens knowledge and only
affects questions in that area, i.e., G(x|Fk) = G (x|Fk ∪ {(x̂, y(x̂))}) ∀ x /∈ (xi, xi+1).

The value of an area [xi, xi+1] is (with abuse of notation)

v(X) =
∫ X

0
max

q − d(X−d)
X

q
, 0

 dd.

Note that whenever X ≤ 4q, d(X − d)/X ≤ q. Hence, we can directly compute the
16See, e.g., Bryan and Lemus (2017), Hill and Stein (2020, 2021), and Hopenhayn and Squintani

(2021).
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value of any area with length X ≤ 4q as v(X) = X − X2/(6q). Whenever X > 4q, a
positive value is generated only on a subset of points in the area. As the variance is a
symmetric quadratic function with midpoint X/2, there is a symmetric area around
X/2 which has a variance exceeding q. On those points, the decision-maker’s losses are
limited to zero. The points with variance equal to q are d1,2 = X/2 ± 1/2

√
X

√
X − 4q.

Hence, the value of an area with X > 4q is (due to symmetry)

v(X) = 2
∫ d1

0

q − d(X−d)
X

q
dd = X − X2

6q
+ X − 4q

6q

√
X
√

X − 4q

If knowledge expands, a new area is created and no area is replaced. The value created
is

V (d; ∞) = v(d) = d − d2

6q
+

0, if d ≤ 4q

d−4q
6q

√
d
√

d − 4q, if d > 4q.

If a knowledge point is added inside an area with length X with distance d to the
closest existing knowledge, it generates two new areas with length d and X − d that
replace the old area with length X. The total value of the two new intervals is

v(d) + v(X − d) =d − d2

6q
+


0, if d ≤ 4q

d−4q
√

d
√

d−4q

6q
, if d > 4q

+ X − d − (X − d)2

6q
+


0, if X − d ≤ 4q

X−d−4q
√

X−d
√

X−d−4q

6q
, if X − d > 4q

.

The benefits of discovery are then V (d; X) = v(d) + v(X−d) − v(X). Noticing
that σ2(d; X) = d(X−d)/X and replacing results in the expression in the proposition.
Taking the limit X → ∞ implies the expanding value.

A.2 Proof of Proposition 2

Expanding Knowledge. The first-order condition for d ≤ 4q immediately delivers
d = 3q. Moreover, the benefits decrease in d for d > 4q which can be seen from the
negative d-derivative (invoking Lemma 27 in the Supplemental Appendix (Carnehl
and Schneider, 2024))

Vd(d; ∞|d > 4q) = − d

3q
+ 1 +

√
d − 4q

d

d − q

3q
< 0,
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Deepening Knowledge.

Lemma 2. d0(X) = X/2 if X ≤ 6q.

Proof. 1. Assume X ≤ 4q. The benefits of discovery are V (d; X|X ≤ 4q) =
(Xd − d2)/(3q) which increase in d for d ∈ [0, X/2] and are maximized at d = X/2.
Moreover, V (X/2; X|X ≤ 4q) = X2/(12q) which increases in X.

2. Assume X ∈ (4q, 6q]. Case (i). d ≥ X − 4q implies (since d ≤ 3q)

V (d; X) = 1
6q

(
2dX − 2d2 −

√
X(X − 4q)3/2

)
which are the same as in the first case up to the constant −

√
X(X − 4q)3/2. Thus,

the optimal d conditional on d ≥ X − 4q is d = X/2.
Case (ii). For d ≤ X − 4q the benefits and their derivative are

V (d; X) = 2dX − 2d2 +
√

X − d(X − d − 4q)3/2 −
√

X(X − 4q)3/2

6q

Vd(d; X) = 1
3q

X − 2d − (X − d − q)
√

X − d − 4q

X − d

 > 0.

Lemma 28 in the Supplemental Appendix (Carnehl and Schneider, 2024) implies the
last claim. Then, Vd(d;X|d≤X − 4q, X∈[4q, 6q])>0 ∀ d, X in the considered domain;
d=X−4q maximizes V (d; X|d≤X − 4q, X∈(4q, 6q])) and by (i) d=X/2 maximizes
V (d;X|X∈(4q, 6q]).

Lemma 3. For any X < ∞, Vd(X/2; X) = 0.

Proof.

V (d; X) = 1
6q

(
2Xσ2(d;X)︸ ︷︷ ︸

(I)

+1d>4q

√
d(d−4q)3/2︸ ︷︷ ︸

(II)

+1X−d>4q

√
X−d (X−d−4q)3/2︸ ︷︷ ︸

(III)

−1X>4q

√
X(X−4q)3/2︸ ︷︷ ︸

(IV )

)
.

At d = X/2, either both (II) and (III) are active or neither is. Moreover, (IV) is
independent of d, and we have ∂(II)/∂d = −∂(III)/∂d, and ∂(I)/∂d = 0.

Lemma 4. If X > 8q then d0(X) 6= X/2. If d0(X) 6= X/2, then d0(X) ≤ 4q.

Proof. Consider d = d = 4q < X/2. We obtain

V (d; X|·) − V (X/2; X|·) = 1
6q

(X − 8q)3/2

2

(
2
√

X − 4q −
√

X −
√

(X − 8q)
)

,
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which is positive if 4(X − 4q) > 2X − 8q ⇔ X > 4q, which holds by assumption.
To establish the second part of the lemma, note that d > 4q only occurs for X > 8q.

We will show that Vd(d; X) < 0 for all d > 4q when X > 8q. Towards this, observe

VddX(d; X > 8q) = − 4q2

(X − d) 5
2 (X − d − 4q) 3

2
< 0,

because X>8q and X − d≥X/2>4q. Thus, a lower bound for Vdd(d; X > 8q) is

Vdd(d; X > 8q)|limX→∞ = 1
3q

d2 − d
3
2
√

d − 4q − 2q(d + q)
d

3
2
√

d − 4q
> 0.

Thus, Vd(d; X) is highest for d = X/2 which, by Lemma 3, is 0. Hence, V (d; X)
decreases in d for X > 8q and d > 4q.

Lemma 5. d0(X) < X/2 ⇒ dV (d0(X);X)
dX

< 0.

Proof. By the envelope theorem, dV (d0(X);X)
dX

= VX(d0(X); X) which is negative for
X ≥ 4q and d ∈ [0, X − 4q] by Lemma 29 in Supplemental Appendix (Carnehl and
Schneider, 2024). If X ≥ 8q, then d ≤ X − 4q by definition and Lemma 29 applies. If
X < 8q, by Lemma 2, we know that d0(X) 6= X/2 only if X ≥ 6q. Moreover,

Vd(d; X|X/2 > d > X − 4q, X < 8q) = X − 2d

3q
> 0

Hence, d0(X) 6= X/2 ⇒ d0(X) ≤ X − 4q. Lemma 29 applies proving Lemma 5.

Lemma 6. d0(X) < X/2 for some X ∈ [6q, 8q) ⇒ d0(X) < X/2 for all X ′ > X.

Proof. It suffices to consider X ′ < 8q by Lemma 4. We prove the claim by showing that
V (d0

c(X); X) for any interior critical point d0
c(X) < X/2 cuts V (X/2; X) from below

at any potential intersection. Thus, there is at most one switch from d0(X) = X/2 to
d0(X) < X/2 and no switch back. Continuity then implies the statement.

V (d; X) is a continuously differentiable function in X and d. Thus, any interior
(local) optimum d0

c(X) is continuous and so are V (d0
c(X); X) and V (X/2; X). We

now show that if V (d0
c(X); X) = V (X/2; X) for some local optimum d0

c(X) < X/2
and X ∈ [6q, 8q], then dV (d0

c(X); X)/dX > dV (X/2; X)/dX. Because the first-
order condition holds for an interior critical point, the envelope theorem applies
and dV (d0

c(X), X)/dX < 0. By Lemma 2, we know that for X ≤ 6q V (X/2, X) ≥
V (d0

c(X), X) if d0
c(X) exists. Hence, at the first intersection V (d0

c(X), X) must cross
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from above. Now, because V (d0
c(X), X) decreases, the first intersection can only occur

in a region where V (X/2, X) decreases and must be such that dV (X/2, X)/dX <

dV (d0
c(X), X)/dX. We prove that this is the only potential intersection in Lemma

30 in Supplemental Appendix (Carnehl and Schneider, 2024). There we show that
d2V (X/2, X)/(dX)2<0 and d2V (d0

c(X), X)/(dX)2>0.

Lemma 7. V (d0(X); X) is continuous in X. As X → ∞, it converges uniformly
to V (d; X) and d0(X) → d0(∞). For any X > 6q, we have d0(X) > 3q and
V (d0(X), X) > V (3q, ∞).

Proof. Continuity follows because V (d0(X); X) = maxd V (d; X) with V (d; X) con-
tinuous in both d ∈ [0, X/2] and X. Now take any sequence of increasing Xn with
limn→∞ Xn = ∞. For any δ(d), ∃n such that Vn(d; Xn) − V (d; ∞) < δ(d) as can be
seen from the formulation in the proof of Proposition 1. Hence, V (d; Xn) converges
uniformly to V (d; ∞). By uniform convergence the maximizer d0(Xn) of V (d; Xn) con-
verges too. Convergence from above follows from V (3q; X)>V (3q; ∞) for X∈(6q, ∞).

Finally, recall that V (d; ∞) describes the value of an area of length d. That value
increases for d < 3q and decreases for d > 3q. Now suppose X > 6q and d0(X) < 3q.
Then by increasing d both areas created get closer to 3q and thus increase in value. A
contradiction to d0(X) being the maximizer.

Lemma 8. V (d0(X); X) is single peaked with peak at qX0 ≈ 6.2q and d0( qX0) ≈ 3.1q.

Proof. By Lemma 7, V (d0(X); X) is continuous. By Lemma 5 it is decreasing if
d0(X) < X/2. By Lemmata 2, 4 and 6 and especially the arguments used in the proof
of Lemma 6, the (single) switch from d0(X) = X/2 to d0(X) < X/2 happens for some
X ∈ (6q; 8q] and at a point where V (X/2; X) is already decreasing. Thus, we can
compute the peak by considering the first-order conditions of V (X/2; X) with respect
to X. The peak is the (real) solution to

X

X − q
= 2

√
X − 4q√

X
. (3)

Defining m := X/q, the above reduces to m/(m − 1) = 2
√

(m − 4)/m. For m > 4,
the LHS decreases and the RHS increases in m. The solution is m ≈ 6.204.

Lemma 9. Expanding trumps deepening knowledge if and only if X < X̂0 ≈ 4.338q.
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Proof. V (3q; X) > V (3q; ∞) for X ≥ 6q by direct comparison. For X ∈ [0, 6q] we
need to consider only d0(X) = X/2 by Lemma 2. We compare V (X/2; X) with
V (3q; ∞). Using m = X/q from the previous proof, the two functions intersect if
m2/12 −

√
m/6(m − 4)(3/2) − 3/2 = 0 which has a unique solution such that m ≤ 6 at

m ≈ 4.338.

Lemma 10. 4q < X̂0 < 6q < qX0 < X̃0 < 8q.

Proof. The first two inequalities follow from Lemma 9, the third from Lemma 8. The
fourth inequality follows from Lemma 6 and Lemma 4 implies the last.

A.3 Proof of Proposition 3

Throughout, we make use of the first-order necessary conditions for interior solutions.

ηc̃ρ(ρ)σ2(d; X) = V (d; X) (FOCρ) ρVd(d; X) = ηc̃(ρ)σ2
d(d; X) (FOCd)

Part 1: Expanding Knowledge

Lemma 11. There is a non-trivial optimal choice with ∞ > d > 0, 1 > ρ > 0 on any
interval with positive length, X ∈ R+ ∪ {∞}. The first-order condition, (FOCρ), is
necessary for optimality of ρη(X).

Proof. The researcher can guarantee a non-negative payoff by choosing d = 0 or
ρ = 0. Hence, her value is bounded from below by zero. Next, note that uR(ρ =
0, d > ε; X) = 0 for any ε > 0 and that (∂uR(ρ, d; X))/(∂ρ)|ρ=0,d=ε = V (ε, X) > 0 by
Proposition 1. Therefore, on any interval X a maximum with d > 0, ρ > 0 exists.

By Lemma 8, the benefits of discovery are bounded V (d, X) ≤ M < ∞ and
lim
ρ→1

c̃(ρ) = ∞. Therefore, the optimal ρ < 1. Finally, V (d, ∞) decreases in d for d

large enough while the cost ηc̃(ρ)σ2(d, ∞) increases in d. Hence, the optimal distance
is bounded dη(·) ≤ D < ∞.

Because the optimal choice is interior and the objective is continuously differentiable,
a necessary condition for ρη(X) is that it solves (FOCρ).

Lemma 12. When expanding knowledge, the optimal choice is characterized by the
first-order conditions (FOCd) and (FOCρ). These FOCs suffice and dη(∞) ∈ (2q, 3q).
The researcher’s value is strictly positive UR(∞) > 0.
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Proof. We proceed in three steps. First, we show that the distance is at most
3q. Second, we show that the first-order conditions are sufficient when expanding
knowledge. Third, we characterize the optimal choice of the researcher.

Step 1. d ≤ 3q. Fix any ρ ≥ 0. Since σ2(d; ∞) increases in d, it is immediate that
the researcher’s utility is non-increasing in d if V (d; ∞) decreases in d. Combining
this observation with Proposition 2, it is sufficient to restrict attention to d ≤ 3q.

Step 2. FOCs sufficient. By Lemma 11, the researcher’s optimal choice is interior
and, hence, characterized by the first-order conditions. To see the sufficiency of the
first-order conditions, note that the first principal minor of Hessian is ρVdd − ηcσ2

dd =
−ρ 1

3q
< 0 as σ2

dd = 0 and that the second principal minor is given by the determinant
of the Hessian at the critical point:

− ρVdd(d; ∞)ηc̃ρρ(ρ)σ2(d; ∞) − (Vd − ηc̃ρ(ρ)σ2
d(d; ∞))2

=ρ
c̃ρρ(ρ)
c̃ρ(ρ)

V (d; ∞)
3q

−
(

− d

3q
+ 1 − V (d; ∞)

σ2(d; ∞)

)2

. (4)

The equality follows from Vdd = − 1
3q

, σ2(d; ∞) = d, and using the necessary condition
(FOCρ) via ησ2(d; ∞) = V (d; ∞)/c̃ρ(ρ). Substituting for V (d; ∞) = d − d2/(6q) (as
d ≤ 3q by Step 1) yields as condition for a positive second principal minor:

ρ
c̃ρρ(ρ)
c̃ρ(ρ) >

d

2(6q − d) .

The inequality holds as the properties of c̃ imply LHS ≥ 1 while RHS ≤ 1
2 for d ≤ 3q.

Step 3. Characterization. Substituting the expressions for V (d; ∞) and σ2(d; ∞) for
expanding knowledge into the first-order condition (FOCd) yields ρ(1−d/(3q)) = ηc̃(ρ).
Replacing η via equation (FOCρ) and solving for d we obtain

dη(∞) = 3q

(
1 − c̃(ρ)

2c̃ρ(ρ)ρ − c̃(ρ)

)
∈ (2q, 3q)

where the bounds follow from the properties of c̃.

Part 2. Deepening knowledge.

Lemma 13. The researcher’s optimal choice of distance is dη(X) = X
2 for X ≤ X̃η and

dη(X) < X/2 otherwise. At X̃η, the payoff UR(X) decreases. Further, lim
X→∞

dη(X) =
dη(∞) and the convergence is from above. Any optimal distance satisfies dη(X) ≤ 4q.
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Proof. Define db := X/2—the boundary solution—, and di as the solution d to (FOCd)
assuming d < X/2 (whenever it exists)—the interior solution.

Step 1. db always a candidate solution. Note first that the choice db always
constitutes a local maximum as the marginal cost of distance is zero at this point,
∂σ2(d, X)/∂d = 1 − 2d/X. Moreover, by Lemma 3 also the marginal benefit is zero at
d = X/2. Finally, for any choice of d, there is a unique ρ that solves (FOCρ) because,
given d, (FOCρ) has a continuous, strictly increasing, left-hand side with c̃ρ(0) = 0
and limρ→1 c̃ρ(ρ) = ∞, and has a constant right-hand side. Hence, the boundary
solution with db is always a candidate solution.

Step 2. dη(X) = X/2 if X ≤ 4q. Recall (FOCρ) and (FOCd). Assuming an
interior solution di, replacing η via (FOCρ) in (FOCd) we obtain

Vd(d, X)
σ2

d(d, X)

/
V (d, X)
σ2(d, X) = c̃(ρ)

ρ

/
c̃ρ(ρ).

It follows from the properties of c̃(ρ) that the RHS ∈ [0, 1/2] and decreasing. Thus,
if the LHS > 1/2, it is beneficial to increase d if possible and the boundary choice db

is optimal. For short areas, X ≤ 4q, the boundary choice is optimal as
Vd

σ2
d

/
V

σ2 = 2(X − 2d)
X−2d

X

/
2(dX − d2)

d(X−d)
X

= 1.

Step 3. dη(X) < X/2 if X > 8q. Note first that the variance of the boundary
question is always greater than for any interior question. Hence, if the benefits of a
discovery, V , are larger for an interior question than for the boundary question, the
researcher can obtain a higher payoff by choosing an interior question with the same
ρ as for the boundary question. The benefits of discovery on the boundary of an area
with X > 8q are always smaller than for some interior distance by Lemma 4. Hence,
an interior choice is optimal for X > 8q.

Step 4. If di is optimal it must be that di < 4q and that X − di > 4q.
For X ∈ (4q, 8q) and X − d < 4q,

Vd(d, X)
σ2

d(d, X)

/
V (d, X)
σ2(d, X) = 2d(X − d)

−2d2 + 2dX −
√

X(X − 4q)3/2

which decreases in d with limd→X/2 X2/2/(X2/2 −
√

X(X − 4q)3/2), which, in turn,
increases in X and is one for X = 4q. Hence, any interior solution must be such
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that X − d > 4q for the same reasons given in Step 2 of this proof. For X − d < 4q,
∂uR(ρ, d; X)/∂ is always positive.

For X > 8q, X − di > 4q. di < 4q follows as V (d; X) decreases in d when d > 4q

by Lemma 4.
Summary Step 1-4. We know that (i) in areas with X < 4q, the researcher’s

distance choice on the deepening area will be db, (ii) in areas with X > 8q the
researcher’s distance choice will be di, (iii) in areas with X ∈ [4q, 8q] the researcher’s
distance choice may di or db, but (iv) if the solution is di, it has to satisfy X − di > 4q

and di < 4q. The latter two imply di < X/2 in this case.

Step 5. Single crossing of the payoffs. With three observations, we show that the
payoffs, UR(db; X) and UR(di; X), cross once assuming ρ(d, X) is chosen optimally.

1. At area length X for which UR(db; X) = UR(di; X), the payoff at the boundary
solution must be decreasing faster than at the interior solution.

2. On the interval [4q, 8q], the payoff of the boundary solution has a strictly lower
second derivative with respect to X for all X than that of the interior solution.
Hence, the two values can cross at most once on this interval.

3. UR(db; X) ≤ UR(di; X) if X ≥ 8q.
The first observation follows because the first switch is from the boundary to the

interior solution, by continuous differentiability of all terms and dη(X) = X/2 for
X < 4q. The third observation follows from Step 3 above.

The second observation follows from totally differentiating UR for both local
maxima. Using envelope conditions, we obtain that the payoff is concave in the
boundary solution and convex in the interior solution implying the second observation.
Define ϕ(X) := maxρ u(d = X/2, ρ, X) for the boundary; we show in Lemma 31
of Carnehl and Schneider (2024) that ϕ(X) is concave. In Lemma 32 of Carnehl
and Schneider (2024), we show that UR(X) = maxρ,d u(d, ρ, X) is convex in X if the
maximizer satisfies dη(X) < X/2.

Step 6. Asymptotics. As X → ∞, V (d, X) converges to V (d, ∞) and σ2(d, X) to
σ2(d, ∞) and the researcher’s optimization on the deepening interval converges to that
on the expanding interval which has a unique maximum at (dη(∞), ρη(∞)). In particu-
lar, if such an optimum exists, the envelope condition implies that dUR(di(X); X)/dX =
ρVX(di, X) − ηc̃(ρ)σ2

X(di, X) < 0 as VX(d, X) < 0 according to Lemma 29 for X > 4q
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and X − d > 4q and σ2
X(d, X) > 0. Hence, the payoff of any optimal interior choice

decreases in X.

A.4 Proof of Proposition 4

We prove the statements in Proposition 4 in reverse order. A side-product of this
proof is that we show: 4q < qXη ≤ qX0, Ẋ ≈ 4.548q and X̂η < X̂0.
Step 1: Proof of Item 3. We use a series of lemmata to show that a local maximum,
qXη, exists (Lemmata 14 and 15) and that it is global (Lemma 16).
Lemma 14. Fix d = X/2 and assume that an interior optimum exists. Then
UR(X|d = X/2) is maximal only if the total differential dV (d = X/2; X)/dX ≥ 0.

Proof. Under the assumption that d = X/2, UR(X) is defined and continuously
differentiable for all X ∈ [0, ∞) despite the indicator functions.17 Because X = 0
implies UR(X = 0) = 0, because UR(X) declines for X large enough and because
Lemma 11 holds, there is an interior X at which UR(X) is maximized.

As UR(X) is differentiable and maximized at some interior X it satisfies ∂UR/∂X =
0. By assumption, d( qXη) = X/2 and (FOCρ) holds. Thus, ρdV (d=X/2;X)

dX
= η

4 c̃(ρ). The
right-hand side is non-negative, implying the desired result.18

Lemma 15. UR(X; db = X/2) peaks at X = qXη ∈ (4q, qX0].

Proof. Define ÛR(X) = UR(X; db = X/2). Note that Û ′
R(X) > 0 for X ∈ [0, 4q]. This

follows because in this case ÛR(X) = ρX2/(12q) − ηc̃(ρ)X/4 and, hence, Û ′
R(X) =

ρX/(6q)−ηc̃(ρ)/4. Using optimality of ρ via the (FOCρ), we obtain X/(6q) = ηc̃ρ(ρ)/2
which yields Û ′

R(X) = c̃ρ(ρ)ρη/4 (2 − c̃(ρ)/(ρc̃ρ(ρ))) > 0, where the inequality follows
again from the properties of c̃(ρ).

Moreover, ÛR(X) is strictly concave on [4q, 8q] as V̂ (X) := V (d = X/2, X) is
concave by Lemma 30 and ddσ2(d = X/2, X)/(dXdX) = 0 implying Û ′′

R(X) =
ρV̂XX < 0.19 For X > qX0, dV (d = X/2; X)/dX < 0 by the definition of qX0 implying

17Note that the terms appearing in the indicator functions are of the form
√

a(a − 4q)3/2. Taking
the limit of their derivative from above to 4q yields zero such that the left and right derivative
coincide at the point at which the indicator functions become active.

18The RHS is only 0 if η = 0, ρη(X) = 1 and UR(X) = V (X).
19Where ρ′(x) = 0 by optimality and the property of the first-order condition.
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that for X > qX0 the researcher’s value decreases. By Lemma 14, it follows that the
value-maximizing area length qXη ∈ (4q, qX0].

Lemma 16. UR(X) is single peaked in X with the maximum attained at qXη.

Proof. The result follows from three observations: First, X̃η > qXη > 4q by Lem-
mata 13 and 15. Second, VX(d; X) < 0 if X > 4q and d < X/2 by Lemma 5. Third,
by the envelope theorem, if dη(X) < X/2, then ∂UR(X)/∂X = ρη(X)VX(dη(X); X) −
ηc̃(ρη(X))σX(dη(X); X) < ρη(X)VX(dη(X); X). Thus, the interior-solution payoff
intersects the boundary-solution payoff from below while both decrease.

Step 2. Proof of Item 2.
Step 2.1 Maximum of dη(X) at X̃η. By Lemma 13, dη(X) increases for X < X̃η. By
Step 4 in the proof of Lemma 13, we know that any interior solution di is such that
di < 4q < X − di and thus strictly smaller than X/2. Thus, dη(X) decreases when it
switches from the boundary to an interior solution.
Step 2.2 Maximum of ρη(X) at Ẋ. We guess (and verify in Step 4) that a maximum
of ρη(X) exists in the range [X̂η, X̃η], that is the region in which it is optimal to
deepen knowledge and to select d = X/2.
Lemma 17. Suppose d = X/2 is optimal for a range [X, X] such that dη(X) = X/2.
Then, the optimal ρη(X) is single peaked. It is highest at Ẋ = 8 cos (π/18) /

√
3.

Proof. By Lemma 14, we know that dV (d = X/2; X)/dX ≥ 0 and, by Lemma 15,
X > X̂0. Moreover, recall σ2(d = X/2; X) = X/4. The first-order condition with
respect to ρ becomes V (X/2; X)/X = ηc̃ρ(ρ)/4, with V (X/2; X)/X = X/(12q) −
1X>4q(X − 4q)3/2/(

√
X6q).

The latter is continuous and concave. Since c̃(ρ) is an increasing, twice continuously
differentiable and convex function, ρ increases in X if and only if V (X/2; X)/X

increases in X. By concavity of V (X/2; X)/X that implies single peakedness.
Thus, Ẋ is independent of η and given by Ẋ = 8 cos (π/18) /

√
3 ≈ 4.548q.

Step 3. Proof of Item 1.

Lemma 18. X̂η exists, lim
X↘X̂η ρη(X) > ρη(∞), and X̂η decreases in η.
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Proof. As X → 0, dη(X) → 0 and thus UR(X) → 0. By Lemma 12, UR(∞) > 0.
Thus, by continuity of UR(X), ∃X̂η > 0 such that expanding research dominates
deepening research for all X < X̂. Cost are increasing in X and by Proposition 2,
V (d; X ∈ (X̂0, ∞)) > V (d; ∞) which implies UR(X ∈ (X̂0, ∞)) > UR(∞). By
Lemma 16 and again continuity of UR(X), that payoff is maximal at qX. Thus, we
obtain that X̂η exists and that X̂η < qXη.

We now show that lim
X↘X̂η ρη(X) > ρη(∞) holds if X̂η < 6q, then we show that

X̂η decreases in η which, together with the observation that X̂0 < 6q, proves the
lemma. At X̂η we have UR(X̂) = UR(∞):

ρ(X̂η)V (X̂η/2; X̂η) − ηc̃(ρ(X̂η))X̂η/4 = ρη(∞)V (dη(∞); ∞) − ηc̃(ρη(∞))dη(∞), (5)

where the fact that d(X̂η) = X̂η/2 follows from Lemmata 13, 15 and 16. Moreover,
the following holds by optimality

V (dη(∞); ∞) = ηc̃ρ(ρη(∞))dη(∞) (FOC ρη(∞))

V (X̂η/2; X̂η) = ηc̃ρ(ρ(X̂η))X̂η

4 . (FOC ρ(X̂))

Claim 1: ρη(∞) < ρ(X̂η) if X̂η < 6q. Using (FOC ρη(∞)) and (FOC ρ(X̂η)), we ob-
tain from the properties of the error function ρ(X̂η) > ρη(∞) if and only if

4V (X̂η/2; X̂η/2)
X̂η

>
V (dη(∞); ∞)

dη(∞) .

Case 1: X̂η > 4q. Substituting for the V (·)’s the above becomes dη(∞)+2X̂η −4(X̂η −
4q)3/2/

√
X̂η > 6q. A sufficient condition for this to hold is dη(∞) − 2X̂ + 10q > 0.

Using that dη(∞) > 2q by Lemma 12, we obtain that a sufficient condition for
ρ(X̂η) > ρη(∞) is X̂η < 6q.

Case 2: X̂η ∈ (2q, 4q]. Performing the same steps assuming that X̂η ∈ [2q, 4q],
the claim holds if and only if X̂η/(3q) > 1 − dη(∞)/(6q) ⇔ 2X̂η > 6q − dη(∞) > 4q

implying the result.
Case 3: X̂η < 2q. We show that Case 3 never occurs, that is X̂η > 2q. To

do so, we compare UR(d = 2q; ∞) with UR(d = 1q; X = 2q) and show that the
former is always larger. Hence, X = 2q < X̂η for any η. For X = d = 2q, we have
X/(3q) = 1 − d/(6q), and thus ρ(X = 2q) = ρ(d; ∞) = ρ (cf. Case 2). Moreover, we
have V (1q; 2q) = q/3 and V (2q; ∞) = 4q/3. (FOC ρX) implies 4V (1q; 2q)/2q = 2/3 =
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ηc̃ρ(ρ). Since c̃ρ(ρ) > c̃(ρ)/ρ for any ρ > 0, these imply ηc̃(ρ)/ρ < 2/3. Note that
UR(d = 2q; ∞) − UR(X = 2q) = q (ρ − 3/2ηc̃(ρ)), which is positive as ηc̃(ρ)/ρ < 2/3.
Thus, UR(d = 2q; ∞) > UR(X = 2q) and therefore X̂η > 2q.

Claim 2: If ρη(∞) < ρ(X̂η) then X̂η decreases in η.
Using (FOC ρη(∞)) and (FOC ρ(X̂η)) to replace V (·)s in equation (5), we obtain

dη(∞) (ρη(∞)c̃ρ(ρη(∞)) − c̃(ρη(∞))) = X̃η/4
(
ρ(X̂η)c̃ρ(ρ(X̂η)) − c̃(ρ(X̂))

)
, yielding

X̂η/4 = dη(∞)(ρη(∞)c̃ρ(ρη(∞)) − c̃(ρη(∞)))(
ρ(X̂η)c̃ρ(ρ(X̂η)) − c̃(ρ(X̂η))

) .

The envelope theorem gives
∂

∂η

(
UR(X̂η) − UR(∞)

)
= −c̃(ρ(X̂η))X̂η

4 + c̃(ρη(∞))dη(∞).

Replacing for X̂η implies that the RHS is positive if and only if

(c̃(ρη(∞))) − c̃(ρ(X̂η))ρη(∞)c̃ρ(ρη(∞)) − c̃(ρη(∞))
ρ(X̂η)c̃ρ(ρ(X̂η)) − c̃(ρ(X̂η))

> 0.

Using that ρc̃ρ(ρ) > c̃(ρ) by the properties of the inverse error function and factoring
out the denominator of the first term, the above holds if and only if

c̃(ρη(∞))ρη(∞)c̃ρ(ρ(X̂η))−c̃(ρ(X̂η)ρη(∞)c̃ρ(ρη(∞)) > 0 ⇔ ρ(X̂η)c̃ρ(ρ(X̂η))
c̃(ρ(X̂η))

>
ρη(∞)c̃ρ(ρη(∞))

c̃(ρη(∞))

which holds if and only if ρ(X̂η) > ρη(∞) by the properties of the error function.
Thus, X̂η decreases if ρ(X̂η) > ρη(∞).
Conclusion: Since X̂0 ∈ [2q, 6q], ρη(∞) < ρ(X̂η) implying that X̂η decreases in η.

Step 4.

Lemma 19. X̂η < Ẋ < qXη < X̃η.

Proof. We first show that qXη > Ẋ. By the envelope theorem, we need at X = qXη that
ρdV (d = qXη/2; qXη)/dX = ηc̃(ρ)/4. The FOC for ρ at X = qXη gives V/ qXη = ηc̃ρ(ρ)/4.
Assume for a contradiction that ρ( qXη) increases. Then, V/ qXη must be increasing
which holds if and only if dV (d = qXη/2; qXη)/dX > V (d = qXη/2; qXη)/ qXη. Combining
this inequality with the above properties leads to a contradiction as c̃ρ(ρ) > c̃(ρ)/ρ by
the properties of c̃(ρ).
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Ordering. By Lemma 18 we know that X̂η < X̂0. Thus, because X̂0 < Ẋ ⇒ X̂η < Ẋ.
Moreover, X̃η > qXη by Lemma 13 which concludes the proof.

A.5 Proof of Proposition 5

By assumption, knowledge is dense initially and the base step is satisfied. We show
the induction step assuming Rt chooses dη(∞). We have to show that X̂η > dη(∞)
to show that knowledge is dense in t + 1. Suppose the opposite holds, then from
(FOCρ) we know (6q −dη(∞))/(6q) = V (dη(∞); ∞)/σ2(dη(∞); ∞) = ηc̃ρ(ρη(∞)) and
dη(∞)/(6q) = V (dη(∞)/2; dη(∞))/σ2(dη(∞)/2; dη(∞)) = ηc̃ρ(ρ(dη(∞))) implying

ρη(∞) = erf
√√√√W

(
36q2−12qdη(∞)+(dη(∞))2

18q2η2π

)
2

 and ρ(dη(∞)) = erf


√√√√W

(
(dη(∞))2

18q2η2π

)
2

 ,

where W (·) is the Lambert W function. Because dη(∞) is linear in q by Lemma
33 in Carnehl and Schneider (2024); and dη(∞) < 3q by Lemma 12, it follows that
36q2 − 12qdη(∞) > 0 which implies that ρη(∞) > ρ(dη(∞)) by the monotonicity of
the Lambert W function.

By Lemma 17, we know that ρη(X) increases for X < Ẋ = 8cos(π/18)/
√

3. By
Lemma 18, we know ρ(X̂η) > ρη(∞). By Lemma 19, X̂η < Ẋ. Thus, dη(∞) < X̂η

which implies that if Rt expands knowledge, so does Rt+1.
The proof of the comparative statics result follows directly from the implicit

function theorem and the first-order conditions; see the Supplemental Appendix
(Carnehl and Schneider, 2024) for details.

A.6 Proof of Proposition 6

We begin with the negative benchmark results for η → ∞ and η = 0. If η → ∞,
research becomes infinitely costly. Hence, ρ → 0 and uR(dη(X); ρη(X); X) → 0 for
any X. Thus, absent interventions, research creates no value. Any disclosure by the
designer should maximize the immediate payoff V (d; ∞).

If η = 0, ρ0(·) = 1 and uR(d, ρ0; X) = V (d; X). Thus, each researcher maxi-
mizes V (d; X). By construction, maximizing the per-period V (d; X) corresponds to
maximizing the long-run objective of the decision-maker.

For intermediate ranges, it suffices to show that selecting a moonshot of length 6q

is preferred to selecting the myopically optimal d = 3q for some (η, η) and δ(η) < 1.
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We restrict attention to η-levels such that dη(6q) = 3q. These levels exist due to
X̃0 > 6q by Lemma 10. A moonshot is preferred if and only if

V (6q; ∞) + δρη(6q)
(

V (3q; 6q) + δCV
)

1 − δ
≥

V (3q; ∞) + δρη(∞)
(

V (dη(∞); ∞) + δCV
)

1 − δ
,

where CV is the (common) continuation value conditional on researchers not being
stuck at t = 3. Because ρη(6q) > ρη(∞) by Proposition 3 a sufficient condition for the
above is that

V (6q; ∞) + δρη(6q)V (3q; 6q) ≥ V (3q; ∞) + δρη(∞)V (dη(∞); ∞) (6)

which we will now show for some η.
For the moonshot d = 6q, we obtain as value in t = 1, V (6q; ∞) = 2/

√
3q, and

in t = 2, V (3q; 6q) =
(
3 − 2/

√
3
)

q. The success probability in t = 2 follows from
Proposition 3 for deepening research on a research area with X = 6q while being on the
boundary distance d(X = 6q) = X/2. For the myopic optimum d = 3q, we obtain as
value in t = 1, V (3q; ∞) = 3/2q, and in t = 2, V (dη(∞); ∞) = dη(∞)(1−dη(∞)/(6q)).
The distance and success probability in t = 2 follow from Proposition 3 for expanding
knowledge. Plugging into (7);

2/
√

3q + δρη(6q)(3 − 2/
√

3)q ≥ 3/2q + δρη(∞)dη(∞)(1 − dη(∞)/(6q)).

By continuity in η and δ, it suffices to show that, for δ = 1 and some η > 0 this
inequality is strict. Numerically solving for dη(∞), ρη(∞), ρη(6q) using (η = 0.25, q =
1) verifies strict inequality.20 As dη(∞) is linear in q (see Lemma 33 in the Supplemental
Appendix, Carnehl and Schneider, 2024), ρη(∞) is constant in q. Linearity of distance
and invariance of probability in the moonshot are immediate. Thus, restricting
attention to q = 1 is without loss.

A.7 Proof of Proposition 7

Proof. We first state a relationship between different types of knowledge for the
dynamic setting. We begin by defining a (forward-looking) notion of equivalence.

Definition 3 (Forward Equivalence of Knowledge). Knowledge Ft and F ′
t are consid-

ered forward equivalent at time t, if—absent a disclosure opportunity at time t—the
20In this case, ρη(6q) = 0.8457, ρη(∞) = 0.7174, dη(∞) = 2.3988.
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expected future generated payoff is the same.

Note that the current value of Ft and F ′
t need not be the same, but are inconse-

quential for the designer’s decisions moving on.

Lemma 20. Knowledge F is forward equivalent to F0 if it is dense, and there have
been no failures in the past.

Proof. If F is dense, no researcher ever deepens knowledge inside areas existing under
F because X < X̂η. No designer would disclose a question to deepen knowledge,
because X < X̂0. Hence behavior and the generated payoffs are the same.

Lemma 21. Suppose Ft = {(0, y(0)), (x1, y(x1))} with x1 ∈ [4q, min{X̃η, 2X̂η}] and
that there was a failure at x1/2. Further, assume the designer can disclose one
answer at t + 1 for free and expects no future disclosure. Then, if (η, δ) is such that
δρη(∞) > 1/2, the designer strictly prefers to disclose the answer to x1/2 than to 2x1.

Proof. If the designer discloses the answer to x1/2 her continuation payoff is

V (x1/2; x1) +
∞∑

k=1
(δρη(∞))kV (dη(∞); ∞)

Alternatively, the designer could disclose the answer to question 2x1 thereby
starting a new research cycle. Her expected payoff from that action is V (x1; ∞) +
δρη(x1)V (x1/2; x1) because after the new research cycle is completed, researchers
revert back to trying to find the answer to question x1/2 and fail due to symmetry.

The designer strictly prefers the disclosure of x1/2 if

V (x1

2 ; x1) +
∞∑

k=1
(δρη(∞))kV (dη(∞); ∞) > V (x1; ∞) + δρη(x1

2 ; x1)V (x1

2 ; x1)

⇔
∞∑

k=1
(δρη(∞))k >

V (x1; ∞) − (1 − δρη(x1/2; x1))V (x1/2; x1)
V (dη(∞); ∞) .

(7)

Notice that V (x1; ∞)/V (dη(∞); ∞) < V (x1; ∞)/V (2q; ∞) ≤ 1 because x1 ≥ 4q. As
δρη(x1/2; x1) < 1 and V (x1/2; x1) > 0 an upper bound for the RHS is 1. Inequality
(7) holds if δρη(∞)/(1 − δρη(∞)) ≥ 1, which is true if ρη(∞)δ > 1/2.
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Combining Lemmata 20 and 21 with the fact that payoffs converge to the “no
future disclosure opportunity” payoffs as λ → 0 yields the proposition.21
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