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Abstract

We study the fine regularity properties of optimal potentials for the dual formu-
lation of the Hellinger–Kantorovich problem (HK), providing sufficient conditions
for the solvability of the primal Monge formulation. We also establish new regular-
ity properties for the solution of the Hamilton–Jacobi equation arising in the dual
dynamic formulation ofHK, which are sufficiently strong to construct a characteris-
tic transport-growth flow driving the geodesic interpolation between two arbitrary
positive measures. These results are applied to study relevant geometric properties
ofHK geodesics and to derive the convex behaviour of their Lebesgue density along
the transport flow. Finally, exact conditions for functionals defined on the space of
measures are derived that guarantee the geodesic λ-convexity with respect to the
Hellinger–Kantorovich distance. Examples of geodesically convex functionals are
provided.
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1. Introduction

In [26,27] the Hellinger–Kantorovich distance (in [10,11,21] it is also called
Wasserstein–Fisher–Raodistance orKantorovich–Fisher–Raodistance in [17])was
introduced to describe the interaction between optimal transport and optimal cre-
ation and destruction of mass in a convex domain ofRd . Here we further investigate
the structure of (minimal) geodesics, and we fully analyze the question of geodesic
λ-convexity of integral functionals with respect to this distance.

The Hellinger–Kantorovich distance can be considered as a combination, more
precisely the inf-convolution, of the Hellinger–Kakutani distance on the set of all
measures (cf. e.g. [33]) and the L2 Kantorovich–Wasserstein distance, which is
well-known from the theory of optimal transport, see e.g. [2,34]. Throughout this
text, we denote byM(Rd) all nonnegative and finite Borel measures endowed with
the weak topology induced by the canonical duality with the continuous func-
tions C0(R

d) decaying at infinity. While the L2 Kantorovich–Wasserstein distance
W(μ0, μ1) of measures μ0, μ1 ∈ M(Rd) requires μ0 and μ1 to have the same
mass to be finite, the Hellinger–Kakutani distance, which is defined via

H(μ0, μ1)
2 =

∫
Rd

(√
θ0 −

√
θ1
)2 d(μ0+μ1), where θ j = dμ j

d(μ0+μ1)
,

has the upper bound H(μ0, μ1) � μ0(R
d) + μ1(R

d), with equality if μ0 and μ1
are mutually singular.

As ageneralizationof thedynamical formulationof theKantorovich–Wasserstein
distance (see [6]), the Hellinger–Kantorovich distance HKα,β can be defined in a
dynamic way via

HKα,β(μ0, μ1)
2 = inf

{∫ 1

t=0

∫
Rd

(
α|ϒ(t, x)|2+βξ(t, x)2

)
dμt (x)dt

∣∣∣∣ μ ∈ C
([0, 1];M(Rd)

)
, μt=0 = μ0, μt=1 = μ1, (gCE) holds

}
,

(1.1)

where ϒ : (0, 1)×R
d → R

d and ξ : (0, 1)×R
d → R are Borel maps character-

izing the generalized continuity equation

(gCE)
∂

∂t
μ+ α div

(
μϒ

) = β ξμ,
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formulated in a distributional sense. The parameters α > 0 and β > 0 allow us to
control the relative strength of theKantorovich–Wasserstein part and theHellinger–
Kakutani part, i.e.HKα,β is the inf-convolution ofHKα,0 = 1√

α
W andHK0,β = 1√

β
H,

see [27, Rem.8.19]. Subsequently, we will restrict to the standard case α = 1 and
β = 4, since the general case can easily be obtained by scaling the underlying
space Rd . We will shortly write HK instead of HK1,4.

It is a remarkable fact, deeply investigated in [27], that the HK distance has
many interesting equivalent characterizations, which highlight its geometric and
variational character. A first one arises from the dual dynamic counterpart of (1.1)
in terms of subsolutions of a suitable Hamilton–Jacobi equation:

1

2
HK2(μ0, μ1) = sup

{∫
Rd
ξ(τ, ·)dμ1 −

∫
Rd
ξ(0, ·)dμ0

∣∣∣ ξ ∈ C∞c ([0, 1] × R
d ),

∂

∂t
ξ + 1

2
|∇ξ |2 + 2ξ2 � 0 in [0, 1] × R

d
}
. (1.2)

By expressing solutions of (1.2) in terms of a new formula of Hopf–Lax type, one
can write a static duality representation

HK2(μ0, μτ ) = sup
{ ∫

Rd
(1− e−2ϕτ )dμτ −

∫
Rd
(e2ϕ0 − 1)dμ0

∣∣∣
ϕ0, ϕτ ∈ Cb(R

d), ϕτ (xτ )−ϕ0(x0) � L1(xτ−x0)
}

(1.3)

associated with the convex cost function L1(z) := 1
2 log(1+tan2(|z|))which forces|z| < π/2. Notice that it is possible to write (1.3) in a symmetric form with respect

to ϕ0, ϕ1 just by changing the sign of ϕ1.
It is remarkable that (1.3) can be interpreted as the dual problem of the static

LogarithmicEntropyTransport (LET)variational formulationofHK. By introducing
the logarithmic entropy density F : [0,∞[→ [0,∞[ via

F(s) := s log s − s + 1 for s > 0 and F(0) := 1, (1.4)

we get

HK2(μ0, μτ ) = min
{ ∫

Rd
F(σ0)dμ0 +

∫
Rd

F(σ1)dμ1 +
�

Rd×Rd

2L1(x0−x1)dη
}

(1.5)

where the minimum is taken over all positive finite Borel measures η in R
d × R

d

whose marginals (πi )η = σiμi are absolutely continuous with respect to μi .
The subdifferential

DL1(z) = ∂L1(z) = tan(z) := tan
(|z|) z

|z|
and its inverse w �→ arctan(w) will play an important role. We continue to use
bold function names for vector-valued functions constructed from real-valued ones
as follows:

for a map f : R→ Rwith f (0) = 0we set f : Rd → R
d via f (x) := f (|x |) x

|x | .
(1.6)
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A fourth crucial formula, which we will extensively study in the present paper, is
related to the primal Monge formulation of Optimal Transport, and clarifies the
two main components of HK arising from transport and growth or decay effects. Its
main ingredient is the notion of transport-growth pair (T , q) : Rd → R

d × [0,∞)
acting on measures μ ∈M(Rd) as

(T , q)�μ := T (q2 · μ),
(
(T , q)�μ

)
(A) :=

∫
T−1(A)

q2 dμ for every Borel set A ⊂ R
d . (1.7)

The Monge formulation of HK then looks for the optimal pair (T , q) among the
ones transforming μ0 into μ1 by (T , q)�μ0 = μ1 which minimizes the conical
cost

C(T , q;μ0) :=
∫
Rd

(
1+ q2(x)− 2q(x) cosπ/2

(|T (x)−x |))dμ0(x), (1.8)

where cosπ/2(r) := cos
(
min{r, π/2}). As for the usual Monge formulation of op-

timal transport, the existence of an optimal transport-growth pair (T , q)minimizing
(1.8) requires more restrictive properties on μ0, μ1 which we will carefully study.
It is worth noticing that the integrand in (1.8) has a relevant geometric interpretation
as the square distance d2

π,C, where dπ,C is the distance on the cone space C overRd

(cf. (2.5)) between the points [x, 1] and [T (x), q(x)] and suggests thatHK induces a
distance inM(Rd)which plays a similar role than the L2 Kantorovich–Rubinstein–
Wasserstein distance inP2(R

d). The dynamic formulation (1.1),moreover, suggests
that its minimizers (μt )t∈[0,1] should provide minimal geodesics in (M(Rd),HK)
which behave like transport-growth interpolations between μ0 and μ1.

Inspired by the celebrated paper [28], we want to study the structure of such
minimizers and to characterize integral functionals which are convex along such
kind of interpolations.

1.1. Improved Regularity of Potentials and Geodesics

In the first part of the paper we will exploit the equivalent formulations of HK
in order to obtain new information on the regularity and on the fine structure of the
solutions to (1.3), (1.2), and (1.8).

More precisely, we will initially prove in Section3 that the optimalHK potential
ϕ0 is locally semi-convex outside a closed (d−1)-rectifiable set, so that whenμ0 	
Ld andμ1 is concentrated in a neighborhood of supp(μ0) of radius π/2 the Monge
formulation (1.8) has a unique solution.

After the transformation ξ0 := 1
2 (e

ϕ0−1) (which linearizes the second integrand
in the duality formula (1.3)), we also obtain a family of maps, for t ∈ [0, 1],

T0→t (x) = x + arctan
( t∇ξ0
1+2tξ0(x)

)
, q2

0→t (x) := (1+2tξ0(x))
2 + t2|∇ξ0(x)|2,

(1.9)

with the following properties:
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1. (T0→1, q0→1) is the unique solution of (1.8) and provides the beautiful formula

HK2(μ0, μ1) =
∫
Rd

(
4ξ20 + |∇ξ0|2

)
dμ0, (1.10)

showing that the (closure of the) space of C1
c(R

d) functions with respect to the
Hilbertian norm

‖ξ‖2H1,2(Rd ,μ)
=
∫
Rd

(
4ξ2 + |∇ξ |2

)
dμ (1.11)

provides the natural notion of tangent space TanμM(Rd) and a nonsmooth Rie-
mannian formalism in (M(Rd),HK) as for the Otto calculus in (P2(R

d),W2).
2. The curveμt = (T0→t , q0→t )�μ0 is an explicit characterization of the geodesic

interpolation solving (1.1). A crucial fact is that for μ0-a.e. x the curve
[T0→t (x), q0→t (x)] is a geodesic in the cone space C interpolating the points
[x, 1] and [T0→1(x), q0→1(x)].

It is then natural to investigate if the potential ξ0 can be used to build an opti-
mal solution ξt of (1.2), which should at least formally solve the Hamilton-Jacobi
equation

∂tξt + 1

2
|∇ξt |2 + 2ξ2t = 0 on the support ofμ in (0, 1)× R

d . (1.12)

This problemwill be investigated inSection4, by a detailed analysis of the regularity
of the forward solutions to (1.2) provided by the generalized Hopf–Lax formula
(see (4.2))

ξt (x) = ξ(t, x) = (Pt ξ0
)
(x) = 1

t
P1
(
tξ0(·)

)
(x) = inf

y∈Rd

1

2t

(
1− cos2π/2(|x−y|)

1+ 2tξ0(y)

)
.

(1.13)

It is well known that one cannot expect smoothness of such a solution; however,
the particular structure of transport duality suggests that the final value ξ1 given by
(1.13) corresponds to the optimal potential ϕ1 of the dual formulation (1.3) via the
transformation ξ1 = 1

2 (1− e−2ϕ1), so that the initial and final optimal potentials ξ0
and ξ1 are simultaneously linked by the forward-backward relation

ξ1 =P1ξ0, ξ0 = R1(ξ1) where Rt (η) := −Pt (−η) is the backward flow.

(1.14)

Following the approach of [34, Cha. 7] (see also [27, Sec. 8]) and using the re-
versibility in time of geodesics, we can add to the family of forward potentials
ξt given by (1.13) the crucial information provided by the backward solutions ξ̄t
starting from ξ1:

ξ̄t := R1−tξ1 = −P1−t
(−ξ1) for t ∈ [0, 1]. (1.15)

In general, ξt and ξ̄t do not coincide for t ∈ (0, 1) but still satisfy
ξt (x) � ξ̄t (x) in (0, 1)× R

d , ξ0 = ξ̄0, ξ1 = ξ̄1. (1.16)
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The crucial fact arising from the optimality condition (1.14), and the geometric
property of the geodesic (μt )t∈[0,1] is that for every t ∈ [0, 1]
the support ofμt is contained in the contactset �t :=

{
x ∈ R

d
∣∣ ξt (x) = ξ̄t (x) }.

On the contact set (�t )t∈[0,1], we can combine the (delicate) first- and second-order
super-differentiability properties of ξt arising from the inf-convolution structure of
(1.13) with the corresponding sub-differentiability properties exhibited by ξ̄t .

Using tools from nonsmooth analysis, we are then able to give a rigorous mean-
ing to the characteristic flow associated with (1.12), i.e. to the maps t �→ T (t, ·) =
T s→t (·), t �→ q(t, ·) = qs→t (·) solving (we omit to write the explicit dependence
on x when not needed)

{
Ṫ (t) = ∇ξt (T (t)),
q̇(t) = 2ξt (T (t))q(t),

in (0, 1), T (s, x) = x, q(s, x) = 1. (1.17)

Moreover, we will prove that T s→t is a family of bi-Lipschitz maps on the contact
sets obeying a natural concatenation property. As can be expected, the
maps T s→t , qs→t provide a precise representation of the geodesics via μt =
(T s→t , qs→t )�μs for all s, t ∈ (0, 1). In particular (T s→t , qs→t ) is an optimal
transport-growth pair between μs and μt minimizing the cost of (1.8).

Using this valuable information, in Section5 we obtain various relevant struc-
tural properties of geodesics in (M(Rd),HK) such as non-branching, localization,
and regularization effects. In particular, independently of the regularity of μ0 and
μ1, we will show that for s ∈ (0, 1) the Monge problem between μs and μ0 or
betweenμs andμ1 always admit a unique solution, a property which is well known
in the Kantorovich–Wasserstein framework.

Surprisingly enough, despite the lack of global regularity, we will also establish
precise formulae for the first and second derivative of the differential of T s→t (and
thus the second order differential of ξt ) along the flow, which coincides with the
equations that one obtains by formally differentiation using the joint information
of the Hamilton–Jacobi equation (1.12) and (1.17) assuming sufficient regularity.
For instance, differentiating in time the first equation of (1.17) and differentiating
in space (1.12), one finds that

T̈ (t) = ∂t∇ξt (T (t))+ D2ξt∇ξt (T (t)), ∂t∇ξt = −D2ξt∇ξt + 4ξt∇ξt ,
which yield

T̈ (t) = 4ξt (T (t))∇ξt (T (t)). (1.18a)

For q(t), B(t) := DT s→t , and its determinant δ(t) := detB(t) similar, just more
involved, calculations yield the crucial second order equations

q̈(t) = |∇ξt (T (t))|2q(t), (1.18b)

B̈(t) = −4
(
∇ξt ⊗∇ξt + ξtD2ξt

)
◦ T (t) · B(t), (1.18c)

δ̈(t) =
(
(�ξt )

2 − |D2ξt |2 − 4|∇ξt |2 − 4ξt�ξt
)
◦ T (t) · δ(t). (1.18d)
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In our case, even though we do not have enough regularity to justify the above
formal computations, we can still derive them rigorously by a deeper analysis
using the variational properties of the contact set. Even if our discussion is restricted
to the Hellinger–Kantorovich case and uses the particular form of the Hopf–Lax
semigroup (1.13) and its characteristics (1.9), we think that our argument applies
to more general cases and may provide new interesting estimates also in the typical
balanced case of Optimal Transport.

Such regularity and the related second order estimates are sufficient to express
the Lebesgue density ct of the measures μt and thus to obtain crucial information
on its behavior along the flow. In particular, Corollary 5.5 shows that c(t, ·) is given
by

c(t, y)
∣∣
y=T s→t (x)

= c(s, x)
αs(t, x)

δs(t, x)
with (1.19a)

αs(t, x) = (1+2(t−s)ξs(x))
2 + (t−s)2|∇ξs(x)|2 = qs→t (x) (1.19b)

δs(t, x) := det(DT s→t (x)), (1.19c)

and the time-dependent transport-growth mapping T s→t , qs→t are given in terms
of ξ via (1.17) and the analog of (1.9). In particular, we will show that if μs 	 Ld

for some s ∈ (0, 1) then μt 	 Ld for every t ∈ (0, 1) and combining (1.18b),
(1.18c), and (1.19a) we will also prove that ct is a convex function along the flow
maps T s→t .

1.2. Geodesic λ-Convexity of Functionals

The second part of the paper is devoted to establish necessary and sufficient
conditions for geodesic λ-convexity of energy functionals E defined for a closed
and convex domain � ⊂ R

d with non-empty interior in the form

E (μ)=
∫
�

E(c(x))dx+E ′∞μ⊥(�) for μ=cLd+μ⊥ with μ⊥ ⊥ Ld , (1.20)

where E ′∞ := limc→∞ E(c)/c ∈ R∪{+∞} is the recession constant and E(0) = 0
holds.

In [26, Prop. 19] it was shown that the total-mass functional M : μ �→ μ(Rd)

has the surprising property that it is exactly quadratic along HK geodesics γ :
[0, 1] →M(Rd), namely

M (γ (t)) = (1−t)M (γ (0))+ tM (γ (1))− t (1−t)HK(γ (0), γ (1))2 for t ∈ [0, 1].
(1.21)

Thus, as a first observationwe see that a density function E generates a geodesically
λ-convex functional E if and only if E0 : c �→ E(c)− λc generates a geodesically
convex functional (i.e. geodesically 0-convex). Hence, subsequently we can restrict
to λ = 0.

To explain the necessary and sufficient conditions on E for E to be geodesically
convex, we first look at the differentiable case, andwe define the shorthand notation

ε0(c) = E(c), ε1(c) = cE ′(c), ε2(c) = c2E ′′(c).
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For the Kantorovich–Wasserstein distance W the necessary and sufficient condi-
tions are the so-called McCann conditions [28]:

ε2(c) � d−1
d

(
ε1(c)− ε0(c)

)
� 0 for all c > 0

⇐⇒
{

r �→ rd E(r−d) is lower semi-continuous and convex and
r �→ (d−1)rd E(r−d) is non-increasing on ]0,∞[, (1.22)

(see also [2, Prop. 9.3.9]). For the Hellinger–Kakutani distance we simply need the
condition

2ε2(c)+ ε1(c) � 0 ⇐⇒
(

r �→ E(r2) is convex
)
. (1.23)

In the case of differentiable E , our main result yields the following necessary and
sufficient conditions for geodesic convexity of E on (M(Rd),HK), see Proposition
6.1,

(d−1)(ε1(c)− ε0(c)) � 0 and B(c) � 0 for all c > 0, (1.24)

where the matrix B(c) ∈ R
2×2
sym is given by

B(c) :=
(
ε2(c)− d−1

d

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c)+ 1

2ε1(c)

)
.

We immediately see that the non-negativity of the diagonal element B11(c) gives
the first McCann condition in (1.22), and B22(c) � 0 gives (1.23). However, the
condition B(c) � 0 is strictly stronger, since e.g. it implies that the additional
condition (d+2)ε1(c) − 2ε0(c) � 0 holds, see (6.2). This condition means that
c �→ c−2/(d+2)E(c) has to be non-decreasing, which will be an important building
block for the main geodesic convexity result.

Indeed, our main result in Theorem 7.2 is formulated for general lower semi-
continuous and convex functions E : [0,∞[ → R ∪ {∞} without differentiability
assumptions. The conditions on E can be formulated most conveniently in terms
of the auxiliary function NE : ]0,∞[2 → R ∪ {∞} defined via

NE (ρ, γ ) =
(ρ
γ

)d
E
(γ 2+d

ρd

)
. (1.25a)

Then, E defined in (1.20) is geodesically convex if and only if NE satisfies

NE : ]0,∞[2 → R ∪ {∞} is convex, and (1.25b)

ρ �→ (d−1)NE (ρ, γ ) is non-increasing. (1.25c)

TheMcCannconditions (1.22) are obtainedby looking at NE (·, γ ) for fixedγ ,while
the Hellinger–Kakutani condition (1.23) follows by looking at s �→ NE (sρ, sγ )
for fixed (ρ, γ ).
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The proof of the sufficiency and necessity of condition (1.25) for geodesic
convexity of E is based on the explicit representation (1.19) of the geodesic curves
giving

E (μ(t)) =
∫
�

E(c(t, y))dy =
∫
�

e(t, x)dx

where e(t, x) := δs(t, x) E
(

cs(x)
αs(t, x)

δs(t, x)

)
.

By definition, we have αs(t, x) � 0, and Corollary 5.5 guarantees δs(t, x) > 0.
Hence, we can introduce the two functions

γ (t, x) = (cs(x)αs(t, x)
)1/2 and ρ(t, x) = (cs(x)αs(t, x)

)1/2
δs(t, x)1/d ,

which connect the densities e(t, x) with the function NE defined in (1.25a) in the
form

e = δ E
(

c
α

δ

) = NE (ρ, γ ).

For smooth E we have smooth NE and may show convexity of t �→ e(t, x) via

∂2t e(t, x) =: ë =
〈
D2NE (ρ, γ )

(
ρ̇

γ̇

)
,

(
ρ̇

γ̇

)〉
+
〈
DNE (ρ, γ ),

(
ρ̈

γ̈

)〉
� 0.

By convexity of NE , the term involving D2NE is non-negative, so it remains to
show

∂ρNE (ρ, γ )ρ̈ + ∂γ NE (ρ, γ )γ̈ � 0. (1.26)

To establish this, we use first that the scaling property NE (s1+d/2ρ, sγ ) =
s2NE (ρ, γ ) for all s > 0 (which follows from the definition of NE via E) and
the convexity of NE imply

(1−4/d2)ρ ∂ρNE (ρ, γ )+ γ ∂γ NE (ρ, γ ) � 0, (1.27)

see Proposition 6.2. Second, we rely on a nontrivial curvature estimate for (ρ, γ ),
namely

γ̈ (t, x)

γ (t, x)
� 0 and

ρ̈(t, x)

ρ(t, x)
�
(
1− 4

d

)
γ̈ (t, x)

γ (t, x)
. (1.28)

Estimates (1.28) are provided in Proposition 5.7 and strongly rely on the explicit
representation and the regularity properties of the geodesics developed in Sects. 4
and 5.

Combining (1.28) with ∂ρNE (ρ, γ ) � 0, the desired relation (1.26) easily
follows, see Section7. Finally, a simple integration over Rd provides the convexity
of t �→ E (μ(t)). Note that we have indeed the larger factor (1−4/d2) in (1.27)
while the curvature estimate in (1.28) has the smaller and hence “better” factor
(1−4/d).
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As a consequence, we find that the power functionals Em with Em(c) = cm

with m > 1 are all geodesically convex, see Corollary 7.3. This result was already
exploited in [13, Thm.2.14]. We can study the discontinuous “Hele–Shaw case”
E(c) = −λc for c ∈ [0, 1] and E(c) = ∞ for c > 1. Moreover, in dimensions
d = 1 or 2 the densities Eq(c) = −cq with q ∈ [ d

d+2 ,
1
2 ] also lead to geodesically

convex functionals Eq , see again Corollary 7.3.
Two important differences with the balanced Kantorovich–Wasserstein case are

worth noting. First, the Boltzmann logarithmic entropy functional corresponding
to E(c) = c log c is not geodesically λ-convex for any value of λ, see Example
6.5. Second, if the space dimension d is larger than or equal to 3, then there are
no geodesically convex power functionals of the form E(x) = −cm with exponent
m < 1, see Example 6.4. Some of these statements follow easily by observing that
μt = t2μ1 is the unique geodesic connecting μ0 = 0 and μ1.

1.3. Applications and Outlook

In [15,23], the JKO scheme (minimizing movement scheme) for a gradient
system (M(�),HKα,β,E ) is considered, i.e., for τ > 0 we iteratively define

μkτ ∈ ArgMin
{ 1

2τ
HK2
α,β(μ(k−1)τ , μ)+ E (μ)

∣∣∣ μ ∈M(�)
}

(1.29)

and consider the limit τ ↓ 0 (along subsequences) to obtain generalized minimizing
movements (GMM) (cf. [2]). Under suitable conditions, including the assumption
E (μ) = ∫

�

(
E(c) + cV

)
dx with μ = cLd and E superlinear, it is shown in [15,

Thm.3.4] that all GMM μ have the form μ(t) = c(t)Ld , and the density c is a
weak solution of the reaction-diffusion equation

∂t c = α div
(
c∇(E ′(c)+V )

)− β u
(
E ′(c)+V

)
in �,

c∇(E ′(c)+V ) · n = 0 on ∂�.

In [24], the equation ut = 0 = �u + au log u + bu is studied, whose solutions
are steady states for HK gradient flows for E (u) = ∫

Rd u log u dx . We also refer
to [13,32], where equation (1.29) was studied for E(c) = 1

m cm − λc and V ≡ 0.
The linear functional �(μ) = ∫

Rd V (x)dμ for a given potential V ∈ C0(Rd) can
easily be added, as its geodesic λ-convexity is characterized in [26, Prop. 20]. Note
that our main convexity result, proved here for the first time, plays an important
role in the existence and uniqueness results of [13], cf. Thm.2.14 there.

In [23] it is shown that the GMM for the gradient system (M(�),HKα,β,E )
are EVIλ solutions in the sense of [30]. Again the main ingredient is the geodesic
λ-convexity of E in the form (1.20) contained in our main Theorem 7.2.

2. The Hellinger–Kantorovich Distance

In this section, we recall a few properties and equivalent characterizations of
the Hellinger–Kantorovich distance from [26,27], that will turn out to be crucial in
the following.
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Main Notation
M(X), M2(X) finite positive Borel measures on X (with finite quadratic moment)
P(X), P2(X) Borel probability measures on X (with finite quadratic moment)
Tμ push forward of μ ∈M(X) by a map T : X → Y : (2.1)
μ = cLd + μ⊥ Lebesgue decomposition of a measure μM(Rd )

Cb(X) continuous and bounded real functions on X
cosa(r) truncated function cos

(
min{a, r}), a > 0 (typically a = π/2)

WX (μ1, μ2) Kantorovich–Wasserstein distance in P2(X)
sin, tan, arctan, · · · vector-valued version of the usual scalar functions, see (1.6)
HK(μ1, μ2) Hellinger–Kantorovich distance inM(X): Section 2
(C, da,C), o metric cone on R

d and its vertex, see Subsection 2.1.2
Wa,C L2-Kantorovich–Wasserstein distance on P2(C) induced by da,C

x, r coordinate maps on C, see Subsection 2.1.2
π0, π1 coordinate maps on a Cartesian product X0 × X1, π i (x0, x1) = xi

h homogeneous projection from M2(C) to M(Rd ), see (2.8)

Si , S′i , S′′i , Sπ/2i , μ′i , μ′′i see (2.12)–(2.13)
(T , q)� action of a transport-growth map, Definition 2.7
ACp([0, 1]; X) space of curves x : [0, 1] → X with p-integrable metric speed
ϕL→0 , ϕ�L

1 forward and backward L-transform for cost function L, see (3.3)
D′i , D′′i domains of ∇ϕi and D2ϕi , see Theorem 3.2
ξs =Ps ξ, ξ̄s = Rs ξ̄ for- and backward solution of Hamilton–Jacobi equation, (4.2), (4.3)
�s contact set of forward and backward solutions ξs , ξ s , see (4.39)
(T s→t , qs→t ) transport-growth map induced by for/backward solutions, Theorem 4.3

First, we fix some notation that we will extensively use: Let (X,dX ) be a
complete and separable metric space. In the present paper X will typically be Rd

with the Euclidean distance, a closed convex subset thereof, the cone space C on
R

d (see Subsection 2.1.2), product spaces of the latter two, etc. We will denote
by M(X) the space of all non-negative and finite Borel measures on X endowed
with the weak topology induced by the duality with the continuous and bounded
functions of Cb(X). The subset of measures with finite quadratic moment will be
denoted by M2(X). The spaces P(X) and P2(X) are the corresponding subsets of
probability measures.

If μ ∈ M(X) and T : X → Y is a Borel map with values in another metric
space Y , then Tμ denotes the push-forward measure onM(Y ), defined by

Tμ(B) := μ(T−1(B)) for every Borel set B ⊂ Y. (2.1)

We will often denote elements of X × X by (x0, x1) and the canonical projections
by π i : (x0, x1)→ xi , i = 0, 1. A coupling on X is a measure γ ∈M(X×X)with
marginals γi := π i

γ .
Given two measures μ0, μ1 ∈M2(X) with equal mass μ0(X) = μ1(X), their

(quadratic) Kantorovich–Wasserstein distance WX is defined by

WX (μ0, μ1)
2 := min

{∫ ∫
dX (x0, x1)

2 dγ (x0, x1)
∣∣∣

γ ∈M(X×X), π i
γ = μi , i = 0, 1

}
.

(2.2)

We refer to [2] for a survey on the Kantorovich–Wasserstein distance and related
topics.
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2.1. Equivalent Formulations of the Hellinger–Kantorovich Distance

The Hellinger–Kantorovich distance was introduced in [26,27] and indepen-
dently in [21] and [10,11]. It is a generalization of the Kantorovich–Wasserstein
distance to arbitrary non-negative and finite measures by taking creation and anni-
hilation of mass into account. Indeed, the latter can be associated with a different
notion of distance, namely the Hellinger–Kakutani distance, see [19] and [33]. In
this sense, the Hellinger–Kantorovich distance should be viewed as an infimal con-
volution of the Kantorovich–Wasserstein and the Hellinger–Kakutani distance, cf.
[27, Rem.8.19].

In [27], five different equivalent formulations of the Hellinger–Kantorovich
distance are given: (i) the dynamical formulation, (ii) the cone space formulation,
(iii) the optimal entropy-transport problem, (iv) the dual formulation in terms of
Hellinger–Kantorovich potentials, and (v) the formulation using Hamilton–Jacobi
equations. We will present and briefly discuss each of them below, as all are useful
for our analysis of geodesic convexity.

In the follows, we consider the Hellinger–Kantorovich distance for measures
on the domain R

d . However, it is easy to see that all arguments also work in the
case of a closed and convex domain� ⊂ R

d . In particular, the latter is a complete,
geodesic space.

2.1.1. Dynamic Approach A first approach to the Hellinger–Kantorovich dis-
tance is related to the dynamic formulation, which naturally depends on two pos-
itive parameters α, β > 0; these control the relative strength of the Kantorovich–
Wasserstein part and of the Hellinger-Kakutani part (see [27, Section 8.5]).

Definition 2.1. (The dynamic formulation) For every μ0, μ1 ∈M(Rd) we set

HKα,β(μ0, μ1)
2 = min

{∫ 1

0

∫
Rd

(
α |ϒ(t, x)|2+βξ(t, x)2

)
dμt (x)dt

∣∣∣
μ ∈ C([0, 1];M(Rd)), μt=i = μi , (gCE) holds

}
,

(2.3)

where the generalized continuity equation for the Borel vector and scalar fields
ϒ : (0, 1)× R

d → R
d and ξ : (0, 1)× R

d → R reads as

(gCE)
∂

∂t
μ+ α div(μϒ) = β ξμ in D′((0, 1)× R

d).

Notice that (2.3) yields in particular that μ ϒ and ξμ are (vector and scalar)
measures with finite total mass, so that the canonical formulation of (gCE) in
D′((0, 1) × R

d) makes sense. For optimal solutions one has ϒ(t, x) = ∇ξ(t, x)
and the dual potential solves the generalized Hamilton–Jacobi equation

∂tξ + α
2
|∇ξ |2 + β

2
ξ2 = 0 (2.4)

in a suitable sense [27, Theorem 8.20].
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A simple rescaling technique shows that it is sufficient to restrict ourselves to
a specific choice of the parameters α and β. In fact, it is easy to see that for every
θ > 0 we have

HKα,β(μ0, μ1)
2 = θHKθα,θβ(μ0, μ1)

2.

Moreover, if λ > 0 and we consider the spatial dilation H : x �→ λx in R
d , we

find

HKα,β(μ0, μ1)
2 = HKα/λ2,β(Hμ0, Hμ1)

2.

Choosing λ := √4α/β, θ = 4/β, and setting HK := HK1,4 we get

HKα,β(μ0, μ1)
2 = 4

β
HK4α/β,4(μ0, μ1)

2 = 4

β
HK(Hμ0, Hμ1)

2.

Therefore, in order to keep simpler notation, in the remaining paper we will mainly
consider the case α = 1 and β = 4.

2.1.2. Cone Space Formulation There is a second characterization that connects
HK with the classic Kantorovich–Wasserstein distance on the extended cone C :=
(Rd × [0,∞[)/ ∼, where ∼ is the equivalence relation which identifies all the
points (x, 0) with the vertex o of C. More precisely, we write (x0, r0) ∼ (x1, r1) if
and only if x0 = x1 and r0 = r1 or r0 = r1 = 0 and introduce the notation [x, r ]
to denote the equivalence class associated with (x, r) ∈ R

d × [0,∞[. The cone C
is a complete metric space endowed with the cone distances

da,C(z0, z1)
2 := r20 + r21 − 2r0r1 cosa(|x1−x0|), zi = [xi , ri ], a ∈ (0, π ],

(2.5)

see e.g. [4, Sect. 3.6.2], where we use the abbreviation cosa(r) := cos
(
min{a, r}).

Notice that the projection map (x, r) �→ [x, r ] is bijective from R
d × (0,∞) to

C∗ := C \ {o}; we will denote by (x, r) its inverse, which we extend to o by setting
x(o) = 0, r(o) = 0.

The most natural choice of the parameter a in (2.5) is a := π : in this case the
cone (C,dπ,C) is a geodesic space, i.e., given zi = [xi , ri ], i = 0, 1, there exists a
curve zt = [xt , rt ] = geot

(
z0, z1

)
, t ∈ [0, 1], connecting z0 to z1 and satisfying

∀ 0 � s, t � 1 : dπ,C(zs, zt ) = |t−s|dπ,C(z0, z1). (2.6)

If one of the two points coincides with o, e.g. for z0 = o, it is immediate to check
that zt = [x1, tr1]. If r0, r1 > 0 and |x1−x0| < π/2 then the unique geodesic curve
reads (recall the convention in (1.6))

rt := r0
(
(1+tu)2 + t2|v|2

)1/2
, xt := x0 + arctan

( tv
1+tu

)
,

where u = r1
r0

cos(|x1−x0|)− 1 and v := r1
r0

sin(x1−x0).
(2.7)

For example, if we operate the same construction starting from the one-dimensional
set � = [0, L] ⊂ R with 0 < L � π we can isometrically identify the cone
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space over � with the two-dimensional sector �� =
{

y = (r cos x, r sin x) ∈
R
2
∣∣ r � 0, x ∈ [0, L] } endowed with the Euclidean distance. For L ∈ ]π, 2π [ the

identification with the sector still holds, but the sector �� is no more convex and
for x0, x1 ∈ � with |x0−x1| � π the cone distance corresponds to the geodesic
distance on the sector��, i.e. the length of the shortest path in�� connecting two
points.

On the one hand, we can define a homogeneous projection h : M2(C) →
M(Rd), via

hλ := x(r2λ) =
∫ ∞

r=0
r2 λ(·, dr), (2.8)

i.e. for every λ ∈M2(C) and ζ ∈ Cb(R
d) we have

∫
Rd
ζ(x)d(hλ) =

∫
C

r2ζ(x)dλ(x, r).

On the other hand, measures inM(Rd) can be “lifted” to measures inM2(C), e.g.
by considering the measureμ⊗δ1 forμ ∈M(Rd). More generally, for every Borel
map r : Rd → ]0,∞[ and constant m0 � 0, the measure λ = m0δo+μ⊗ 1

r(·)2 δr(·)
gives hλ = μ.

Now, the cone space formulation of the Hellinger–Kantorovich distance be-
tween two measures μ0, μ1 ∈M(Rd) is given as follows, (see [26, Sec. 3]);

Theorem 2.2. (Optimal transport formulation on the cone) For μ0, μ1 ∈ M(Rd)

we have

HK(μ0, μ1)
2 = min

{
Wπ,C(λ0, λ1)

2
∣∣∣ λi ∈ P2(C), hλi = μi

}
(2.9a)

= min
{ ∫ ∫

C×C
dπ,C(z0, z1)

2dλ(z0, z1)
∣∣∣ hiλ = μi

}
, (2.9b)

where h is defined in (2.8) and hiλ := h(π i
λ) for λ ∈M2(C×C) and i = 0, 1.

The cone space formulation is reminiscent of classical optimal transport problems.
Here, however, the marginals λi of the transport plan λ ∈M(C× C) are not fixed,
and it is part of the problem to find an optimal pair of measures λi satisfying the
constraints hλi = μi and having minimal Kantorovich–Wasserstein distance on
the cone space.

Remark 2.3. (Hellinger–Kantorovich space as cone) In [22] it is shown that
the space (M(Rd);HK) can be understood as a cone space over the geodesic
space (P(Rd),SHK)where the spherical Hellinger–Kantorovich distance in P(Rd)

reads SHK(ν0, ν1) := arccos
(
1− 1

2HK(ν0, ν1)
2
)
. It would be interesting to analyze

geodesic convexity properties of functionals E as in (1.20) on this space; see [23]
for a first result.
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The cone space formulation in (2.9) reveals many interesting geometric proper-
ties of the Hellinger–Kantorovich distance, e.g. Hellinger–Kantorovich geodesics
are directly connected to geodesic curves in the cone space C, see below. More-
over, it can be deduced that a sharp threshold exists, which distinguishes between
transport of mass and pure growth (i.e. creation or destruction) of mass.

Remark 2.4. The link between the dynamical formulation in (2.3) and the cone-
space formulation in (2.9) of the Hellinger–Kantorovich distance can be best seen
from a Lagrangian point of view. Let Lagα,β(X, r; V, �) = r2

α
|V |2 + 4

β
�2 denote

the rescaled Lagrangian in the definition of the dynamical functional (2.3) corre-
sponding to a curve of the form μt := r2(t)δX (t) and consider for fixed r0, r1 > 0
and x0, x1 ∈ R

d the minimization problem

Mα,β(x0, r0; x1, r1) := min
{∫ 1

0
Lagα,β

(
X (s), r(s); Ẋ(s), ṙ(s)

)
ds
∣∣∣

(X, r) ∈ C1([0, 1];Rd × R+
)
, X (i) = xi , r(i) = ri ,

}
.

It is not hard to check [26, Sec. 3.1] that we obtain for (α, β) = (1, 4) the explicit
formula

HK(μ0, μ1)
2 = M1,4(x0, r0; x1, r1) = dπ,C([x0, r0], [x1, r1])2,

which is the Hellinger–Kantorovich distance of the twoDiracmeasuresμ0 = r20 δx0
and μ1 = r21 δx1 in the case that |x0−x1| < π/2.

When |x0−x1| � π/2, one can always connect μ0 to μ1 by the curve μt :=(
(1−t)r0

)2
δx0+t2r21 δx1 (whose support is no longer concentrated on a single point)

obtaining

HK(μ0, μ1)
2 = 2 = dπ/2,C([x0, r0], [x1, r1])2,

and showing the role of the threshold π/2 instead of π in the computation of HK.

The explicit computation of the previous remark is in fact a particular case of
a general result [27, Lem.7.9+7.19].

Theorem 2.5. (Effectiveπ/2-threshold in the cone distance) Letμ0, μ1 ∈M(Rd),
if λ ∈ M2(C×C) is an optimal plan for the cone-space formulation (2.9) then
λ (C× C) \ {(o, o)} is still optimal and

λ
({
([x0, r0], [x1, r1]) ∈ C× C

∣∣∣ r0r1 > 0 and |x0−x1| > π
2

}) = 0, (2.10)

so that

HK(μ0, μ1)
2 = min

{
Wπ/2,C(λ0, λ1)

2
∣∣∣ λi ∈ P2(C), hλi = μi

}
(2.11a)

= min
{ ∫ ∫

C×C
dπ/2,C(z0, z1)

2dλ(z0, z1)
∣∣∣ hiλ = μi

}
. (2.11b)
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Fig. 1. The decomposition of the closed supports Si = suppμi of the measures μi =
μ′i + μ′′i as given in (2.13) with cut-off at π/2. The open sets Sπ/20 and Sπ/21 denote the

π/2-neighborhoods of the supports S1 and S0, respectively, and μ
′
i = μi (Sπ/21−i ∩ Si ),

μ′′i = μi (Si\Sπ/21−i ) are the corresponding restrictions of the measures μi

Moreover, setting for i = 0, τ

Si := supp(μi ), Sπ/2i := { x ∈ R
d
∣∣ dist(x, Si ) < π/2

}
,

S′i := Si ∩ Sπ/21−i , and S′′i := Si \ Sπ/21−i ,
(2.12)

(see Fig.1) with the related decomposition

μi := μ′i + μ′′i , μ′i := μi S′i = μi Sπ/21−i , and μ′′i := μi S′′i , (2.13)

then we have that

HK(μ0, μτ )
2 = HK(μ′0, μ′τ )2 + HK(μ′′0, μ′′τ )2, (2.14a)

HK(μ′′0, μ′′τ )2 = μ′′0(Rd)+ μ′′τ (Rd) = μ0(R
d \ S′0)+ μτ (Rd \ S′τ ). (2.14b)

Note that (2.14a) shows that the decomposition in (2.13) is extremalwith respect
to the subadditivity property in Lemma 7.8 of [27], and (2.14b) shows that the
computation of HK2 between μ′′0 and μ′′1 is trivial, so that no information is lost if
one restricts the evaluation of HK2 to μ′0 = μ0 S′0 and μ′1 = μ1 S′1. Motivated
by the above properties, we introduce the following definition of reduced pairs,
which will play a crucial role in our analysis of geodesic curves;

Definition 2.6. (Reduced pairs) A pair (μ0, μ1) ∈M(Rd)2 is called reduced (resp.
strongly reduced) if μi (S′′i ) = 0, i.e.μi = μ′i for i = 0 and 1 (resp. if Si ⊂ Sπ/21−i ).

By definition, the sets Si = supp(μi ) are closed and Sπ/2i are open, so that

S′′i = Si \ Sπ/21−i is closed as well, but S′i = Si ∩ Sπ/21−i may be neither closed nor

open. In the strongly reduced case the condition Si ⊂ Sπ/21−i means that, at least
locally, the closed set Si has a positive distance to the boundary of the open set
Sπ/21−i .

Notice that for every (μ0, μ1) ∈ M(Rd)2 the corresponding pair (μ′0, μ′1) de-
fined according to (2.12)–(2.13) is reduced by construction. In fact, if x ∈ S′0
then there exists y ∈ supp(μ1) with |x−y| < π/2: clearly y ∈ S′1 so that
dist(x, supp(μ′1)) � dist(x, S′1) < π/2.
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2.1.3. Transport-growth Maps It is useful to express (2.11b) in an equivalent
way, which extends the notion of transport maps to the unbalanced case. This relies
on special families of plans in λ ∈M2(C

2) with hiλ = μi generated by transport-
growth systems.

Definition 2.7. (Transport-growth maps) Let ν ∈ M(Y ), where Y is some Polish
space. A transport-growth map is a ν-measurable map (T , q) : Y → X × [0,∞)
with q ∈ L2(Y, ν). It acts on ν according to this rule:

(T , q)�ν := T (q2ν) = h((T , q)ν). (2.15)

there the last identity involves the obvious generalization of the definition (2.8) of
homogeneous projection h from M2(X × [0,∞)) toM(X).
We notice that transport-growth maps obey the composition rule

(T2, q2)�(T1, q1)�ν = (T , q)�ν where T := T2 ◦ T1, q := (q2 ◦ T1)q1.

(2.16)

Transport-growth maps provide useful upper bounds for the HK metric, playing a
similar role of transport maps for the Kantorovich–Wasserstein distance. In fact,
for every choice of maps (T i , qi ) : Y → R

d × [0,∞), i = 0, 1, associated with
the measure ν ∈M(Y ), we have

HK2(μ0, μ1) �
∫

Y

(
q2
0 + q2

1 − 2q0q1 cosπ/2(|T0−T1|)
)
dν μi := (T i , qi )�ν.

(2.17)

In order to show (2.17) it is sufficient to check that themeasure λ ∈M2(C
2) defined

by

λ := (T0, q0; T 1, q1)ν, satisfies hiλ = μi

so that (2.17) follows from (2.11b) and the identity
∫
C2

dπ/2,C(z0, z1)
2 dλ =

∫
Y

(
q2
0 + q2

1 − 2q0q1 cosπ/2(|T0−T1|)
)
dν. (2.18)

On the other hand, choosing Y = C×C and an optimal plan ν = λ ∈M2(C×C)
for (2.11b)

and setting T i ([x0, r0], [x1, r1]) := xi and qi ([x0, r0], [x1, r1]) = ri , we im-
mediately find

HK2(μ0, μ1) =
∫
C×C

(
q2
0 + q2

1 − 2q0q1 cosπ/2(|T0−T1|)
)
dλ, μi := (T i , qi )�λ,

(2.19)

and therefore equality holds in (2.17).
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Corollary 2.8. (HK via transport-growth maps) For every μ0, μ1 ∈ M(Rd) we
have

HK2(μ0, μ1) = min
{ ∫

C×C

(
q2
0 + q2

1 − 2q0q1 cosπ/2(|T0−T1|)
)
dλ
∣∣∣λ ∈M(Y ),

Y Polish, (T i , qi ) : Y → R
d × [0,+∞), μi := (T i , qi )�λ

}
;
(2.20)

moreover, it is not restrictive to choose Y = C× C in (2.20).

Inspired by the so-called Monge formulation of Optimal Transport, it is natural
to look for similar improvement of (2.20), when Y = R

d , ν = μ0, T0(x0) = x0 is
the identity map, and q(x0) ≡ 1.

Problem 2.9. (Monge formulation of HK problem) Given μ0, μ1 ∈ M(Rd) such
that μ1 = μ′1, μ′′1 = 0 (recall (2.12) and (2.13)), find an optimal transport-growth
pair (T , q) : Rd → R

d × [0,∞) minimizing the cost

C(T , q;μ0) :=
∫
Rd

(
1+ q2(x)− 2q(x) cosπ/2(|T (x)−x |)

)
dμ0(x) (2.21)

among all the transport-growth maps satisfying (T , q)�μ0 = μ1

By (2.17) we have the bound

HK(μ0, μ1)
2 � inf

{
C(T , q;μ0)

∣∣∣(T , q)�μ0 = μ1

}
. (2.22)

When μ0 	 Ld and the support of μ1 is contained in the closed neighborhood of
radius π/2 of the support of μ0, the results of the next section (cf. Corollary 3.5),
which are a consequence of the optimality conditions in Theorem 2.14, show that
the minimum of Problem 2.9 is attained and realizes the equality in (2.22).

2.1.4. Entropy-Transport Problem A third point of view, typical of optimal
transport problems, characterizes the Hellinger–Kantorovich distance via the static
Logarithmic Entropy Transport (LET) variational formulation.

We define the logarithmic entropy density F : [0,∞[→ [0,∞[ via
F(s) := s log s − s + 1 for s > 0 and F(0) := 1,

and the cost function L1 : Rd → [0,∞] via

L1(x) := 1

2
�(|x |), �(r) :=

{
− log(cos2(r)) = log

(
1+ tan2(r)

)
for r < π/2,

+∞ otherwise.

(2.23)

For given μ0, μ1 ∈ M(Rd) the entropy-transport functional ET( · ;μ0, μ1) :
M(Rd × R

d)→ [0,∞] reads as
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ET(η;μ0, μ1) :=
∫
Rd

F(σ0)dμ0 +
∫
Rd

F(σ1)dμ1 +
�

Rd×Rd

2L1(x0−x1)dη,

(2.24)

with (πi )η = σiμi 	 μi . As usual, we set ET(η;μ0, μ1) := +∞ if one of
the marginals (πi )η of η is not absolutely continuous with respect to μi . With
this definition, the equivalent formulation of the Hellinger–Kantorovich distance
as entropy-transport problem reads as follows:

Theorem 2.10. (LET formulation) For every μ0, μ1 ∈M(Rd) we have

HK(μ0, μ1)
2 = min

{
ET(η;μ0, μ1)

∣∣ η ∈M(Rd × R
d)
}
. (2.25)

Moreover, recalling the decomposition (2.12)–(2.13),

(1) the pairs (μ0, μτ ) and (μ′0, μ′τ ) share the same optimal plans η

(2) if we set g0(x0) := ([x0, 1], o) and g1(x1) := (o, [x1, 1]), every optimal plan
η ∈ M(Rd × R

d) for the entropy-transport formulation in (2.25) induces op-
timal plans β (resp. β ′) in M(C × C) for the pair (μ0, μ1) (resp. the reduced
pair (μ′0, μ′1)) via

β ′ := (x0, σ−1/20 ; x1, σ−1/21 )η, β := β ′ + (g0) μ′′0 + (g1) μ′′1. (2.26)
An optimal transport plan η, which always exists, gives the effective transport of

mass. Note, in particular, that the finiteness of ET only requires (πi )η = ηi 	 μi

(which is considerably weaker than the usual transport constraint (πi )η = μi ) and
the cost of a deviation of ηi from μi is given by the entropy functionals associated
with F . Moreover, the cost function � is finite in the case |x0−x1| < π/2, which
highlights the sharp threshold between transport and pure creation/destruction.
Notice that we could equivalently use the truncated function cos2π/2(r) =
cos2(min{r, π/2}) instead of cos2(r) in (2.23). As we have already seen, the func-
tion r �→ cos2π/2(r) plays an important role in many formulae.

In general, optimal entropy-transport plans η ∈ M(Rd × R
d) are not unique.

However, due to the strict convexity of F , their marginals ηi are unique so that the
non-uniqueness of the plan η is solely a property of the optimal transport problem
associated with the cost function (x0, x1) �→ 2L1(x1−x0) = �

(|x1−x0|
)
.

Remark 2.11. Besides (2.26), the connection between the cone-space formation and
the logarithmic entropy-transport problem is given by the homogeneous marginal
perspective function, namely

dπ/2,C([x0, r0], [x1, r1])2 = inf
{
r20 F( θ

r20
)+ r21 F

(
θ

r21

)+ 2θL1(x0−x1)
∣∣ θ > 0

}
,

where r2i plays the role of the reverse densities 1/σi and θ is a scaling parameter,
see [27, Sec. 5].

We highlight that the logarithmic entropy-transport formulation (2.25) can be
easily generalized by considering convex and lower semi-continuous functions F0
and F1 and cost functions �, see [27, Part I].
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Applying the previous Theorem 2.10 we can refine formula (2.18) by providing
an optimal pair of transport-growth maps solving (2.20) in the restricted set Y =
S0 × S1 ⊂ R

d × R
d . Indeed, we can choose arbitrary points x̄i ∈ Si and

ν := η + μ′′0⊗δx̄1 + δx̄0⊗μ′′1,

T i (x0, x1) := xi , qi (x0, x1) :=
{
σ
−1/2
i (xi ) if (x0, x1) ∈ S′0 × S′1,

1 if (x0, x1) ∈ (S0 × S1) \ (S′0 × S′1),
(2.27)

which satisfies

(T i , qi )�ν = μi , HK2(μ0, μ1) =
∫

Y

(
q2
0 + q2

1 − 2q0q1 cosπ/2(|T0−T1|)
)
dν.

(2.28)

2.1.5. Dual Formulation with Hellinger–Kantorovich Potentials In analogy to
the Kantorovich–Wasserstein distance, we can give a dual formulation in terms of
Hellinger–Kantorovich potentials. We slightly modify the notation of [27], in order
to be more consistent with the approach by the Hamilton–Jacobi equations (and
the related Hopf–Lax solutions) of Section4 and to deal with rescaled distances.
As we will study segments of constant-speed geodesics t → μt of length τ = t−s
for 0 � s < t � 1, it will be convenient to introduce a scaling parameter τ > 0
that in certain parts will be replaced by 1, namely if we consider a whole geodesic.
With this parameter, we set

Fτ (s) := 1

2τ
F(s), Lτ (x) = 1

2τ
�(|x |), ETτ (η;μ0, μτ ) = 1

2τ
ET(η;μ0, μτ ),

(2.29)

and the corresponding

1

2τ
HK2(μ0, μτ ) = min

{
ETτ (η;μ0, μτ )

∣∣∣ η ∈M(Rd × R
d)
}
. (2.30)

It is clear that minimizers η of (2.30) are independent of the coefficient 1
2τ in front

of HK and coincide with solutions to (2.25) if μτ = μ1. The role of τ just affects
the rescaling of the potentials ϕ and ξ we will introduce below.

We also introduce the Legendre transform of Fτ

Ǧτ (ϕ) := F∗τ (ϕ) = sup
s>0
ϕs − Fτ (s) = e2τϕ − 1

2τ
,

Gτ (ϕ) := 1− e−2τϕ

2τ
= −Ǧτ (−ϕ), (2.31)

extended to [−∞,+∞] by

Gτ (+∞) = −Ǧτ (−∞) = 1

2τ
, Gτ (−∞) = −Ǧτ (+∞) = +∞, (2.32)
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and their inverses

Ǧ−1τ (ξ) :=
1

2τ
log(1+2τξ), G−1τ (ξ) := −

1

2τ
log(1−2τξ) = −Ǧ−1τ (−ξ),

(2.33)

defined for ξ ∈ [− 1
2τ ,+∞] and ξ ∈ [−∞, 1

2τ ] respectively, with the obvious
convention induced by (2.32).With Theorem6.3 in [27] (see also Section 4 therein),
we have the equivalent characterization of HK via the dual formulation

1

2τ
HK(μ0, μτ )

2 = sup
{ ∫

Rd
Gτ (ϕτ )dμτ −

∫
Rd

Ǧτ (ϕ0)dμ0

∣∣∣
ϕ0, ϕτ ∈ Cb(R

d), ϕτ (xτ )−ϕ0(x0) � Lτ (xτ−x0)
}

= sup
{ ∫

Rd
ξτ dμτ −

∫
Rd
ξ0 dμ0

∣∣∣ ξi ∈ Cb(R
d),

sup
Rd
ξτ <

1

2τ
, inf

Rd
ξ0 > − 1

2τ
(2.34a)

(
1−2τξτ (xτ )

)(
1+2τξ0(x0)

)
� cos2π/2(|x0−xτ |)

}
.

(2.34b)

Note that the formulations in (2.34a) and (2.34b) are connected by the transforma-
tion ξτ = Gτ (ϕτ ), ξ0 = Ǧτ (ϕ0) and the last condition in (2.34b) is equivalent
to

G−1τ
(
ξτ (xτ )

)−Ǧ−1τ (
ξ0(x0)

)
� Lτ (xτ−x0). (2.35)

It is not difficult to check that one can also consider Borel functions in (2.34a) and
(2.34b), e.g. for all Borel functions ϕi : Rd → [−∞,+∞] with

∫
Rd

e−2τϕτ dμτ <∞,
∫
Rd

e2τϕ0 dμ0 <∞,
ϕτ (x1) � Lτ (x1−x0)+ ϕ0(x0) for all x0, xτ ∈ R

d with |x0−xτ | < π/2,
(2.36)

we have

1

2τ
HK(μ0, μτ )

2 �
∫
Rd

Gτ (ϕτ )dμτ −
∫
Rd

Ǧτ (ϕ0)dμ0. (2.37)

If we allow extended valued Borel functions, the supremum in (2.34a) and (2.34b)
are attained.

Theorem 2.12. (Existence of optimal dual pairs) For all μ0, μτ ∈ M(Rd) and
τ > 0 there exists an optimal pair of Borel potentials ϕ0, ϕτ : Rd → [−∞,+∞]
which is admissible according to (2.36) and realizes equality in (2.37), namely

1

2τ
HK(μ0, μτ )

2 =
∫
Rd

Gτ (ϕτ )dμτ −
∫
Rd

Ǧτ (ϕ0)dμ0. (2.38)
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The transformations ξ0 := Ǧτ (ϕ0) : Rd → [−1/(2τ),+∞], and ξτ := Gτ (ϕτ ) :
R

d → [−∞, 1/(2τ)], give an optimal pair for (2.34b) (dropping ξi ∈ Cb(R
d))

satisfying ∫
Rd
|ξi |dμi <∞, i = 0, τ, (2.39)

(1−2τξτ (xτ ))(1+2τξ0(x0)) � cos2π/2(|x0−xτ |) if ξ0(x0) <∞, ξτ (xτ ) > −∞,
(2.40)

1

2τ
HK(μ0, μτ )

2 =
∫
Rd
ξτ dμτ −

∫
Rd
ξ0 dμ0. (2.41)

Remark 2.13. Denoting by Si := supp(μi ) the support of μi for i = 0 and 1, we
remark that it is always sufficient to find Borel potentials ϕi : Si → [−∞,+∞]
satisfying (2.36) on S0 × S1 instead of Rd ×R

d . By setting ϕ̃1 := −∞ in Rd \ S1
and ϕ̃0 := +∞ in R

d \ S0 we obtain a pair still satisfying (2.36) and (2.38). This
freedom will be useful in Theorem 2.14 below.

Moreover, notice that (2.34b) can be rewritten as

1

2τ
HK(μ0, μτ )

2 = sup

{∫
Rd

Pτ ξ0 dμτ −
∫
Rd
ξ0 dμ0

∣∣∣ ξ0 ∈ Cb(R
d), ξ0 > − 1

2τ

}
,

wherePτ ξ is defined in (1.13). In particular, the operatorPτ is directly connected
to the dynamical formulation in (2.3), and we will thoroughly study its properties
in Section4.

2.2. First Order Optimality for HK

From the above discussion, we have already seen that there is never any trans-
port over distances larger than π/2. This transport bound will also be seen in the
following optimality conditions for the marginal densities σi defined in (2.24).

Theorem 2.14. (Optimality conditions [27, Thm. 6.3]) Let μ0, μτ ∈ M(Rd) and
let Si , S′i , S′′i , μ′i be defined as in (2.12)–(2.13). The following holds:

(1) A plan η ∈ M(Rd × R
d) is optimal for the logarithmic entropy-transport

problem in (2.30) if and only if
–

�
�dη <∞

– its marginals ηi are absolutely continuous with respect to μ′i (equivalently,
ηi are absolutely continuous with respect to μi and ηi (S′′i ) = 0),

– there exist Borel densities σi : Rd → [0,∞] such that ηi = σiμ
′
i and

σi = 0 on S′′i , (2.42a)

0 < σi <∞ on S′i , (2.42b)

σi = +∞ on R
d \ Si , (2.42c)

σ0(x0)στ (xτ ) � cos2π/2(|x0−xτ |) on S0 × Sτ , (2.42d)

σ0(x0)στ (xτ ) = cos2π/2(|x0−xτ |) η-a.e.on S0 × Sτ . (2.42e)
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In particular, the marginals ηi are unique and the densities σi are uniqueμ′i -a.e.
(2) If η is optimal and Si , S′i , S′′i and σi are defined as above, the pairs of potentials

defined by

ϕτ :=

⎧⎪⎨
⎪⎩
− 1

2τ log στ in S′τ ,
+∞ in S′′τ ,
−∞ in R

d \ Sτ ;
ϕ0 :=

⎧⎪⎨
⎪⎩

1
2τ log σ0 in S′0,
−∞ in S′′0 ,
+∞ in R

d \ S0;
(2.43)

ξτ :=

⎧⎪⎨
⎪⎩

1−στ
2τ in S′τ ,
1
2τ in S′′τ ,
−∞ in R

d \ Sτ ;
ξ0 :=

⎧⎪⎨
⎪⎩

σ0−1
2τ in S′0,
− 1

2τ in S′′0 ,
+∞ in R

d \ S0;
(2.44)

are optimal in the respective dual relaxed characterizations of Theorem 2.12
and satisfy η-a.e. in R

d × R
d

ϕi (xi ) ∈ R, ϕτ (xτ )− ϕ0(x0) = Lτ (xτ−x0),

(2.45a)

−ξ0(x0), ξτ (xτ ) ∈
( 1

2τ
,∞), (1+2τξ0(x0))(1−2τξτ (xτ )) = cos2π/2(|x0−xτ |).

(2.45b)

(3) Conversely, if η is optimal and (ϕ0, ϕτ ) (resp. (ξ0, ξτ )) is an optimal pair ac-
cording to Theorem 2.12, then (2.45a) (resp. (2.45b)) holds η-a.e.and

στ = e−2τϕτ = 1−2τξτ μτ -a.e. in S′τ , ϕτ = +∞, ξτ = 1

2τ
μτ -a.e. in S′′τ ,

σ0 = e2τϕ0 = 1+2τξ0 μ0 -a.e. in S′0, ϕ0 = −∞, ξ0 = − 1

2τ
μ0 -a.e. in S′′0 .

(2.46)

3. Regularity of Static HK Potentials ϕ0 and ϕ1

In this section, wewill carefully study the regularity of a pair (ϕ0, ϕ1) of optimal
HK potentials arising in (2.43) of Theorem 2.14. We will improve the previous
approximate differentiability result of [27, Thm. 6.6(iii)] (see also [2, Thm.6.2.7])
by adapting the argument of [14] and extending the classical result of [16] to the
HK setting. In fact, this section is largely independent of the specific HK setting but
relies purely on the theory of L-transforms. As we are interested in the special case
of continuous, extended values cost functions L = Lτ = 1

τ
L1 : Rd → [0,+∞]

which attain the value +∞ outside a ball, we cannot rely on existing results and
have to provide a careful analysis of this case (but see also [7,8,18,20,29] for
different situations of discontinuous costs taking the value +∞).

We will use the notion of locally semi-concave and semi-convex functions;
recall that a function ϕ : U → R defined in some open set U of Rd is locally
semi-concave if for every point x̄ ∈ U there exists ρ > 0 and a constant C > 0
with

x �→ ϕ(x)− C

2
|x |2 is concave in Bρ(x̄). (3.1)
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A function ϕ is locally semi-convex if −ϕ is locally semi-concave. Let us recall
that locally semi-concave functions are locally Lipschitz and thus differentiable
almost everywhere. We will denote by dom(∇ϕ) the domain of their differential.
By Alexandrov’s Theorem (see [2, Thm. 5.5.4]), there exists for almost every x ∈
dom(∇ϕ) a symmetric matrix A =: D2ϕ(x) such that

lim
y→x

ϕ(y)− ϕ(x)− 〈∇ϕ(x), y−x〉 − 1
2 〈A(y−x), y−x〉

|y−x |2 = 0, (3.2a)

and lim
y→x

y∈dom(∇ϕ)

∇ϕ(y)−∇ϕ(x)− A(y−x)

|y−x | = 0. (3.2b)

Wewill denote by dom(D2ϕ) the subset of density points in dom(∇ϕ)where (3.2a)
and (3.2b) hold.

As the optimality of potential pairs (ϕ0, ϕ1) is closely related to the theory
of L-transforms, we give the basic definitions first and then derive the associated
regularity properties under additional smoothness assumptions.

For simplicity, we restrict the analysis of the remaining text to continuous
functions L : Rd → [0,∞] satisfying dom(L) = { z ∈ R

d
∣∣L(z) ∈ R

} = BR(0)
for some R > 0, i.e. L(z) < ∞ for |z| < R and L(z) = +∞ for |z| � R. By
continuity of L this behavior implies L(zk)→+∞ if lim infk→∞ |zk | � R.

We define the forward L-transformϕL→0 of a l.s.c. functionϕ0 and the backward
L-transform ϕ�L

1 of an u.s.c. function ϕ1 via

ϕL→0 (x1) := inf x0∈BR(x1) ϕ0(x0)+ L(x1−x0) and

ϕ�L

1 (x0) := supx1∈BR(x0) ϕ1(x1)− L(x1−x0), (3.3)

where the restriction of the infimum and supremum in (3.3) to the balls BR(xi ),
corresponding to the shifted proper domain ofL, is important to avoid the expression
“∞ −∞”. It will turn out that ϕL→0 is u.s.c. and ϕ�L

1 is l.s.c. Of course, these
transformations are related by

ϕL→0 (x) = −(−ϕ0)�L(x), (3.4)

and for arbitrary functions ψi : Rd → [−∞,+∞] we have the general relations
ψL→
0 =

((
ψL→
0

)
�L
)L→

and ψ�L

1 =
((
ψ�L

1

)L→)�L

, (3.5)

see [34, Ch.5]. For later usage, we consider the following elementary example.

Example 3.1. (Forward and backward L-transform) We consider the potentials

ϕ0(x0) =
{

a0 for x0 = y0,

+∞ otherwise,
and ϕ1(x1) =

{
a1 for x1 = y1,

−∞ otherwise,

where −∞ � a0 < +∞, −∞ < a1 � +∞ and y0, y1 ∈ R
d are fixed. For

a0, a1 ∈ R we find the transforms

ϕL→0 (x1) =
{

a0+L(x1−y0) for x1 ∈ BR(y0),

+∞ otherwise,
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Fig. 2. Visualization of bdryR(S) (thick) as subset of the boundary ∂S of the set S (light
red)

ϕ�L

1 (x0) =
{

a1−L(y1−x0) for x0 ∈ BR(y1),

−∞ otherwise.

For a0 = −∞ and a1 = +∞, we obtain the transforms

ϕL→0 (x1) =
{
−∞ for x1 ∈ BR(y0),

+∞ otherwise,
and ϕ�L

1 (x0) =
{
+∞ for x0 ∈ BR(y1),

−∞ otherwise,

As BR(yi ) is open, we see that ϕL→0 is u.s.c. and ϕ�L

1 is l.s.c. Moreover, observe

that
(
ϕL→0

)
�L = ϕ0 and

(
ϕ�L

1

)L→ = ϕ1, so that (3.5) is true for ψ0 ∈
{
ϕ0, ϕ

�L

1

}
and ψ1 ∈

{
ϕ1, ϕ

L→
0

}
, respectively.

For R > 0 and sets S ⊂ R
d , we introduce the notation

SR := { x ∈ R
d
∣∣ dist(x, S) < R

}
,

extR(S) :=
⋃

x : dist(x,S)>R
BR(x), bdryR(S) := ∂S ∩ ∂( extR(S)). (3.6)

In particular, extR(S) is the open subset of Rd \ S obtained by taking the union
of all the open balls of radius R that do not intersect S. If S is closed and satisfies
an exterior sphere condition of radius R at every point of its boundary (e.g. if S is
convex) then extR(S) coincides with R

d\S and bdryR(S) = ∂S.
In general, bdryR(S) is a subset of the boundary of S, precisely made by all

points of ∂S satisfying an exterior sphere condition of radius R with respect to S:

x ∈ bdryR(S) ⇐⇒ x ∈ ∂S and ∃ y ∈ R
d : |x−y| = R, BR(y) ∩ S = ∅.

(3.7)

In fact, if x ∈ bdryR(S) then there exist sequences xn, yn such that xn → x ,
|xn−yn| < R and BR(yn) ∩ S = ∅. Possibly extracting a subsequence, we can
assume that yn → y, BR(y) ∩ S = ∅, and |x−y| � R. Since x ∈ ∂S, it is not
possible that |x−y| < R, so that the left-to-right implication of (3.7) holds. On the
other hand, if x ∈ ∂S, |x−y| = R, and BR(y) ∩ S = ∅, it is immediate to check
that x ∈ ∂(extR(S)), see also Fig. 2.

In Theorem 3.3(2) we will use that for arbitrary sets S the boundary part
bdryR(S) is countably (d−1)-rectifiable, see [34, Th.10.48(ii)], and hence has
Ld measure 0.
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The next result shows how the properties ofL provide regularity of the backward
transform ϕ�L. Of course, an analogous statement holds for the forward transform
using (3.4). The important fact is that the upper bounds on the second derivatives
of L generate semi-convexity of ϕ0 (i.e. lower bounds on D2ϕ0), see Assertions 5
and 6. As D2

L(z) blows up at the boundary of BR(0), it is essential to use the fact
that L(zk)→+∞ for |zk | ↑ R.

Theorem 3.2. (Regularity of the L-transform) Let L : Rd → [0,+∞] satisfy

L : Rd → [0,+∞] is continuous and L(0) = 0, (3.8a)

L
∣∣

BR(0)
∈ C2(BR(0)) and L(z) = +∞ if |z| � R, (3.8b)

L is uniformly convex, i.e. ∃ λ∗ > 0 ∀ z ∈ BR(0) : D2
L(z) � λ∗ I. (3.8c)

For an u.s.c. function ϕ1 : Rd → [−∞,+∞], we consider the backward L-
transform ϕ0 = ϕ�L

1 and set

O0 = {ϕ0 > −∞}, Q0 = {ϕ0 < +∞},
O1 = {ϕ1 < +∞}, Q1 = {ϕ1 > −∞}, and �0 = O0 ∩ int(Q0).

(3.9)

Then, the following assertions hold:

(1) The function ϕ0 is l.s.c. and satisfies

inf ϕ0 � inf ϕ1 and supϕ0 � supϕ1, (3.10)

(Q1)
R ⊂ O0 and

(
ϕ0(x0) = −∞ ⇔ BR(x0) ⊂ extR(Q1) ⊂ {ϕ1 = −∞}

)
.

(3.11)

The sets O0, O1, and �0 are open.
(2) The set Q0 satisfies an external sphere condition of radius R, namely

R
d \ cl(Q0) = extR(Q0) and ∂Q0 = bdryR(Q0), (3.12)

so that the topological boundary of Q0 is countably (d−1)-rectifiable.
(3) The “contact set” M := M−∞ ∪ M+∞ ∪ Mfin ⊂ R

d × R
d defined via

Mfin :=
{
(x0, x1)

∣∣ϕi (xi ) ∈ R, ϕ1(x1) = L(x0−x1)+ ϕ0(x0)
}
,

M−∞ :=
{
(x0, x1)

∣∣ϕ0(x0) = −∞, |x1−x0| � R
}
,

M+∞ :=
{
(x0, x1)

∣∣ϕ1(x1) = +∞, |x1−x0| � R
}
,

(3.13)

is closed.
(4) For every x̄0 ∈ �0, the section M0→1[x̄0] :=

{
x1
∣∣ (x̄0, x1) ∈ Mfin

}
of Mfin is

nonempty, compact, and included in Q1. Moreover, for every compact K ⊂ �0
there exists θ ∈ (0,R) and a′, a′′ ∈ R such that

|x1−x̄0| � θ and a′ � ϕ1(x1) � a′′ whenever x̄0 ∈ K and x1 ∈ M0→1[x̄0].
(3.14)

(5) The restriction of ϕ0 to the open set�0 is locally semi-convex, and in particular
locally Lipschitz and thus continuous.
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(6) If D′0 := dom(∇ϕ0) ⊂ �0, D′′0 = dom(D2ϕ0) ⊂ D′0, then D′′0 has full
Lebesgue measure in�0. For every x ∈ D′0, the set M0→1[x] contains a unique
point y = T0→1(x). The induced map T0→1 : D′0 → R

d is differentiable ac-
cording to (3.2b) in D′′0 and satisfies the following properties:

(a) |x−T0→1(x)| < R and ∇ϕ0(x) = (∇L)
(
x−T0→1(x)

)
for all x ∈ D′0,

(3.15)

(b) D2ϕ0(x) � −D2
L
(
x−T0(x)

)
for all x ∈ D′′0 , (3.16)

(c) DT0→1(x) is diagonalizable with nonnegative eigenvalues on D′′0 .
(3.17)

Proof. We divide the proof in various steps, corresponding to each assertion.
Assertion (1). To check that ϕ0 is l.s.c. we assume ϕ0(x0) > a for some a ∈
[−∞,+∞), then there exists y ∈ BR(x0) such that ϕ1(y)− L(y−x0) > a. As L
is continuous, we can find δ ∈ (0,R− |y−x0|) such that ϕ1(y)−L(y−x) > a for
every x ∈ Bδ(x0). By definition of ϕ0 this estimate implies ϕ0(x) > a on Bδ(x0),
and lower semi-continuity is shown.

The estimates in (3.10) are elementary following from L(0) = 0 and L(z) � 0,
respectively. The relation in (3.11) follows from the fact that ϕ0(x0) = −∞ implies
ϕ1(y) ≡ −∞ in BR(x0). The openness of O0 and O1 follows because ϕ0 is l.s.c.
and ϕ1 is u.s.c. This property in turn implies that �0 = O0 ∩ int(Q0) is open.
Assertion (2). Recalling Q0 = {ϕ0 < +∞} it is sufficient to notice that

x̄ ∈ R
d \ Q0 ⇔ ϕ0(x̄) = +∞ ⇒ ∃ ȳ : |x̄−ȳ| � R and ϕ1(ȳ) = +∞,

(3.18a)

whereweusedL � 0 and theupper semicontinuity ofϕ1.However, usingdom(L) =
BR(0) we obtain

ϕ1(ȳ) = +∞ ⇒ ϕ0(x) = +∞ for all x ∈ BR(ȳ). (3.18b)

This implication means that if x̄ ∈ R
d \ Q0 then x̄ ∈ cl(extR(Q0)), so that ∂Q0 =

∂(Rd\Q0) = ∂ cl(extR(Q0)) = ∂ extR(Q0).
Assertion (3). The closedness of M±∞ follows easily by the semi-continuities of
ϕi . For Mfin we consider a sequence (x0,n, x1,n) ∈ Mfin to (x0, x1). If |x0−x1| < R,
thenwehaveϕ1(x1) � L(x1−x0)+ϕ0(x0)by the semi-continuities.As the opposite
inequality is always satisfied, we obtain the equality. We can also exclude that
ϕ0(x0) = ϕ1(x1) = +∞ (resp.−∞), since otherwise ϕ0(x) ≡ +∞ in BR(x1) by
(3.18b) which contains a neighborhood of x0 (resp.ϕ1(x) ≡ −∞ in BR(x0) by
(3.11), which contains a neighborhood of x1), so that (x0, x1) ∈ Mfin. If |x1−x0| �
R and (x0, x1) does not belong to M−∞ then we have lim infn→∞ ϕ0(x0,n) �
ϕ0(x0) > −∞ so that

ϕ1(x1) � lim sup
n→∞

ϕ1(x1,n) = lim sup
n→∞

L(x1,n − x0,n)+ ϕ1(x0,n) = +∞

and (x0, x1) ∈ M+∞. Hence, M = Mfin ∪ M+∞ ∪ M−∞ is closed.
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Assertion (4). Let us first show that ϕ0 is locally bounded from above in the
interior of Q0, i.e. the open set Q0 \ ∂Q0. In fact, if a sequence xn is con-
verging to x̄ ∈ Q0\∂Q0 with ϕ0(xn) ↑ +∞, by arguing as before and using
ϕ0(xn) = supy∈BR(xn)

ϕ1(y) − L(y−xn), we find ȳ ∈ BR(x̄) with ϕ1(ȳ) = +∞.
Now (3.18b) gives ϕ0(x) = +∞ for all x ∈ BR(ȳ), which contradicts the fact that
ϕ0(x) < +∞ in a neighborhood of x̄ , because of |x̄−ȳ| � R.

We fix now a compact subset K of the open set�0, a point x̄ ∈ K , and consider
the section M0→1[x̄] of the contact set Mfin. Let η > 0 be sufficiently small so that
Kη :=

{
x ∈ R

d
∣∣ dist(x, K ) � η

} ⊂ �0 and let a := supKη ϕ0, where a < +∞
by the previous claim. By l.s.c. of ϕ0, we also have a := infKη ϕ0 > −∞.

By the definition of ϕ0 = ϕ�L

1 , for every ε ∈ (0, 1] the sets

Mε(x̄) :=
{

y ∈ BR(x̄)
∣∣∣ ϕ1(y) � L(y−x̄)+ ϕ0(x̄)− ε

}
, (3.19)

are non-empty. We choose y ∈ M1(x̄) and set xϑ := ϑ x̄ + (1−ϑ)y with ϑ =
1 − η/R, which implies |xϑ−x̄ | � η, and hence xϑ ∈ Kη. Moreover, we have
|xϑ−y| � R− η. Therefore, for y ∈ M1(x̄) ⊂ BR(x̄) we find

ϕ1(y) � L(y−xϑ)+ ϕ0(xϑ) � a′′ := a + �̂(R−η) <∞,
ϕ1(y) � ϕ0(x̄)+ L(y−x̄)− 1 � a′ := a > −∞, (3.20)

where �̂(�) := supz∈B�(0) L(z). Combining the last two estimates we additionally
find

L(y−x̄) � ϕ1(y)− ϕ0(x̄) � a′′ − a =: �̂(θ) with θ ∈ (0,R). (3.21)

Hence, all elements y ∈ M1(x̄) satisfies |x̄−y| � θ and (3.20).
We now consider a sequence yε ∈ Mε(x̄) ⊂ M1(x̄), then a standard compact-

ness argument and the upper semi-continuity of ϕ1 show that any limit point ȳ is an
element of M0→1[x̄], which is therefore not empty. The compactness of M0→1[x̄]
and (3.14) again follow by (3.21)

Assertion (5). Let us now fix x̄0 ∈ �0 and δ > 0 such that K := Bδ(x̄0) ⊂ �0.
The previous assertion yields θ < R and a′, a′′ ∈ R such that |x ′−x | � θ and
a′ � ϕ1(x ′) � a′′ whenever x ∈ K and x ′ ∈ M0→1[x]. By possibly reducing δ, we
can also assume that 3δ + θ < R. For every x ∈ K , we now have by construction

ϕ0(x) = max
x ′∈Bδ+θ (x̄0)

ϕ1(x
′)− L(x ′−x) (3.22)

which is bounded and semi-convex in K because it is a supremum over a family
of uniformly semi-convex functions, where we use |x ′−x | � |x ′−x̄0| + |x̄0−x | �
2δ+θ and that −L is semi-convex on B2δ+θ (x̄0) by (3.8b).
Assertion (6). This assertion follows in the standard way by using the extremality
conditions in the contact set, see e.g. [2, Thm.6.2.4 and 6.2.7]. We give the main
argument to show how the assumptions in (3.8) enter. By Alexandrov’s theorem
and Assertion (5) the set D′′0 has full Lebesgue measure. To obtain the optimality
conditions, we fix x0 ∈ Q0 ∩ D′′0 and know from (3.22) that there exists x̄1 such
that ϕ0(x0) = ϕ1(x̄1)− L(x̄1−x0). However, for all x ∈ Bδ(x0) we have ϕ0(x)+
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L(x̄1−x) � ϕ1(x̄1) with equality for x = x0. Thus, we obtain the optimality
conditions

∇ϕ0(x0)− ∇L(x̄1−x0) = 0 in Rd and D2ϕ0(x0)+ D2
L(x̄1−x0) � 0 in Rd×d

sym .

This result gives the conditions (a) to (c), if we observe that x̄1 is unique. But this
property follows from the first optimality condition by using (3.8c) which allows
us to write

x̄1 = T0→1(x0) := x0 +
(∇L)−1(∇ϕ0(x0)),

i.e. x̄1 is uniquely determined by x0. Moreover, DT0→1(x0) exists and satisfies
D2ϕ0(x0) = (D2

L)(T0→1(x0)−x0)
(
DT0→1(x0)−I

)
, which implies the diagonal-

ization result. !"
The previous result can now be applied to the solution of the LET problem in

Theorem 2.10 using L = L1; thus in this case R = π/2. Using the notations for
supp(μi ) = Si = S′i + S′′i and μi = μ′i + μ′′i from Theorem 2.5 we can compare
these to the sets Oi , Qi , D′i , and D′′i defined for an optimal pair (ϕ0, ϕ1) as in
Theorem 3.2. So far we constructed optimal pairs (ϕ0, ϕ1) satisfying

ϕ0 � ϕ�L1
1 on R

d , ϕ
L1→
0 � ϕ1 on R

d , ϕ0 = ϕ�L1
1 μ0-a.e., ϕ

L1→
0 = ϕ1 μ1-a.e.

(3.23)

However, following [34, Ch.5], we will show that it is possible to restrict to “tight
optimal pairs” satisfying ϕ0 = ϕ�L1

1 and ϕ1 = ϕL1→0 , which implies that ϕ0 is l.s.c.
and ϕ1 is u.s.c. This possibility leads to the following refinement of the results in
[27, Thm.6.6(iii)].

Theorem 3.3. (Regularity of optimalHK potentials) Let μ0, μ1 be nontrivial mea-
sures in M(Rd) with decompositions given by (2.12)–(2.13).

(1) There exists an optimal pair of potentials ϕ0, ϕ1 : Rd → [−∞,+∞] with ϕ0
being l.s.c. and ϕ1 u.s.c., solving the dual problem of Theorem 2.12 and

ϕ0 = ϕ�L1
1 and ϕ1 = ϕL1→0 on R

d , (3.24)

Si ⊂ Qi , S′0 ⊂ Sπ/21 ⊂ O0, S′1 ⊂ Sπ/20 ⊂ O1, (3.25)

ϕ0 = −∞ on S′′0 , and ϕ1 = +∞ on S′′1 , (3.26)

where the sets Oi and Qi are as in (3.9).
(2) If η is an optimal solution of the LET problem (2.25), the functions σ0 :=

e2ϕ0 and σ1 := e−2ϕ1 provide lower semi-continuous representatives of the
densities of the marginals ηi = π i

η with respect to μi , i.e., ηi = σiμi , and η is
concentrated on the contact set Mfin so that supp(η) ⊂ M (see Theorem 3.2).
The marginals ηi are concentrated on the open sets Oi . Conversely, if η̃ satisfies
supp(̃η) ⊂ M and η̃i = σiμi , then η̃ is an optimal solution of the LET problem
(2.25).
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(3) If μ0 (resp. μ′0) does not charge (d−1)-rectifiable sets, e.g. in the case that
μ0 	 Ld or if μ0(bdryπ/2(S0)) = 0 (resp. μ′0(bdryπ/2(S0)) = 0), then for

every optimal pair (ϕ0, ϕ1) with ϕ0 = ϕ�L1
1 and ϕ1 u.s.c., the measure μ0 is

concentrated on the open set int(Q0) (resp. μ′0 is concentrated on the open set
�0).

(4) If μ′0 is concentrated on D′0 = dom(∇ϕ0) (in particular if μ′0 	 Ld) then
the optimal transport plan η solving the LET formulation is unique, it is con-
centrated on D′0 × Sπ/20 , and it is induced by the graph of T0→1, i.e.η =
(Id, T 0→1)η0 with T0→1 from Theorem 3.2(6).

(5) If μ′0, μ′1 	 Ld then μ′0 is concentrated on D′′0 ∩ T−10→1(D
′′
1 ), where D′′i =

dom(D2ϕi ), and T0→1 is μ′0-essentially injective with det DT0→1 > 0 μ0-
a.e. in D′′0 .

Proof. Assertion (1). Let (φ0, φ1) be an optimal Borel pair according to Theo-
rem 2.14(2), see (2.43), satisfying

φi ∈ R μi -a.e. in S′i , φ0 = −∞ μ0 -a.e. in S′′0 , φ1 = +∞ μ1 -a.e. in S′′1 .
(3.27)

With this pair, we set ϕ0 := φ�L1
1 , and recalling (3.3) we easily obtain

ϕ0 � φ0 in R
d , φ1(x1) � L1(x1−x0)+ ϕ0(x0) if x0, x1 ∈ R

d , |x1−x0| < π/2.
(3.28)

Looking at the dual problem (2.34a) with the more general admissible set of Borel
pairs as described in (2.36), we see that (ϕ0, φ1) is still optimal.

Repeating the argument, we can set ϕ1 = ϕL1→0 to find a new optimal pair
satisfying ϕ1 � φ1. However, exploiting (3.5) we see that the tightness relation
(3.24) holds for the optimal pair (ϕ0, ϕ1). This fact implies that ϕ0 is l.s.c. and ϕ1
is u.s.c.

By the construction of φi in Theorem 2.14(2) we have

{φi ∈ R} = S′i , {φ0 = −∞} = S′′0 , and {φ1 = +∞} = S′′1 .

Together with φ0 � ϕ0 and φ1 � ϕ1 we find

S′′0 = {φ0 = −∞} ⊂ {ϕ0 = −∞} and S0 = {φ0 < +∞} ⊂ {ϕ0 < +∞} = Q0,

S′′1 = {φ1 = +∞} ⊂ {ϕ1 = +∞} and S1 = {φ1 > −∞} ⊂ {ϕ1 > −∞} = Q1.

Clearly, S′0 = S0 ∩ Sπ/21 ⊂ Sπ/21 . Moreover, for x0 ∈ Sπ/21 we find y1 ∈ S1 with

|y1−x0| < π/2, i.e. L1(y1−x0) < ∞. With this we have ϕ0(x0) = ϕ�L1
1 (x0) �

ϕ1(y1) − L1(y1−x0) > −∞ and conclude x0 ∈ O0. Thus, S′0 ⊂ Sπ/21 ⊂ O0

is shown and S′1 ⊂ Sπ/20 ⊂ O1 follows similarly. Hence, (3.25) and (3.26) are
established.
Assertion (2). The claim follows immediately from Theorem 2.14.
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Assertion (3). We just consider the case of μ0, since the argument for μ′0 is com-
pletely analogous and eventually uses the fact that �0 = O0 ∩ int(Q0) and μ′0 is
also concentrated on O0 by (3.25).

By Theorem 3.2 (cf. (3.12)) we know that ∂Q0 = bdryπ/2(Q0). Since ∂Q0
is (d−1)-rectifiable and μ0 does not charge (d−1)-rectifiable sets, we conclude
μ0(∂Q0) = 0.

If μ0(bdryπ/2(S0)) = 0, we also obtain μ0(∂Q0) = 0 via the following ar-
guments: By (3.25) we have S0 ⊂ Q0, which implies that a point x ∈ ∂S0 ∩
bdryπ/2(Q0) also lies bdryπ/2(S0). Using ∂Q0 = bdryπ/2(Q0) we obtain ∂S0 ∩
∂Q0 ⊂ bdryπ/2(S0) and find

μ0(∂Q0)
(i)= μ0(∂Q0 ∩ S0)

(ii)= μ0(∂Q0 ∩ ∂S0) � μ0
(
bdryπ/2(S0)

) = 0,

where we used S0 = sppt(μ0) in
(i)= and S0 ⊂ Q0 in

(ii)=. Thus, we have shown that
μ0 is concentrated on int(Q0).
Assertion (4). If μ′0 	 Ld then μ′0 is concentrated on �0 by Claim 3 and μ0(�0 \
D′0) = 0 by 3.2(6). By the previous claim (2), we know that the first marginal η0
of η is given by e2ϕ0μ0 = e2ϕ0μ′0 = e2ϕ0μ′0 D′0 (in particular η0(Rd \ D′0) = 0)
so that η is concentrated on Mfin ∩ (D′0×R

d) which is the graph of the map T0→1
given by Theorem 3.2(6).
Assertion (5). Let us first recall that for i = 0, 1 the marginal ηi of η and the
measure μ′i are mutually absolutely continuous. Since μ′i 	 Ld we know by
Theorem 3.2(6) and the third claim that μ′i (Rd\D′′i ) = μ′i (�i\D′′i ) = 0, so that
ηi (R

d\D′′i ) = 0 and η0(T
−1
0→1(R

d\D′′1 )) = η1(Rd\D′′1 ) = 0; we deduce that η0
and μ′0 are concentrated on D′′0 ∩ T−10→1(D

′′
1 ).

We can apply Theorem 3.2(6), inverting the order of the pair (ϕ0, ϕ1) and
obtaining that for every x1 ∈ D′1 there is a unique element x0 ∈ R

d in the section
M1→0(x1), i.e. such that (x0, x1) ∈ Mfin. This result precisely shows that the
restriction of T0→1 to D′0 ∩ T−10→1(D

′
1) ⊃ D′′0 ∩ T−10→1(D

′′
1 ) is injective. Since

(T0→1)η0 = η1 	 Ld , we can eventually apply [2, Lemma 5.5.3] which shows
that det DT0→1 > 0 μ0-a.e. in D′′0 . !"

It is important to realize that the tightness condition (3.24) is strictly stronger
than the optimality conditions (3.23). However, even for tight optimal pairs there
is some freedom outside the supports of the measures μ0 and μ1, as is seen in the
following simple case.

Example 3.4. (Tight optimal pairs for two Diracs) This example lies in-between
Examples 3.1 and 4.5. For two points z0, z1 ∈ R

d with � = |z1−z0| = π/3, such
that cosπ/2(�) = 1/2. We consider two measures μi = δzi . With si = S′i = {zi }
we easily find the two optimal potential (φ0, φ1) according to Theorem 2.14, see
(2.43):

φ0(x0) =
{
− log 2

2 for x0 = z0,

+∞ otherwise,
and φ1(x1) =

{
log 2
2 for x1 = z1,

−∞ otherwise,

In particular, we have φ1(z1)− φ0(z0) = log 2 = L1(z1−z0) = 1
2�(�).
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Proceeding as in Step 1 of the above proof with ϕ0 = φ�L1
1 and taking into

account the calculations of Example 3.1, we obtain a first tight optimal pair

(ϕ
(1)
0 , ϕ

(1)
1 ) with ϕ(1)0 (x0)

=
{

log 2
2 − L1(z1−x0) for x0 ∈ Bπ/2(z1),

−∞ otherwise,
and ϕ(1)1 = φ1.

Interchanging the roles of φ0 and φ1 we arrive at a second tight optimal pair

(ϕ
(2)
0 , ϕ

(2)
1 ) with ϕ(2)0 = φ0 and

ϕ
(2)
1 (x1) =

{
− log 2

2 + L1(x1−z0) for x1 ∈ Bπ/2(z0),

∞ otherwise.

A third case is obtained by choosing z∗1 $= z1 and considering an optimal pair
(φ0, φ̃1) with φ0 from above and

φ̃1(x1) =

⎧⎪⎨
⎪⎩

log 2
2 for x1 = z1,

a1 for x1 = z∗1,
−∞ otherwise.

where a1 � − log 2

2
+ L1(z

∗
1−z0).

We obtain ϕ(3)0 : x0 �→ max{ log 22 − L1(z1−x0), a1 − L1(z∗1−x0)} and the tight

optimal pair
(
ϕ
(3)
0 , (ϕ

(3)
0 )

L1→).
With the notation of Theorem 3.2 we have O(3)0 = {ϕ(3)0 > −∞} = Bπ/2(z1)∪

Bπ/2(z∗1) = Q̃π/21 , since Q̃1 = {φ̃1 > −∞} = {z1, z∗1}, i.e. (3.11) holds. Because
of Q(3)0 = {ϕ(3)1 < +∞} = R

2, also (3.12) is true.

The following corollary shows that in the case of an absolutely continuous
reduced pair (μ0, μ1) the density of μ1 can be written in terms of the optimal pair
(σ0, σ1), the transport map T , and the density of μ0, and vice versa:

Corollary 3.5. (Monge solutions) Let μ0, μ1 ∈ M(Rd)2 with μ′′1 = 0, and let
(ϕ0, ϕ1) be a tight optimal pair of potentials according to Theorem 3.3. If μ′0 is
concentrated on D′0 = dom(∇ϕ0) (in particular if μ′0 	 Ld), then there exists a
“unique” (up toμ0-negligible sets) optimal transport-growth pair (T , q) attaining
the minimum for the Monge Problem 2.9, namely

(T , q)�μ0 = μ1 and C(q, T ;μ0) = HK2(μ0, μ1). (3.29)

If σi , ϕi , D′i , D′′i , η, T0→1, T 1→0 are given as in Theorem 3.2 and 3.3, the pair
(T , q) can be obtained in the following way:

(1) The restriction of T to D′0 coincides with the map T0→1 (and the plan η) as in
Theorem 3.2, whereas T (x) := x for every x ∈ R

d\D′0 (in particular in S′′0 ).
(2) q(x) ≡ 0 for x ∈ R

d\D′0 (in particular in S′′0 ) and

q2(x) = σ0(x)

σ1(T0→1(x))
= σ 20 (x)+

1

4
|∇σ0(x)|2 for x ∈ D′0. (3.30)
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Moreover, T satisfies

|T (x)−x | < π/2 and σ0(x)σ1(T (x)) = cos(|x−T (x)|)2 in D′0. (3.31)

If μ0 	 Ld , then μ1 	 Ld if and only if det DT (x) > 0 for μ0-a.e. x ∈ D′′0 . In
this case, setting μi = ciL

d 	 Ld we have

c1 =
(

c0
q2

det DT

)
◦ T−1 Ld-a.e. in T (D′′0 ) ⊂ �1. (3.32)

To obtain the second identity in (3.30), we exploit the first-order optimality
(3.15) and σ0 = e2ϕ0 giving 1

2σ0
∇σ0 = ∇ϕ0(x) = tan(x−T (x)) by (3.15). Thus,

using the optimality condition (3.31) (coming from (2.42e)) we find

q2(x) = σ 20 (x)

cos2(|x−T (x)|) = σ
2
0 (x)(1+ tan2(|x−T (x)|)) = σ 20 (x)+

1

4
|∇σ0(x)|2.

(3.33)

We can also rephrase the above results in terms of the optimal Kantorovich po-
tential ξ0 in (2.34b). This potential, which satisfies the relations ξ0 = 1

2 (σ0−1) =
G1(ϕ0) = 1

2 (e
2ϕ0−1), will be the best choice for characterizing the densities of the

Hellinger–Kantorovich geodesic curves. Indeed, the transport map T on D′′0 takes
the form

T (x) = x + arctan
( ∇ξ0(x)
1+2ξ0(x)

)
= x + arctan

(
∇ϕ0(x)

)
,

q2(x) = (1+2ξ0(x))2 + |∇ξ0(x)|2.
(3.34)

If μ0, μ1 have full support S0 = S1 = R
d , then Theorem 3.3 immediately yields

�i = Oi ∩ int(Qi ) = R
d , so that ϕ0 and ϕ1 take values in R, are locally Lipschitz,

and locally semi-convex and semi-concave, respectively. Another important case
where the properties of ϕ0, ϕ1 can be considerably refined is when μ0, μ1 are
strongly reduced (cf. Definition 2.6) and have compact support.

Theorem 3.6. (Improved regularity in case of strongly reducedpairs) Let us assume
that the supports S0, S1 ofμ0, μ1 are compact and satisfy Si ⊂ Sπ/21−i , so thatμ0, μ1
is a strongly reduced pair (cf. Definition 2.6). Then it is possible to find a pair of
optimal potentials ϕ0, ϕ1 as in Theorem 3.3 satisfying the following additional
properties:

(1) ϕi are uniformly bounded (in particular �i = R
d and M = Mfin): there exist

constants φmin < φmax ∈ R such that

φmin � ϕi � φmax in R
d . (3.35)

(2) If θ ∈ [0, π/2[ satisfies cos2(θ) = e2(φmin−φmax) then for every x0, x1 ∈ R
d

(x0, x1) ∈ M ⇒ |x1−x0| � θ. (3.36)

(3) ϕi are Lipschitz, ϕ0 is semi-convex, ϕ1 is semi-concave.
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Proof. Assertion (1). Let ϕ′0, ϕ′1 be an optimal pair as in Theorem 3.3. Since ϕ′1 is
u.s.c and ϕ′1 < +∞ on Sπ/20 , we have φmax := maxS1 ϕ

′
1 < +∞. We can then

define ζ1 := min{ϕ′1, φmax} observing that ζ1 � φmax in R
d and (ϕ′0, ζ1) is still

optimal since ζ1 = ϕ′1 on S1.
Arguing as in the proof of Theorem 3.3, we define ζ0 := (ζ1)�L1 , observing

that ζ0 � φmax as well. On the other hand, ζ0 is l.s.c. and ζ0 > −∞ on Sπ/21 ⊃ S0,
so that φmin := minS0 ζ

′
0 > −∞. Setting ζ ′0 := max{ζ0, φmin} we obtain a new

optimal pair (ζ ′0, ζ1) with φmin � ζ0 � φmax. Hence, with ζ ′1 := (ζ ′0)L1→ we get
the desired optimal pair (ζ ′0, ζ ′1) satisfying φmin � ζ ′i � φmax as well.

Assertion (2). This assertion is now an easy consequence of the definition of contact
set (3.13) and the fact that ϕ1(x1)− ϕ0(x0) � φmax − φmin. Assertion (3). The last
assertion follows as Theorem 3.2(5). !"

4. Dynamic Duality and Regularity Properties of the Hamilton–Jacobi
Equation

In the previous section, the regularity properties of the optimalHK pairs (ϕ0, ϕ1)
were studied, which can be understood via the static formulations ofHK as only the
measures μ0 and μ1 are involved. Now, we consider the dual potentials ξt (x) =
ξ(t, x) along geodesics (μt )t∈[0,1]. At this stage, the present Section4 is completely
independent of the previous Section3. Only in the upcoming Section5, we will
combine the two results to derive the finer regularity properties of the geodesics
μt .

In [27, Sect. 8.4], it is shown that the optimal dual potentials ξ in the dynamic
formulation in (2.3) (but now for α = 1 and β = 4) are subsolutions to a suitable
Hamilton–Jacobi equation, namely,

1

2τ
HK(μ0, μτ )

2 = sup

{∫
Rd
ξ(τ, ·)dμτ −

∫
Rd
ξ(0, ·)dμ0

∣∣∣ ξ ∈ C∞c ([0, τ ] × R
d),

∂

∂t
ξ + 1

2
|∇ξ |2 + 2ξ2 � 0 in [0, τ ] × R

d
}
.

(4.1)

Theorem 8.11 in [27] shows that the maximal subsolutions of the generalized
Hamilton–Jacobi equation (2.4) for t ∈ (0, τ ) are given by the following gen-
eralized Hopf–Lax formula

ξt (x) = ξ(t, x) = (Pt ξ0
)
(x) = 1

t
P1
(
tξ0(·)

)
(x) = inf

y∈Rd

1

2t

(
1− cos2π/2(|x−y|)

1+ 2tξ0(y)

)
,

(4.2)

where ξ0 ∈ C1(Rd) is fixed and such that infRd ξ0(·) > − 1
2τ , compare with (1.13).

In the spirit of the previous section, it is possible to derive some semi-concavity
properties of ξt from this formula. However, these are not enough as we need more
precise second order differentiability. To obtain the latter, we use the fact that a
geodesic curve is not oriented, meaning that t �→ μ1−t is still a geodesic, or in
other words that t �→ ξ1−t has to also solve a Hamilton–Jacobi equation. Thus, our
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strategy will be the following: For an optimal pair (ξ0, ξ̄1) in (2.34b), we construct
a forward solution ξt starting from ξ0 and backward solutions starting from ξ̄1 via

ξt =Pt ξ0 for t ∈ (0, 1] and ξ̄t = Rt ξ̄1 := −Pt (−ξ̄1) for t ∈ [0, 1). (4.3)

In Section5, optimality will be used to guarantee that ξt and ξ̄t are essentially the
same so that semi-concavity of ξt and semi-convexity of ξ̄t provide the desired
smoothness.

4.1. Exploiting the Generalized Hopf–Lax Formula for Regularity

In this section, we study in detail the regularity properties of the function ξt
arising in (4.2). Assuming that inf x∈Rd ξ0(x) � − 1

2τ we see that Ptξ0 is well-
defined for t ∈ (0, τ ) and can be equivalently characterized by

(
Pt ξ0

)
(x) = inf

y∈Bπ/2(x)

1

2t

(
1− cos2π/2(|x−y|)

1+ 2tξ0(y)

)
. (4.4)

We can extend (4.4) at t = τ if we define the quotients a/0 := +∞, a/(+∞) := 0
for every a > 0. Moreover, since t �→Pt ξ0(x) is decreasing, we easily get

ξt (x) =
(
Pt ξ0

)
(x) = lim

s↑t

(
Ps ξ0

)
(x) for every x ∈ R

d , t ∈ (0, τ ] (4.5)

so that many properties concerning the limiting case t = τ can be easily derived
by continuity as t ↑ τ .

If ξ0 is l.s.c. and
(
Pt ξ0

)
(x) < 1

2t , the infimum in (4.4) it attained at a compact
set denoted by

Mtξ0(x) := argminy
1

2t

(
1− cos2π/2(|x−y|)

1+ 2tξ0(y)

)
⊂ Bπ/2(x). (4.6)

Notice that
(
Pt ξ0

)
(x) = 1

2t only if ξ0 is identically+∞ in Bπ/2(x) and in this case
any element of Bπ/2(x) is aminimizer. For later usagewe also defineM0ξ(x) = {x}.

We also observe that if ξ0(x) = a is constant thenPt ξ0 is constant in x , namely

Pt ξ0(x) =Pt a(x) = Pa(t) := a

1+ 2at
, with P∞(t) := 1

2t
. (4.7)

A crucial property of (4.2) is the link with the classical Hopf–Lax formula on the
cone C for a function ζ : C→ R satisfying ζ([x, r ]) � − 1

2τ r2. For t ∈ (0, τ ) the
Hopf–Lax formula on C reads as

Qtζ([x, r ]) := inf
[x ′,r ′]∈C

ζ([x ′, r ′])+ 1

2t
d2C
([x, r ], [x ′, r ′]). (4.8)

For ξ0 satisfying ξ0 � − 1
2τ and t ∈ (0, τ ) we set ζ([x, r ]) := ξ0(x)r2 and find (cf.

[27, Thm.8.11])

ξt =Pt ξ0 ⇐⇒ ξt (x)r
2 = Qtζ([x, r ]) for all x ∈ R

d ; (4.9)
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Moreover, if ξ0 is lower semi-continuous the infimum in (4.8) is attained and we
have

ξt (x)r
2 = ζ([x ′, r ′])+ 1

2t
d2C
([x, r ], [x ′, r ′])

⇐⇒
{

x ′ ∈ Mtξ0(x) and

(1+2tξ0(x ′))(r ′)2 = (1−2tξt (x))r2
(4.10)

(where [x ′, r ′] = o if r ′ = 0, corresponding to the case 1−2tξt (x) = 0). From
(4.8) and (4.9) we also deduce the estimate

(
1−2tξt (x)

)
r2 + (1+2tξ0(x

′)
)
(r ′)2 � 2rr ′ cosπ/2(|x−x ′|) (4.11)

for every x, x ′ ∈ R
d and r, r ′ � 0. Optimizing with respect to r, r ′ we find

(
1−2tξt (x)

)(
1+2tξ0(x

′)
)

� cos2π/2
(|x−x ′|) for every x, x ′ ∈ R

d (4.12)

and arrive at the following characterization: For all x ∈ R
d with 1−2tξt (x) > 0

we have

x ′ ∈ Mtξ0(x) ⇐⇒
(
1−2tξt (x)

)(
1+2tξ0(x

′)
) = cos2π/2

(|x−x ′|). (4.13)
To treat the factor of r and r ′ in (4.11) efficiently, we define the function

Zt (u
′, u) := 1−2tu

1+2tu′
for 1+2tu′, 1−2tu � 0 and Zt (+∞, u) ≡ 0. (4.14)

Using (4.13), the optimal r ′ in (4.10) can now be equivalently characterized by

(r ′)2 = Zt (ξ0(x
′), ξt (x)) = (1−2tξt (x))2

cos2π/2(|x−x ′|) = (1−2tξt (x))
2(1+ tan2(|x−x ′|)).

(4.15)

The following result collects the properties of Pt that will be needed in the
sequel:

Proposition 4.1. (Properties of the generalized Hopf–Lax operator Pt ) Let ξ0 :
R

d → [a, b] with −1/2 � a � b � +∞ be lower semi-continuous and set
ξt :=Pt ξ0 for t ∈ [0, 1].
(1) Lower/upper bounds. The functions ξt are well defined and satisfy (cf. (4.7) for

Pa)

− 1

2(1−t)
� Pa(t) � ξt � Pb(t) � 1

2t
for every t ∈ (0, 1), x ∈ R

d .

(4.16)

Moreover, it holds that

ξ0(x) = −1/2 ⇔ ξt (x) = − 1

2(1−t)
. (4.17)
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(2) Semi-concavity. Setting a(t) := 1
t (1+2at) � 1

t (1−t) the functions ξt are a(t)-

Lipschitz and  a(t) semi-concave, i.e. x �→ ξt (x)−  a(t)
2 |x |2 is concave.

(3) Semigroup property. For every 0 � s < t � 1 we have

ξt =Pt−s ξs (4.18)

(4) Concatenation of optimal points. For s, t with 0 � s < t < 1 and x ∈ R
d

we define the set-valued function Mt→s via Mt→s(x) := Mt−sξs(x). For all
0 � t0 < t1 < t2 < 1 and all x0, x1, x2 ∈ R

d we have:

If x1 ∈ Mt2→t1(x2) and x0 ∈ Mt1→t0(x1), then x0 ∈ Mt2→t0(x2) and

Zt2−t0(ξt0(x0), ξt2(x2)) = Zt1−t0(ξt0(x0), ξt1(x1)) Zt2−t1(ξt1(x1), ξt2(x2)).

(4.19)

(5) Geodesics onC. If 0 � t0 < t1 < t2 < 1, x0 ∈ Mt2→t0(x2), r0 = Zt2−t0(ξt0(x0),
ξt2(x))r2, and [x1, r1] = geoθ

([x0, r0], [x2, r2]) for θ = t1−t0
t2−t0

, then x1 ∈
Mt2→t1(x2).

(6) Characterization of optimality. For all x, y ∈ R
d and 0 � s < t < 1 with

τ := t−s we have

(1−2τξt (x))(1+2τξs(y)) � cos2π/2(|x−y|), (4.20)

y ∈ Mt→s(x), ξt (x) <
1

2τ
⇔ (1−2τξt (x))(1+2τξs(y)) = cos2π/2(|x−y|).

(4.21)

Proof. Assertion (1). The first assertion follows by the monotonicity property of
Pt and (4.7). Note that (4.17) is a simple consequence of the property

1

2t

(
1− cos2π/2(|x−y|)

1+ 2tξ(y)

)
� − 1

2(1−t)

with equality if and only if x = y and ξ(y) = −1/2.
Assertion (2). It is sufficient to observe that for every y ∈ R

d

x �→ cos2π/2(|x−y|) is 2 -Lipschitz, x �→ cos2π/2(|x−y|)− |x |2 is concave,
(4.22)

so that

x �→ 1

2t

(
1− cos2π/2(|x−y|)

1+ 2tξ0(y)

)
is a(t) -Lipschitz (4.23)

and

x �→ 1

2t

(
1− cos2π/2(|x−y|)

1+ 2tξ0(y)

)
−  a(t)

2
|x |2 is concave. (4.24)

Assertion (3). If t < 1 the semigroup property for Pt can be derived by the link
with the Hopf-Lax semigroup in C given by (4.9) and the fact that (C,dπ,C) is a
geodesic space. The case t = 1 follows by approximation and (4.5).
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Assertion (4). We set τ0 := t1 − t0, τ1 := t2 − t1, r > 0,

r1 = Zτ1(ξt1(x1), ξt2(x))r, r0 = Zτ0(ξt0(x0), ξt1(x1))r1

and use (4.10) and (4.18):

ξt2(x)r
2 = ξt1r21 +

1

2τ1
d2π,C([x1, r1], [x, r ])

= ξt0r20 +
1

2τ0
d2π,C([x0, r0], [x1, r1])+

1

2τ1
d2π,C([x1, r1], [x, r ]).

On the other hand,

ξt2(x)r
2 � ξt0r20 +

1

2τ
d2π,C([x0, r0], [x, r ]), (4.25)

so that we obtain

1

2τ0
d2π,C([x0, r0], [x1, r1])+

1

2τ1
d2π,C([x1, r1], [x, r ]) � 1

2τ
d2π,C([x0, r0], [x, r ]);

(4.26)

since τ = τ0 + τ1 the opposite inequality always hold in (4.26), and we deduce
the equality, which implies that the equality holds in (4.25) as well, showing (4.19)
thanks to (4.10).
Assertion (5). We can argue as in the previous assertion, starting from the charac-
terization of x0, r0

ξt2(x)r
2 = ξt0r20 +

1

2τ
d2π,C([x0, r0], [x, r ]) (4.27)

and using the identity along the geodesic in C connecting [x0, r0] to [x, r ], namely

1

2τ0
d2π,C([x0, r0], [x1, r1])+

1

2τ1
d2π,C([x1, r1], [x, r ]) =

1

2τ
d2π,C([x0, r0], [x, r ]).

(4.28)

Assertion (6). The final assertion follows from (4.12) and (4.13). !"

4.2. Backward Generalized Hopf–Lax Flow and Contact Sets

Let us now consider the backward version of the generalized Hopf–Lax semi-
group. By the simple structure of the generalized Hamilton–Jacobi equation (2.4),
we immediately see that time reversal leads to the same effect as the sign reversal
ξ � −ξ . Hence, the backward semigroupRt is defined for ξ̄ with ξ̄ � 1/(2τ) via

Rt ξ̄ := −Pt (−ξ̄ ) for t ∈ (0, τ ]. (4.29)

The corresponding properties ofRt follow easily from Proposition 4.1, but observe
that we use ξ̄t = R1−t ξ̄1 to go backward in time.
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Corollary 4.2. (Properties of Rt ) Let ξ̄1 : Rd → [−b̄,−ā] with −∞ � −b̄ �
−ā � 1/2 be upper semi-continuous and set

ξ̄t := R1−t ξ̄1 for t ∈ [0, 1]. (4.30)

(1) Lower/upper bounds. The functions ξ̄t are well-defined and satisfy

− 1

2t
� Pb̄(1−t) � ξ̄t � Pā(1−t) � 1

2(1−t)
for all t ∈ (0, 1), x ∈ R

d .

(4.31)

Moreover, we have the equivalence

ξ̄1(x) = 1/2 ⇔ ξ̄t (x) = 1

2t
. (4.32)

(2) Semi-convexity. The functions ξ̄t are  ā(1−t)-Lipschitz and  ā(1−t) semi-
convex, i.e. x �→ ξ̄t (x) +  ā(1−t)

2 |x |2 is convex (cf. Proposition 4.1(2) for
 a).

(3) Time-reversed semigroup property. For every 0 � s < t � 1 we have

ξ̄s = Rt−s ξ̄t . (4.33)

(4) Concatenation of optimal points. Setting Ms�t (x) := Mt−s(−ξ̄t )(x) for ev-
ery 0 < s < t � 1 and x ∈ R

d , the set-valued function Ms�t satisfies the
concatenation property for 0 < t0 < t1 < t2 � 1 and x0, x1, x2 ∈ R

d :

If x1 ∈ Mt0�t1(x0) and x2 ∈ Mt1�t2(x1), then x2 ∈ Mt0�t2(x0) and

Zt2−t0(ξ̄t0(x0), ξ̄t2(x2)) = Zt1−t0(ξ̄t0(x0), ξ̄t1(x1)) · Zt2−t1(ξ̄t1(x1), ξ̄t2(x2)).
(4.34)

(5) Characterization of optimality. For all x, y ∈ R
d and 0 < s < t � 1 with

τ := t − s

(1−2τ ξ̄t (x)) (1+2τ ξ̄s(y)) � cos2π/2(|x−y|), (4.35)

x ∈ Ms→t (y), ξ̄s(y) > − 1

2τ
⇔ (1−2τ ξ̄t (x)) (1+2τ ξ̄s(y)) = cos2π/2(|x−y|).

(4.36)

Proof. We just observe that the second statement in (4.34) follows by the corre-
sponding statement in (4.19) which now reads as

Zt2−t0(−ξ̄t2(x2),−ξ̄t0(x0)) = Zt1−t0(−ξt1(x1),−ξt0(x0)) · Zt2−t1(−ξ̄t2(x2),−ξ̄t1(x1)),
(4.37)

and the property Zτ (−u′,−u) = Z−τ (u′, u) = Z−1τ (u, u′). Equations (4.35) and
(4.36) follow by (4.20) and (4.21) changing ξs(y) with −ξ̄t (x) and ξt (x) with
−ξ̄s(y). !"
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We are now in the position to compare the forward solution ξt and the backward
solution ξ̄t . The main philosophy is that in general we only haveRt Pt ξ0 � ξ0 (cf.
(4.38) below), but equality holds μt -a.e. if (ξ0,P1 ξ0) is an optimal pair. In the fol-
lowing result, we still stay in the general case comparing arbitrary forward solutions
ξt =Pt ξ0 and backward solutions ξ̄t = R1−t ξ̄1 only assuming ξ1 � ξ̄1. Along the
contact set �t where ξt and ξ̄t coincide, we can then derive differentiability and
optimality properties of ξt and ξ̄t .

Theorem 4.3. (Contact set �t ) Let ξ0 : Rd → [a,+∞] be l.s.c. with a � −1/2
and ξ̄1 : Rd → [−∞,−ā] u.s.c. with ā � 1/2. Assume P1 ξ0 � ξ̄1 and set

ξt :=Pt ξ0 and ξ̄t := R1−t ξ̄1 for t ∈ [0, 1]. (4.38)

Then, the following assertions hold:

(1) For every t ∈ [0, 1] we have ξt � ξ̄t and the contact set

�t :=
{

x ∈ R
d : ξ̄t (t) = ξt (x)

}
is closed. (4.39)

(2) For every t ∈ (0, 1) and x ∈ �t there exists a unique p = gt (x) satisfying

ξt (y)− ξt (x)− 1

2
 ā(1−t)|x−y|2 � 〈p, y − x〉 � ξ̄t (y)− ξ̄t (x)+ 1

2
 a(t)|x−y|2

(4.40)

so that in particular ξt and ξ̄t are differentiable at x with gradient gt (x) (cf.
Proposition 4.1(2) for  a).

(3) The map x �→ gt (x) is bounded and C(t)-Lipschitz with C(t) � 2( a(t) +
 ā(1−t)) � 4

t (1−t) on �t . Moreover, the sets

�−t :=
{

x ∈ R
d
∣∣∣ ξ0 = −1

2

}
=
{

x ∈ �t

∣∣∣ ξt = −1
2(1−t)

}

�+t :=
{

x ∈ R
d
∣∣∣ ξ̄1 = 1

2

}
=
{

x ∈ �t

∣∣∣ ξ̄t = 1

2t

} (4.41)

are independent of t , are contained in �t for every t ∈ [0, 1], and the critical
set �0

t := {x ∈ �t : gt (x) = 0} of gt contains �±t :

�0
t ⊃ �−t ∪�+t for every t ∈ (0, 1). (4.42)

(4) Let s ∈ (0, 1), t ∈ [0, 1], and τ := t − s $= 0. Then, for every xs ∈ �s with
1+2τξs(xs) > 0 the setMs→t (xs) consists of a unique element xt =: T s→t (xs)

satisfying

xt ∈ �t and xs ∈ Mt�s(xt ),

xt = T s→t (x) = x + arctan
( τ gs(x)

1+2τξs(x)
)
,

(
1−2τξt (T s→t (x))

) (
1+2τξs(x)

) = cos2π/2
(|x−T s→t (x)|

)
.

(4.43)
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(5) For every x ∈ �0
s ⊃ �±s we have T s→t (x) = x (and thus we set T s→t (x) := x

also for t = 0 or t = 1). Let s ∈ (0, 1) and define T s→s(x) = x, then for all
x ∈ �s the mappings t �→ T s→t (x) are analytic in [0, 1]. For s, t ∈ (0, 1) the
mappings T s→t : �s → R

d are Lipschitz. If t = 0 (resp. t = 1) then T s→t is
locally Lipschitz in �s \�+s (resp. in �s\�−s ).

(6) Setting

q2
s→t (x) :=

1+ 2τξs(x)

1−2τξt (T s→t (x))
= (1+2τξs(x))2 + τ 2|gs(x)|2 (4.44)

for every x ∈ �s , the map t �→ qs→t (x) is analytic in [0, 1], qt→s is bounded
and Lipschitz with respect to x, and qs→t (x) > 0 for t ∈ (0, 1) or t = 0 and x $∈
�+s (resp. t = 1 and x $∈ �−s ). Moreover, qs→t (x) = 1+ 2(t−s)ξs(x) for x ∈
�±s .

(7) For all t0, t1 ∈ (0, 1), t2 ∈ [0, 1], the maps T ti→t j are Lipschitz on �ti for
i ∈ {0, 1}, and we have

T t1→t2 ◦ T t0→t1 = T t0→t2 , qt1→t2(T t0→t1(x)) · qt0→t1(x) = qt0→t2(x).

(4.45)

Proof. Assertion (1). The inequality

ξs � Rt−s

(
Pt−s ξs

)
= Rt−s ξt for 0 < s < t < 1 (4.46)

can be derived by the link with the Hopf-Lax semigroup inC given by [27, Theorem
8.11] and arguing as in [34, Thm. 7.36]. We prove it by a direct computation
as follows: Set τ = t−s, observe that infPτ ξs = inf ξt � 1

2t <
1
2τ , and use

ξt =Pτ ξs to obtain

1

1−2τξt (y) = inf
z∈Bπ/2(y)

1+ 2τξs(z)

cos2π/2(|y−z|) � 1+ 2τξs(x)

cos2π/2(|y−x |) if |x−y| < π/2.
(4.47)

With this estimate, we find

Rτ ξt (x)
def= sup

y∈Bπ/2(x)

1

2τ

(cos2π/2(|x−y|)
1− 2τξs(y)

− 1
)

(4.47)
� sup

y∈Bπ/2(x)

1

2τ

(cos2π/2(|x−y|)
cos2π/2(|x−y|) (1+2τξs(x))− 1

)
= ξs(x).

Using ξt � ξ1 � ξ̄1 we thus get (4.46). Passing to the limit as t ↑ 1 in (4.46), we
arrive at ξs � R1−s ξ̄1 = ξ̄s .

The closedness of �t follows from the semi-continuities of ξt and ξ̄t and the
estimate ξt � ξ̄t . Indeed, assume yk → y with yk ∈ �t , then we have y ∈ �t

because of

ξt (y)
l.s.c.
� lim inf

k→∞ ξt (yk) = lim inf
k→∞ ξ̄t (yk) � lim sup

k→∞
ξ̄t (yk)

u.s.c.
� ξ̄t (y) � ξt (y).
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Assertion (2). Let us fix x ∈ �t ,  :=  a(t) and  ̄ :=  ā(1−t), and let p
(resp. p′) be an element of the superdifferential of x �→ ξt (x) − 1

2 |x |2 (resp. of
the subdifferential of x �→ ξ̄t (x)+ 1

2  ̄|x |2). The superdifferential (subdifferential)
is not empty, since the function is concave (convex) and finite everywhere. For
every x, y ∈ R

d with x ∈ �t we have

〈p, y−x〉 � ξt (y)− ξt (x)− 1

2
 |x−y|2 and 〈p′, y−x〉

� ξ̄t (y)− ξ̄t (x)+ 1

2
 ̄|x−y|2.

Subtracting the two inequalities and using ξt (x) = ξ̄t (x) and ξ̄t (y) � ξt (y) yields

〈p′ − p, y − x〉 � ξ̄t (y)− ξt (y)+ 1

2
( + ̄)|y−x |2 � 1

2
( + ̄)|y−x |2

for every y ∈ R
d ,

so that p = p′ is uniquely determined and (4.40) holds.
Assertion (3). The fact that �±t are independent of t and contained in �t follows
from (4.17) and (4.32). Moreover, (4.42) follows easily since ξt takes its minimum
at �−t and its maximum at �+t .

Let us now fix t ∈ (0, 1), x0, x1 ∈ �t , pi = gt (xi ) +  ̄xi , and set ζ̄ (x) :=
ξ̄t (x) + 1

2  ̄|x |2, ζ(x) := ξt (x) + 1
2  ̄|x |2. Notice that ζ̄ (x) is convex and ζ(x) is

C =  +  ̄ semi-concave with ζ̄ (x) � ζ(x). We get

ζ̄ (x0) � ζ̄ (x)− 〈p0, x − x0〉 � ζ(x)− 〈p0, x − x0〉
� ζ(x1)+ 〈p1, x − x1〉 − 〈p0, x − x0〉 + C

2
|x−x1|2

= ζ̄ (x1)+ 〈p1 − p0, x − x1〉 − 〈p0, x1 − x0〉 + C

2
|x−x1|2.

Minimizing with respect to x we find ζ̄ (x0) � ζ̄ (x1)−〈p0, x1−x0〉− 1
4C |p1−p0|2.

Inverting the role of x0 and x1 and summing up gives 1
2C |p1−p0|2 �

〈p1−p0, x1−x0〉 and therefore

|p1−p0| � 2C |x1−x0|. (4.48)

The boundedness of gt on �t follows by the fact that ξt is Lipschitz.

Assertion (4). Let us first consider the case s > t with τ := s−t and let y ∈
Ms→t (x). If ξs(x) > − 1

2τ then y satisfies the identity (4.21). Since ξ̄t (y) � ξt (y),
(4.35) and ξ̄s(x) = ξs(x) yields ξ̄t (y) = ξt (y) so that y ∈ �t as well with x ∈
Mt�s(y) since ξ̄t (y) � − 1

2(1−t) > − 1
2τ .

Since the function x ′ �→ (1+2τξs(x ′)) (1−2τξt (y)) − cos2π/2
(|x ′−y|) has a

global minimizer at x , we arrive at the Euler–Lagrange equations

2τ(1−2τξt (y)) gs(x)+ 2 cosπ/2(|x−y|) sin(x−y) = 0
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Since we can assume |x−y| < π/2 we obtain

x − y = −arctan
( τ gs(x)

1+2τξs(x)
)
, (4.49)

which characterizes y uniquely and establishes (4.43).
The case t > s follows by the same arguments.

Assertion (5). This assertion is an immediate consequence of (4.43) and (4.42).
Assertion (6). The claims are simple consequences of the identity (4.15) and the
definition of qs→t of (4.44).
Assertion (7). The final assertion follows by (4.19) (and the corresponding
(4.34)). !"
Remark 4.4. (Strongly reduced pairs) It is worth noticing that if inf ξ0 > − 1

2 and
sup ξ̄1 < 1

2 , then the sets�
±
t in (4.41) are empty andmanyproperties of ξt ,T s→t and

qs→t become considerably simpler. This situation is, e.g., the case of the solution
induced by a strongly reduced pair with compact support, see Theorem 3.6.

We close this subsection by giving a small example for ξt and ξ̄t and their
contact set �t derived from an optimal pair (ξ0, ξ̄1) for the transport between two
Dirac measures.

Example 4.5. (The contact set for two Dirac measures) For points z0, z1 ∈ R
d and

r0, r1 > 0 we consider the Dirac measures μ j = r2j δz j . We have

HK2(μ0, μ1) = r20 + r21 − 2r0r1 cosπ/2(�) with � = |z1−z0|,
and all geodesic curves are known, see [26, Sec. 5.2]. For � < π/2 we have a
unique geodesic μt = r(t)2δz(t) defined by transport, and for � > π/2 the unique
geodesic μt = (1−t)2r20 δz0 + t2r21 δz1 consists of growth (annihilation and decay)
only. For � = π/2 there is an infinite-dimensional convex set of geodesics, and we
will see that this property is also reflected by a larger contact set.

Using the simple one-point supports of μ j it is easy to calculate the optimal
potentials and the transport plan η in Theorem 2.14(ii). We obtain

s0 := σ0(z0) = r1
r0

cosπ/2(�), s1 := σ1(z1) = r0
r1

cosπ/2(�),

η = r0r1 cosπ/2(�) δ(z0,z1).

Thus, we will distinguish the case cosπ/2(�) > 0 and cosπ/2(�) = 0.
Case� < π/2 : By (2.44) the optimal pair (ξ0, ξ̄1) reads as

ξ0(x) =
{

s0−1
2 for x = z0,

+∞ for x $= z0; and ξ1(x) =
{

1−s1
2 for x = z1,

−∞ for x $= z1.

From these identities, we obtain the forward and backward solutions ξt = Pt ξ0
and ξ̄t = R1−t ξ̄1:

ξt (x) =
1−t+ts0 − cos2π/2(|x−z0|)

2 t (1−t+ts0)
and ξ̄t (x) =

cos2π/2(|x−z1|)− t−(1−t)s1

2 (1−t) (t+(1−t)s1)
.
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Fig. 3. For the case � = |z1−z0| = 0.9 < π/2 the functions ξt (x) (red) and ξ̄t (x) (blue)
from (4.50) are displayed for the different times t = 0.15, 0.35, and 0.55 (with parameter
r1/r0 = 2). We always have ξt (x) � ξ̄t (x) with equality at the one-point contact set
�t = {z(t)}, where z(t) = T0→t (z0) moves continuously from z0 to z1

(4.50)

The following optimality conditions can be checked by direct computation:

(a) ξ0 � ξ̄0 and ξ1 � ξ̄1 on R
d

(b) ξ0 = ξ̄0 μ0-a.e. and ξ1 = ξ̄1 μ1-a.e.

As ξ0(x) = +∞ for x $= z0 and ξ1(x) = −∞ for x $= z1 statement (a) follows
from (b). For (b) observe

ξ̄0(z0) = cos2 � − s1
2s1

= cos2 � − (r0/r1) cos �
2(r0/r1) cos �

= 1

2

(
r1
r0

cos � − 1

)
= s0−1

2
= ξ0(z0).

Similarly, ξ1(z1) = ξ̄1(z1) follows, which provides a first result on the contact sets
�t :=

{
x ∈ R

d
∣∣ ξt (x) = ξ̄t (x) }, namely �0 = {z0} and �1 = {z1}.

The general theory inTheorem4.3(i) guarantees ξt � ξ̄t . A lengthy computation
shows that�t is a singleton also for t ∈ (0, 1), i.e.�t = {a(t)} fromμt = r(t)2δz(t)

and �± = ∅. We refer to Fig. 3, where x �→ (ξt (x), ξ̄t (t)) is plotted.
Case� � π/2 : Now we have s0 = s1 = 0 and ξt and ξ̄t simplify accordingly:

ξt (x) =
1− t − cos2π/2(|x−z0|)

2 t (1−t)
and ξ̄t (x) =

cos2π/2(|x−z1|)− t

2 t (1−t)
. (4.51)
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Fig. 4. For � = |z1−z0| � π/2 the contact set �t for the functions ξt (x) (red) and ξ̄t (x)
(blue) from (4.51) is no longer a singleton. For � = π/2 (upper figure) we obtain �t =
[z0, z1]. For � > π/2 (lower figure), we have �t = �+t ∪ �− with �−t = {z0} and
�+t = {z1}

The contact sets are easily found depending on � = π/2 or � > π/2, namely

� > π/2 : �t = �− ∪�+t with �− = {z0} and �+t = {z1},
� = π/2 : �t = [z0, z1] and �− = {z0} and �+ = {z1},

where [z0, z1] denotes the segment
{
(1−θ)z0+θ z1

∣∣ θ ∈ [0, 1] }, see Fig. 4.
The interesting fact that for � = |z1−z0| = π/2 the contact set �t is constant

and consists of a full segment reflects the observation in [26, Sec. 5.2] that μ0 and
μ1 can be connected by geodesics satisfying sppt(μt ) = [z0, z1] for all t ∈ [0, 1].

4.3. Geodesic Flow and Characteristics

Finally, we study the differentiability of gs = ∇ξs and T t→s on �s . Let us
denote by �̃t the subset of density points of the contact set �t , which is closed by
(4.39):

x ∈ �̃t ⇔ lim
�↓0

Ld(�t ∩ B�(x))

Ld(B�(x))
= 1. (4.52)

Notice that �̃t is just the set of Lebesgue points of the characteristic functions of�t ,
so that [1]Ld(�t \�̃t ) = 0. By [9, Thm.1], the family of sets (�̃t )t∈(0,1) is invariant
with respect to the action of the bi-Lipschitz maps T s→t , i.e., T s→t (�̃s) = �̃t for
every s, t ∈ (0, 1).

Given a locally Lipschitz function F : �t → R
d and x ∈ �̃t , we say that F is

differentiable at x if there exists a matrix A = DF(x) ∈ R
d×d such that

|F(y)− F(x)− A(y − x)| = o(|y − x |) as y → x, y ∈ �t . (4.53)
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Since x belongs to the set �̃t of density points of�t , thematrixA is unique and every
(locally) Lipschitz extension of F is differentiable at x with the same differential
A (e.g. one can argue as in the proof of [1, Thm.2.14]).

We call domt (DF) the set of differentiability points x ∈ �̃t of F . If F is
locally Lipschitz in �t , considering an arbitrary Lipschitz extension of F and
applying Rademacher’s theorem, we know that Ld(�t \ domt (DF)) = 0. We will
use the simple chain-rule property that if y = F(x) is a density point of F(�t ) and
H : F(�t )→ R

k is differentiable at y, then

D(H ◦ F)(x) = DH(F(x)) · DF(x). (4.54)

In the proof of the following lemma we will denote by ∂ξs the Fréchet subdif-
ferential of ξs , which coincides with∇ξs whenever ξs is differentiable, in particular
in x ∈ �s .

Lemma 4.6. Let s ∈ (0, 1) and let x ∈ �̃s be a density point of�s where gs = ∇ξs
is differentiable in the sense of (4.53) with p = gs(x) and A = D∇ξs(x). Then

A = D∇ξs(x) is symmetric, (4.55a)

sup
z∈∂ξs (y)

|z − p − A(y−x)| = o (|y−x |) as y → x, (4.55b)

ξs(y)− ξs(x)− 〈p, y−x〉 − 1

2
〈A(y−x), y−x〉 = o (|y−x |2) as y → x,

(4.55c)

Analogous results hold for ξ̄s . We will denote D∇ξs by D2ξs .

Notice that the points y in the limits in (4.55b) and (4.55c) are not restricted to�s .

Proof. We adapt some ideas of [3,5] to our setting, and we consider the case of
ξ̄s (to deal with a semi-convex function, instead of semi-concave). We will assume
x = 0 and will shortly write ξ̄ and� for ξ̄s and�s omitting the explicit dependence
on the parameter s. For h > 0 we define the blowup set �h := h−1�. Up to an
addition of a quadratic term, it is also not restrictive to assume that ξ̄ is convex.

For h > 0 we set ωh(y) := 1
h2
(
ξ̄ (hy)− ξ̄ (x)− h〈p, y〉) so that ωh is a convex

and nonnegative function. By (4.40) there exists a positive constant C such that

0 � ωh(y) � C |y|2 for every y ∈ �h . (4.56)

Since x = 0 is a density point of �, Ld(Br (0)\�h) → 0 as h ↓ 0 so that every
point of z ∈ Br (0) is a limit of a sequence in zh ∈ �h ∩ Br (0). Therefore, for h
sufficiently small we can find points yh,i ∈ �h ∩ B4d(0), i = 1, · · · , 2d, such that
B2(0) ⊂ conv({ yh,i | i = 1, · · · , 2d }). For this it is sufficient to approximate the
(rescaled) elements of the canonical basis±ei , i = 1, · · · , d. If y ∈ B2(0)we then
find coefficients αh,i � 0,

∑
i αh,i = 1 such that

ωh(y) �
∑

i

αh,iωh(yh,i ) � C
∑

i

αh,i |yh,i |2 � 2dC



Arch. Rational Mech. Anal. (2023) 247:112 Page 47 of 73 112

so that ωh is uniformly bounded in B2(0) and therefore is also uniformly Lipschitz
in B1(0). Every infinitesimal sequence hn ↓ 0 has a subsequence m �→ hn(m) such
that ωhn(m) is uniformly convergent to a nonnegative, convex Lipschitz function

ω : B1(0)→ R.Wewant to show that any limit pointω coincideswith the quadratic
function induced by the differential A, namely ω(y) = ωA(y) = 1

2 〈Ay, y〉
Letω be theuniform limit ofωh along a subsequencehn ↓ 0. If yn ∈ �hn∩B1(0)

is converging to y ∈ B1(0)we know that any limit point of pn = ∇ωhn (yn) belongs
to ∂ω(y). On the other hand, pn = 1

hn
(∇ ξ̄ (hn yn)− p) = Ayn + o(1) thanks to the

differentiability assumption, so that Ay ∈ ∂ω(y). Since we can approximate every
point of B1(0) we conclude that Ay ∈ ∂ω(y) for every y ∈ B1(0). On the other
hand, ω is Lipschitz, so that it is differentiable a.e. in B1(0) with ∇ω(y) = Ay and
therefore the distributional differential of ∇ω coincides with A. We conclude that
A is symmetric and ω(y) = 1

2 〈Ay, y〉. The fact that ωh uniformly converges to ω
eventually yields (4.55b) and (4.55c). !"

We now use the second-order differentiability of ξs to derive differentiability of
T s→t by using the formula (4.43) with gs(x) = ∇ξs(x). For s ∈ (0, 1) we define

Ds = doms(D∇ξs)) ∩ �̃s = doms(D
2ξs) ∩ �̃s . (4.57)

As we already observed, since gs is Lipschitz on �s , Ld(�s\Ds) = 0 for every
s ∈ (0, 1).

For t ∈ (0, 1) and τ = t−s we also have 1+2τξs � (1−t)/(1−s) > 0 so that

x �→ τ

1+2τξs(x) ∇ξs(x) = ∇φs,t (x) with φs,t (x) = 1

2
log

(
1+2τξs(x)

)

is again Lipschitz on�s . Thus, Lemma 4.6 can be applied and φs,t is differentiable
in the sense of (4.53) onDs . Finally, we exploit the explicit representation of T s→t

via (4.43), namely for all x ∈ �s we have

T s→t (x) = x + arctan
( τ∇ξs(x)
1+2τξs(x)

)
= x + arctan

(∇φs,t (x)
)
. (4.58)

Now the chain rule (4.54) guarantees the differentiability of T s→t on the set Ds .

Lemma 4.7. (Differentiability of T ) For all s, t ∈ (0, 1) the mapping T s→t is
differentiable on Ds , and we have

DT s→t (x) = T
(
t−s, ξs(x),∇ξs(x),D2ξs(x)

)
with

T(τ, ξ, g,A) := I+ (D2L1(z)
)−1∣∣z=arctan(

τ g
1+2τξ )

( τ A
1+2τξ −

2τ 2 g⊗g
(1+2τξ)2

)
.

(4.59a)

T s→t (Ds) = Dt and DT t→s(T s→t (x))DT s→t (x) = I for x ∈ Ds . (4.59b)

For every t0, t1 ∈ (0, 1), t2 ∈ [0, 1] we also have

DT t1→t2(T t0→t1(x))DT t0→t1(x) = DT t0→t2(x) for x ∈ Dt0 . (4.59c)



112 Page 48 of 73 Arch. Rational Mech. Anal. (2023) 247:112

Proof. Recall τ = t−s, then the explicit formula (4.59a) follows from differentiat-
ing∇L1

(
x−T s→t (x)

) = − τ
1+2τξs∇ξs . Since T−1s→t = T t→s there exists a constant

L such that

L−1|x−x ′| � |T s→t (x)− T s→t (x
′)| � L|x−x ′| for every x, x ′ ∈ �s . (4.60)

If x ∈ Ds and A = DT s→t (x), choosing ε > 0 we can find � > 0 such that

|T s→t (x
′)− T s→t (x)− A(x ′−x)| � ε|x ′−x | for every x ′ ∈ �t ∩ B�(x),

(4.61)

so that choosing ε < 1
2 L and x ′ = x + v we get

|Av| � |T s→t (x+v)− T s→t (x)| − ε|v| � 1

2L
|v| for every v ∈ B�(0) ∩ (�t − x)

Using the fact that 0 is a density point of �t − x we conclude that A is invertible
with |A−1| � 2L . For every y′ ∈ �t with L|y′−y| < � and x ′ = T t→s(y′), we
get |x ′−x | < � and (4.61) yields

|T t→s(y
′)−T t→s(y)−A−1(y′−y)| = ∣∣A−1(A(x ′−x)− T s→t (x

′)+ T s→t (x)
)∣∣

� 2Lε|x ′−x | � 2L2ε|y′−y|
showing that y ∈ Dt and A−1 = DT t→s(y). Hence, (4.59b) is established.

Equation (4.59c) then follows by the concatenation property (4.45). !"
The explicit formula (4.59a) shows that DT s→t is the product of the positive

matrix D2L1(z)−1 and a symmetric matrix, hence it is always real diagonalizable.
The following result shows that the determinant and hence all eigenvalues stay posi-
tive for s, t ∈ (0, 1). In fact, we now derive differential equations with respect to t ∈
(0, 1) for the transport-growth pairs (T s→t (x), qs→t (x)) ∈ R

d × (0,+∞) as well
as for DT s→t (x) ∈ R

d×d and det DT s→t (x). Recall that t �→ (T s→t (x), qs→t (x))
is analytic for t ∈ (0, 1) by Theorem 4.3(5) and (6).

The following relations will be crucial to derive the curvature estimate needed
for our main result on geodesic HK-convexity.

Theorem 4.8. (The characteristic system on the contact set �s) We fix s ∈ (0, 1),
x ∈ �s , and y ∈ Ds (cf. (4.57)) and define the maps

T (t) := T s→t (x), q(t) := qs→t (x), B(t) := DT s→t (y), and δ(t) := detB(t).

Then, we have the initial conditions T (s) = x, q(s) = 1, B(s) = I, and δ(s) = 1,
and for t ∈ (0, 1) the following differential equations are satisfied:

Ṫ (t) = ∇ξt (T (t)) and T̈ (t) = −4ξt (T (t))∇ξt (T (t)), (4.62a)

q̇(t) = 2ξt (T (t)) q(t) and q̈(t) = |∇ξt (T (t))|2 q(t), (4.62b)

Ḃ(t) = D2ξt (T (t))B(t) and B̈(t) = −4
(
∇ξt⊗∇ξt + ξtD2ξt

)
◦T (t) · B(t),

(4.62c)
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δ̇(t) = �ξt (T (t)) δ(t), δ̈(t)

δ(t)
=
(
(�ξt )

2−|D2ξt |2−4|∇ξt |2−4ξt�ξt
)
◦T (t).
(4.62d)

there �ξt (z) = tr
(
D2ξt (z)

)
and |D2ξt (z)|2 =∑i, j

(
∂xi ∂x j ξt (z)

)2
.

Proof. We use (4.45) and the Taylor expansion

arctan
( hg
1+2hξ

)
= hg − 2h2ξ g + O(h3) as h → 0.

Setting y = T (t) = T s→t (x) and using the fact that y ∈ �t , (4.58) yields

T t→t+h(y) = y + h∇ξt (y)− 2h2ξt (y)∇ξt (y)+ O(|h|3) as h → 0.

With the composition rule (4.45) we have T s→t+h(x) = T t→t+h(y) and compute

Ṫ (t) = lim
h→0

T s→t+h(x)− T s→t (x)

h
= lim

h→0

T t→t+h(y)− y

h
= ∇ξt (y).

This identity yields the first equation in (4.62a). For the second relation in (4.62a)
we use

T̈ (t) = lim
h→0

T s→t+h(x)− 2T s→t (x)+ T s→t−h(x)

h2

= lim
h→0

T t→t+h(y)− 2y + T t→t−h(y)

h2 = −4ξt (y)∇ξt (y).

The relations (4.62b) for q(t) = qs→t follow similarly, using the scalar product
rule for qs→t in (4.45) and by taking the square root of (4.44), namely,

qt→t+h(y) = 1+ 2hξt (y)+ h2

2
|∇ξt (y)|2 + o(h2) as h → 0.

To show that B(t) satisfies (4.62c), we exploit the matrix product rule (4.59c)
and expand DT t→t+h(y) in (4.59a) to obtain

DT t→t+h(y) = I+ hD2ξt − 2h2
(
∇ξt⊗∇ξt + ξtD2ξt

)
+ o(h2) as h → 0.

(4.63)

For this note that y − T t→t+h(y) = O(|h|) so that D2L1
(
y−T t→t+h(y)

) = I +
O(|h|2) as L1 is even. Thus, (4.62c) follows as in the previous two cases.

For the determinant δ(t) we again have a scalar product rule, and it suffices to
expand det(DT t→t+h(x)) at h = 0. For this we can use the classical expansion
det(I+hA) = 1+ h trA+ 1

2h2
(
(trA)2 − tr(A2)

)+ O(h3), and obtain

det DT t→t+h = 1+ h�ξt + 1

2
h2
(
(�ξt )

2 − |D2ξt |2 − 4|∇ξt |2 − 4ξ�ξt
)
+ o(h2).

(4.64)

As before this shows (4.62d), and the theorem is proved. !"
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In this section, we have studied the forward solutions t �→ ξt for t ∈ (0, 1)
and its contact sets �t with a corresponding backward solution ξ̄t . We obtained
differentiability properties in these sets or in the slightly smaller sets Dt and derived
transport relations for important quantities such as qs→t and δs(t) = det DT s→t (x).
In the following section,we still have to show that the contact sets�t are sufficiently
big, if we define ξt =Pt ξ0 and ξ̄t = R1−t ξ1 for an optimal pair (ξ0, ξ1). This will
be done in Theorem 5.1.

5. Geodesic Curves

In this section, we improve the characterization of Hellinger–Kantorovich
geodesic curves as discussed already in [27, Sec. 8.6]. More precisely, we consider
constant-speed geodesics μ : [0, 1] →M(Rd) that satisfy

∀ s, t ∈ [0, 1] : HK(μ(s), μ(t)) = |s−t |HK(μ0, μ1).

We first show the optimality of potentials ξt and ξ̄t obtained from the forward or
backward Hamilton–Jacobi equation in Theorem 5.1. With this, we are able to
show in Theorem 5.2 that for subparts (s, t) ⊂ [0, 1] with τ = t−s < 1 the
corresponding LET problem has a unique solution in Monge form, which implies
that (M(Rd),HK) has the strong non-branching property. Finally, in Theorem 5.4
and Corollary 5.5 we provide restrictions and splittings of geodesic curves needed
for the main theorem in Section7.

5.1. Geodesics and Hamilton–Jacobi Equation

The next result clarifies the connection with the forward and backward Hopf–
Lax flows ξt and ξ̄t studied in Theorem 4.3 and the importance of the contact set�t

defined in (4.39) (see also [27, Thm.8.20] and [34, Chap.7] for a similar result in the
framework of Optimal Transport and displacement interpolation). We emphasize
that despite the non-uniqueness of the geodesics (μt )t∈[0,1] (see [26, Sec. 5.2]) in
the following result, ξt and ξ̄t only depend on μ0 and μ1 and the optimal potentials
ϕ0 and ϕ1.

The result brings together the results of Sects. 3 and 4 by startingwith an optimal
pair (ϕ0, ϕ1) from Section3 and considering the corresponding solutions ξt and ξ̄t
of the forward and backward Hamilton–Jacobi equation starting with ξ0 = Ǧ1(ϕ0)

and ξ̄1 = G1(ϕ1), respectively. First, we observe that “intermediate” pairs (ξs , ξt ) or
(ξ̄s, ξ̄t ) are optimal for connecting the intermediate pointsμs andμt on an arbitrary
geodesic connecting μ0 and μ1. Second, we observe that certain results obtained
in Section4 for s, t ∈ (0, 1) also hold in the limit points s, t ∈ {0, 1}. Finally, we
show that the contact set �t is large enough in the sense that it contains supp(μt )

(see Example 4.5 for some instructive case with � = π/2).
Theorem 5.1. For μ0, μ1 ∈ M(Rd) consider a tight optimal pair (ϕ0, ϕ1) of
(lower,upper) semi-continuous potentials as in Theorem 3.3. With ξ0 := Ǧ1(ϕ0) =
1
2 (e

2ϕ0−1)and ξ̄1 := G1(ϕ1) = 1
2 (1−e−2ϕ1)we define ξt =Pt ξ0 and ξ̄t = R1−t ξ̄1
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as in (4.30) and the contact sets �t = {ξt = ξ̄t } as in (4.39). Finally, consider an
arbitrary geodesic (μt )t∈[0,1] connecting μ0 to μ1. Then, the following holds:

(1) For all s, t ∈ [0, 1] with s < t both pairs (ξs, ξt ) and (ξ̄s, ξ̄t ) are optimal for
(2.40) and (2.41) for connecting μs to μt , viz.

1

2(t−s)
HK2(μs, μt ) =

∫
ξt dμt −

∫
ξs dμs =

∫
ξ̄t dμt −

∫
ξ̄s dμs (5.1)

(2) St = supp(μt ) ⊂ �t for every t ∈ [0, 1].
Proof. Assertion (1). It is sufficient to consider the forward flow Pt . Fixing

t ∈ (0, 1) we have
1

2t
HK2(μ0, μt ) �

∫
ξt dμt −

∫
ξ0 dμ0 and

1

2(1−t)
HK2(μt , μ1)

�
∫
ξ1 dμ1 −

∫
ξt dμt . (5.2)

On the other hand, the geodesic property and the optimality of (ξ0, ξ1) yield∫
ξ1 dμ1 −

∫
ξ0 dμ0 = 1

2
HK2(μ0, μ1) = 1

2t
HK2(μ0, μt )+ 1

2(1−t)
HK2(μt , μ1)

showing that the inequalities in (5.2) are in fact equalities, in particular (5.1) with
s = 0. For s > 0 we still get (5.1) since 1

2(t−s)HK
2(μs, μt ) = 1

2t HK
2(μ0, μt ) −

1
2 sHK

2(μ0, μs) if 0 < s < t � 1.
Assertion (2). Equation (5.1) for s = 0 yields

∫
(ξt − ξ̄t )dμt = 0 for all t ∈ (0, 1),

so that ξt � ξ̄t and the continuity of ξt , ξ̄t yield ξt = ξ̄t on St = suppμt . The cases
t = 0 and 1 follow by the relations between ξi and ϕi and the fact that ϕ0 = ϕ�L1

1 ,

ϕ1 = ϕ�L1
0 . !"

Note that the inclusion St = supp(μt ) ⊂ �t is in general a strict inclusion.
This can be seen for the case |z1−z0| = π/2 in Example 4.5, where �t = [z0, z1],
however, there exists a pure Hellinger geodesic with supp(μt ) = {z0, z1} for t ∈
(0, 1).

We can now exploit all the regularity features of the maps T s→t and qs→t on
the contact set �t (cf. Theorem 4.3). A first important consequence is that, given
an HK geodesic (μt )t∈[0,1] and s ∈ (0, 1), the HK problem between μs and μt for
any t ∈ [0, 1] has only one solution, which can be expressed in Monge form (see
[2, Lem.7.2.1] for the corresponding properties for the L2-Wasserstein distance in
R

d ).

Theorem 5.2. (Regularizing effect alonggeodesics) Under the assumptions of The-
orem 5.1, if s ∈ (0, 1) and t ∈ [0, 1], then the transport-growth pair (T s→t , qs→t )

of Theorem 4.3 is the unique solution of the Monge formulation (2.21) of the
Entropy-Transport problem betweenμs andμt . In particular, the optimal Entropy-
Transport problem betweenμs andμ0 or betweenμs andμ1 has a unique solution,
and this solution is in Monge form.
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Proof. Let us consider the case 0 < s < t � 1, τ = t−s < t . By Theorem 5.1, the
pair (ξ̄s, ξ̄t ) is optimal for (μs, μt ) and supp(μs) ⊂ �s . Using the transformations

ϕ0 := 1

2τ
log(1+2τ ξ̄s) and ϕτ := − 1

2τ
log(1−2τ ξ̄t ), (5.3)

we see that (ϕ0, ϕτ ) is a pair of potentials satisfying the assumptions of Theo-
rem 3.3(2). Since 1 − 2τξt � 1 − τ/t > 0 we deduce that ϕτ is bounded from
above, so that μ′′t = 0 thanks to (3.26) (where the measures μ′t and μ′′t are defined
as in (2.13)).

Moreover, we know that μ′s is concentrated on {ϕ0 > −∞}; since it is also
concentrated on�s we deduce that μ′s is concentrated on D′0 = dom(∇ϕ0), so that
we can apply Corollary 3.5, recalling the expression of T , q given by (3.34). !"

The above theorem allows us to deduce the fact that (M(Rd),HK) has a strong
non-branching property. It is shown in [26, Sec. 5.2] that the set of geodesics con-
necting two Dirac measures δy0 and δy1 is very large if |y1−y0| = π/2: it is convex
but does not lie in a finite-dimensional space. The following result shows that all
these geodesics are mutually disjoint except for the two endpoints μ0 and μ1:

Corollary 5.3. (Strongnon-branching) If for some s ∈ (0, 1)we haveHK(μ0, μs) =
sHK(μ0, μ1) and HK(μs, μ1) = (1−s)HK(μ0, μ1), then there exists a unique
geodesic curve t �→ μ(t) such that μ(0) = μ0, μ(s) = μs , and μ(1) = μ1.

Thenext result shows that fromagivengeodesicwemayconstruct newgeodesics
by multiplying the measuresμt by a suitably transported function. This will be use-
ful in the proof of the main Theorem 7.2.

Theorem 5.4. (Restriction of geodesics) Let (μt )t∈[0,1] be an HK geodesic. For
a given s ∈ (0, 1) let νs ∈ M(Rd) with supp(νs) ⊂ supp(μs). Then the curve
[0, 1] % t �→ νt := (T s→t , qs→t )�νs is also an HK geodesic. If in addition νs =
�sμs for some Borel function �s : supp(μs) → [0,+∞], then ν′t = �tμt with
�t (y) = �s(T t→s(y)) for every t ∈ (0, 1).
Proof. We keep the same notation of Theorem 5.1, let 0 < t1 < s < t2 < 1, and
set τ1 := s − t1, τ2 := t2 − s, and τ = τ1+τ2. We clearly have

1

2τ
HK2(νt2 , νt1) �

∫
ξt2 dνt2 −

∫
ξt1 dνt1

=
( ∫

ξt2 dνt2 −
∫
ξs dνs

)
+
( ∫

ξs dνs −
∫
ξt1 dνt1

)

The conclusion then follows, if we show that
∫
ξt2 dνt2−

∫
ξs dνs � 1

2τ2
HK2(νt2 , νs)

and
∫
ξs dνs−

∫
ξt1 dνt1 � 1

2τ2
HK2(νs, νt1).We check the first inequality, the second

follows similarly.
Define q2 := qs→t2 and T2 := T s→t2 . Using the fact that (i) νt2 = (T2, q2)�νs

and (ii) identity (4.44) we obtain
∫
(1−2τ2ξt2)dνt2

(i)=
∫ (

1−2τ2ξt2
(
T s→t2(x)

))
q2

s→t2(x)dνs(x)
(ii)=
∫
(1+2τ2ξs)dνs .
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Combining (4.43) and (4.44), we arrive at∫ (
1− 2τξt2

)
dνt2 =

∫ (
1+ 2τ2ξs

)
dνs =

∫
q2 cos(|x−T2(x)|)dνs . (5.4)

With this, we find

HK2(νt2 , νs)
(2.17)

�
∫ (

q2
2 + 1− 2q2 cos(|x−T2(x)|

)
dνs

(5.4)= νt2(R
d)+ νs(R

d)−
∫
(1−2τξt2)dνt2 −

∫
(1+2τ2ξs)dνs

= 2τ
( ∫

ξt2 dνt2 −
∫
ξs dνs

)
.

Hence, we have shown 1
2τHK

2(νt2 , νt1) =
∫
ξt2 dνt2 −

∫
ξs dνs , which implies that

(νt )t∈(0,1) is a geodesic as well.
We can then pass to the limits t1 ↓ 0 and t2 ↑ 1 as follows. Notice that the curve

t �→ νt , t ∈ (0, 1), is converging in (M(Rd),HK) to a limit ν0 and ν1 for t ↓ 0 and
t ↑ 1, since (νt ) is a geodesic. Moreover, for every ζ ∈ Cb(R

d) we can pass to the
limit t ↑ 1 in ∫

ζ dνt =
∫
ζ(T s→t (x))q

2
s→t (x)dνs(x), (5.5)

since limt↑1 T s→t (x) = T s→1(x) and limt↑1 qs→t (x) = qs→1(x) and q is uni-
formly bounded. A similar argument holds for the case t ↓ 0.

In order to check the identity concerning the density �′t of νt , we use (5.5) and
find∫

ζ dνt =
∫
ζ(T s→t (x))q

2
s→t (x)dνs =

∫
ζ(T s→t (x))q

2
s→t (x)�s(x)dμs

=
∫
ζ(T s→t (x))q

2
s→t (x)�t (T s→t (x))dμs(x) =

∫
ζ(y)�t (y)dμt (y).

The case t ∈ [0, s] is analogous. !"
The next result provides the fundamental formula for the representation of den-

sities along geodesics. Generalizing the celebrated formulas for the Kantorovich–
Wasserstein geodesics, the densities are againobtainedby transport alonggeodesics,
but nowwithnon-constant speed andan additional growth factoras(t, x) = q2

s→t (x)
to account for the annihilation and creation ofmass. Recall thatDs = dom(D2ξs) ⊂
�s has full Lebesgue measure in �s , i.e. Ld(�s\Ds) = 0.

Corollary 5.5. (Representation of densities along geodesics) Forμ0, μ1 ∈M(Rd)

consider a geodesic (μt )t∈[0,1] connecting μ0 to μ1. Assume that at least one of
the following properties holds:

(a) there exists s ∈ (0, 1) such that μs = csL
d 	 Ld;

(b) μ0 = c0Ld 	 Ld and μ′′1 	 Ld .

Then, we have



112 Page 54 of 73 Arch. Rational Mech. Anal. (2023) 247:112

(1) μt 	 Ld for every t ∈ (0, 1), viz. μt = c(t, ·)Ld .
(2) For every s ∈ (0, 1) the density c(t, ·) can be expressed via the formula

c(t, y)
∣∣
y=T s→t (x)

= c(s, x)
αs(t, x)

δs(t, x)
for every x ∈ Ds, t ∈ (0, 1), (5.6a)

with Ds = doms(D∇ξs)) = doms(D2ξs) (cf. (4.57)) and

αs(t, x) := (1+ 2(t−s)ξs(x)
)2 + (t−s)2|∇ξs(x)|2, δs(t, x) := det DT s→t (x).

(5.6b)

Moreover, we have D2ξs(x) = 0 and δs(t, x) = 1 for Ld-a.e. x ∈ �0
s ⊃ �±;

in particular

c(t, x) = t2

s2
c(s, x) for x ∈ �+ and c(t, x) = (1−t)2

(1−s)2
c(s, x) for x ∈ �−.

(5.7)

(3) If μ0 	 Ld (resp.μ1 	 Ld) (5.6) and (5.7) hold up to t = 0 (resp.up to
t = 1).

(4) If μ′′1 = 0 the representations in (5.6) also hold for s = 0 by restricting x in
D′′0 = dom(D2ϕ0), and we have the formula

DT0→t (x) = T
(
t, ξ0(x),∇ξ0(x),D2ξ0(x)

)
for every x ∈ D′′0 , (5.8)

where T is defined in (4.59a).

Proof. Assertion (1). In the case (a) holds for s ∈ (0, 1), there exists a bi-Lipschitz
map T s,t : �s → �t and bounded growth factors qs,t : �s → [a, b]with 0 < a <
b < ∞ such that μt = (T s→t , qs→t )�μs . In particular, for every Borel set A we
have

μt (A) � b2μs(T−1s→t (A)) = b2μs(T t→s(A)). (5.9)

If Ld(A) = 0 then Ld(T t→s(A)) = 0 because T t→s is Lipschitz. Hence, using
μs 	 Ld we find μs(T t→s(A) = 0, such that (5.9) gives μt (A) = 0. With this we
conclude μs 	 Ld .

In the case of assumption (b), we argue as before but withμ0 = c0Ld for s = 0.
Using the fact that qt→0 is locally bounded from below and that T t→0 is locally
Lipschitz on At := �t \�+, we deduce that μt At 	 Ld . On the other hand we
have μ′′1 	 Ld and the restriction of T t→1 to �+ coincides with the identity and
qt→1 is bounded from below thanks to (4.44). Thus, we obtain μt 	 Ld .
Assertion (2). The representation (5.6a) follows by Theorem 5.2 and Corollary 3.5.

Relation (5.7) can be deduced directly by Theorem 5.2. In order to prove that
D2ξs = 0 μs-a.e. in �± it is sufficient to consider density points of �±, since
μs 	 Ld , and to compute the differential of ∇ξs on �±, where it is constant.
Assertions (3) and (4). Both assertions follow from Corollary 3.5. !"
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As a last application, we will also discuss the propagation of the singular part
with respect to Ld , which will be needed in the proof of the main result in Theo-
rem 7.2.

Corollary 5.6. (Propagation of the singular part) Let μ0, μ1 ∈ M(Rd) and let
(μt )t∈[0,1] be a geodesic connecting μ0 to μ1 and let μs = μa

s + μ⊥s be the
decomposition of μs with respect to the Lebesgue measure Ld at some point s ∈
(0, 1). For every t ∈ [0, 1] we set

μ̃t := (T s→t , qs→t )�μ
a
s and μ̂t := (T s→t , qs→t )�μ

⊥
s . (5.10)

Then, the curves (μ̃t )t∈(0,1) and (μ̂t )t∈(0,1) are HK geodesics, we have μ̂t ⊥ Ld for
t ∈ [0, 1] and μt = μ̃t + μ̂t provides the Lebesgue decomposition for t ∈ (0, 1),
viz. μa

t = μ̃t and μ⊥t = μ̂t .

Proof. Let us decompose �s in the disjoint union of two Borel sets A, B such that
μa

s = μs A and μ⊥s = μs B with Ld(B) = 0. By Theorem 5.4 we clearly have
μt = μ̃t + μ̂t . On the one hand, μ̃t 	 Ld by Corollary 5.5 for all t ∈ (0, 1). On
the other hand, for all t ∈ [0, 1] the measure μ̂t is concentrated on the set T s→t (B)
which is Ld -negligible, since T s→t is Lipschitz. If follows that μ̂t ⊥ Ld , so that
μ̂t = μa

t and μ̂t = μ⊥t for all t ∈ (0, 1).
The fact that (μa

t ) and (μ
⊥
t ) are geodesics follows by Theorem 5.4 as well. !"

5.2. Convexity of the Lebesgue Density Along HK-Geodesics

In this subsection, we consider geodesics (μt )t∈[0,1] such that μs 	 Ld for
some, and thus for all, s ∈ (0, 1). We fix s and introduce the functions αs, δs as in
(5.6b) and the functions

γs(t, x) := α1/2s (t, x) = qs→t (x),

ρs(t, x) := α1/2s (t, x)δ1/ds (t, x) = qs→t (x)
(
det DT s→t (x)

)1/d
}

for x ∈ Ds .

(5.11)

We now exploit the explicit differential relations for γs(t, x) = qs→t (x) and
δs(t, x) = det DT s→t (x) provided in Theorem 4.8 and derive lower estimates for
γ̈s and ρ̈s . It remains unclear whether the given choice for γs and ρs is the only pos-
sible, however it turns out that for these variables the following curvature estimates
are relatively simple and hence the final convexity calculus goes through. For com-
parison,wemention that in theKantorovich–Wasserstein casewe have γKW(t) ≡ 1
and ρKW(t) =

(
δKW(t)

)1/d with δKW(t) = det((1−t)I+tDTKW(x)), such that
ρ̈KW(t) � 0 since DTKW(x) is diagonalizable with nonnegative real eigenvalues,
see [2, Eqn. (9.3.12)].

Proposition 5.7. (Curvature estimates for (ρ, γ )) Let (ρs, γs) : (0, 1) × Ds →
[0,∞[2 be defined as above along a geodesic. Then, we have for all, t ∈ (0, 1),
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the relations

γ̈s(t, x)

γs(t, x)
� 0 and

⎧⎪⎨
⎪⎩

ρ̈s(t)

ρs(t)
�
(
1− 4

d

) γ̈s(t)

γs(t)
for d � 2,

ρ̈s(t)

ρs(t)
=
(
1− 4

d

) γ̈s(t)

γs(t)
for d = 1.

(5.12)

Proof. As s ∈ (0, 1) and x ∈ Ds are fixed, we will simply write ρ(t) instead of
ρs(t, x), and do similarly for the other variables. Using the specific definition of ρ
we obtain

ρ̈

ρ
= γ̈
γ
+ 2

d

γ̇

γ

δ̇

δ
+ 1

d

δ̈

δ
+ 1

d

(
1

d
− 1

)(
δ̇

δ

)2

.

We can now use the formulas provided in (4.62a)–(4.62d) giving γ̇ = 2ξtγ and
γ̈ = |∇ξt |2γ , where ξt and its derivatives are evaluated at y = T s→t (x). Inserting
this and (4.62d) for δ̇ and δ̈ into the above relation for δ̈/δ we observe significant
cancellations and obtain

γ̈

γ
= |∇ξt |2 and

ρ̈

ρ
= 1

d2

(
(�ξt )

2−d|D2ξt |2
)+ (1− 4

d

)|∇ξt |2. (5.13)

For d = 1 we have D2ξ = �ξ , while for d � 2 all matrices A ∈ R
d×d satisfy

d|A|2 = d
∑d

i, j=1 A2
i j � (tr A)2 = (∑d

1 Aii
)2. Thus, the curvature estimates

(5.12) follow. !"
The above curvature estimates will be crucial in Section7 for deriving our main

result on geodesic convexity. We remark that for d � 2 they are even slightly better
that the “sufficient curvature estimates” given in (7.3) because of 1−4/d � 1−4/d2

(with equality only for d = 1).
We finally derive a useful result concerning the convexity of the density t �→

c(t, x) along geodesics. This provides a direct proof of the fact, which was used
in [13] that the L∞-norm along geodesics is bounded by the L∞-norm of the two
endpoints. Indeed, we show more, namely that the function t �→ c(t, T t (x)) is
either trivially constant or it is strictly convex.

Theorem 5.8. (Convexity of densities along geodesics)
(1)Under the assumption of Corollary 5.5, for every s ∈ (0, 1) and x ∈ Ds∪�±

the function cs(t) = c(t, T s→t (x)) given by (5.6a) or (5.7), respectively, is convex
and positive in (0, 1); moreover, with a possibleLd-negligible exception, it is either
constant or strictly convex.

(2) If moreoverμ0 	 Ld (resp.μ1 	 Ld) then forμs -a.e. x their limit as t ↓ 0
(resp.as t ↑ 1) coincides with c0 ◦ T s→0 (resp. c1 ◦ T s→1).

Proof. Assertion (1). Since x ∈ R
d and s ∈ (0, 1) play no role, we drop them

for notational simplicity. We simply calculate the second derivative of the function
t �→ c(t) = γ (t)d+2cs/ρ(t)d . If cs = c(s, x) = 0 then c(t, T s→t (x)) = 0 and the
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result is obviously true. Hence, we may assume cs > 0 and obtain after an explicit
calculation

c̈ = c
(
(d+2) γ̈

γ
− d

ρ̈

ρ
+ (d+1)(d+2)( γ̇

γ

)2 − 2d(d+2) γ̇
γ

ρ̇

ρ
+ d(d+1)( ρ̇

ρ

)2)
.

(5.14)

The quadratic form involving the first derivatives is positive definite, and for the
terms involving the second derivatives we can use the curvature estimates in (5.12)
to obtain

c̈ � c
((
(d+2) γ̈

γ
− d

(
1− 4

d

) γ̈
γ
+ 0

)
= 6 c

γ̈

γ
.

Notice that t �→ γ (t) is the square root of the non-negative (and strictly positive
in (0, 1)) quadratic polynomial α(·, x) given by (5.6b), so that γ ′′ � 0 and we
conclude that c̈(t) � 0 as well due to c(t) > 0.

Moreover, if x $∈ �0
s then |∇ξs(x)| > 0, have γ̈ (t) > 0, and we deduce that

c̈(t) > 0 obtaining the strict convexity of c.
If x ∈ �0

s where ∇ξs(x) = 0, we can use the representation (5.7) for c up to a
Ld -negligible set.
Assertion (2). If μ0 = c0Ld 	 Ld , then δs(0, x) > 0 for μs-a.a. x ∈ Ds thanks
to the last statement of Corollary 3.5 (which is a direct consequence of Theo-
rem 3.3(5)) and both δs(0, x) and αs(0, x) coincides with their limit as t ↓ 0. A
further application ofCorollary 5.5(3) yields the result. The case t = 1 is completely
analogous. !"

The above result easily provides the following statement on convexity of L∞
norms along HK-geodesics. This can be generalized to a corresponding result for
the Kantorovich–Wasserstein geodesics (which might been known, but the authors
were not able to identify a reference, see the Remark 5.10 below):

Corollary 5.9. (Convexity of the L∞ norm along geodesics) Letμ0, μ1 ∈M(Rd)

be absolutely continuous with respect to Ld with densities ci ∈ L∞(Rd) and let
(μt )t∈[0,1] be a HK geodesic connecting μ0 to μ1. Then μt = ctL

d and ‖ct‖L∞ �
(1−t)‖c0‖L∞ + t‖c1‖L∞ .

Proof. The result for (M(Rd),HK) follows directly from Theorem 5.8. !"
Remark 5.10. Let (μW

t )t∈[0,1] be theKantorovich–Wasserstein geodesic connection
between two probability measures μ0, μ1 ∈ P2(R

d) with μi = ciL
d and c0, c1 ∈

L∞(Rd). Similar to the previous result, μW
t = cWt Ld is absolutely continuous

w.r.t. Ld and ‖cWt ‖L∞ � (1−t)‖cW0 ‖L∞ + t‖cW1 ‖L∞ .
In fact, for (P2(R

d),W2) we replace (5.6) by the simpler formula for the
Kantorovich–Wasserstein transport

cW(t, T s→t (x)) = cWs (x)

δs(t, x)
with δs(x) = det TW

s→t (x);
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see [2, Prop. 9.3.9]. Using μ0 = c0Ld we can choose s = 0 and have TW
0→t (x) =

x + t (∇ϕ(x)−x) for a convex Kantorovich potential. Since for every symmetric
positive semidefinite matrix D the function t �→ 1/ det

(
(1−t)I + t D

)
is convex,

the desired result follows with the same arguments as for Theorem 5.8.

6. Preliminary Discussion of the Convexity Conditions

In this section, we discuss the equivalence of two formulations of the convexity
conditions and give a few examples. The proof of sufficiency and necessity of these
conditions is then given in the following Section7.

For most parts of this section, we assume that E : [0,∞[ → R ∪ {∞} is
lower semi-continuous and convex, satisfies E(0) = 0, and is twice continuously
differentiable on the interior of its domain D(E) := { c � 0 | E(c) < ∞}. The
following result gives a characterization of the conditions (1.25) on NE : (ρ, γ ) �→
(ρ/γ )d E(γ d+2/ρd) in terms of the derivatives of E , namely ε j (c) = c j E ( j)(c)
for j = 0, 1, and 2, which appear in

B(c) :=
(
ε2(c)− d−1

d

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c)− 1

2

(
ε1(c)−ε0(c)

)
ε2(c)+ 1

2ε1(c)

)
. (6.1)

This characterization will then be used to derive a nontrivial monotonicity result in
Proposition 6.2, which is a crucial building block of the main geodesic convexity
result.

Note that the variables ρ and γ are related to the variable c via c = c0γ d+2/ρd .

Proposition 6.1. (Equivalent conditions on E) Let NE andB be defined in terms of
E as in (1.25a) and (6.1), respectively. Then the following conditions are equivalent:

(A) NE satisfies (1.25);
(B) in the interior of the domain D(E)we haveB(c) � 0and (d−1)(ε1(c)−ε0(c)) �

0.

Proof. We first observe that the desired monotonicity of ρ �→ NE (ρ, γ ) for d � 2
is indeed equivalent to the condition ε1(c) � ε0(c). This follows easily from the
relation

∂ρNE (ρ, γ ) = dρd−1

γ d
E
(γ d+2

ρd

)+ ρd

γ d
E ′
(γ d+2

ρd

)(−d
γ d+2

ρd+1
)

= dρd−1

γ d

(
ε0(c)− ε1(c)

)
.

It remains to establish the equivalence between the convexity of NE and the
positive semi-definiteness ofB. For this we note that NE is given as a linear function
of E , hence the Hessian D2NE will be a given as a linear combination of E , E ′,
and E ′′. Indeed, an explicit calculation yields

D2NE (ρ, γ ) = ρ
d

γ d

(
d/ρ −d/γ
0 −2/γ

)&
B
(γ d+2

ρd

) (d/ρ −d/γ
0 −2/γ

)
.



Arch. Rational Mech. Anal. (2023) 247:112 Page 59 of 73 112

With this, we see that D2NE is positive semidefinite if and only if B is. Hence, the
assertion is proved. !"

From the semi-definiteness of the matrix B(c), we obtain as necessary condi-
tions the non-negativity of the two diagonal elements which provide the McCann
condition B11 = ε2 − d−1

d (ε1− ε0) � 0 and the convexity conditions with respect
to the Hellinger–Kakutani distance B22 = ε2+ 1

2ε1 � 0. Moreover, testing B with
(1,−1)& reveals the additional condition(

1

−1
)
· B(c)

(
1

−1
)

� 0 ⇐⇒ (d+2)ε1(c)− 2ε0(c) � 0. (6.2)

Proposition 6.2. (New necessary monotonicity) Let E be such that the conditions
in Proposition 6.1 hold and let NE be defined via (1.25a). Then, the following three
equivalent conditions hold:

(A) The function ]0,∞[ % c �→ c−2/(d+2)E(c) is non-decreasing.
(B) For allρ, γ > 0we have the inequality

(
1− 4

d2

)
ρ∂ρNE (ρ, γ )+γ ∂γ NE (ρ, γ ) �

0.
(C) For all ρ, γ > 0 the mapping ]0,∞[ % s �→ NE (s1−4/d

2
ρ, sγ ) is non-

decreasing.

Proof. Expressing ∂ρNE and ∂γ NE via ε0 and ε1 and using δ = (ρ/γ )d we obtain

ρ∂ρNE (ρ, γ ) = −dδ(ε1−ε0) and γ ∂γ NE (ρ, γ ) = δ
(
(d+2)ε1 − dε0

)
.

Thus, we conclude (1− 4
d2 )ρ∂ρNE (ρ, γ )+γ ∂γ NE (ρ, γ ) = 2δ

d

(
(d+2)ε1−2ε0

)
,

which is positive because of (6.2). Thus, (B) is established and the monotonicity
of s �→ NE (s1−4/d

2
ρ, sγ ) in (C) follows simply by differentiation.

Statement (A) follows by applying (C) for ρ = γ = 1 and choosing s =
c2(d+2)/d . !"

The crucial monotonicity stated at the end of the above proposition means

0 � c1 < c2 '⇒ E(c1) �
(c1

c2

)2/(d+2)
E(c2). (6.3)

It implies that if E attains a negative value it cannot be differentiable at c = 0: If
E(c1) < 0 then E(c) � (c/c1)2/(d+2)E(c1) < 0, which leads to E ′(c)↘ −∞ for
c ↘ 0.

In the next examples we investigate which functions E satisfy the above con-
ditions. The following two results will be used in Corollary 7.3 to obtain geodesic
convexity for functionals of the form E(c) = ∫

�
acr dx . The third example shows

that in case of the Boltzmann entropy with E(c) = c log c the conditions do not
hold and hence geodesic convexity fails.

Example 6.3. (Density function E(c) = cm) We have ε0(c) = cm , ε1(c) = mcm ,
and ε2(c) = m(m−1)cm , which gives the matrix

B(c) = cm

(
(m−1)(m − d−1

d

)
(m−1)(m − 1

2

)
(m−1)(m − 1

2

)
m
(
m − 1

2

)
)
.



112 Page 60 of 73 Arch. Rational Mech. Anal. (2023) 247:112

The Hellinger condition B22(c) � 0 holds for m $∈ ]0, 12 [, while the McCann con-
dition B11(c) � 0 holds for m $∈ ] d−1d , 1[. Moreover, for d � 2 the monotonicity
condition ε1 � ε0 implies m � 1.

Thus, the remaining cases are either m � 1 or d = 1 and m � 0, and it remains
to check detB(c) � 0. An explicit calculation gives

detB(c) = (m−1)
(

m − 1

2

)
(d+2)m − d

2d
.

Clearly, form � 1we have detB(c) � 0 for all space dimensions d ∈ N.Moreover,
detB(c) < 0 for m � 0.

In summary, we obtain geodesic convexity if and only if m � 1.

Example 6.4. (Density function E(c) = −cq ) As in the previous example we have

B(c) = cq

(
(1−q)

(
q − d−1

d

)
(1−q)

(
q − 1

2

)
(1−q)

(
q − 1

2

)
q
( 1
2 − q

)
)
.

The Hellinger condition B22(c) � 0 holds for q ∈ [0, 12 ], while the McCann
condition B11(c) � 0 holds for q ∈ [ d−1d , 1], which also implies the monotonicity
ε1 � ε0. With

detB(c) = (1−q)
(1
2
− q

) (d+2)q − d

2d
c2q .

we obtain the additional condition q � d/(d+2) and summarize that E(c) = −cq

leads to a geodesically convex functional if and only if q ∈ [max{ d−1d , d
d+2 }, 12

]
,

which has solutions only for d = 1 and d = 2.

Example 6.5. (Boltzmann entropy) As a negative example where the geodesic
convexity fails, we consider the Boltzmann function E(c) = c log c. We compute
B22(c) = ε2(c)+ 1

2ε1(c) = 3
2c+ 1

2c log c, which shows that the necessaryHellinger
condition fails. Moreover, considering the measures μ0 = 0 and μ1 = cLd for a
non-negative density c ∈ L1(�) we find that along the geodesic curve, given by
μ(s) = s2μ1, we have

E (μ(s)) =
∫
�

E(s2c)dx = s2E (μ1)+ 2s2 log(s)
∫
�

cdx,

which is clearly not convex if
∫
�

cdx = μ1(�) > 0.

Finally, we discuss a few examples where the density function E is not smooth.
Note that the conditions in (1.25) form a closed cone. Moreover, as for convex
functions, the supremum E : c �→ sup{ Ẽα(c) |α ∈ A } satisfies (1.25) if all Ẽα do
so.
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Example 6.6. (Nonsmooth E) In applications one is also interested in cases where
E is nonsmooth. For example the case Eκ(c) = κc for c ∈ [0, c∗] and E(c) = ∞
for c > c∗ is considered in [13]. Clearly, E0 satisfies our assumptions (1.25) since
NE only takes the values 0 and ∞ and the value 0 is taken on the convex set
γ d+2 � c∗ρd . Thus, Eκ generates a functional Eκ = E0+κM that is geodesically
2κ-convex.

A second example is given by E(c) = max{0, c2 − c}. We first observe that
Ẽ1(c) = c and Ẽ2(c) = c2 satisfy (1.25). Hence, c �→ max{Ẽ1(c), Ẽ2(c)} =
E(c) + c satisfies (1.25) as well. Thus, we know that E generates a functional E
that is at least geodesically (−2)-convex. However, we may inspect the function
c �→ c2 − c in the region c � 1 directly and find that E itself satisfies (1.25).

In practical applications, in particular for evolutionary variational inequalities
as treated in [23], it is desirable to find the optimal λ for the geodesic λ-convexity.
So far, we have treated the case of geodesic 0-convexity and now return to the
general case, which leads to the conditions

B(c) �
(
0 0
0 λc/2

)
and (d−1)(ε1(c)− ε0(c)) � 0.

Themonotonicity condition is clearly independent ofλ. The first equation still relies
on the necessary McCann condition B11(c) � 0. If this holds with strict inequality
we see that the optimal λ is characterized by

λopt = inf
{ 2 detB(c)

cB11(c)

∣∣∣ c > 0
}
. (6.4)

Example 6.7. (d = 1 and E(c) = c2−c2/5) From the previous examples, we know
that E2(c) = c2 and E2/5(c) = −c2/5 are both geodesically 0-convex, and we
want to show that the sum is geodesically λ-convex for λ > 0. As B is linear in
E we have B(c) = c2B(2) + c2/5B(2/5) with constant matrices B(2) and B(2/5) that
are both strictly positive definite. Thus,

�(c) := 2 detB(c)

cB11(c)
> 0 for all c > 0.

Moreover,wefind �(c) ∼ 2c−3/5 detB(2/5)/B(2/5)11 for c ≈ 0 and �(c) ∼ 2c detB(2)

/B
(2)
11 for c * 1. Thus, by compactness λopt = inf

{
�(c)

∣∣ c > 0
}
is strictly

positive.
Numerically, we find λopt ≈ 0.638 which is attained at c∗ ≈ 0.0319.

Remark 6.8. (Geodesic convexity via the Otto calculus) Following the key ideas
in [12,31] a formal calculus for reaction-diffusion systems was developed in [25].
It uses the dynamical formulation in Subsection 2.1.1 and the associated Onsager
operatorK(c)ξ = −α div(c∇ξ)+βcξ to characterize the geodesic λ-convexity of
the functional E by calculating the quadratic form M(c, ·) (contravariant Hessian
of E ):

M(c, ξ) = 〈ξ,DV(c)K(c)ξ 〉 − 1

2
Dc〈ξ,K(c)ξ 〉[V(c)] with V(c) = K(c)DE (c).
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Then, one needs to show the estimate M(c, ξ) � λ〈ξ,K(c)ξ 〉.
Following the methods in [25, Sect. 4], for c ∈ C0

c(�) and smooth ξ we obtain

M(c, ξ) =
∫
�

[
α2
((

A(c)−H(c)
)
(�ξ)2 + H(c)

∣∣D2ξ
∣∣2)

+ αβ
(

B1(c)|∇ξ |2 + B2(c)ξ�ξ
)
+ β2B3(c)ξ

2
]
dx,

where A(c) = ε2(c), H(u) = ε1(c)− ε0(c), B1(c) = 3

2
ε1(c)− ε0(c),

B2(c) = −2ε2(c)+ ε1(c)− ε0(c), B3(c) = ε2(c)+ 1

2
ε1(c).

Analyzing the condition M(c, ξ) � λ〈ξ,K(c)ξ 〉, we find the conditions

∀c � 0 : (d−1)H(c) � 0,

B1(c) � λ

β
c,

(
A(c)− d−1

d H(c) 1
2 B2(c)

1
2 B2(c) B3(c)− λ

β
c

)
� 0, (6.5)

which forλ = 0 give the same conditions asB(c) � 0, see Proposition 6.1.Note that
the middle estimate in (6.5) follows from the first and the third estimates because
of

B1(c) = 3
2ε1 − ε0 = d−1

d (ε1−ε0)+ 1
2d

(
(d+2)ε2−2ε0

)
.

7. Proof of Geodesic Convexity of E

In this section, we finally prove the necessity and sufficiency of the conditions
for geodesic convexity of functionals E onM(�) in (1.25), where we now allow for
a general closed and convex domain� ⊂ R

d . In order to keep the arguments clear,
we first restrict ourselves to absolutely continuous measures μ0 and μ1. Thus, by
Corollary 5.5 the connecting geodesic curves are also absolutely continuous, and
we can rewrite E along the latter in the form

E (μt ) =
∫
�

E(c(t, y))dy =
∫
�

e(t, x)dx, where

e(t, x) = δ(t, x)E
(

c∗(x)
α(t, x)

δ(t, x)

)
.

The general case will then be treated by using an approximation argument.
Under the assumption that E is twice differentiable in the interior of its domain,

we show that for μ0-a.a. x ∈ � the function t �→ e(t, x) is convex. Since α(·, x)
and δ(·) are analytic functions on [0, 1], we can show convexity in this case by
establishing ë(t, x) � 0. For this, we can fix x ∈ �, drop the dependence on x for
notational convenience, and set

e(t) = δ(t)E(c∗α(t)
δ(t)

) = NE
(
ρ(t), γ (t)

)
with ρ := (c∗α)1/2δ1/d ,
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γ := (c∗α)1/2, (7.1)

and NE from (1.25a). Now, the classical chain rule implies the relation

ë =
〈(ρ̇
γ̇

)
,D2NE (ρ, γ )

(
ρ̇

γ̇

)〉
+ ∂ρNE (ρ, γ )ρ̈ + ∂γ NE (ρ, γ )γ̈ . (7.2)

The aim is to show ë(t) � 0 for all t ∈ [0, 1]. By the convexity of NE it suffices to
treat the last two terms.

For this we exploit the curvature estimates (5.12) on γ̈ and ρ̈ as well as the
monotonicities in (1.25c) and Proposition 6.2.

7.1. Usage of the Curvature Estimates

We first show that it is sufficient to use the curvature estimates

γ̈

γ
� 0 and

⎧⎪⎨
⎪⎩

ρ̈

ρ
�
(
1− 4

d2

) γ̈
γ

for d � 2,

ρ̈

ρ
= (1− 4

d2

) γ̈
γ

for d = 1.
(7.3)

In particular, the equality condition for d = 1 is different from the inequality
conditions for d � 2. This will be used to compensate for the missing monotonicity
of NE in (1.25c) in the case d = 1.

Below we will see that the curvature estimates (7.3) are necessary to complete
our proof. Note that they are implied by the curvature estimates derived in Propo-
sition 5.7. In fact, both coincide for d = 1, while for d � 2 the former are strictly
weaker as the latter because of 1− 4/d < 1− 4/d2.

Proposition 7.1. (ë � 0 via curvature estimates) Assume that NE satisfies (1.25)
and that t �→ (ρ(t), γ (t)) satisfies (7.3), then ë � 0 in (7.2).

Proof. As the first term (involving D2NE ) on the right-hand side of (7.2) is non-
negative, we only have to show that the last two terms have a non-negative sum.
For this we rearrange terms as follows:

∂ρNE (ρ, γ )ρ̈+∂γ NE (ρ, γ )γ̈

= (−ρ∂ρNE
)((

1− 4

d2

) γ̈
γ
− ρ̈
ρ

)
+
(
γ ∂γ NE+

(
1− 4

d2

)
ρ∂ρNE

) γ̈
γ
.

The right-hand side is the sum of two products, both of which are non-negative.
Indeed, the first product equals 0 in the case d = 1 independently of the sign of
∂ρNE , because the second factor is 0. In the case d � 2 both factors are non-
negative (using ∂ρNE � 0 and the second curvature estimate in (7.3)), so the first
product is non-negative again.

In the second product both terms are non-negative by Proposition 6.2(B) and
the first curvature estimate in (7.3). Thus, ë � 0 in (7.2) is proved. !"
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7.2. The Main Results on Geodesic λ-Convexity

We are now ready to establish our main result on the geodesic convexity of
functionals E given in terms of a density E . We nowmake our general assumptions
of E precise.

E : [0,∞[ → R ∪ {∞} is lower semi-continuous, convex,

E(0) = 0, and there exists c◦ > 0 such that E(c◦) <∞. (7.4a)

We also want to include the case that E is not necessarily superlinear, so we intro-
duce the recession constant

E ′∞ := lim
c→∞

1

c
E(c) ∈ R ∪ {∞}.

The case E ′∞ = ∞ is the superlinear case where the functional E (μ) is always
+∞, if μ has a singular part, i.e. μ⊥ $= 0 in the decomposition μ = cLd + μ⊥
with μ⊥ ⊥ Ld .

We introduce a closed (convex) domain � ⊂ R
d , and we consider the set of

measuresμwith support contained in�, which we identify withM(�). In the case

that the right derivative E ′0 := lim
c↓0

1

c
E(c) of E at 0 is not finite, we further have to

impose that � has finite Lebesgue measure. Therefore, we will assume that

� is a closed convex set with nonempty interior and

� is also bounded, i.e. Ld(�) <∞, i f E ′0 = −∞.
(7.4b)

Thus, the functionals E are defined as follows:

E (μ) =
∫
�

E(c(x))dx + E ′∞μ⊥(�) for μ = cLd+μ⊥ with μ⊥ ⊥ Ld . (7.5)

It is well known that (7.4) guarantees that E is a weakly lower semi-continuous
functional on M(�). In particular, condition (7.4b) is necessary to guarantee that
the negative part x �→ min{E(c(x)), 0} is integrable, because for c ∈ L1(�) the
functions x �→ −√c(x) may not lie in L1(�). We refer to Example 7.4 for a case
where (7.4b) can be avoided by using a confining potential.

We are now in the position to formulate our main result on the geodesic λ-
convexity of integral functionalsE on theHellinger–Kantorovich space (M(�),HK).
The proof consists of three steps. First, we assume that E is twice continuously
differentiable in its domain. Restricting to geodesic curves connecting absolutely
continuous measures, we can use the above differentiable theory giving ë � 0.
In Step 2, we generalize to possibly non-differentiable density functions E , but
keep absolutely continuous measures. For smoothing a given E , we use that when-
ever E solves the conditions (1.25) and (7.4) then c �→ E(rc) does so for each
r ∈ [0, 1]. With a multiplicative convolution we construct a smooth Eδ to which
Step 1 applies. Finally, Step 3 handles the case where μ⊥0 or μ⊥1 are non-zero by a
standard approximation argument of general measures using absolutely continuous
measures.
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Theorem 7.2. (Geodesic convexity of E ) Assume that E : [0,∞[ → R ∪ {∞}
and � ⊂ R

d satisfy (7.4a) and (7.4b), respectively. If for a λ∗ ∈ R the function

Nλ∗,E (ρ, γ ) :=
(ρ
γ

)d
E
(γ d+2

ρd

)
− λ∗

2
γ 2, for ρ, γ > 0,

satisfies the conditions (1.25b) and (1.25c), then the functional E defined in (7.5)
is geodesically λ∗-convex on (M(�),HK).

Proof. Without loss of generality, we set λ∗ = 0 throughout the proof and shortly
write NE = Nλ∗,E .

Step 1: The smooth and absolutely-continuous case. We first assume that E is
twice continuously differentiable in the interior ]0, cE [ of its domain and that the
measures μ0 and μ1 are absolutely continuous with respect to Ld , i.e. μ j = c jL

d

for c j ∈ L1(�).
We fix s ∈ (0, 1) adopting the notation of Corollary 5.5. Then, the geodesic

curve t �→ μt = c(t, ·)Ld satisfies

E (μt ) =
∫
�

E(c(t, y))dy =
∫
�

E
(
cs(x)

αs(t, x)

δs(t, x)

)
δs(t, x)dx =

∫
�

e(t, x)dx

with e(t, x) = NE (ρ(t, x), γ (t, x)) as above. We want to show that for a.a. x ∈ �
the function t �→ e(t, x) is convex.

As shown inTheorem5.8 the functions t �→ c̃(t, x) = c0(x)
α(t,x)
δ(t,x) = γ (t, x)d+2

/ρ(t, x)d are either constant or strictly convex. If the function c̃(·, x) is constant
then either c0(x) = 0 or (ρ(·, x), γ (·, x)) is constant. In both cases, e(·, x) is
constant as well, and hence convex.

In the strictly convex case, the values of c̃(t, x) for t ∈ ]0, 1[ lie in the interior of
the domain of E , where E is twice differentiable. Hence, combining Propositions
7.1 and 5.7 shows that t �→ e(t, x) is convex for a.a. x ∈ �. Since integration over
� maintains convexity we conclude that t �→ E (μt ) is convex, too.

Step 2: The nonsmooth but absolutely-continuous case. We still assume μ j =
c jL

d , but now consider an E that is not necessarily twice differentiable, but
still satisfies (7.4). We choose a function χ ∈ C∞c (R) satisfying χ(r) � 0,∫ −1
−2 χ(r) dr = 1, and χ(r) = 0 for r $∈ [−2,−1]. Now for δ ∈ ]0, 1/2[ we
define the smoothings

Eδ(c) =
∫ 1

0
χδ(r)E(rc)dr, where χδ(r) = 1

δ
χ
(1
δ
(r−1)).

Hence, χδ has support in [1−2δ, 1−δ]. If the closure of the domain of E is [0, cE ],
then Eδ is well-defined and C∞ on ]0, cE/(1−δ)[. Moreover, for all c ∈ [0, cE ]
we have Eδ(c) → E(c) for δ ↘ 0. We easily check, that Eδ still satisfies the
assumption (1.25) and (7.4). Moreover, Eδ(c) can be estimated by E(c) via

∃ K > 0 ∀ δ ∈ ]0, 1/4[ ∀ c � 0 : |Eδ(c)| � K
(
c + |E(c)|). (7.6)

To see this,wefirst consider the largest interval [0, c1[onwhich E is non-increasing.
Then 0 = E(0) � Eδ(c) � E(c) which implies (7.6) with K = 1. If c1 = ∞ then
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we are done. If c1 <∞, then E starts to increase and there exists c2 ∈ [c1,∞[with
E(c) � 0 for c � c2. Using the construction of Eδ , we obtain for all c � 2c2 �
c2/(1−2δ) the lower bound Eδ(c) � 0. Using (6.3) we easily get Eδ(c) � E(c).

It remains to cover the case c ∈ [c1, 3c2]. If c1 = 0 then E(c) � 0 for all
c, which means c2 = 0 as well, then (7.6) follows immediately from the above
arguments. If c1 > 0, a uniform continuity argument gives the estimate |Eδ(c) −
E(c)| � M for c ∈ [c1, 3c2]. Then, choosing K = M/c1 provides (7.6).

With this preparation, Lebesgue’s dominated convergence theorem implies

μ = cLd with c ∈ L1(�) and E (μ) <∞
'⇒

∫
�

Eδ(c(x))dx → E (μ) as δ ↓ 0.

Taking any constant-speed geodesic [0, 1] % t �→ μt = c(t, ·)Ld , we know by
Step 1 that the curves

eδ : t �→
∫
�

Eδ(c(t, x))dx

are convex. As eδ(t)→ E (μt ) we conclude that t �→ E (μt ) is convex on [0, 1].
Step 3: Pure growth. The curve t �→ t2μ1 is the unique geodesic connecting

μ0 = 0 and μ1. Using the Lebesgue decomposition μ1 = c1Ld +μ⊥ we see that

t �→ E (μt ) = E (t2c1L
d)+ t2E ′∞μ⊥,

is convex on [0,1] by Step 2 for the first term and by E ′∞ � 0. The nonnegativity
of E ′∞ = limc→∞ E(c)/c follows from (7.4a) and Proposition 6.2(A), namely for
c � c◦ we have

1

c
E(c) = 1

cd/(d+2) c−2/(d+2)E(c)
(i)
� 1

cd/(d+2) c−2/(d+2)◦ E(c◦)→ 0 for c→∞.

Step 4: The general case allowing for singular measures. Singular measures
can only occur for E with sublinear growth. Hence, we assume E ′∞ ∈ R from
now on. In particular E is finite everywhere, and using E(c) � E ′∞c we have
E (μ) � E ′∞μ(�).

As in Corollary 5.6, we consider an arbitrary geodesic (μt )t∈[0,1] connectingμ0
and μ1. For a fixed s ∈ (0, 1), we decompose μs as μa

s +μ⊥s . Then, μt = μ̃t + μ̂t

splits into two geodesics with disjoint supports and μ̃s = μa
s and μ̂s = μ⊥s , see

Corollary 5.6. Moreover, we have μ̂t ⊥ Ld and μ̃t 	 Ld for all t ∈ (0, 1). This
implies the relation

E (μt ) = E (μ̃t )+ E (μ̂t ) = E (μ̃t )+ E ′∞μ̂t (�).

Since (μ̂t )t∈[0,1] is a geodesic and the total mass functional M (μ) = μ(�) is
convex (see (1.21)) and E ′∞ � 0, the last term t �→ E ′∞μ̂t (�) is convex. Hence, it
is sufficient to check the convexity of t �→ E (μ̃t ).
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Since μ̃t 	 Ld for all t ∈ (0, 1), the function t �→ E (μ̃t ) is convex in the open
interval (0, 1) by Step 2. Hence, to show convexity on [0, 1] it is sufficient to check
that

lim sup
t↓0

E (μ̃t ) � E (μ̃0) and lim sup
t↑1

E (μ̃t ) � E (μ̃1),

because HK convergence implies weak convergence and E is weakly l.s.c.
Let us focus on the limit t ↓ 0 as the limit t ↑ 1 is completely analogous. The

problem is that μ̃t 	 Ld for t ∈ (0, 1) only, but μ̃0 may have a singular part.
Hence, we forget the decomposition μt = μ̃t + μ̂t and use a different one. Before
that, we restrict to the case μ0(�

+) = 0 because on �+ we have pure growth and
this case is covered by Step 3.

Now, we exploit the Lebesgue decomposition of μ0 = μa
0 + μ⊥0 at t = 0

and consider two disjoint Borel sets A, B ⊂ � \ �+ such that μa
0 = μ0 A and

μ⊥0 = μ0 B. We define the corresponding disjoints sets At := T−1t→0(A) and
Bt := T−1t→0(B) as well as the measures νA

t := μt At and νB
t := μt Bt . By

Theorem 5.4, we obtain two geodesics νA
t , ν

B
t concentrated on disjoint sets giving

E (μt ) = E (νA
t )+E (νB

t ). Since ν
A
t 	 Ld for every t ∈ [0, 1)we deduce that t �→

E (νA
t ) is convex up to 0 by Step 2. Concerning E (νB

t ), we use E (μ) � E ′∞μ(�)
and find

lim sup
t↓0

E (νB
t ) � E ′∞ lim sup

t↓0
νB

t (�) = E ′∞νB
0 (�) = E (νB

0 ),

where we exploited νB
0 ⊥ Ld in the last identity.

This finishes the proof of the main theorem !"
The next result is a direct consequence of the main result by using the results

of Examples 6.3 and 6.4, respectively. In particular, this establishes the result an-
nounced in [13, Thm.2.14].

Corollary 7.3. (Power-law functionals) Assume that� ⊂ R
d and E : [0,∞[ → R

satisfy (7.4) and let E be defined via (7.5).

(1) If E(c) = cm with m � 1, then E is geodesically convex on (M(�),HK).
(2) If Ld(�) < ∞, d ∈ {1, 2}, and E(c) = −cq with d/(d+2) � q � 1/2, then

E is geodesically convex on (M(�),HK).

Example 7.4. Wehave seen above that the density E(c) = −√c produces ageodesi-
cally convex functional in dimensions d = 1 and 2, if Ld(�) <∞. The restriction
of finite volume for� can be dropped by using a confining potential V as follows:
let

E1/2,V (μ) =
∫
Rd

(−√c(x)
)
dx +

∫
Rd

V dμ for μ = cLd + μ⊥,

where V ∈ C(Rd) satisfies for m > d and A ∈ R the lower bound V (x) �
a0|x |m − A on R

d . Then it is easy to see that E1/2,V is well-defined and weakly
lower semi-continuous.
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Moreover, in [26, Prop. 20] it was shown for a continuous V : Rd → R with
inf V > −∞ that the linear mapping μ �→ ∫

Rd V dμ is geodesically λV -convex
on (M(�),HK) if and only if the mapping Ṽ : [x, r ] �→ r2V (x) is geodesically
λV -convex on the metric cone space (C,dC). For smooth V , this amounts to the
estimate

(∇2V (x)+ 2V (x)Id ∇V (x)
∇V (x)& 2V (x)

)
� λV Id+1.

Thus, for V satisfying both of the above assumptions, the functional E1/2,V is
geodesically λV -convex on (M(R2),HK) for d ∈ {1, 2}. For d = 1 we may choose
V (x) = α + β|x |2 with β > 0 and obtain λV = 2α.

7.3. Necessity of the Conditions on E

Theorem 7.2 states that the conditions (1.25) and (7.4) on the density E :
[0,∞) → (−∞,+∞] are sufficient for the geodesic convexity of the integral
functional E . We finally show that the conditions are also sufficient. To simplify
the analysis we restrict ourselves to the smooth case where E : dom(E) → R

lies in C2. Thus, we can obtain conditions by differentiation along suitably chosen
geodesic curves. For this, the characteristic equations (4.62) derived in Theorem 4.8
will be the main tool.

Theorem 7.5. (Necessity of conditions on E) Consider a closed, convex domain
� ⊂ R

d with nonempty interior and a density function E : [0,∞)→ (−∞,+∞]
such that (7.4) holds and that E is C2 on the interior of its domain. If the induced
functional E : M(�) → (−∞,+∞] defined in (7.5) is geodesically convex on
(M(�),HK), then E satisfies the conditions (1.25).

Proof. We first observe that it is sufficient to show that for (ρ∗, γ∗) with c∗ =
γ 2+d∗ /ρd∗ ∈ int(dom(E)) we have the inequalities

D2NE (ρ∗, γ∗) � 0 and (d−1)∂ρNE (ρ∗, γ∗) � 0. (7.7)

By the scaling properties of NE (ρ, γ ) = (ρ/γ )d E(γ 2+d/ρd) it is sufficient to
look at the case (ρ∗, γ∗) = (c1/2∗ , c1/2∗ ).

Themain idea is to construct suitable geodesic curvesμt such that the convexity
of t �→ E (μt ) gives the desired inequality. For this we choose a point x∗ ∈ int(�)
and r∗ > 0 such that B3r∗(x∗) ⊂ �. Without loss of generality we assume x∗ = 0
and write Br in place of Br (x∗) for r ∈ (0, 3r∗].

We further choose an s ∈ (0, 1) and a smooth function ξs ∈ C3(B3r∗). Then,
there exists an ε > 0 such that there is a unique smooth solution ξ : (s−ε, s+ε)×
B2r∗ → R of the Hamilton–Jacobi equation (2.4). With this ξt = ξ(t, ·) and
r ∈ (0, r∗) we can construct a geodesic curve

(s−ε, s+ε) % t �→ μ
(r)
t with μ(r)s = c∗Ld Br and sppt(μ(r)t ) ⊂ B2r∗
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of absolutely continuous measures μt = c(r)(t, ·)Ld , see (5.6a) in Corollary 5.5.
If necessary ε needs to be reduced to avoid mass flowing outside B2r∗ . For this
geodesic we have

E (μ(r)t ) =
∫
�

E(c(r)(t, y))dy =
∫

Br

e(t, x)dx with e(t, x) = NE (ρ(t, x), γ (t, x)),

where γ (t, x) = c1/2∗ qs→t (x) and ρ(t, x) = c1/2∗ qs→t (x)
(
δs→t (x)

)
1/d with q and

δ from (4.62). Note that q, δ, and e do not depend on r , cf. Theorem 5.4.
By the smoothness of ξ , and hence of ρ and γ , we may pass to the limit r ↓ 0 in

the convex functions t �→ 1
Ld (Br )

E (μ(r)t ) = 1
Ld (Br )

∫
Br

e(t, x)dx . Thus, the limit

t �→ e(t, 0) = NE (ρ(t, 0), γ (t, 0)) is convex on (s−ε, s+ε).
In particular, the second derivative is non-negative which means that

0 � ë(s, 0) = D2NE (c
1/2∗ , c1/2∗ )

[(ρ̇
γ̇

)
,

(
ρ̇

γ̇

)]

+∂ρNE (c
1/2∗ , c1/2∗ )ρ̈ + ∂γ NE (c

1/2∗ , c1/2∗ )γ̈ ,

where now ρ̇ = ∂tρ(s, 0), γ̇ , ρ̈, and γ̈ are given by (4.62) and (5.13) in terms of ξ
only:

ρ̇

c1/2∗
= 2ξs+�ξ2, γ̇

c1/2∗
= 2ξs,

ρ̈

c1/2∗
= (�ξs)

2−d|D2ξs |2
d2 + d−4

d
|∇ξs |2,

γ̈

c1/2∗
= |∇ξs |2.

there ξs and its derivatives are evaluated at x = x∗ = 0.
To obtain the convexity of NE we can now choose the functions ξs such that

ρ̈ = γ̈ = 0, which is the case for ξs(x) = α + β|x |2, which implies ∇ξs(0) = 0,
�ξs(0) = 2dβ, and |D2ξs |2 = dβ2. Moreover, ρ̇ and γ̇ can be chosen arbitrarily
by adjusting α, β ∈ R. Thus, D2N � 0 is established.

To prove the second estimate in (7.7) we may assume d � 2, as there is nothing
to show for d = 1. Choosing the function ξs = α(x21−x22 )we obtain ρ̇ = γ̇ = γ̈ =
0 and ρ̈ = −8c1/2∗ α2/d. This implies ∂ρNE � 0 and the theorem is established.
!"

7.4. A More Direct Sufficiency Proof for 2 � d � 4

The above proof of Theorem 7.2 strongly relies on differentiating e(t, x) =
NE (ρ(t, x), γ (t, x)) with respect to t . In the case 2 � d � 4, this can be avoided
since we have the curvature estimates

(a) t �→ γ (t, x) is convex and (b) t �→ ρ(t, x) is concave, (7.8)

where we used d � 4 in (5.12) for (b). With (a) and (b), we can further exploit
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(i) the convexity of NE ,
(ii) the monotonicity of ρ �→ NE (ρ, γ ) (non-increasing, cf. (1.25c) for d � 2),

and
(iii) the monotonicity of s �→ NE (s1−4/d

2
ρ, sγ ) (non-decreasing, cf. Proposition

6.2).

Choosing t0, t1, θ ∈ [0, 1] with t0 < t1, we set tθ := (1−θ)t0 + θ t1 and have to
show

NE (ρ(tθ ), γ (tθ )) � (1−θ)NE (ρ(t0), γ (t0))+ θNE (ρ(t1), γ (t1)). (7.9)

We start with the right-hand side and use convexity (i) first:

(1−θ)NE (ρ(t0), γ (t0))+ θNE (ρ(t1), γ (t1))
(i)
� NE

(
(1−θ)ρ(t0)+θρ(t1), (1−θ)γ (t0)+θγ (t1)

)
.

With the convexity (a) of γ we have s := γ (tθ )/
[
(1−θ)γ (t0)+θγ (t1)

] ∈ [0, 1]
and continue

NE
(
(1−θ)ρ(t0)+θρ(t1), (1−θ)γ (t0)+θγ (t1)

)
(iii)
� NE

(
s1−4/d2[

(1−θ)ρ(t0)+θρ(t1)
]
, s
[
(1−θ)γ (t0)+θγ (t1)

])
= NE

(
s1−4/d2[

(1−θ)ρ(t0)+θρ(t1)
]
, γ (tθ )

)
.

Using the monotonicity (ii) (for d � 2) we can increase the first argument using
s1−4/d2 � 1 (because of s ∈ [0, 1] and d � 4) and then exploit the concavity in
(b) of ρ (i.e. ρ(tθ ) � (1−θ)ρ(t0)+θρ(t1)) giving

NE
(
s1−4/d2[

(1−θ)ρ(t0)+θρ(t1)
]
, γ (tθ )

) (ii), (a+b)
� NE (ρ(tθ ), γ (tθ )).

Thus, we have proved the desired convexity (7.9) for the case d ∈ {2, 3, 4}.
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