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Abstract

This thesis investigates overreacting beliefs in Finance and Economics. Chapter 1 inves-

tigates overreaction to news in the term structure of interest rates. We find evidence

of overreaction whose intensity is increasing with maturity, causing excess volatility of

long term interest rates. We incorporate non rational beliefs into an otherwise standard

asset pricing model and we show that it captures excess volatility of asset prices as well

as forecast errors predictability. The second Chapter investigates the consequences of

over-reacting beliefs when agents interact, via the observation of past actions of others.

Even though individually overreaction entails a loss (in the MSE sense), at the aggregate

level it injects more private information into the economy, thereby increasing stability

and avoiding informational cascades. The third Chapter investigates the foundations of

overreaction to information in a constrained Bayesian updating framework. We show that

a bound on the surprise an agent can experience from the data implies an overweighting

of current information and ultimately overreaction to information.
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Introduction

This thesis consists of three chapters. Each of them is a self-contained paper.

• Increasing Overreaction and Excess Volatility of Long Rates;

Abstract Giglio and Kelly (2018) find that the volatility of long-term rates is too

large relative to that of short-term rates for a large class of rational expectations

models. I assess the possibility that such excess volatility may come from investor

beliefs. I use survey data on analyst expectations and data on market beliefs re-

covered from observed yields using the methodology of Ross (2015). I obtain three

main findings. First, the two datasets reveal a remarkably similar pattern of horizon

dependent departures from rationality: expectations about long rates over-react rel-

ative to expectations about short rates. Second, a model of diagnostic expectations

rationalizes this horizon dependent belief distortions and generates excess volatility

of long term rates. Third, when calibrated to the data, this model accounts from

roughly 80% of the excess volatility puzzle for a reasonable value of the diagnosticity

parameter.

• Learning, Overreaction and the Wisdom of the Crowd joint with M. Bizzarri;

Abstract We study the classical sequential social learning problem in a setting

where agents depart from the standard Bayesian updating rule. We consider the

case of over-reacting - as well under-reacting - individual posterior beliefs, two well

known biases in beliefs updating (Benjamin, 2019). Agent posterior beliefs over-
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react (or under-react) to the current information according to how much it is sur-

prising relative to past information. We study the interplay of distorted posterior

beliefs and social learning. We find that in a context with fine grained signals the

biases do not impact on the eventual learning, while in a context with coarse signals,

such as in the cascades setting of Banerjee (1992), over-reaction can make it easier

for agents to learn, because past actions of others become more informative, hence

a moderate level of over-reaction is socially optimal.

• Bounded surprise and overreaction to news joint with N. Gennaioli.

Abstract We study the mechanism of over-reaction to news as an optimal Bayesian

assessment, subject to a cognitive constraint. First, we reinterpret the Bayesian up-

dating in information theoretic terms: we show that the Bayesian updating is an

optimal trade-off between a cost of moving beliefs and an effort to accurately de-

scribe the world. Second, we show that a Bayesian agent with an upper bound on

the surprise (e.g. a lower bound on accuracy) she can perceive from data, naturally

exhibits over-reaction to news. Furthermore, the departures from the Bayesian up-

dating rule is driven by the representativeness heuristics: the constrained Bayesian

agent exaggerates the true likelihood of those models which better fit the data. Fi-

nally, we consider a noisy signal extension of the model and compare it with rational

inattention and robust inference settings.

The following paper is not included as a chapter in the present manuscript.

• Lost in diversification joint with M.Bardoscia, M. Marsili and V.Volpati (published

at Comptes Rendus Physique)

Abstract. As financial instruments grow in complexity more and more information

is neglected by risk optimization practices. This brings down a curtain of opacity
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on the origination of risk, that has been one of the main culprits in the 2007-2008

global financial crisis. We discuss how the loss of transparency may be quantified

in bits, using information theoretic concepts. We find that i) financial transforma-

tions imply large information losses, ii) portfolios are more information sensitive

than individual stocks only if fundamental analysis is sufficiently informative on the

co-movement of assets, that iii) securitisation, in the relevant range of parameters,

yields assets that are less information sensitive than the original stocks and that

iv) when diversification (or securitisation) is at its best (i.e. when assets are un-

correlated) information losses are maximal. We also address the issue of whether

pricing schemes can be introduced to deal with information losses. This is rele-

vant for the transmission of incentives to gather information on the risk origination

side. Within a simple mean variance scheme, we find that market incentives are not

generally sufficient to make information harvesting sustainable.
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Chapter 1

Increasing Overreaction and Excess

Volatility of Long Rates

1.1 Introduction

Since Shiller (1981) celebrated analysis of the stock market, many studies have docu-

mented the so called excess volatility of asset prices relative to measures of fundamentals

(De Bondt and Thaler (1985), LeRoy and Porter (1981) and Campbell and Shiller (1987)

among others). There are two main explanations for this finding. One of them assumes

rational expectations and emphasizes the role of discount rate variation (Campbell (2003),

Cochrane (2011)). The other one relaxes rationality and views price volatility as reflect-

ing excess volatility of beliefs. Consistent with the latter view, a growing body of work

documents excess volatility of beliefs using survey data, e.g. Gennaioli and Shleifer (2018).

A recent paper by Giglio and Kelly (2018) assesses these hypotheses in the realm of

the term structure of interest rates. This setting is appropriate because rational term

structure models impose precise constraints on the amount of covariation of asset prices

at different maturities, even after adjusting for discount rate variation. The key finding of

this analysis is that long term interest rates are significantly more volatile with respect to

11



12 Increasing Overreaction and Excess Volatility of Long Rates

short term interest rates relative to what rational models predict. This finding indicates

that beliefs may be a key driver of excess volatility in an important setting such as the

bond market where riskless rates are determined. This analysis raises three questions.

First, can one go beyond assessing volatility in excess of discount rates and measure

beliefs in the bond market? Second, if the answer is affirmative, can one assess which

departure of rationality, if any, do these beliefs display? Third, what is the psychological

foundation of this departure from rationality, and can it account for the excess volatility

of long term rates, not only qualitatively but also quantitatively? This paper seeks to

address these questions.

One immediate way to make progress is to proxy the beliefs of the bond market by

using expectations data. Figure (1.1) reports a preliminary analysis using data from Blue

Chip on professional forecasts of future rates at maturities of 1y, 2y, 5y, 10y, 20y and

30y (monthly frequency). For each maturity, I report the pooled correlation between the

forecast revision made by the analyst1 and his subsequent forecast error. Two features

stand out in the data. First, at any maturity the average analyst over-reacts to news:

when he revises his forecast of future rates up, reality systematically falls below his revised

expectation. This is captured by the fact that in Figure (1.1) all correlations are negative.

Second, there is more over-reaction for longer term interest rates, namely the coefficient

becomes more negative for longer maturities. This latter aspect especially resonates with

the possibility that long-term expectations may move too much with news, causing excess

volatility in long-term rates relative to short-rates.

To analyze systematically this possibility, in Section 2 I introduce non-rational beliefs

into an otherwise standard affine term structure model. In particular, I allow for dis-

tortions in belief formation that are maturity dependent. In this analysis, I show that

stronger over-reaction of beliefs for longer maturities, as displayed in Figure (1.1), indeed

gives rise to excess volatility of equilibrium long term rates relative to short term ones.
1The time t forecast revision of a variable Xt+m (m > 0) is defined as the difference between the time

t forecast of Xt+m and the time t− 1 forecast of Xt+m.
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Figure 1.1: Sensitivity of forecast error to past forecast revision using monthly professional
forecasts of (annualized) interest rates.

I also show that, within the class of affine models, there is a precise mapping between

excess volatility of interest rates at a given maturity and the correlation between forecast

revisions and forecast errors at the same maturity. That is, there is a sort of “duality”

between the estimates in Figure (1.1) and the amount of interest rate volatility measured

from equilibrium yields.

The remainder of the paper systematically studies this connection. One limitation in

the analysis of Figure (1.1) concerns the use of survey data. On the one hand, such data

are available only for a small subset of maturities, frequencies, and time periods. One

would ideally want to have a richer term structure to fully assess the volatility of beliefs.

On the other hand, the beliefs of professional forecasters may not be representative about

the beliefs of bond traders. Ideally, one would want to measure the beliefs of the marginal

investor, and this is clearly not available in conventional datasets.
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To address these measurement issues, in Section 3 I use a method developed by Ross

(2015) to extract market beliefs from equilibrium yields. This method rests on two as-

sumptions: i) the dynamic of risk factors moving interest rates is stationary, and ii) the

stochastic discount factor is path independent. Borovička et al. (2016) criticized assump-

tion ii), showing that it does not hold for asset pricing models that contains long run risks

(Bansal and Yaron (2004)) or that more generally include a martingale component in the

SDF. Against this critique, I show that even if recovered beliefs are misspecified in the

Borovička et al. (2016) sense, the use of Ross’ method is still informative with respect

to the maturity dependent over- (or under-) reaction that Figure (1.1) exemplifies. The

intuition is that maturity dependent information processing distortions entail a violation

of the law of iterated expectations, and such violation cannot be obtained under any ra-

tional asset pricing model, including those incorporating long run risks or more generally

martingale components in the SDF.

I thus proceed to implement Ross’ method for the yield curve, and describe the main

patterns of this data in Section 4. The recovered beliefs exhibit, similarly to the profes-

sional forecasts, increasing over-reaction at long maturities (greater than 10y). To validate

the use of Ross recovered beliefs, I systematically compare the latter to professional fore-

casts. The two measured of beliefs display a remarkably strong and positive correlation,

which suggests that recovered beliefs are not noise, and instead capture systematic fea-

tures of market expectations. Interestingly, I find that, compared to the cross section of

professional forecasts, Ross recovered beliefs weigh more heavily unbiased and accurate

beliefs (relative to equally weighted averages). This property can be traced back to the

working of arbitrage capital (Buraschi et al. (2018)), which partially (but not fully) offsets

individual beliefs distortions.

Having validated Ross recovered beliefs, and having confirmed the broad pattern of

maturity increasing over-reaction, In Section 5 I ask: what is the psychology of maturity

increasing over-reaction? And can this form of belief distortions account quantitatively
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for excess volatility in long term rates? To answer the first question, I adapt to a term

structure setting the diagnostic expectations model of Bordalo et al. (2017). This model

features over-reaction and it is grounded on the Tversky and Kahneman (1974) represen-

tativeness heuristic. The basic principle of diagnostic beliefs is “kernel of truth”: beliefs

move in the right direction but exaggerate true features of the data generating process.

I show that in a term structure model the kernel of truth logic naturally yields maturity

increasing over-reaction. The intuition is that a diagnostic agent will over-react more

strongly to a given signal when there is large fundamental uncertainty, which is indeed

the case for longer term rates. The model provides therefore a foundation for increasingly

over-reacting beliefs and for the violation of the law of iterated expectations, and in a way

that is disciplined by the parameters of the data generating process. The latter property

proves useful for quantification.

I then conclude the analysis by calibrating the diagnostic expectations model and

by quantifying its ability to capture excess volatility in beliefs and in interest rates. I

find that: i) the diagnosticity distortion parameter calibrated from recovered beliefs is

consistent with previous literature (Bordalo et al. (2018a)), ii) such parameter matches

fairly well the documented average over-reaction of analyst forecasts, and iii) it accounts

for roughly 80% of the excess volatility in interest rates documented by Giglio and Kelly

(2018).

My paper contributes to a growing body of research aimed at testing the rational

expectation assumption with beliefs data. Bordalo et al. (2018a) finds evidence of over-

reaction to information in several individual macroeconomic and financial time series.

Piazzesi and Schneider (2011) finds that traditional factors (level and slope) are perceived

as more persistent by financial analysts and Cieslak (2018) finds that systematic errors

in short rate expectations drive bond returns predictability as opposed to time varying

risk premia. Brooks et al. (2018) shows that beliefs of professional forecaster over-react to

FOMC announcements, generating post-announcement drift and excess sensitivity of long
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term rates. Relative to these papers, I use Ross method to recover market beliefs, offer a

parsimonious characterization of belief distortions based on diagnostic expectations, and

quantify the model’s ability to account for the volatility anomaly.

This paper also relates to the debate about the recovery theorem. Martin and Ross

(2019) investigates the recovery theorem in fixed income markets, where the assumption

of stationary and Markovian state variables may be more plausible, relative to equity

markets. My setting is an empirical counterpart of Martin and Ross (2019), where I

test for the rationality of recovered beliefs. Jensen et al. (2019) generalize the recovery

theorem to non Markovian as well as non stationary settings. Qin et al. (2018) propose

an empirical test for the degeneracy of the martingale component of the SDF in the

context of US treasury bonds and reject it, but the test assumes rational expectations.

Similarly to Qin et al. (2018), I implement the Ross recovery theorem using the pricing

measure from the estimation of a standard Q-affine term structure model. This class of

models is flexible since it does not entail assumptions on the physical measure (Le et al.

(2010)). Close to the intuition of the recovery theorem, Augenblick and Lazarus (2017)

provide evidences of excess movements of stock market prices, particularly strong for long

horizons.

My contribution to this literature is to consider a pattern, maturity increasing over-

reaction, that is robust to the Borovička et al. (2016) misspecification. Furthermore, while

work on recovery is mostly methodological, I offer a systematic characterization of belief

formation and account of the excess volatility pattern.

The paper unfolds as follows: in Section 2, I introduce increasingly over-reacting beliefs

into an otherwise standard affine model for the term structure, and I show that in this

economy the error predictability of Figure (1.1) and the excess volatility of Giglio and

Kelly (2018) are closely related. In Section 3, I discuss the recovery theorem and its

empirical implementation. In Section 4, I compare recovered beliefs with survey data.

In Section 5, I introduce a model of beliefs formation and I quantitatively assess the
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increasingly over-reacting beliefs channel for excess volatility. In Section 6, I provide

robustness checks. Section 7 concludes. All proofs are in Appendices.

1.2 Over-reaction to news and excess volatility

Figure (1.1) shows that analysts expectations about future interest rates tend to over-react

to news, more strongly so for longer maturities. This section formally shows that, within

the conventional class of Q-affine models, there is a direct link between such horizon-

dependent over reaction in beliefs and the excess volatility of long term interest rates

documented by Giglio and Kelly (2018). This connection informs my empirical analysis,

aimed at: i) measuring market beliefs, ii) characterizing their departure from rationality,

and iii) quantifying the latter’s impact on the excess volatility of interest rates. I illustrate

the basic logic in a one factor economy, while, for the empirical analysis, I consider multiple

factors.

Consider a frictionless market, where zero coupon bonds with different maturities are

traded. Pt,m denotes the price at time t of a zero coupon bond with time to maturity m.

The yield to maturity, yt,m, is defined as:

Pt,m = e−m·yt,m ,

and the yield curve at time t equals the collection of yields {yt,m}m≥0.

Denote the one period interest rate prevailing at time s by rs (short rate henceforth).

Then, the average one period interest rate obtained on an investment at maturity m

is equal to rt,m := 1
m

∑m−1
i=0 rt+i. In a world with deterministic interest rates, the yield

obtained from investing at maturitym is simply equal to the interest rate at that maturity:

yt,m = rt,m. If instead the short rate is exposed to risk factors (e.g. GDP growth) the

interest rate obtained from an investment at maturity m is not known with certainty.

Specifically, assume that the short rate rs is a function of the risk factor at time s,
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which is denoted by Xs. Then, while at time t the current short rate rt is known, longer

maturity rates rt,m are not known because the dynamics of the risk factor is stochastic.

As a result, the price of the bond and hence the yield to maturity yt,m at t is influenced

both by expectations about future rates and by risk aversion. We now characterize these

expectations, and in particular their departure from rationality. Next we show how the

same expectations affect – together with risk aversion – the yield curve in equilibrium.

Increasingly Over-Reacting Expectations

As in conventional affine models, the short rate is an affine function of the risk factor Xt,

which for simplicity we assume to follow a stationary AR(1). Then, the dynamics of the

short rate is fully described by:


rt = δ0 + δ1Xt

Xt = ρPXt−1 + σPεPt ,
(1.1)

where εPt is an i.i.d. shock. In this notation, superscript P captures the so called "physical

measure", or data generating process. As a consequence, the dynamics of interest rates

at maturity m, rt,m := 1
m

∑m−1
i=0 rt+i, reads:

rt,m = δ0 + bPmXt + εPt,m,

where bPm := δ1
m

∑m−1
i=0 (ρP)i and εPt,m := δ1

m

∑m−1
k=1

∑k
i=1(ρP)k−iσPεPt+i. The coefficients bPm

capture the sensitivity of interest rates at maturity m, rt,m, to current information (Xt)

under the physical measure. This sensitivity geometrically decays to zero as the maturity

increases. εPt,m captures fundamental risk about interest rates at maturity m.

We allow expectations of future interest rates, to depart from rationality. In particular,

we allow them to over-react to the current state in a maturity dependent fashion, as

suggested by Figure (1.1). Formally, we assume that at time t the market perceives
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interest rates at maturity m to be:

rθt,m = δ0 + bPm(1 + ψθm)Xt + σθmε
P
t,m, (1.2)

where θ denotes departures from rational expectations. There are two such departures.

First, the variance of fundamental shocks is potentially distorted, with σθm 6= 1. Second,

and more important, beliefs of future rates may display excess sensitivity (ψθm ≥ 0) to

the current state. The beliefs in Equation (1.2) arise when agents perceive interest rate

shocks εPθt,m := σθmε
P
t,m + ψθmb

P
mXt so that perceived news are distorted toward the current

state Xt. Pθ denotes a distorted data generating process measure for the factor, and the

derivation of Equation (1.2) from the distorted factor dynamics is performed in Appendix

A.

Equation (1.2) implies that expectations formed at time t about interest rates at

maturity m take the convenient intuitive form:

EP
t

[
rθt,m

]
=: EPθ

t

[
rt,m

]
︸ ︷︷ ︸

distorted expectations

= EP
t

[
rt,m

]
︸ ︷︷ ︸

rational expecations

+ψθm
(
EP
t

[
rt,m

]
− EP

[
rt,m

])
︸ ︷︷ ︸

news relative to the average

. (1.3)

The distorted expectation EPθ
t [·] is equal to the rational expectation plus an adjustment

in the direction of the news, where the latter is captured by EP
t

[
rt,m

]
− EP

[
rt,m

]
.

Departures from rationality at maturitym are parameterized by the coefficient ψθm ≥ 0.

When ψθm = 0, expectations are rational. When ψθm > 0 agents overract to news. That

is, they over-estimate future rates in states truly indicative of higher than average future

rates: EP
t

[
rt,m

]
> EP

[
rt,m

]
. By contrast, agents under-estimate future rates in states

truly indicative of lower than average future rates EP
t

[
rt,m

]
< EP

[
rt,m

]
.2

2The comparison with average information can be generalized to the comparison with a weighted sum
of past predictions. This case includes the model of diagnostic expectations of Bordalo et al. (2018b) and
it is discussed in Section 6.



20 Increasing Overreaction and Excess Volatility of Long Rates

I allow the distortion parameter ψθm to be maturity-dependent. For now, I leave

such dependence unspecified. In Section 5, however, I show that under Gaussian noise,

Equation (1.3) naturally follows from the diagnostic expectation model of Bordalo et al.

(2018b). Such model also yields horizon dependent distortion parameters ψθm that are in

turn functions of a more primitive distortion parameter θ. This is why I denote distorted

expectations using θ.

1.2.1 Risk Aversion and the Yield Curve

Consider a market forming expectations according to Equation (1.2). What does the yield

curve looks like? To answer this question, one must also consider investors’ risk aversion,

which affects – together with beliefs – required rates of return. To capture risk aversion,

consider a stochastic discount factor (SDF) Mt,m discounting more heavily future cash

flows occurring in states in which the representative investor is poorer. Then the price of

a maturity m zero coupon bond, and hence yields yt,m, is pinned down by the discounted

expected payoff3:

P θ
t,m = EPθ

t

[
Mt,m

]
:= EQθ

t

[
e−m·rt,m

]
, (1.4)

where the so called risk neutral probability measure Qθ inflates the perceived prob-

ability of states in which the representative investor is poor. By using Qθ the economic

analyst can account for risk aversion while using the convenient analytics prevailing under

risk neutrality.

By the fundamental asset pricing equation, given a stochastic discount factor Mt,m, the

3 Note that under the maturity dependent over-reaction model we have that the law of iterated
expectations fails, in the sense that EPθ

t

[
Mt,t+2

]
6= EPθ

t

[
Mt,t+1EPθ

t+1[Mt+1,t+2]
]
. We need therefore

to take a stance about valuation. In line with the logic of Figure (1.1), we assume that the market
forecasts future rates and price future states with a "buy and hold" valuation approach, namely we set
Pt,t+2 = EPθ

t

[
Mt,t+2

]
.
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risk neutral measure density fQθ(Xt+m|Xt) associated to it is implicitly defined by the

condition:

fQθ(Xt+m|Xt)e−m·rt,m = Mt,mfPθ(Xt+m|Xt),

which captures the optimality condition for a market with distorted beliefs captured

by Pθ. Here I emphasize that under Pθ the factor is still an AR(1) with with maturity

dependent distorted persistence and volatility (the full analytics is performed in appendix

A). To use the machinery of affine term structure models, we assume that the stochastic

discount factor is such that the distorted and risk neutral dynamics Qθ for the factor is

AR(1), with maturity dependent persistence and volatility. In this case, the risk adjust-

ment to beliefs Pθ yields the following distorted and risk neutral dynamics for interest

rates at maturity m:

rθt,m = δ0 + bQmXt + ψθmb
Q
mXt + εQt,m,

where bQm := δ1
m

∑m−1
i=0 (ρQ)i and εQt,m := δ1

m

∑m
k=2

∑k−2
i=0 (ρQ)iσPεQt+1+i. ρQ 6= ρP is the risk

neutral persistence of the factor under rational expectations, while εQt+1 is a zero mean

shock with risk neutral variance σQ 6= σP, again under rational expectations. bQm is the

risk neutral sensitivity of future rates to Xt and εQt,m := δ1
m

∑m−1
k=1

∑k−1
i=1 (ρQ)k−1σQεQt+i is the

risk neutral shock at maturity m, both under rational expectations. Importantly, under

the belief distortions of Equation (1.2) the risk adjusted dynamics of interest rates still

exhibit overreaction (ψθm) to the current state Xt.

Proposition 1. Assume homoskedastic Q-shocks. The yield curve under over-reacting

beliefs is equal to:

yθt,m = − 1
m

logEQθ
t [e−m·rt,m ] = aθm + (bQm + ψθmb

P
m)Xt, (1.5)

where:
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bQm = δ1

m

m−1∑
i=0

(ρ Q)i,

aθm = δ0 −
1
m

logEQ[e−m·σθmε
Q
t,m ].

When expectations are rational, namely ψθm = 0, Equation (1.5) is the signature of

affine term structure models (see Duffee (2013) for a review). The coefficients aθm and bQm

are maturity dependent. Interest rates volatility is shaped by the sensitivity bQm of yields

to changes in the factor Xt. The more persistent is the factor, namely the higher is ρQ,

the more sensitive is the interest rate at any given maturity to news, namely the higher

is bQm. On the other hand, because the factor is stationary4, |ρ|Q < 1, long term rates

should be less sensitive than short term rates, namely bQm declines with m. The Giglio

and Kelly (2018) excess volatility puzzle is rooted in the maturity profile of the bQm terms:

they decay too slowly relative to what is implied by the persistence ρQ of the factors.

The issue is then: can the horizon dependent over-reaction of Figure 1.1 rationalize this

finding?5

With over-reacting beliefs, ψθm > 0, equilibrium yields retain a tractable form. Over-

reaction in beliefs enhances the sensitivity of yields to the risk factor relative to a rational

world, namely bQm → bQm+ψθmb
P
m. This formula connects over-reaction in beliefs and excess

volatility in interest rates.

To see this connection more precisely, consider expectations about future rates, com-

puted using the distorted physical measure Pθ and consider the measured volatility of
4Stationarity of interest rates is an empirically established fact, see Giglio and Kelly (2018).
5A different yet important issue is the extent to which Q-affine models correctly capture the yield

curve dynamics. To this regard, it is worth noting that: i) empirically, at each maturity m, the same risk
factors explain the variability of yields to that maturity, yt,m, with R2 close to one as shown in Section
3, ii) Giglio and Kelly (2018) show that quadratic Q-specification, stationary long memory process nor
regime switching models cannot account for the excess volatility and iii) Q-affine models allows highly
non linear P -dynamics as well as non standard SDFs, provided that their products yields Q affinity.
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interest rates. I obtain the following result.

Theorem 1. (Over-reaction and excess volatility).

Under expectations (1.3) and the affine setting:

i) (Increasing Overreaction) the CG coefficients βm obtained by regressing the forecast

error made at maturity m using Pθ with the forecast revision under Pθ about the

same maturity are equal to:

βm = −c ψθm
1 + ψθm

,

where c is a positive, maturity independent, constant;

ii) (Excess Volatility) the volatility of yields at maturity m relative to the volatility of

the short rate is equal to:

VP[yθt,m]
VP[yθt,1] =

bQm + ψθmb
P
m

bQ1 + ψθ1b
P
1

2

>
VP[yt,m]
VP[yθt,1] ,

where VP[yθt,m] is the measured volatility of yields while VP[yt,m] is the volatility

arising under rational expectations. Over reaction to news yields both the pattern

in Figure (1.1) and excess volatility of long term rates if and only if ψθm is positive

and increases in maturity m.

This result conveys two important messages. First over-reaction to news increasing in

the horizon m reconciles the observed patterns in forecast errors and excess volatility in

long term rates. This is a general result, and holds beyond the more restrictive assump-

tions of this Section. As I show in the proof of Theorem (1), such connection holds under

general Q-affine models, where P is Markovian and Q is AR(1), provided expectations

about future interest rates over-react according to Equation (1.3).

Second, and crucially, Theorem (1) says that in the conventional class of Q-affine

term structure models, when the data generating process P for the risk factors is itself
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AR(1), the maturity dependent over-reacting beliefs in Equation (1.2) create a precise link

between the over-reaction coefficient measured using beliefs data and the excess volatil-

ity detected from prices. They are both pinned down by the same maturity increasing

distortion ψθm.

The remainder of the paper assesses empirically these predictions. In Sections 3 and 4

I start tackling this challenge by offering a measure of market beliefs. The survey evidence

in Figure (1.1) has two pitfalls. First, it has only a limited number of maturities. Second,

and most important, the beliefs of professional forecasters may not be representative of

the beliefs of market participants. To overcome these issues, I use methods developed by

Ross to extract information about beliefs from asset prices in conventional affine models6.

In Section 5 I add the assumption that the physical measure P is a Gaussian AR(1).

In this case, the over-reaction parameters ψθm can be conveniently founded using the

diagnostic expectations model (Bordalo et al. (2018b)). This allows me to obtain an

estimate of their distortion parameter θ that can be benchmarked to existing estimates.

Furthermore, Theorem (1) highlights a duality between over-reaction in beliefs and excess

volatility in interest rates, so that ψθm can be estimated both from beliefs data and directly

from yields. I use this duality to assess which conclusions about ψθm are most robust.

1.3 Beyond survey data: Ross Recovery Theorem

and the term structure of beliefs

The method of Ross (2015), rests on two assumptions: i) the underlying state of the

economy follows a stationary Markovian process, both under P and under Q, and ii) the

SDFMt,m is path independent, namely it depends only on the final value Xt+m and on the

initial value Xt of the state variable, and not on the path from t to t+m. Assumption i) is

an approximation, but of significant empirical power: it is widely recognized that few state
6I will consider prices of US treasury bonds which are directly related to interest rates and yields.
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variables drive the yield curve (see Duffee (2013)) and stationarity is not rejected in the

data (see Giglio and Kelly (2018) and Martin and Ross (2019)). Assumption ii) is more

controversial: Borovička et al. (2016) shows that path independence is not met in long run

risk asset pricing models. In this case, the method of Ross (2015) does not recover market

beliefs, but beliefs adjusted for a martingale component. This is an important criticism

but, as I show below, my analysis is immune to it because the increasingly over-reacting

beliefs in (1.3) can still be recovered from the data.

To grasp how Ross’s method works, consider an Arrow-Debreu security that pays one

dollar if next period’s state is j (assume for simplicity that there is a finite number N of

states, which correspond to factor values in my setting). Under rational expectations, if

the current state is i, the price of such Arrow Debreu security is equal to:

Aij = MijPij,

where Pij := P(Xt+1 = j|Xt = i) is the physical probability of transitioning from state i

to state j and Mij is the stochastic discount factor (SDF) capturing the marginal rate of

substitution between current consumption in i and future consumption in j. Due to risk

aversion, Mij overweights bad states, attaching a higher price to a safe bond because it

pays out in them.

In the presence of non-rational beliefs, the fundamental asset pricing equation implies

that the price of the same Arrow Debreu security is equal to:

Aθ
ij = MijPθij.

An econometrician observing Arrow Debreu prices may recover market beliefs, be

they rational Pij or distorted Pθij, by performing an "inverse risk adjustment" to the prices

themselves. Ross has shown that such inverse risk adjustment is indeed possible, so that

market beliefs can be recovered from prices, under assumptions i) and ii) above. Ross’s
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P A
Risk

Pθ

Belief distortions

Aθ

Figure 1.2: The blue line adjusts the data generating process P for preferences, which
determines Arrow-Debreu prices A. The red line distorts the data generating process P,
thus defining beliefs Pθ, thus generating Arrow-Debreu prices Aθ.

method has been so far used under the assumption of rational expectations.

As displayed in Figure (1.2) above, when market beliefs may not be rational, the

use of Ross’ method entails an ambiguity: the econometrician does not know if Arrow

Debreu prices are A (they reflect rational beliefs) or if they are Aθ (they reflect non

rational beliefs). Here I proceed as follows: I use Ross’ method, and then performed on

the recovered market beliefs some statistical tests of rationality, considering in particular

the predictability of forecast errors. The outcome of this test tells us if we are in top or

bottom row of Figure (1.2).

Before carrying out the analysis, consider again the critical path independence as-

sumption i). When the SDF is path independent, it means that there exists a constant δ

and function z of the state such that the one period SDF can be written as:

Mij = δ
zi
zj
.

This property is satisfied by conventional CRRA preferences (over stationary variables).

However, this assumption has been criticized by Borovička et al. (2016), who show that it

assumes away the kind of long-run risk adjustments from the SDF that are embedded in

many conventional consumption based asset pricing models (CRRA when consumption
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exhibit stochastic trends, long run risk models as well as habit formation models)7. As

they show, assuming path independence in these cases is akin to neglecting the fact

that the SDF also contains a martingale component that changes over time. Does such

misspecification invalidate the detection of the horizon dependent over-reacting beliefs

that I consider here? To answer this question, suppose that the SDF has a martingale

component. Then, by applying Ross method we would not recover the true market beliefs

Pθ but the beliefs P̃θ contaminated by misspecification. I then obtain the following result.

Theorem 2. Consider the Q-affine setting, non rational expectations as in ( 1.3) and

suppose that the martingale component of the SDF is non degenerate, so that the econo-

metrician detects P̃θ, not Pθ. Then, the following are equivalent:

i) the CG coefficients estimated by regressing forecast errors of Ross recovered beliefs

on forecast revisions of Ross recovered beliefs vary with maturity m.

ii) Eθ[·] violates LIE.

Moreover, the CG coefficients obtained from Ross recovered beliefs are negative and

decreasing:

βθm = −c′ ψ
θ

m

1 + ψθm
,

where c′ > 0 is a maturity independent constant.

With misspecification à la Borovička et al. (2016), the econometrician applying Ross’

method no longer recovers exact beliefs. Crucially, however, rationality tests still allow

her to recover the horizon dependent over-reaction, critical for my analysis, and detected

in Figure (1.1) for professional forecasters. The intuition is that horizon-dependent dis-

tortions entail a strong violation of rationality, namely a violation of the law of iterated
7However Walden (2017) explicitly showed that relabeling the state variables may lead to the assump-

tion to be met, in the case of CRRA utility with non stationary consumption.
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expectations.8 As such, it cannot be accounted by any rational expectations models, in-

cluding those featuring long run risk. In this respect, the Ross recovery theorem remains

useful for spotting horizon dependent beliefs distortions.

1.3.1 Empirical implementation

To apply Ross’ method, we need Arrow Debreu prices. These are not directly observed

but they can be inferred from market prices. To do so, note that one period ahead Arrow-

Debreu prices can also be written as state by state discounted risk neutral probabilities:

Aθ
ij = Qθ

ije
−r(i),

where Qθ
ij is the risk neutral probability of transitioning from state i to state j. The above

formula includes both the case of rational expectations (θ = 0) as well as non rational

ones (θ 6= 0).

To compute the risk neutral probabilities Qθ
ij I first estimate the risk neutral parame-

ters of a three factor affine model. Then, I discretize the state space using the Rouwenhorst

method (Cooley (1995)), compute the discretized transition probabilities Qθ
ij and finally

I discount them by the known short rate. This procedure yields Aθ
ij.

I follow conventional methods and consider as factors the first three principal compo-

nents of the yield curve (see Duffee (2013)). The construction of the factors is discussed

in Appendix B. The three factor Qθ-dynamics takes the form:


rt = δ0 + δ>1 Xt

Xt+1 = ρQ
θXt + ΣCεQ

θ

t+1,

where εQ
θ

t are i.i.d. shocks. The matrix ρQ
θ is assumed to be diagonal, ρQθ =

8Formally, the LIE is a mathematical theorem which holds true for every probability measure. The in-
consistency of Pθ at different maturities is mathematically due to the fact that Pθ is a different probability
measure for each maturity, as defined by condition (1.3).
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diag(ρQθ1 , ρQ
θ

2 , ρQ
θ

3 ).9 ΣC is the Cholesky decomposition of the variance-covariance matrix

of the residuals, Σ. Following Cochrane and Piazzesi (2009), I assume that Σ coincides

under Pθ and Qθ, so I can estimate it with the variance covariance matrix of residuals in a

V AR(1) for Xt. Finally, the entries of the diagonal matrix ρQθ are estimated by matching

observed yields.

Due to my emphasis on maturity dependent over-reaction, I perform this estimation

maturity by maturity independently, since I do not want to impose restrictions across

maturities. The estimation sample is taken as the first half of the sample, while robustness

to sub-samples are discussed in Section 6.

Summarizing the procedure:

1. δ̂0, δ̂1 are the OLS estimates of the regression of the short rate on the three factors.

2. Σ̂ is estimated as the variance covariance matrix of the residuals of a VAR(1) for

the factors. Σ̂C is the corresponding Cholesky decomposition.

3. The risk neutral parameters of the factor dynamics are estimated, maturity by ma-

turity, as:

ρ̂Q
θ

m := arg min
ρQθ

1
T

∑
t

(
yt,m − ȳm,t

)2
= arg min

ρQθ

1
T

∑
t

(
âθm + bQ

θ

m Xt − ȳm,t
)2

where bQθm is a function of the the parameters ρQθ , whose analytic expression in

computed in Appendix A.

4. One period ahead Arrow-Debreu prices are finally estimated using yields to maturity

m only as fitting the average yield curve:

Â(m)
ij = Q̂(m)

ij e−r̂(i).

9This restriction is necessary to achieve identification of the matrix ρQ
θ assuming that the noise is

Gaussian. In this case, a Gaussian transition probability density is in fact characterized by 9 independent
parameters, which parametrize the mean and the covariance matrix (see Hamilton and Wu (2012)).
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A final step before recovering beliefs in needed. The Recovery Theorem entails an

eigenvalue problem for the Arrow-Debreu matrix, while the affine specification relies on

continuous variables. As I discussed before, to tackle this issue I discretize the continuous

state space of Xt by using the Rouwenhorst method (Cooley (1995)), which represents the

state of art in approximating an AR(1) process with a finite state space Markov chain.

The method generates a Markov chain which matches mean, variance and autocorrelation

of the original AR(1) process. These are the moments I am interested in: the mean

of the factor determines the behavior of the average yield curve, the autocorrelation

and the variance determine the term structure of volatilities. Further details about the

implementation are discussed in Appendix B.

1.4 Recovered Beliefs, Survey data and Rationality

tests

I now study recovered beliefs and compare those with survey data from professional fore-

casters. The latter step helps me validate the analysis because the two sources of data

are highly independent.

1.4.1 Data

US treasury yields

Gürkaynak et al. (2007) provides (and keep updated) nominal, annualized, zero coupon

bond yields with yearly maturities from 1 year to 30 years. Gürkaynak et al. (2007)

infer the yield curves time series from observed prices of fixed income instruments. The

data are jointly available at all maturities from 11-25-1985 to 12-31-2016, at the daily

frequency.
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The Blue Chip Survey of Professional forecasters

The Blue chip survey of professional forecasters contains forecasts about yields to matu-

rities 1, 2, 5, 10, 20 and 30y from leading financial institutions, which are flagged in the

dataset. Forecasts with maturity 1, 2, 5 and 10 years are available from January 1984,

forecasts with maturity 30y are available starting from January 2000, while forecasts with

maturity 20y are available starting from January 2004. Forecasts about the next quarter

yield curve are reported at the monthly frequency, so the prediction horizon oscillates

between 2 and 6 months10. I remove from the sample those forecasters who reply to the

survey for a short time period only (less then 5 years). At each time t, I remove those

replies to the survey which contain answers for less than 3 prediction horizons: what I am

mostly interested in are indeed forecasts at different horizons. Finally, for each prediction

horizon, I remove outliers which are defined as observations in the first and last percentile

of the distribution of forecasts.

1.4.2 Tests of rationality

Tests of rationality involve the predictability of the forecast error, defined, for each avail-

able maturity as:

FEt+1[yt+1,m] = ȳt+1,m − ŷt+1,m|t,

where ȳt+1,m is the observed yield and ŷt+1,m|t is the prediction of yields with maturity m

at time t + 1 done at time t. I compute forecast errors using both survey data and re-

covered beliefs. In the former case, each ŷt+1,m|t has multiple observations across different

forecasters and the forecast error is forecaster specific. In the latter case, the forecast is

10 The unpredictability of the forecast error which is implied by the rational expectation hypothesis is
in principle unaltered by the moving forecast horizon. However, to ameliorate concerns regarding changes
in expectations due to changes of the prediction horizon, I consider time fixed effects in the robustness
section.
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computed as:

ŷt+1,m|t :=
∑

Xt+1∈Grid
Pθ(Xt+1|Xt)︸ ︷︷ ︸

Recovered beliefs

× (âθm + (b̂Qθm )>Xt+1)︸ ︷︷ ︸
Emprical affine mapping

.

Expectations about future yields are conveniently decomposed into distorted expec-

tations about factors (identified using the recovery theorem) and the pricing function

(empirical affine mappings). The affine mapping is known because âθm and b̂Qθm have been

estimated as discussed in Section 3. To simplify notation, ŷt+1,m|t does not carry super-

script θ.

Under the null hypothesis of full information rational expectations, the forecast error

should not be predictable on the basis of past information. But what is past informa-

tion? Following Coibion and Gorodnichenko (2015), I define information at time t by the

forecast revision:

FRt[yt+1,m] := ŷt+1,m|t − ŷt+1,m|t−1.

The logic underlying this definition is that information moves beliefs: if no information

is observed at time t, then there is no revision in beliefs, i.e. FRt[yt+1,m] = 0.

For each maturity available, I then run the regression:

FEt+1[yt+1,m] = αm + βmFRt[yt+1,m] + εt+1,m.

I call βm "CG coefficient" from Coibion and Gorodnichenko (2015). A positive βm >

0 is interpreted as under-reaction to information at maturity m. In this case, when

beliefs about yields at horizon m are revised upward, they systematically under-estimate

realized yields. That is, beliefs are not revised enough. On the contrary, βm < 0 is

interpreted as over-reaction to information at maturity m: when beliefs about yields at

horizon m are revised upward, they systematically over-estimate realized yields. That
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Figure 1.3: Slope of FE on FR using recovered beliefs (red) and using the Blue Chip
dataset (pooled OLS). Confidence intervals are computed at 5%.

is, beliefs are revised too much. The CG coefficients obtained with the Ross recovered

beliefs for maturities ranging of 2, 3, . . . 30 years11 and by pooled estimation of professional

forecasters data are shown in Figure 1.3.

Recovered beliefs also exhibit maturity dependent reaction to information. Just like

the beliefs of professional forecasters, they over-react more for long term yields than for

short term ones. Thus, the key message of excess reaction to information of long run

beliefs relative to short run beliefs is consistent across survey data and Ross recovered

beliefs. The main difference between the two datasets arises because Ross recovered beliefs

exhibit a pattern of under-reaction to information at the short end of the yield curve and

over-reaction to information at the long end. Professional forecaster data, on the contrary,

11 The 1y yield is used as short rate and therefore predictions to this horizon cannot be computed.
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exhibit over-reaction only 12 13.

Ross recovered beliefs capture market beliefs, and the marginal investor is potentially

different from the average forecaster. For this reason the qualitative similarity of pre-

dictability patterns across the two datasets is surprising: there is no mechanical reason

for it, and this suggests that stronger over-reaction for longer horizons may be a robust

feature of beliefs. We can even more directly compare Ross recovered beliefs and profes-

sional forecasts by correlating forecast revisions and the level of forecasts across the two

datasets (considering the mean as well as the median forecast). Figure (1.4) shows that

the two datasets are quite aligned along both criteria14.

Figure 1.4: Left panel: correlation between mean forecasts (red triangle), median forecasts
(blue circle) and Ross recovered forecasts as a function of the maturity. Right panel:
correlation between mean forecast revision (red triangle), median forecast revision (blue
circle) and Ross recovered forecast revisions as a function of the maturity.

The strong, positive correlation between Ross recovered beliefs and professional fore-

casts is important. It indicates that the two types of beliefs data are not noise, and thus
12 In the robustness Section, I consider different specifications of the regression performed with profes-

sional forecasters data, including time fixed effects, forecasters fixed effects as well as single and double
clustering of standard errors. The results are consistent.

13In Bordalo et al. (2018a), the authors find under-reaction at maturities shorter than one year with
Blue Chip data, at the quarterly frequency. Here, I do not consider those maturities for the sake of
comparison with recovered beliefs.

14 For the comparison, I aggregated recovered beliefs from the daily to the monthly frequency.
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they capture significant features of market beliefs. Of course, the benefit of Ross recovered

beliefs is that, in addition to being more tightly linked to the marginal investor, they are

available for all maturities and frequencies.

Are market beliefs, as measured with the Ross method, better or worse than the beliefs of

analysts? There are two possible metrics to asses this: the predictability of the forecast

error (which captures biases in forecasting) and the mean square error (which capture

accuracy in forecasting, i.e. bias plus precision). In Figure (1.5), I plot the estimated

distribution of distortions (biases) using a Gaussian kernel density estimator.

The distribution of forecaster distortions is not symmetric around rationality (i.e.

β = 0): the majority of forecasters over-react to news. This is reflected in the fact that

the average bias, captured by the pooled regression in the introduction and reported

also in Figure (1.5) is negative. The above figure also reports as a benchmark the CG

coefficient of the consensus forecast, defined as the predictability of errors for the median

analyst forecast. Note that the consensus always under-reacts to news, a fact that has

been previously documented in Bordalo et al. (2018a), where the authors also reconcile it

with it with individual analyst over-reaction15.

The distortion of the Ross recovered forecast lies in between the median forecaster and

the average bias, and it is closer to rationality (β = 0) than both. Thus, regarding the

bias dimension, this analysis suggests that the Ross recovered beliefs weigh more unbiased

forecasts, relative to the average professional forecaster bias. This may be due to arbitrage

capital moving partly, though not fully, towards less biased investors.

Second, I investigate the accuracy of forecasters, as measured by the mean square error

in prediction. In Figure (1.5), I consider two groups of forecasters. The top 25% most

accurate forecasters and the bottom 25% least accurate forecasters. In the data, the former

forecasters are rational, namely, their CG coefficients are statistically indistinguishable
15The intuition is that when forecasters observe different noisy signals, stemming for instance from

heterogeneous information sets, each analysts over-reacts to his own news, but does not react at all to
the signal of other analysts. This second effect can be so strong that the consensus forecast under-reacts
to the consensus revision even if each analyst over-reacts to his own information.
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Figure 1.5: Density of forecasters distortions (CG coefficients) for different maturities.
Distortions from recovered beliefs are shown in black, pooled distortions in blue, consensus
(median) distortions in purple, best forecasters distortions (top quartile according to
the mean square error criterion) in green, worse forecasters distortions (bottom quartile
according to the mean square error criterion) in red. Confidence intervals are computed
at the 5% level.



1.4. RECOVERED BELIEFS, SURVEY DATA AND RATIONALITY TESTS 37

for zero, while the worst 25% are highly over-reacting. Thus, there is a positive relation

between imprecision and bias in forecasting. A direct comparison between the correlations

of Ross recovered forecasts and top/worse 25% (ranked according to the MSE criterion)

is offered in Figure (1.6).

Figure 1.6: Correlation between mean forecast of top 25% forecasters (ranked according
to the MSE criterion) and Ross recovered forecasts (blue triangle), Correlation between
mean forecast of worse 25% forecasters (ranked according to the MSE criterion) and Ross
recovered forecasts (orange triangle).

Figure (1.6) suggests that the Ross recovered forecast slightly over-weights more ac-

curate views

Overall this analysis suggests that Ross forecasts weight more both more unbiased fore-

casters and more accurate forecasters.

Broadly speaking, this Section conveys the following messages. First, market beliefs re-

covered using Ross method display the same maturity increasing over-reaction displayed

by survey data. Second, market beliefs and survey data are highly positively correlated.

Third, market beliefs are less biased and more accurate than the average professional

forecaster. This indicates that our recovered market beliefs capture systematic patterns

in beliefs, and that arbitrage helps reduce the impact of highly biased forecasters on asset

prices, consistent with basic asset pricing theory.
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Having validated the recovered beliefs, several questions emerge. First, why do fore-

casts over-react in this maturity dependent way? What is the psychological foundation?

Second, can the over-reaction detected from beliefs account for the excess volatility of

interest rates along the lines of Theorem (1)? To make progress, I specify a realistic

model of belief formation, based on the diagnostic expectation model of Bordalo et al.

(2018b), and I show that it offers an answer to both questions: it yields maturity depen-

dent over-reaction, it can quantitatively account for belief distortions and this in turn

captures a big chunck of the excess volatility of interest rates documented by Giglio and

Kelly (2018).

1.5 The Horizon Dependent Diagnostic Expectations

Model

Using the diagnostic expectations model of Bordalo et al. (2018b), I now rationalize

maturity-increasing over-reaction using a single parsimonious departure of beliefs from

rationality, captured by the diagnosticity parameter θ that I estimate and use to quantify

the explanatory power of the model for excess volatility of interest rates. As argued

in Section 2, the duality between belief distortions and over-reaction in interest rates

offers two separate methods for estimating θ, one based on beliefs data, another based

on yields. I show that these two independent strategies yield similar estimates for θ that

are consistent with previous estimates, and that can quantitatively account for excess

volatility of interest rates and for the predictability of the forecast errors.

1.5.1 Diagnostic Expectations

Diagnostic expectations are based on Kahneman and Tversky’s (Tversky and Kahneman

(1974)) representativeness heuristics in probability judgments. Representativeness cap-
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tures the idea that, when making a conditional probabilistic assessment, humans typically

over-weight representative (or diagnostic) traits, defined as the traits that are objectively

more frequent in such group relative to a comparison group. A conventional example is

the exaggeration of the probability that an Irish person is red haired, because this hair

color is relatively more frequent in Ireland than elsewhere (although even in Ireland it is

unlikely in absolute terms). This heuristics has been widely documented in the psychology

and cognitive science literature, since the seminal work of Tversky and Kahneman (1974)

and it has recently been adapted to a dynamic setting by Bordalo et al. (2018b). When

forecasting, economic agents exaggerate objectively positive news relative to a benchmark

prediction, shaped by past information.

To capture this idea in my setting, consider the following diagnostic distribution at time

t of interest rates with maturity m, rt+m = 1
m

∑m−1
i=1 rt+i:

fPθ(rt,m|Xt) ∝ fP(rt,m|Xt)
(
fP(rt,m|Xt)
fP(rt,m)

)θ
,

where fP(·) is the unconditional or long run distribution of rt,m.

The diagnostic distribution of rt,m at time t re-weights the correct density fP(·|Xt)

via the likelihood ratio
(
fP(rt+m|Xt)
fP(rt,m)

)
to the power θ. Investors over-weight future values

of interest rates that are more likely under current information relative to the average

information, where the latter is captured by the long run distribution. The parameter

θ > 0 in the diagnostic distribution quantifies the degree of over-reaction. The larger is θ

the more outcomes whose likelihood has increased are overweighted in beliefs.

My model differs in two dimensions to the model of Bordalo et al. (2018b). First, in

Bordalo et al. (2018b), the authors compare rational forecasts at time t with rational fore-

cast at time t− 1, while I use the average information as comparison. This is technically

convenient because my model preserves Markovianity, which greatly simplifies the identifi-

cation of recovered beliefs in Section 3. In Section 6, I show, theoretically, that results are
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qualitatively robust to the specification used in Bordalo et al. (2018b). Second, and more

important, the benchmark distribution in Bordalo et al. (2018b) is assumed to have the

same volatility as the rational forecast. This assumption is innocuous when considering

a fixed horizon as in Bordalo et al. (2018b) and it greatly simplifies the math. However,

this assumption misses an important intuition: namely that diagnostic distortions should

depend on the underlying uncertainty about the economic environment, as discussed in

Gennaioli and Shleifer (2018). I now show that allowing for this role of uncertainty is

highly relevant here, because it implies the violation of the law of iterated expectations

taking the form of maturity increasing over-reaction.

The diagnostic distribution can be conveniently computed for linear and Gaussian

dynamics. Assume that the P dynamics of the factor is:


rt = δ0 + δ>1 X

Xt = ρPXt−1 + ΣCεPt ,

where Xt
P∼ V AR(1)(ρP,Σ), ΣC is a lower triangular matrix, εPt are i.i.d. Gaussian shocks

and Σ := ΣCΣ>> is the one period variance-covariance matrix. Here, in order to derive

a parsimonious expression for increasing over-reaction, I impose additional assumptions

relative to Q-affine setting (the latter is the only assumption I needed so far). Specifically,

I assume a VAR(1) Gaussian dynamics for the factor, under the physical measure P. Then,

the diagnostic distribution of interest rates at maturity m is characterized as follows.

Theorem 3. ( Diagnostic distribution ) Given Xt
P∼ V AR(1)(ρP,Σ), under Gaussian

noise, the diagnostic distribution of interest rates to maturity m, rt,m, f θP(rt+m|Xt), is

Gaussian, with mean:

EPθ
t [rt,m] = EP

t [rt,m] + ψθm
(
EP
t [rt,m]− EP[rt,m]

)
(1.6)
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and variance:

VPθ
t [rt,m] =

(
θ + 1

VP
t [rt,m] −

θ

VP[rt,m]

)−1

, (1.7)

where

ψθm :=
θ
VP
t [rt,m]

VP[rt,m]

1 + θ − θVP
t [rt,m]

VP[rt,m]

, (1.8)

EP
t [rt+m] = 1

m

δ0 + δ>1

m−1∑
i=0

ρP
i

Xt

 , (1.9)

EP[rt,m] = δ0, (1.10)

VP
t [rt,m] = 1

m2 (δ1)>
 2∑
i=0

m−2∑
i=0

ρP
2iΣ


 δ1 (1.11)

and

VP[rt,m] = E[VP
t [rt,m]] + V[EP

t [rt,m]] (1.12)

= VP
t [rt,m] + 1

m2 (δ1)>
m−1∑
i=0

ρP
i

Σ
m−1∑
i=0

ρP
i

 δ1 (1.13)

As evident from Equation (1.6), the diagnostic model endogeneizes the maturity in-

creasing over-reaction assumed in reduced from in Section 2. The coefficient ψθm in formula

(1.8), that characterizes the departures from rationality in Section 2, it now pinned down

by: i) the scalar parameter θ, ii) the maturity m, and iii) the true conditional and uncon-

ditional variances VP
t [rt,m] and VP[rt,m]. Belief distortions starts from zero at m = 0, then

become positive at m = 1 and increase monotonically as m → ∞, approaching a finite

limiting value equal to θ.

The intuition for this result is simple: as the maturity m increases, fundamental

uncertainty is higher. As a result, the tails of the distribution are prominent, so they

more easily come to mind after information makes them more likely. That is, after good
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news, the right tail becomes very representative for long maturities and it is highly over-

weighted. As a result, expectations are too optimistic. After bad news, the left tail

becomes very representative for long maturities and is highly overweighted. As a result,

expectations become too pessimistic. In both cases, beliefs over-react and they do so more

for longer maturities.

Theorem (2) also shows that in reduced form, for a given value of ψθm, the diagnostic

model yields the same expectations for interest rates assumed in Section 2 and it therefore

yields the same rule for equilibrium yields as in Theorem (1):

yθt,m = aθm + (bQm)>Xt + ψθm(bPm)>Xt,

where however we consider the realistic multi-factor setting and the coefficients bPm and

bQm are now vectors, with different entries for different factors. Of course, the distortion

ψθm now depends on the data generating process, on maturity m, and on diagnosticity θ.

This aspect places restrictions in the quantitative analysis.

1.5.2 Calibration

Theorem (1) suggests two independent routes to estimate the same primitive parameter

θ. First, I retrieve θ using the profile of CG coefficients βm, obtained with recovered

beliefs. I match βm with their theoretical counterparts, as derived in Theorem (1). I can

then assess the fitting ability of such estimated θ on excess volatility. Second, I follow

the mirror route: I estimate θ by matching excess volatility, and then assess its ability in

fitting the profile of CG coefficients.

For the first exercise, I estimate θ that best matches the profile of CG coefficients. Note

that the fit here cannot be perfect: in the short end of the curve Ross recovered be-

liefs under-react, a pattern which cannot be rationalized under diagnostic expectations,
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namely θ > 0. The estimated value obtained when using this method fulfills:

θ̂ = arg min
θ

30∑
i=2

(
β̂m − βθm

)2
≈ 0.7.

Second, I consider excess volatility. The diagnostic parameter θ disciplines excess volatil-

ity: the excess sensitivity of yields to factors is controlled by ψθm, which is a function

of the rational conditional variance of interest rates with maturity m and the rational

unconditional variance of interest rates with the same maturity. The variance of yields in

a diagnostic world relates to the variance of yields in a rational world as:

VP[yθm,t]︸ ︷︷ ︸
data

= VP[yt,m]︸ ︷︷ ︸
RE model

+ψθm(bPm)>ΣbPm,

From this observation, I can calibrate the diagnostic parameter θ from the excess

volatility of yields itself. Indeed, the variance of rational yields of the right hand side can

be estimated by fitting the short end of the yield curve as in Giglio and Kelly (2018),

while bPm is can be computed using the estimated persistence ρP obtained from a VAR(1)

estimation of the P-factor dynamics16. Therefore, I estimate θ as:

θ̂ = arg min
θ

30∑
i=1

(
VP[yθm,t]− VP[yθ=0

t,m ]− ψθm(bPm)>ΣbPm)2
)2
≈ 0.47.

The two estimates differ, but remarkably they are close to previous estimates of param-

eter θ obtained using different data and different methodologies. For instance, Bordalo

et al. (2018a) use survey forecasts of professional forecasters for many macro-financial

variables and shows that typically there is over-reaction with magnitude θ ∼ 0.6, and

equal to θ ∼ 0.48 for medium to long term interest rates. This is an additional confirma-

tion that in my setting Ross recovery captures robust patterns of beliefs. To grasp the
16 I used the methodology of Section 3 and imposed consistency across short maturities, namely:

ρ̂Q := arg minρQ
(

1
TM̄

∑
t,m

(
yt,m − ȳt,m

)2). M̄ is set as equal to 5: it quantifies how short the short
end of the yield curve is. Robustnesses relative to the parameters to be included in the short end show
consistency of the results.
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quantitative meaning of the estimated values of θ, consider the benchmark θ = 1. In this

case, distorted forecasts of long maturity rates are equal to the rational forecast plus the

revision. Assuming that the baseline rational forecast for the long run rate is around 2%,

after the arrival of news indicative of a higher rational forecast of 3%, the diagnostic fore-

cast will be then 4%. Distortions are thus sizable. This back-of-the-envelope calculation

shows that the numbers at play are economically relevant.

Having estimated values for the distortion parameter θ, we can now evaluate the ac-

curacy of the diagnostic model for excess volatility in interest rates. Figure (1.7) reports

the volatilities of yields at different maturities obtained under a three factor affine rational

model, namely a counter-factual model setting θ = 0, together with the variance of yields

obtained from the same model in which we plug the estimated θ ≈ 0.47 and θ ≈ 0.7.

Figure 1.7: Excess volatility in the data (blue up triangle) versus the fit of a rational
expectations affine model (red down triangle) and the diagnostic expectations affine model
with θ ≈ 0.47 (green right triangle) and θ ≈ 0.7 (purple left triangle).

Figure (1.7) shows that diagnostic expectations capture much of the variation of

the yield curve. At the longest maturity available, diagnostic expectations fit roughly
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√

VP[yθ̂t,30]
VP[yθt,30] ≈ 82% of excess volatility. Considering the distortion parameter estimated from

the profile of CG coefficients, θ ≈ 0.7, provide an explanation of ≈ 55 % of the excess

volatility. This latter case shows that information implied from CG coefficients actually

does help explaining excess volatility.

The symmetric question is, as suggested by Theorem (1), how much of the predictability

of the forecast error can be explained from a distorting parameter θ which is inferred from

excess volatility? The link between the forecast error predictability (CG coefficients) and

the over-reaction is the one in Theorem (2), where the coefficients ψθm have now been

derived from the diagnostic expectations model.

Figure 1.8: CG coefficients from Blue Chip data (blue up triangle), recovered beliefs (red
right triangle) and implied by the calibrated diagnostic expectation model for θ̂ ≈ 0.47
(green left triangle) and θ̂ ≈ 0.7 (purple down triangle).

Figure (1.8) shows the term structure of CG coefficients, in the data (survey data in

Blue, Ross recovered beliefs in red) as well as the βm profiles implied by the calibrated

parameters θ̂ ≈ 0.47 from excess volatility (green) and the calibrated distorted parameter

θ̂ ≈ 0.7 from CG coefficients (purple). The fit is not expected to be perfect because under-
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reaction cannot be reconciled directly with the diagnostic expectation model. Indeed,

within this model, the CG coefficients should be negative. The presence of under-reaction,

particularly at short maturities, has been previously documented by different authors

(Bouchaud et al. (2019), Bordalo et al. (2018a)). Other forces may be at play other

than representativeness, such as disagreement and informational frictions, which needs to

be further investigate. When considering the whole term structure, however, there is a

clear pattern of increasing reaction to news, and, in particular, or over-reaction at long

maturities.

1.6 Robustness

In this Section, I discuss theoretical and empirical robustness to the recovery theorem.

Then, I consider different specifications of the forecast error predictability tests. Finally,

I consider alternative specifications of the diagnostic expectations model.

1.6.1 Empirical implementation of the recovery theorem

Discretization and sampling frequency

Figure (1.9) shows that the number of states chosen for the discretization for each factor

(N = 25, 50, 75, 100) and the sampling frequency (daily versus monthly) do not qualita-

tively affect the CG coefficients curve.

Error predictability in different sub-samples

The level of the nominal yield curve is close to unit root process, especially at high

frequency (e.g. daily). Does possible non stationarity relates to under/over-reaction

to news? Figure (??) shows that the decreasing pattern in CG coefficients survives in

different subsamples.
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Figure 1.9: Left panel: CG coefficients at the monthly frequency. Right panel: CG
coefficients at the daily frequency.

1.6.2 Predictability of the forecast error, different tests

News have been defined as the difference between the rational forecast and the average

forecast, in the diagnostic expectation model used. Here I consider CG like tests, where

the forecast revision is defined as the difference between the rational forecast and the long

run forecast. The figure shows qualitative agreement, both using survey data and using

recovered beliefs.
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Figure 1.10: Left panel: Blue Chip Financial. Right panel: Ross recovered beliefs

1.6.3 Diagnostic Expectations: different benchmark distribu-

tions

One important degree of freedom in the specification of the diagnostic expectation model

is the choice of the comparison distribution. Here, I have chosen the unconditional or

long run distribution of future rates. This is a convenient choice because the diagnostic

distribution remains Markovian, namely rt,m depends on Xt but not on Xt−1,Xt−2, . . . . It

is however important to investigate what changes with different benchmark distributions.

Over-reaction relative to time t− 1 prediction

Consider the following specification, inspired by Bordalo et al. (2018b)17:

fPθ(rt,m|Xt) ∝ fP(rt,m|Xt)
(
fP(rt,m|Xt)
fP(rt,m|Xt−1)

)θ
.

The diagnostic distribution of rt,m in this case is still Gaussian, with mean:
17In Bordalo et al. (2018b), the authors consider the convenient benchmark distribution as

fP(rt,m|Xt := Xt−1). This simplifies the algebra of diagnostic expectations: only the first moment is
distorted and the distortion is independent of the maturity. This assumption is innocuous from a single
horizon perspective, which is the setting of Bordalo et al. (2018b), yet it forces the law of iterated ex-
pectations to hold, differently from slight perturbations of the benchmark distribution. Therefore, this
simplifying assumption is not appropriate for my setting.
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EPθ
t [rt,m] = EP

t [rt,m] + ψθm
(
EP
t [rt,m]− EP

t−1[rt,m]
)

and variance:

VPθ
t [rt,m] =

(
θ + 1

VP
t [rt,m] −

θ

VP
t−1[rt,m]

)−1

,

where

ψθm :=
θ

VP
t [rt,m]

VP
t−1[rt,m]

1 + θ − θ V P
t [rt,m]

VP
t−1[rt,m]

.

Also in this case, the distortion coefficients ψθm starts at zero (namely limm→0 ψ
θ
m = 0),

asymptotically approaches θ (namely limm→∞ ψ
θ
m = θ) and they are increasing. Moving

to risk neutral distorted expectations, the diagnostic yield curve reads:

yθt,m = a
θ

m + (bQm)>Xt + ψθm
(
(bPm)>Xt − (bPm+1)>Xt−1

)

In this case, the relation between the volatility of the yields in a diagnostic world,

relative to the rational one is modified by forecast revision of interest rates. After good

news yields are higher while after bad news are lower, relative to the RE case. Un-

conditionally, yields display higher variance in the diagnostic case, since the extra term

ψθm(bPm)>Xt − (bPm+1)>Xt−1 is positively correlated with (bQm)>Xt. This is so because

bPm+1 < bPm and the P persistence is on average smaller than one (or in the on linear case
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it is assumed the be smaller than one on average). they display higher volatility.

Over-reaction relative to time t− k prediction (k > 1)

In this case the logic of the case k = 1 still goes through with:

ψθm :=
θ

VP
t [rt,m]

VP
t−k[rt,m]

1 + θ − θ V P
t [rt,m]

VP
t−k[rt,m]

.

and:

yθt,m = aθm + ψθm
(
(bQm)>Xt+1 − (bP)>m+kXt−k

)
.

Over-reaction relative to a weighted average of past predictions

Yesterday information and average information are two useful benchmark, yet one may

consider a more "colorful" memory. I consider the following specification, inspired by

Bordalo et al. (2018b), Internet Appendix):

fPθ(rt,m|Xt) ∝ fP(rt,m|Xt)
M∏
k=1

(
fP(rt,m|Xt)
fP(rt,m|Xt−k)

)θak
.

where 0 ≤ ak ≤ 1 are positive weights on past information such that ∑k ak = 1 and

1 ≤ M ≤ ∞.18 The diagnostic distribution of rt,m in this case is still Gaussian, with

mean:

18When M =∞ suitable regularity conditions need to be assumed for convergence.
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EPθ
t [rt,m] = EP

t [rt,m] + ψθm

EP
t [rt,m]−

M∑
k=1

akEP
t−k[rt,m]



and variance:

VPθ
t [rt,m] =

 θ + 1
VP
t [rt,m] − θ

M∑
k=1

ak
VP
t−k[rt,m]

−1

,

where

ψθm :=
θVP[rt,m]∑M

k=1
ak

VP
t−k[rt,m]

1 + θ − θVP[rt,m]∑M
k=1

ak
VP
t−k[rt,m]

.

Also in this case, the distortion coefficients ψθm starts at zero (namely limm→0 ψ
θ
m = 0),

asymptotically approaches θ (namely limm→∞ ψ
θ
m = θ) and they are increasing. Moving

to risk neutral distorted expectations,the diagnostic yield curve reads:

yθt,m = aθm + ψθm

(bQm)>Xt+1 −
M∑
k=1

ak(bP)>m+kXt−k

 .

The diagnostic yield curve is highly non Markovian in this case, yet it still feature the

excess volatility pattern.
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1.7 Conclusions

This paper shows empirically that beliefs distortions increases with maturity (decreasing

CG coefficients) and that this is tightly linked to the excess volatility in the term structure

of asset prices documented by Giglio and Kelly (2018) under the class of affine term

structure models. The crucial property that beliefs fail in the data and that accounts

for excess volatility is the law of iterated expectations. I show that a diagnostic affine

model, can quantitatively capture the variation in excess volatility and the distortions in

the individual beliefs. In the model agents over-react differently for different levels of the

fundamental uncertainty, which naturally varies in the context of term structure. This

approach is a first step toward two research direction: the investigation of the effects of

higher moments in beliefs distortions and the incorporation of non rational beliefs into

quantitative finance models. At the aggregate level, I show the beliefs dynamics mixes

under-reaction at short maturities and over-reaction at long-maturities. A foundation

of such cross-over needs further investigations. Methodologically, this paper implements

empirically the Ross Recovery theorem in the context of the term structure of interest

rates, and show that, despite the identification problem raised by Borovička et al. (2016),

recovered beliefs can spot inter-temporal belief inconsistencies. This is important to

augment survey data with asset prices information and it is portable to different domains,

such as the study of the equity term structure.



1.7. CONCLUSIONS 53

A Affine term structure models with overreacting beliefs

Consider first the standard Q-affine term structure models, which are defined by the two

following ingredients. First, few factors (or state variables) Xt = (X1,t, X2,t, · · · ) drive

the short rate in an affine fashion and, second, the Q-dynamics (assuming no arbitrage)

of the factors is a VAR(1) with homoskedastic shocks.


rt = δ0 + δ>1 Xt

Xt = ρQXt−1 + ΣQεQt .

This defines the class of Q-affine models I consider, together with sufficient regularity

conditions for the quantities computed to be well defined. The convenient affine specifi-

cation and linear dynamics implies that prices are exponentially affine in the factors:

yt,m = − 1
m

logPt,m = − 1
m
EQ
t [em·rt,m ]

= δ0 − logEQ
t

[
e−ε

Q
t,m

]
+ δ>1
m

m−1∑
i=0

(ρQ)iXt,

where bQm = δ>1
m

∑m−1
i=0 (ρQ)i and εQt,m = ∑m−1

k=1
∑l
i=1(ρQ)l−1ΣQεt+i. The previous expression

is affine since Q shocks are independent of time t information and therefore the cumulant

generating function in the previous expression is maturity dependent by not state depen-

dent. This setting is quite general since I do not have assumptions about the physical

measure nor about the SDF other than technical regularity conditions, which are worked

out in Le et al. (2010).

First, I discuss how this setting relates to the empirical analysis of Section 3 and Section

4 and then how this setting relates to the theoretical model of beliefs formation developed

in Section 2. I do so by incrementally adding structure and assumptions needed, relative

to the Q-affine benchmark so far discussed.
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In section 3, I apply the recovery theorem independently estimating the Q measure at

different maturities. This amounts to detect distortions in the sensitivity coefficients

bQm = δ>1
m

∑m−1
i=0 (ρQ)i. Theorem (1) shows that overreacting beliefs can both generate such

distortions, which, in turn, account for the Giglio and Kelly (2018) excess volatility puzzle

and explain the predictability of forecast error documented with survey data.

How do beliefs generate such distortions? Assume that, under the physical measure P,

factors evolves in a Markovian fashion:

Xt+m = f (m)(Xt)Xt + ΣPεPt+m,C ,

where f (m)(Xt−1) = f(f(· · ·︸ ︷︷ ︸
m times

(Xt−1) denotes a Markovian, yet possibly non linear dy-

namics for the factors and εPt+m,C = ∑m−2
i=0 f (i+1)(Xt)ΣPεPt+1+i denotes the cumulated shock

to maturity m, which is heteroskedastic if the P-dynamics is non linear. Then, assume

that, when considering horizon m, the market distorts the dynamics of the factors in a

maturity m dependent fashion. Formally, ∀ l ≤ m:

Xt+l = (1 + ψθm)f (l)(Xt)Xt + σθmε
P
t+l,C .

The local persistences of all fundamentals up to time t + m are inflated if ψθm > 0.

Equivalently, cumulated shocks on the factors at time t+ l when forming expectations at

maturity m ≥ l are distorted as:

εP
θ

t+l,C = σθmε
P
t+l,C + ψθmf

(l)(Xt)Xt.

Then, the distorted interest rates to maturity m at time t reads:

rt,m = 1
m

m−1∑
i=0

rt+i = δ0 + (1 + ψθm)bPm(Xt)Xt + σθmε
P
t+m,C ,
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where bPm as well as cumulated shocks to interest rates are defined as in Section 2.

Then, I assume that the SDF is such that:

Xt+l = (ρQ)lXt + ψθmf
(l)(Xt)Xt + σθmε

Q
t+l,C .

Equivalently, shocks on the factor at time t+l when forming risk adjusted expectations

at maturity m ≥ l are distorted as:

εQ
θ

t+l,C = σθmε
Q
t+l,C + ψθmb

P
m(Xt)Xt.

which implies that:

rt,m = 1
m

m∑
i=0

rt+i = δ0 + bQmXt + ψθmb
P
m(Xt)Xt + σθmε

Q
t,m.

This expression settles the ground to test both excess volatility of yields (bPm(Xt)

positively and increasingly in m contributing to the volatility of yields) and increasingly

over-reacting beliefs (ψθm > 0 and increasing in m).
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B Estimation

Factor construction

I use the data available from Gürkaynak et al. (2007), who provide a daily estimate of

the yield curve, from ??, with maturities 1y, 2y, . . . 30y

Factors are constructed as follows. First estimate of the variance covariance matrix as:

1
T

T∑
t=1

yty
>
t︸ ︷︷ ︸

30×30

.

Then, I consider the first three principal components of the variance covariance matrix,

PC1︸ ︷︷ ︸
30×1

. PC1 and PC3. Principal components are unconditionally orthogonal. For i = 1, 2, 3,

I build factor Xi as the projection of the yield curve into PCi:

Xt,i := 〈PCi, yt〉.

Principal components and factors are plotted in Figure ??.

Parameter Estimation

We want to estimate the parameters of the risk neutral dynamics:

yt+1 = δ0 + δ>1 Xt

Xt = ρXt−1 + ΣCεQt

where is the upper triangular Cholesky decomposition of the one period variance-covariance

Σ. This is assumed not to be stochastic and to be the same under Q and under P. There-
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fore is can be estimated via OLS.

In order to estimate the remaining parameters ρ1, ρ2 and ρ3, let me compute the affine

relation for yields. The price at time t of a bond with time to maturity m ≥ 1 is:

Pt,m = e−yt,mm = EQ
t

[
e−(rt+1+···+rt+m)

]
=

= exp−δ0m−

 3∑
i=1

δ1,i

m−1∑
k=0

ρki

Xt,iEQ
t

exp−
m−2∑
i=0

δ>1 ΣCρi

 .
Moving from prices to yields:

yt,m = − logPt,m
m

= δ0 + δ>1
∑m−1
k=0 ρ

k

m
Xt −

logEQ
t

[
exp−∑m−2

i=0 δ>1 ΣCρi
]

m

Note that the maturity m need to be expressed in the same units of the sampling

frequencies. For example, for monthly data and yearly maturities for 1y to 30y, the

maturities should be expressed in months, m = 12× 1, . . . 12× 30.

Let us know discuss hot to estimate model’s parameters via OLS. First, we get δ̂0, δ̂
>
1 via

OLS estimation of:

y1
t := rt = δ0 + δ>1 Xt.

Thus we can estimate ρi,τ as:

ρ̂ := arg min
ρi,τ

 1
T

T∑
t=1

30∑
m=1

yt,m(ρ)− ȳm,t

2

,

where yt,m(ρ) is computed via the affine relation, while ȳm,t denote the data. Similarly,



58 Ross Recovery Theorem and the term structure of beliefs

for computing, maturity by maturity parameters, I compute:

ρ̂m := arg min
ρi,τ

 1
T

T∑
t=1

yt,m(ρ)− ȳm,t

2

.

Discretization

I need to discretize the state space in order to compute the Arrow-Debreu price matrix.

There are well known methods to efficiently discretize an AR(1). In the case of multi-

variate processes with not trivial correlations, the following transformation provide a set

of uncorrelated equation:

Xt −→ Zt := ΣC−1Xt.

Now, consider the VAR(1) Q-dynamics:

Xt = ρXt−1 + ΣCεQt .

Multiplying both sides by ΣC−1, I get:

Zt = ρZt−1 + εQt .

This is a system of three independent AR(1) that can be independently discretized.

After the discretization I come back to the real factor with the inverse transformation to

the discretized version of Zt, say ZD
t :
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XD
t ←− ΣCZD

t .

I rely on the Rouwenhorst discretization method, which matches conditional and un-

conditional first and second moments, and is the state of the art among those technique.

I use 10 levels for each factor, thus having overall 1000 states. This choice does not seems

to affect the results.

C Tables
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The estimated covariance matrix of the factors is:

Σ =



1. −0.333506 −0.221877

−0.333506 1 0.033376

−0.221877 −0.333506 1


.

The Cholesky decomposition of the estimated covariance matrix of the factors is:

ΣC =



1. 0. 0.

−0.333506 0.94274798 0

−0.221877 −0.0430882 0.974122171


.

Average estimated ρ :

ρQ =



0.968190 0 0

0 0.92868686 0

0 0 0.911450
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D The Recovery Theorem

Let me now show how the path independence assumption helps with the identification of

beliefs. Under path independence the fundamental asset pricing equation can be written

as:

Aθ
ijzj = δziPθij.

Noticing that probabilities add up to one, one gets:
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∑
j

Aθ
ijzj = δzi.

This is an eigenvalue problem from the Arrow-Debreu matrix. By Perron-Frobenious

theorem19 ( see Meyer (2000)), the Arrow-Debreu matrix has unique positive eigenvector

(which can be identified with z) corresponding to the largest eigenvalue (which can be

identified with δ). Therefore, under path independent SDF it is possible to identify beliefs

as:

Pθij = Aθ
ij

1
δ

zj
zi
.

So far, I exploited only one period Arrow-Debreu prices. Do prices of multi-period

Arrow-Debreu secutiries provide additional information? If the law of iterated expectation

holds, then long term beliefs are iterations of short term belies:

Pm = P× · · · × P︸ ︷︷ ︸
m times

= Pm,

where Pm is the m-th power of the one period transition probability matrix P. In this

case one period Arrow-Debreu prices are sufficient to identify the term structure of beliefs.

However, if the law holds true or not is ultimately an empirical question: moreover, a

testable implication of the law of iterated expectation is the fact that the term structure of

CG coefficients needs to be flat (2). Given a panel of bond prices {Pt,m}t,m, Arrow-Debreu

prices to maturity m can be therefore estimated by relying of the time series {Pm,t}t only.

Using the recovery theorem, the econometrician can access the term structure of beliefs
19The Perron-Frobenious theorem assumes a positive and irreducible matrix. The Arrow-Debreu matrix

is positive and irreducible under no arbitrage.
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Pθm, where [Pθm]ij is the believed probability of transitioning from state i to state j in m

steps and test the horizon dependence of beliefs as discussed in (2).
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E Proofs

Proposition 1

Proof. From the last equation in Appendix A, it is straightforward to compute:

yt,m = − 1
m
EQθ
t

[
e−m·rt,m

]
= δ0 −

1
m

logEQ
[
e−σ

θ
mε

Q
t,m

]
+ bQmXt + ψθmb

P
m(Xt)Xt.

The expectations is the cumulant generating function is independent of time t infor-

mation because Q shocks are homoskedastic.

Theorem 1 (Increasing over-reaction and excess volatility)

Proof. First, in order to compute the forecast of future yields (which are an endogenous

variable) at maturity m, note that the agent first compute distorted forecasts of factors

and then she plugs those in into the pricing equation which relates yields to factors.

Therefore, there is a compounding effect of distortion coefficients, which will appear in

the following calculations. The following approximation will be helpful. Consider the

term:

b>mCov(Ft[Xt+1], Ft[Xt+1]− Ft−k[Xt+1])bm
b>mV[Ft[Xt+1]− Ft−k[Xt+1]]bm

,

where Ft[Xt+1] − Ft−k[Xt+1] is the forecast revision, when the reference distribution

in the expectation model is the k−lagged one. The case k = ∞ corresponds to taking

the unconditional (or historical) average as benchmark. Convex combination of the past

forecasts can be easily handled as well. In this proof, bm := bPm(Xt) for convenience of

notation. If the DGP is a V AR(1) with diagonal persistence matrix ρ, then:
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b>mCov(Ft[Xt+1], Ft[Xt+1]− Ft−k[Xt+1])bm
b>mV[Ft[Xt+1]− Ft−k[Xt+1]]bm

= 1− b>m(ρ2 − ρ1+k)V[Xt]bm
b>mV[Ft[Xt+1]− Ft−k[Xt+1]]bm

. (14)

Therefore, the term is approximately equal to one, for highly persistent processes. The

argument goes through also for non linear processes, provided that the local persistence

ρ(Xt) is, on average, close to one. Moreover, for a fixed persistence matrix ρ, the devia-

tion from one, asymptotically vanishes for m → ∞. This is so because each entry of bm

convergences geometrically for large maturities. The approximation is exact also in the

special case of exactly equally persistent factors or in the special case of a single factor

model.

i) Under rational expectations. βm = 0 because the forecast error is unpredictable on

the basis of past information.

Under maturity independent distortion ψθ:

βm =
Cov

(
FEθ

t+1[yθt+1,m], FRθ
t [yθt+1,m]

)
V
[
FRθ

t [yθt+1,m]
] = −ψ

θ(1 + ψθ)
(1 + ψθ)2

(bθm)>Cov
(
Ft[Xt+1], FRt[Xt+1]

)
bθm

(bθm)>V[FRt[Xt+1]]bθm
.

Under average reference forecast or under one factor model or under approximation (14)

the second fraction reduces to a positive constant. Therefore βm is negative ⇐⇒ ψθ > 0.

Under maturity dependent distortion ψθm:

βm =
Cov

(
FEθ

t+1[yθt+1,m], FRθ
t [yθt+1,m]

)
V
[
FRθ[yθt+1,m]

]

= −ψ
θ
m+1(1 + ψθm)
(1 + ψθm)2

(bθm)>Cov
(
Ft[Xt+1], Ft[Xt+1]− ψθm+2

ψθm+1
Ft−1[Xt+1]

)
bθm

(bθm)>V[Ft[Xt+1]− ψθm+2
ψθm+1

Ft−1[Xt+1]]bθm
.

Under average reference forecast or under one factor model the second fraction reduces to
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a positive constant. Under approximation (14) and assuming ψm+2
ψm+1

ρi < 1 for each entry

of the persistence matrix ρ, the second fraction reduces to a positive constant. βθm is thus

negative and increasing ⇐⇒ ψθm > 0 and ψθm is increasing in m.

ii) It follows from the expression in Proposition (1).

Theorem 2

Proof. i) Calculations

ii)

1.) Under rational expectations, the misspecified CG coefficients, computed with

forecasts identified by the recovery theorem and distorted by the martingale component

of the SDF, are:

β̃m =
Cov

(
F̃Et+1[yt+1,m], F̃Rt[yt+1,m]

)
V
[
F̃Rt[yt+1,m]

] .

First, consider the one period ahead misspecified forecast. I drop the additive con-

stant aQm in the following calculations, because it is inessential for the computation of

covariances.

F̃t[Xt+1] = b>mEt [ht+1Xt+1] = b>mEt [Xt+1]Et [ht+1] + b>mCovt (ht+1,Xt+1)

= b>mEt [Xt+1] + b>mCovt (ht+1,Xt+1) .

Therefore, the misspecified forecast error reads:

F̃Et+1[yt+1,m] = yt+1,m − Ẽt
[
yt+1,m

]
= FEt+1[yt+1,m]− b>mCovt (ht+1,Xt+1) .
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Similarly, the two period ahead misspecified forecast reads:

F̃t−1[yt+1,1] = b>mEt−1 [ht+1Xt+1] = b>mEt−1 [Xt+1]Et−1 [ht+1] + b>mCovt−1 (ht+1,Xt+1)

= b>mEt−1 [Xt+1] + b>mCovt−1 (ht+1,Xt+1) .

The forecast revision of yields with maturity m reads:

F̃Rt[yt+1,m] = FRt[yt+1,m] + b>m
(
Covt (ht+1,Xt+1)− Covt−1 (ht+1,Xt+1)

)
.

The covariance between forecast error and forecast revision reads:

Cov
(
F̃Et+1[yt+1], F̃Rt[yt+1,m]

)
= b>mB1bm,

where:

B1 := −Cov
(
Covt (ht+1,Xt+1) , F̃Rt[Xt+1]

)
.

I used the fact that under rational expectations the forecast error and the forecast

revision are orthogonal. Note that the term B1 does not depend on the maturity m. The

variance of the forecast revision reads:

V
[
F̃Rt[yt+1,m]

]
= b>m

(
FRt[Xt+1] + B2

)
bm,

where:

B2 = V
[
Covt (ht+1,Xt+1)− Covt−1 (ht+1,Xt+1)

]
+ 2Cov

(
FRt[Xt+1], Covt (ht+1,Xt+1)− Covt−1 (ht+1,Xt+1)

)
.
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The misspecified CG coefficients therefore read:

β̃m =
b>m
(
Cov

(
FEt+1[Xt+1], FRt[Xt]

)
+B1

)
bm

b>m
(
V[FRt[Xt+1]] + B2

)
bm

= b>mB1bm
b>m
(
V[FRt[Xt+1]] + B2

)
bm
,

which, under approximation (14), does not depend on m. The denominator is positive,

since it is a variance. The numerator is positive in the case of standard consumption based

asset pricing models20. In this case, the econometrician detects a flat term structure of

CG coefficients, even though there are not departures from RE. Conversely, a non trivial

term structure of CG regression coefficients reveal to the econometrician that beliefs are

not rational.

2. Non rational expectations. First, consider the one period ahead misspecified forecast.

I drop the additive constant aQθm in the following calculations, because it is inessential for

the computation of covariances.

F̃E
θ

t+1,m := ȳθt+1,m − EP̃θ
t

[
yθt+1,m

]
= ȳθt+1,m − (1 + ψθm+1)EP̃

t

[
yθt+1,m

]
ȳθt+1,m − EP̃θ

t

[
yθt+1,m

]
= ȳθt+1,m − (1 + ψθm+1)(EP̃

t

[
yθt+1,m

]
+ EP

t

[
yθt+1,m

]
− EP

t

[
yθt+1,m

]
)

= FEθ
t+1,m +

(
EP
t

[
yθt+1,m

]
− EP̃

t

[
yθt+1,m

])
− ψθ

m+1EP̃
t

[
yθt+1,m

]
.

Distorted and misspecified CB coefficients reads:

β̃θm = βθm +
bθm
>
(
Cov

(
Ft+1[Xt+1]− F̃t[Xt+1], F̃t[Xt+1]− ψm+2

ψm+1
F̃t−1[Xt+1]

)
+B1

)
bθm

bθm
>
(
V[F̃Rt[Xt+1]] + B2

)
bθm

the second term, under one factor model or under approximation (14) does not depend
20In standard consumption based asset pricing models, the SDF is negatively correlated with con-

sumption growth, which corresponds to a linear combination of the factors. Therefore, when positive
news arrives, the first term in the unconditional covariance in B1 decreases, while the forecast revision
increases. The unconditional covariance is therefore negative and thus B1 is positive.
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on m. The coefficients β̃θm are negative and decreasing iff ψθm is positive and increasing

and provided that (bθm)>V[F̃t[Xt+1]]bθm
(bθm)>Cov(F̃t[Xt+1],F̃t−1[Xt+1]bθm

>
ψθ2
ψθ1
. Differences of distorting coefficients

remain identified.

Theorem (3 ( P-diagnostic expectations)

Proof.

rt,m
P∼ N

(
δ0,

1
m2 (δ1)>Σ(1− (ρP)2))−1δ1

)

and

rt+m|Xt
P∼ N

δ0 + (δ1)>
m−1∑
i=0

(ρP)i
Xt,

1
m2 (δ1)>Σ

m−2∑
i=0

(ρP)2i

 δ1

 .

We want to compute the distribution:

fPθ(rt+m|Xt) ∝ fP(rt+m|Xt)
(
fP(rt+m|Xt)
fP(rt+m)

)θ
. (15)

First observe that, given G1 ∼ N (µ1, σ
2
1) and G2 ∼ N (µ2, σ

2
2) with σ2

2 > σ2
1:

1∫
R fG2(x)

(
fG1 (x)
fG2(x)

)θ
dx

fG2(x)
fG1(x)
fG2(x)

θ
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is a Gaussian pdf with mean:

µ1 +
θ
σ2

1
σ2

2

1 + θ − θ σ
2
1
σ2

2

(µ1 − µ2),

and variance:

(
1 + θ

σ2
1
− θ

σ2
2

)−1

.

Then, apply the previous computation to rt,m.

Rational pricing of zero coupon bonds

Consider the arbitrage free price of zero coupon bonds (ZCB) at time t with time to

maturity t+m:

Pt,m = EQ
t

[
e−rt,m

]
,

where, as usual, rt,m =
∑m−1

i=0 rt+i
m

and rt denotes the short rate at time t. Assume that

the short rate is an affine function of a set of factors, rt = δ0 + δ>1 Xt, which evolve as a

VAR(1) under the risk neutral measure:

Xt+1 = ρQXt + ΣQCεQt+1.

ΣQC is upper triangular, ρQ is diagonal and ΣQ := (ΣQC)>ΣQC is the variance covariance

matrix of the residuals. Then, rt,m has conditional risk neutral mean and variances given

by:
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EQ
t [rt,m] = δ0 + δ>1

∑m−1
i=0 (ρQ)iXt

m

VQ
t [rt,m] =

δ>1
∑m−2
i=0

∑i
j=0(ρQ)2jΣQδ1

m2

Consider the following class of additive P-dynamics for the factors.

Xt+1 = fP(Xt) + ΣPCεPt+1,

where ΣPC is upper triangular, fP(Xt) is diagonal and ΣP := (ΣPC)>ΣPC is the vari-

ance covariance matrix of the residuals. The P dynamics is assumed to be Markovian as

the risk neutral one and with additive noise. It not assumed to be linear. The linear case

is simply recovered imposing fP(Xt) = ρPXt. Then, rt,m has conditional physical mean

and variances given by:

EP
t [rt,m] = δ0 + δ>1

∑m−1
i=0 (fP

i (Xt)
m

VP
t [rt,m] =

δ>1
∑m−2
i=0

∑i
j=0(fP

j )2ΣPδ1

m2 ,

where fP
0 (Xt) = Xt, fP

1 (Xt) = fP(Xt) and, for i > 1, fP
i (Xt) = fP(. . . fP︸ ︷︷ ︸

i times

(Xt)).

Thus, under this class of asset pricing models the following change of measure applies:

ΣQCεQt+1 = ΣPCεPt+1 + (fP(Xt)− ρQXt)

= ΣPCεPt+1 + EP
t [Xt+1]− EQ

t [Xt+1] .

Effective shocks to interest rates with maturity m, rt,m − Ekt [rt,m], for k = P,Q are given
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by:

δ>1

m−2∑
i=0

i∑
j=0

(ρQ)jΣQεPt+i = δ>1

m−2∑
i=0

i∑
j=0

fP
j (Xt)ΣPεPt+i +m

δ>1 m−1∑
i=0

fP
i (Xt)− δ>1

m−1∑
i=0

(ρQ)iXt

 ,
or:

√
VQ
t [rt,m]εQt,m =

√
VP
t [rt,m]εPt,m + EP

t [rt,m]− EQ
t [rt,m], (16)

where: εkt,m :=
∑m−1

i=1

∑i

j=0 ε
k
t+j

m
, for k = P,Q.

Pricing of zero coupon bonds with over-reacting beliefs

First consider the case in which beliefs distortions only affects linearly the first moment:

EPθ
t [rt,m] := at,mEP[rt,m]+bt,m, where at,m, bt,m and known at time t. Then, an agent which

believes EPθ
t [rt,m] is the correct mean, while having the same preferences as in the rational

case, will adjust beliefs as:

√
VQ
t [rt,m]εQt,m =

√
VP
t [rt,m]εPt,m + at,mEP

t [rt,m] + bt,m − EQθ
t [rt,m].

The risk neutral distorted expectation EQθ
t [rt,m] is determined from the condition that

the change of measure (preference adjustment) is unchanged:

EQθ
t [rt,m] = EQ

t [rt,m] + (at,m − 1)EP
t [rt,m] + bt,m.

Consider now the case in which the variance is also distorted, in particular it is scaled

as: VPθ
t [rt,m] = c2

t,mVP
t [rt,m], where c2

t,m is known at time t. Then:

√
VQθ
t [rt,m]εQt,m = ct,m

√
VP
t [rt,m]εPt,m + at,mEP

t [rt,m] + bt,m − EQθ
t [rt,m].
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Then:

VQθ
t [rt,m] = VQ

t [rt,m]ct,m,

and:

EQθ
t [rt,m] = EQ

t [rt,m] + (at,m − 1)EP
t [rt,m] + bt,m.

Note that if Pθ satisfies the law of iterated expectations, then:

EP
t−k[EPθ

t [rt,m]− EP
t [rt,m]] = (at−k,m − 1)EP

t−k[rt−k,m] + bt−k,m = EPθ
t−k[rt−k,m]− EP

t−k[rt−k,m].

This means that the conditional bias EPθ
t [rt,m] − EP

t [rt,m] is a P−martingale and it

is therefore unpredictable. Similarly, temporary misspricing is not predictable. In the

case the law is violated instead there is, in principle, predictable misspricing (arbitrage

opportunities).

F Additional Results

Figure (1.5) shows that distortions from recovered beliefs are a combination of the "av-

erage" distortions (i.e. the distortion from the pooled regression) and of the distortion of

the "average" (i.e. the consensus forecast), at least statistically. To quantitatively pre-

dict the aggregate outcome, one would need a specific model of aggregation, which is left

for future work. The aforementioned mechanism proposed by Bordalo et al. (2018a) is

however consistent with some evidence from the cross-sectional dispersion of forecasters:

Figure (11) shows that the average cross-sectional dispersions decrease with maturity.

Views are more aligned for predictions at longer horizons than for predictions at shorter
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horizons21. However, at longer horizon, data are much less rich, which may weaken the

claim. In fact, as shown in Figure (1.5), the maturities 20y and 30y, it is not possible

to categorize forecasters along the mean square error dimension; also, for the consensus

forecast, confidence intervals are huge.

Figure 11: Time mean (blue circle) and median (red triangle) of analysts dispersion (cross
sectional standard deviation) as a function of the maturity.
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Chapter 2

Learning, Overreaction and the

Wisdom of the Crowd

2.1 Introduction

Departures from the standard Bayesian updating rule are well documented using both

experiments and survey data (e.g. Benjamin (2019)). For example, in financial markets,

the typical departure is that of over-optimistic beliefs, when good news are observed (e.g.

Bordalo et al. (2018a)). However, much of the literature focuses on decisions taken by

agents in isolation, abstracting away from another fundamental economic fact: interac-

tion. On the other hand, the study of interaction in the formation of expectations and

learning has been widely studied (Golub and Sadler (2017)), both under Bayesian behav-

ior (Banerjee (1992), Acemoglu et al. (2011), Bala and Goyal (1998)) and under simple

mechanical updating rules, such as averaging neighbors beliefs (e.g. Golub and Jackson

(2010)). The literature on social networks has focused on how the network structure of

interactions facilitates or forbids reaching consensus and learning. Recently, departures

from the Bayesian paradigm has been investigated in the context of social learning. For

example, Molavi et al. (2018) consider the case of beliefs updating with imperfect recall.

81
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Here we bridge the gap by considering a simple model of sequential learning where agents

- due to information processing limitations - depart from full Bayesian rationality. Agents

exhibit under/over-reaction to signals. Our main contribution is to characterize the in-

formation externalities caused by departures from Bayesian rationality. Specifically, we

find that over-reaction to news entails a positive externality, which partially heal the in-

formational cascade phenomenon, thereby increasing social informational efficiency. This

is surprising because one may expect individual biases to be socially inefficient.

We first introduce a model of non Bayesian updating, which features two specific ob-

served biases: over-reaction or under-reaction to information. While the origin of the two

mechanisms is thought to be different in nature 1 our model includes both cases. In the

case of over-reaction, our model is a learning analog of the diagnostic expectation model

of Bordalo et al. (2018b), which is a model of extrapolative predictions. We then apply

the model to study the learning problem of an isolated agent. We find that in the long-run

limit, the agent learns the true state of the world as in the Bayesian case. We show that

however the mean square loss of biased agents - a measure of individual inefficiency - is

not symmetric: under-reaction to information lead to greater losses than over-reaction to

information. In both cases, however, it is sub-optimal to have biased expectations.

What happens instead when agents interact? We focus on the stylized case of a sequential

decision task, as in the cascade literature started by Banerjee (1992) and Bikhchandani

et al. (1992). At each time step, an agent is born and she has to take a binary action

(e.g. buy or sell a financial asset) which corresponds to guess the true state of nature,

which is binary as well (e.g. the fundamental value of the asset). Her information set

consists of a private signal and past actions of other agents (e.g. past buy/sell orders). In

1Under-reaction to information can be rationalized by costly information acquisition. On the contrary,
over-reaction to information may be grounded in the Tversky and Kahneman (1974) representativeness
heuristic.
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the Bayesian setting, this framework leads to the phenomenon of informational cascades:

when the actions of previous agents are aligned enough, then future private signals be-

come irrelevant and each future agent is stuck in a specific action. This may result in a

cascade of wrong guesses. This is so because the mapping between private signals and

the history of actions (which is what is observed by future agents) is highly non injective.

Much of the information in the economy remain unexploited. We consider our model of

non Bayesian updating and we find that over-reaction helps injecting more information

into the history of actions, which is then exploited by future agents. We find that there

exists a unique socially optimal level of over-reaction, which maximizes the probability of

learning the true state of the world.

This insight also clarify that departures from Bayesian rationality - overreaction in par-

ticular - may be see from an evolutionary perspective as optimal with respect to the

objective of social informational efficiency.

2.2 A non Bayesian learning model

Consider an agent that has to learn the state of the world ω, on which she has a prior

belief, with density p0(ω). The agent observes a signal X, whose likelihood is known to be

l(X|ω). The Bayesian updating operator takes as inputs the prior density, the likelihood

function and the observed signal and it prescribes to move beliefs about ω from p0(ω) to

the Bayesian posterior:

BU(l, p0)(ω) := l(X|ω)p0(ω)∫
l(X|ω′)p0(ω′)dω′ . (2.1)

We propose the following distorted updating rule:

BU θ(l, p0)(ω) = l(X|ω)1+θp0(ω)∫
l(X|ω′)1+θp0(ω′)dω′ . (2.2)
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The scalar parameter θ > −1 controls the departure from the Bayesian case. When

θ > 0 the model delivers over-reaction to information and it is a learning analog of the

diagnostic expectation model of Bordalo et al. (2018b). To see this point, consider the

case θ > 0 and rewrite expression (2.2) as:

BU θ(l, p0)(ω) = 1
Z
BU(l, p0)(ω)

(
BU(l, p0)(ω)

p0(ω)

)θ
, (2.3)

where Z is a normalization constant. The previous formula says that states ω which

are more likely under BU(l, p0)(ω) than under p0(ω), i.e. representative states, are over-

weighted. On the contrary, states ω which are less likely under BU(l, p0)(ω) than under

p0(ω), are under-weighted. Thus, we say that for θ > 0 posterior beliefs over-react to

information. On the contrary, for −1 < θ < 0, posterior beliefs under-react to information.

When facing multiple data, X1, . . . , Xt, agents can update beliefs sequentially: in at each

step, the prior belief is the precious step distorted posterior belief. Alternatively agents

could update their beliefs only once, after observing the string X1, . . . , Xt. Define the

distorted updating given t observations as:

BU θt (l, p0)(ω) = l(X1, . . . Xt|ω)1+θp0(ω)∫
l(X1, . . . Xt|ω′)1+θp0(ω′)dω′ .

Then, the following consistency result shows that it is irrelevant which of the two

strategy is implemented.

Theorem 4. For k ∈ {1, . . . , t− 1}:

BU θt (l, p0)(ω) = BU θt−k(l,BU θk(l, p0))(ω)

Does learning take place? Expression (2.3) suggests the the Bayesian and the diag-
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nostic distribution are connecting by a continuous transformation, which preserve conver-

gence.

Theorem 5. Call ω∗ the true value of ω.

Learning occurs under Bayesian updating, i.e. BU t(l, p0) d→ δω∗ as t → ∞ if and only if

it occurs under distorted beliefs, i.e. BU θt (l, p0) d→ δω∗ as t→∞.

We now characterize the loss from using distorted posterior beliefs. Assume that the

goal of the agent is to minimize the sum of future discounted losses:

∞∑
t0

βtEt(ω − Eθtω)2.

Then, the following results characterizes the losses occurring with distorted beliefs.

Theorem 6. Under the updating model (2.2), the (cumulative) mean square error reads:

− log(1− β) +
∞∑
t=1

βt(Etω − Eθtω)2.

As expected, distorted beliefs are, in general, sub-optimal since (Etω − Eθtω)2 > 0.

Thus, in a world with distorted beliefs, an isolated agents eventually learn (or does not)

if the only if the Bayesian agent does. We now move to a concrete example to gain more

intuition.

2.2.1 Learning the mean from Gaussian i.d.d. draws

Suppose that an agent observes iid realizations of X ∼ N (µtrue, σ2). She knows the

variance σ2 and she has to learn the mean. Given X ∼ N (µtrue, σ2) and prior p0(µ) ∼
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N (µ0, σ
2
0), and t observations X1, . . . , Xt, we have:

pt(µ) := BU t(l, p0) ∼ N
( 1

σ2
0

+ t

σ2

)−1 (
µ0

σ2
0

+
∑t
i=1 Xi

σ2

)
,

(
1
σ2

0
+ t

σ2

)−1
 .

The distorted posterior distribution is:

pθt (µ) = BU θt (l, p0) = N
( 1

σ2
0

+ t(1 + θ)
σ2

)−1 (
µ0

σ2
0

+ (1 + θ)∑t
i=1 Xi

σ2

)
,

(
1
σ2

0
+ t(1 + θ)

σ2

)−1
 ,

since the only effect of the distortion is to modify the variance of the likelihood function

from σ2 to σ2

1+θ . Thus, the variance of the posterior diagnostic distribution is:

V[µθt ] =
(

1
σ2

0
+ (θ + 1)t

σ2

)−1

∼ σ2

(θ + 1)t ,

which is smaller then the variance of the Bayesian posterior. Also, for large t, conver-

gence to the truth is guaranteed by theorem (5). What about the mean square error? As

shown in Appendix, in the Gaussian case the loss reads:

(Eθtω − Etω)2 ∼ 1
t2

θ2

(θ + 1)2

(
(µ0 − ω)2 + σ2

t

)
.

The bias term depends on: the initial prior, the variance of the posterior under the

bayesian updating, and the term θ2

(θ+1)2 , which is asymmetric: under-reaction makes it

increase very fast above 1, while even for strong over-reaction it is always smaller than 1.

Hence it seems that underreaction is much worse in terms of learning than overreaction.

Inspection of the calculations reveal that the numerator comes from the error in prediction,

while the denominator from the precision. So the error tends to increase with bias, while

the precision is increasing in overreaction. With one agent, though, the numerator always

prevails, so that the optimal θ is 0. We now introduce social interactions.
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2.3 Sequential learning and efficiency

In this section, we apply our behavioral model of learning to a simple social learning envi-

ronment, to show that overreaction can be more socially efficient than bayesian updating.

Let us consider the simplest model of informational cascades, analogous to Banerjee

(1992). There is a binary state of the world ω ∈ {0, 1} which agents have to guess.

Formally, agents are infinite and indexed with natural numbers i = 1, 2, . . .. They act

sequentially, first observing a private signal si and then choosing a public action ai. Both

actions and signals are binary ai, si ∈ {0, 1} and we assume that Pr(si = 1|ω = 1) = q > 1
2

(i.e. signals are informative). Symmetrically (for convenience) let Pr(si = 0|ω = 0) =

q > 1
2 . Agents have a common prior Pr(ω = 1) = p.

Agent i information set includes all actions of past agents (a1, . . . , ai−1) and his own

private signal si. Each agent has a utility v1 from choosing action ai = 1 if the correct

state is ω = 1 and v0 from choosing the correct action when the state is ω = 0, and they

want to maximize their expected payoff. This means that, e.g., Mr 1, when observing

signal s1 will form the following posterior:

Prθ(ω = 1|s1 = 1) = Pr(ω = 1|s1 = 1)
(
Pr(ω = 1|s1 = 1)

Pr(ω = 1)

)θ 1
Z(θ, s1 = 1) = p

p+ (1− p)
(

1−q
q

)1+θ

and he will choose action a1 = 1 if and only if:

v1Pr
θ(ω = 1|s1 = 1) > v0Pr

θ(ω = 0|s1 = 1),

which is equivalent to:

Prθ(ω = 1|s1) > v0

v0 + v1
.

In the following, we will be interested in regions in the parameter space, so we do not

need to specify tie-breaking rules. We define τ = v0
v0+v1

.
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We defined over and under-reaction relative to the estimation of the parameter done

with past information. When considering interacting agents, we have two sources of

information: private signals and actions of others. In the following, we are treating

actions of others and the private signal in a symmetric way, as past information. This

means that Mr 2 will compute his posterior as:

Prθ(ω = 1|s1, a1, s2) = Pr(ω = 1|s1, a1, s2)
(
Pr(ω = 1|s1, a1, s2)
Pr(ω = 1, s1, a1)

)θ 1
Z(θ, s1, a1, s2)

To understand what are the implications of the distortion for cascades and learning,

let us start with the following definition.

Definition 2.3.1. The Informational efficient region (IE) is the set of parameters given

by the union of:

θ + 1 ≥
ln
(

p
1−p

(
1
τ
− 1

))
ln 1−q

q

p ≥ τ

and

θ + 1 ≤
ln
(

p
1−p

(
1
τ
− 1

))
ln q

1−q
p < τ

The Informational efficient region is the region of parameters such that Mr 1 plays

a1 = s1 and therefore "communicate" his private signal to future agents. Outside the

efficient region, agent 1 instead chooses the action consistent with his prior regardless

the signal. This is crucial in characterizing the behavior of the model. The following

proposition describes such behavior.

Proposition 2.3.1. If the parameters are in the Informational efficient region, then:

If p ≥ τ If the first signal is 1, there is a cascade on 1. If the first two signals are (0, 0)

there is a cascade on 0. If the first two signals are (0, 1), then the third agent faces

the same problem of agent 1. The probability of learning is Pr(a∞ = ω) = pq+(1−p)q2

1−q(1−q) .
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If p < τ There is a cascade on 1 if the first signals are (1, 1), there is a cascade on 0 if

the first signal is 0. If the first two signals are (1, 0), then the third agent faces the

same problem of agent 1. The probability of learning is Pr(a∞ = ω) = pq2+(1−p)q
1−q(1−q) .

If the parameters are outside of the Informational efficient region, then:

1. If τ > p, then all agents play 0 with probability 1 and the probability of learning is

1− p.

2. If τ ≤ p, then then all agents play 1 with probability 1, and the probability of learning

is p.

By the form of the results, we can already see that a larger θ creates more room for

learning, by enlarging the Informational efficient region. In the following, we make this

argument formal. For simplicity in this section we fix τ = 1
2 .

A way to quantify the size of the parameter space is to think of the parameters p and q

as drawn before the process starts. from a distribution µ, with full support on (0, 1)×(1
2 , 1).

Denote a∞ = limt→∞ at. Consider regions as R1 = IE ∪ {p > τ}, R2 = IE ∪ {p ≤ τ},

N1 = IE ∪ {p > τ}, and N2 = IE ∪ {p ≤ τ}. Then the ex-ante probability of learning

the correct state of the world is:

Pr(a∞ = ω) =

=
∫ (

pIN1 + (1− p)IN2 + pq + (1− p)q2

1− q(1− q) IR1 + pq2 + (1− p)q
1− q(1− q) IR2

)
dµ,

where I(·) represents the indicator function.

Let us define a level of θ ex-ante efficient if it achieves the maximum of this probability.

The following figures illustrate the situation. In figure 2.1 we draw the region where Mr1
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Figure 2.1: The areas of the parameter space where revealing is efficient, and the area
where a Bayesian agent reveals. The figure shows that the Bayesian updating fails to be
socially efficient: there is a region where agent 1 does not reveal but it would be socially
optimal to do so.

playing a1 = s1 is socially efficient, and the region where (Bayesian) Mr1 playing a1 = s1

is individually efficient (i.e. optimal). As is clear from the figure, a Bayesian updating rule

does not maximize the learning probability: there is a region where it would be socially

efficient that Mr1 plays a1 = s1, but a Bayesian agent, since he does not internalize

the information externality on other agents, does not. In figure 2.2, we plot instead the

informational efficient regions for different values of the parameter θ: we can see that

there are moderate values of overreaction that increases the probability of learning. In

the following proposition, we show that there is a value of θ that actually achieve ex-ante

efficiency.

Theorem 7. If the parameters p, q are drawn from a distribution µ with full support on

(0, 1)× (1
2 , 1), the distorted updating with θ = 1 is ex-ante efficient.

Given the importance of the result, we report the proof here in the main text.
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Figure 2.2: The areas of the parameter space where revealing is efficient, and the area
where agent with different degree of distortion reveal. It is clear that underreaction is
always worse than Bayesian, while a moderate overreaction can be socially better than
Bayesian.

Proof. Let us focus on the subset of the parameter space where {p > τ}, the reasoning

for p < τ is analogous. The the ex-ante probability of learning is:

∫ pI
θ + 1 ≤

ln
(

p
1−p

)
ln q

1−q

+ pq + (1− p)q2

1− q(1− q) I

θ + 1 >
ln
(

p
1−p

)
ln q

1−q


 dµ.

In the Informational efficient region IE, the probability of learning is pq+(1−p)q2

1−q(1−q) , while

outside is just p. The probability of learning is higher inside the Revelation region if and

only if:

p <
pq + (1− p)q2

1− q(1− q) ,

which is equivalent to:
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p <
q2

(1− q)2 + q2 .

Now we can rewrite the condition defining the IE region:

p <
qθ+1

(1− q)θ+1 + qθ+1 .

Depending on θ, q2

(1−q)2+q2 can be larger or smaller than qθ+1

(1−q)θ+1+qθ+1 , with equality for

q = 1
2 q = 1, and for all q if θ = 1.

If θ < 1, it means that there is a region outside the IE region (with positive mass,

because of the full support assumption on µ) with probability of learning p, strictly smaller

than the corresponding probability if it belonged to the IE, hence by increasing θ the

probability of learning would increase. If θ > 1, on the contrary, there is a region that

belongs to IE where the probability of learning is smaller than p. Hence, the maximum

is achieved for θ = 1.
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A Proofs

Theorem (4)

Proof.

BU t(l, p0)(ω) = l(X1, . . . , Xt|ω)p0(ω)∫
dω′l(X1, . . . , Xt|ω′)p0(ω′)

= l(Xτ , . . . , Xt|ω,X1, . . . , Xτ−1)l(X1, . . . , Xτ−1|ω′)p0(ω)∫
l(Xτ , . . . , Xt|ω′, X1, . . . , Xτ−1)l(X1, . . . , Xτ−1|ω′)p0(ω′)dω′ ×

∫
l(X1, . . . , Xτ−1|ω′)p0(ω′)dω′∫
l(X1, . . . , Xτ−1|ω′)p0(ω′)dω′

= l(Xτ , . . . , Xt|ω,X1, . . . , Xτ )BU τ (l, p0)(ω)∫
l(Xτ , . . . , Xt|ω′, X1, . . . , Xτ )BU τ (l, p0)(ω′)dω′

= BU t−τ (l,BU τ (l, p0)(ω))(ω)

Remaining close to the diagnostic expectations literature, we can assume that the

reference group for representativeness be the information collected until period t. The

diagnostic Bayesian operator is defined for t = 1 as:

BU θ1(l, p0)(ω) = 1∫
BU1(l, p0)

(
BU1(l,p0)(ω′)

p0(ω′)

)θ
dω′
BU1(l, p0)

(
BU1(l, p0)(ω)

p0(ω)

)θ
.

For t > 1 it is defined as:

BU θt (l, p0)(ω) = 1∫
BU t(l,BU θt−1(l, p0))(ω′)

(
BUt(l,BUθt−1(l,p0))(ω′)
BUθt−1(l,p0)(ω′)

)θ
dω′
×

× BU t(l,BU θt−1(l, p0))(ω)
BU t(l,BU θt−1(l, p0))(ω)

BU θt−1(l, p0)(ω)

θ .

Note that this can be rewritten as:
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BU θt (l, p0)(ω) ∝ BU t(l,BU θt−1(l, p0))(ω)
BU t(l,BU θt−1(l, p0))(ω)

BU θt−1(l, p0)(ω)

θ

∝ BU t(l,BU θt−1(l, p0))(ω)
 l(Xt|X1, . . . , Xt−1, ω)θBU θt−1(l, p0)(ω)

BU θt−1(l, p0)(ω)

θ

∝ l(Xt|X1, . . . , Xt−1, ω)1+θBU θt−1(l, p0)(ω)

∝ BU t(l1+θ, p0)(ω).

It turns out that this is a model of over-inference. The prior is corrected processed by

the diagnostic operator, while the likelihood is over-weighted.

Note that for any 1 < τ < t:

BU θt−τ (l,BU θτ (l, p0)(ω))(ω) = BU t−τ (l1+θ,BU τ (l1+θ, p0)(ω))(ω) = BU(l1+θ, p0)(ω) = BU θt (l, p0)(ω).

This says that sequential updating or "one shot" updating are equivalent.

Theorem (6)

Proof. One way to state the optimality of the Bayesian updating is to say that the

Bayesian posterior mean µt is the best predictor according to the quadratic loss func-

tion, (ω−µt)2. This means that if an agent uses a different predictor, say µθt = Eθtω, then

this is not the correct posterior mean, hence the expected utility of such an agent is:

−Et(ω − Eθtω)2 ≤ −Et(ω − Etω)2.

This is a reduced form reasoning, in that it uses just the conditional expectations. If, as

it is used in standard learning exercises, we assume that agents myopically optimize their

quadratic utility at each time period (or any utility which has the conditional expectation
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of Xt+1 as the optimal point), then we get that their intertemporal utility is in expectation

smaller at every period:

−E0
∑
t

βt(ω − Eθtω)2 ≤ −E0
∑
t

βt(ω − Etω)2.

We can understand better this discrepancy. First of all, applying the law of iterated

expectations we can show that:

−E0
∑
t

βt(ω − Eθtω)2 = −E0
∑
t

βtEt(ω − Eθtω)2.

Consider the time t term:

(ω − Eθtω)2 = (ω − Etω)2 + (Eθtω − Etω)2 + 2(ω − Etω)(Eθtω − Etω)

and in expectation:

Et(ω − Eθtω)2 = Vtω + Et(Eθtω − EPt ω)2,

which shows that the disutility of an error has two components: the (im)precision of the

rational posterior plus the discrepancy of the diagnostic from the bayesian posterior.

MSE for Example 1.

Eθtω − Etω = θ(tµ0 −
∑tXs)

(t+ 1)(t(θ + 1) + 1)

and so, if t large:

(Eθtω − Etω)2 = θ2

(t(θ + 1) + 1)2Et
(
tµ0 −

∑tXs

t+ 1

)2

∼ θ2

(t2(θ + 1))2Et
(
µ0 −

∑tXs

t

)2

.

Moreover:

Et
(
µ0 −

∑tXs

t

)2

= Et (µ0 − ω)2 + Et
(
ω −

∑tXs

t

)2

.
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Proof of Proposition 2.3.1

Mr 1 will play action a1 = 1 after observing signal s1 = 1 if and only if his posterior is

higher than τ , that is:
pq1+θ

pq1+θ + (1− p)(1− q)1+θ ≥ τ

⇐⇒ 1 + 1− p
p

(
1− q
q

)1+θ

≤ 1
τ

⇐⇒ (1 + θ) log
(

1− q
q

)
≤ log

(
1
τ
− 1

)
p

1− p

⇐⇒ θ + 1 ≥
ln
(

p
1−p

(
1
τ
− 1

))
ln 1−q

q

=
− ln

(
p

1−p

)
+ ln

(
τ

1−τ

)
ln q

1−q
.

In the last line we used q > 1
2 to change the inequality sign. This condition is always

true if p ≥ τ , given that θ > −1. Its interpretation is that if Mr 1 is ex ante indifferent or

in favor of alternative 1, then if he observes signal s1 = 1, he plays a1 = 1 for any value

of θ. On the contrary if p < τ , meaning that the agent is ex ante in favor of alternative 0,

when he observes signal s1 = 1 he might or might not play action a1 = 1, depending on

the parameter values. The condition above says that the bigger θ is, the bigger the set of

parameters under which Mr1 revises the prior and plays action a1 = 1.

Similarly, after seeing s1 = 0, Mr 1 will play action a1 = 1 if and only if:

p(1− q)1+θ

p(1− q)1+θ + (1− p)q1+θ ≥ τ

⇐⇒ θ + 1 ≤
ln
(

p
1−p

(
1
τ
− 1

))
ln q

1−q
=

ln
(

p
1−p

)
− ln

(
τ

1−τ

)
ln q

1−q
.

This is never the case never if p < τ , which means that if the agent is in favor of alterna-

tive 0 and then he sees the signal s1 = 0, he never revises his opinion. On the contrary,

depending on θ, the opposite case may be true. Call the above condition 2. Note that
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the space of parameter such that condition two is violated increases with θ.

Summing up: if the agent sees s1 = 1, then he plays a1 = 1 the if either τ ≤ p or τ > p

and condition 1 is satisfied. If the agent sees s1 = 0, then he plays a1 = 0 if τ > p or

τ ≤ p and condition 2 is violated.

The behavior of Mr 2 will depend on which conditions are satisfied. Consider the in-

formationally efficient region IE (for agent 1) defined as:

IE = {(p, τ) ∈ [0, 1]× R+| (τ ≤ p and condition 2 is true) or (τ > p and condition 1 is true )}.

If the parameters lie inside IE, then Mr 2 can perfectly infer Mr1 signal by observing

his action, since a1 = s1. Thus Mr 2 effectively observes two signals.

Consider first the case p > τ , namely the prior is in favor of 1. In this case if s1 = 1 than

Mr2 will do his Bayesian updating, leading him to play action a2 = 1 regardless of his

signal. Similarly for subsequent agents: a cascade therefore starts on state 1 in this case.

If instead a1 = s1 = 0, then if s2 = 0 Mr2 will do his Bayesian updating, leading him

to play action a2 = 0 regardless of his signal. Similarly for subsequent agents: a cascade

therefore starts on state 0 in this case. Finally if a1 = s1 = 0 and s2 = 1, then Mr2 will do

his Bayesian updating, leading him to play action a2 = 1. However in this case a cascade

does not start immediately, as Mr 3 faces the same problem of Mr1. Here the intuition is

straightforward: opposite signals s1 and s2 cancel out, and therefore Mr2 only relies on

his prior belief. The case p < τ is symmetric.

Resuming the dynamics is characterized as follows:

• if p > τ then the probability of learning is:

Pr(a∞ = ω) = pPr(a∞ = 1)+(1−p)Pr(a∞ = 0) =
(
pq + (1− p)q2

) ∞∑
i=0

(q(1− q))i
 ;
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• if p < τ then the probability of learning is:

Pr(a∞ = ω) = pPr(a∞ = 1)+(1−p)Pr(a∞ = 0) =
(
pq2 + (1− p)q

) ∞∑
i=0

(q(1− q))i
 ;

Resuming, if s1 = s2, then a2 = s2; if instead s1 6= s2 then M2 2 will stick to his

prior belief. In the former case Mr 3 will also play a3 = s2 regardless of his signal (if

s3 = s2 = s1 this is true since IE1 ⊆ IE2 ⊆ IE3; if s3 6= s2 = s1 then Mr3 problem is

the same problem of Mr1, therefore a3 = a3); in the latter case Mr3 problem is the same

problem of Mr 1, therefore a3 = s3.

Therefore, if the parameters lie IE1, then i

plays 1 if p ≥ τ , and 0 viceversa. This means that if p ≥ τ and the first agent

revealed his signal to be 1, then the second agent will always play 1, and this will not be

informative for Mr 3, which will act as if he observed only the signal of the first agent.

On the contrary, if the first agent revealed his signal to be 0 and still p ≥ τ , the second

agent reveals his signal, and Mr 3 updates consequently. Hence, if the conditions on θ for

Mr 1 are satisfied, the first agent reveals and the second follows if observes the same, and

if observes a different signal it depends on the prior, as should be. If the conditions are

satisfied for the first but not the second agent, it means that the first agent actually does

not reveal information, hence the second agent actually behaves as the first, and it means

that he will not reveal anything either, and we have the applicable cascade (because all

subsequent agents will follow).

f Mr 1 plays 1 regardless of the signal s1 observed, then Mr 2 has no updating to do,

and will act as if she were the first of the line. This happens with probability 1− q.

Hence, if agents are all homogeneous, there is a trivial cascade on 1, and the probability

of learning is p.

Mr 3 if he observes 2 identical zeros will ignore his private signals, and we have a

cascade on 0 (the conditions on θ are trivially satisfied). If he observes 3 different signals,
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will follow the most frequent. Anyway, the first 2 signals are sufficient to determine which

cascade we have.
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B Additional Material

Large deviations

In the calculations above only the variance and the error matter. If we consider general

concave utility functions u(−(a − ω)2) (or general "risk aversion"), instead we have that

the term t of the sum is:

EPt u
(
−(EP ′t ω − ω)2

)
= EPt u

(
−
(
(ω − EPt ω)2 + (EP ′t ω − EPt ω)2 + 2(ω − EPt ω)(EP ′t ω − EPt ω)

))

≤ u
(
−EPt

(
(ω − EPt ω)2 + (EP ′t ω − EPt ω)2 + 2(ω − EPt ω)(EP ′t ω − EPt ω)

))
= u

(
−V arPt ω − Et(EP

′

t ω − EPt ω)2
)

so now the expression obtained above in this case are just useful as upper bounds on the

utility. The correct utility involves the term EP ′t ω − EPt ω. We know that as n becomes

large, by the large deviations principle P (|∑Yn − µ0| > a) ∼ e−
a2
2 if the Y are standard

normal i.i.d. Hence:

P (|EP ′t ω − EPt ω|) = P ( θ(tµ0 −
∑tXs)

(t+ 1)(t(θ + 1) + 1) > a) =

P (|µ0 −
∑tXs

t
| > a

(t+ 1)(t(θ + 1) + 1)
tθ

) ∼ e
− 1

2σ2

(
a

(θ+1)
θ

)2
t2

so the variance of the distribution of large deviations is proportional to θ2

(θ+1)2 , the same

term as before, with same intuitions: underreaction leads to much worse large devia-

tions.
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Chapter 3

Bounded Surprise and Overreaction

to Information

3.1 Introduction

The representativeness heuristics is a biased probability judgment proposed by Tversky

and Kahneman (1974). It accounts for departures from Bayesian rationality observed in

experiments. The heuristics stipulates that, when facing conditional probabilistic assess-

ments of feature X in group G, p(X|G), agents over-weight representative or diagnostic

features X, which are defined as those which occur more frequently in group G relative

to a comparison group G0. The textbook example is that of assessing the frequency of

red-haired individuals among the Irish population. The feature of being "red-haired" is

representative of the Irish population G (relative to the rest of the world polulation G0)

and it is therefore over-estimated. While it is instructive to look at extreme cases in

which the heuristics provides errors in probabilistic judgments, the rule is understood

as an approximately accurate and effortless assessments in typical situations Shah and

Oppenheimer (2008), and as an effective adaptive rule, efficiently working in typical sit-

uations (Tversky and Kahneman (1974), Gigerenzer and Gaissmaier (2011)). A different

103
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view tries to rationalize the heuristics at a deeper level. Tenenbaum et al. (2001) quantifies

the representativeness in a Bayesian framework as the evidence in favor of a model, given

a dataset, relative to the average evidence. Abbott et al. (2011) links representativeness

to categorization algorithms developed in the machine learning literature. Gennaioli and

Shleifer (2010) and Bordalo et al. (2017) provide a foundation of the representativeness

heuristics based on selective retrieval from memory. More broadly, however: can one think

about representativeness in a constrained optimal sense? What are the specific costs it

allows to save upon, and what does it sacrifice, so that errors emerge as a byproduct?

To answer those questions we reinterpret the representativeness heuristics as formalized

by Tenenbaum et al. (2001) and Bordalo et al. (2016) through the lenses of information

theory. In particular, we use the notion of description length, which quantifies how many

bits of information one needs to describe a dataset X under hypothesis G, using a prob-

ability distribution p(X|G), and reinterpret it as a cost. We show that representative

events X are in fact those for which the description length under G is shorter than the

description length under G0. This suggests that, in fact, representativeness saves upon

bits of information needed to describe the data, at the cost of making errors in specific

and occasional situations. Under the representativeness heuristics, an agent will compress

the dataset more relative to a Bayesian agent.

To assess the representativeness heuristics as a constrained optimal rule, however, one

should clarify first in which sense Bayesian rationality is optimal and investigate cogni-

tive constraints on top. This logic underlie the structure of the current paper. First, we

consider a standard Bayesian inference scheme and we re-frame it as the optimal solution

of a trade-off between a cost of moving beliefs and the accuracy of describing the data.

When an agent is constrained to a fixed number of bits to accurately describe the world

(i.e. there is an upper bound on the surprise an agent can experience looking at the data)

then, the optimal constrained Bayesian inference follows the representativeness heuristics

rule.
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Distorted predictive distributions are shown to be a Bayesian prediction analog of the

diagnostic expectations model of Bordalo et al. (2018b). Finally a comparison with the

related frameworks of rational inattention and robust inference is highlighted.

3.2 Bayesian updating and departures from rational-

ity

An agent considers an exogenously specified class of models, denoted by M, in order

to rationalize the behavior of some time series X1,t = (X1, . . . , Xt) ∈ X t. For instance,

X1,t is the time series of log-returns on a market index, and the agent is considering as

conceivable models, autoregressive processes of order 1, with persistence ρ and volatility

σ. In this case M = {(ρ, σ) ∈ R × R+}. At time t = 0, the agent has some prior

belief (density) p0 over possible conceived models. Absence of prior information coming

from the data, can be easily modeled resorting to uninformative priors, also known in the

literature as Jeffreys priors1. l0(X1|m) denotes the time t = 0 probability of observing

X1, given a model m ∈ M; it can be seen as a function of m, for a given X1 and within

this perspective it is also called the time t = 0 likelihood of model m. After observing X1,

the agent revises her beliefs. The Bayesian updating rule prescribes the following revision

of beliefs:

p1(m) ∝ l0(X1|m)p0(m). (3.1)

Models which are more consistent with the observed datum X1, gain weight in the poste-

rior belief, relative to the weight they have in the prior belief. Mathematically, one can see

the Bayesian updating rule as a simple application of the Bayes theorem only assuming

that the agent is equipped with a joint probability distribution over the product space

1In the case of a finite set X , this would simply lead to choose a uniform distribution.
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of data and models. Indeed, in this case, it easy to see that p1(m) is the conditional

density of model m given datum X1. The normalization constant of the posterior belief

is denoted by l0(X1) and it is therefore the marginal density of datum X1, also known as

marginal likelihood. l0(X1|m) has a dual interpretation in terms of inference (for given

X1, it is the likelihood of model m) and prediction (for given model m it is the density of

X1). There are many situations in which, however, belief assessments depart this scheme.

For instance, predictions of financial forecasters are found to depart from the Bayesian

setting in Bordalo et al. (2018a). After good news, forecasters become too optimistic and

symmetrically after bad news, leading to predictable errors. Bordalo et al. (2018b) intro-

duced a simple model of distorted predictions, the diagnostic expectation model, which is

based on the Tversky and Kahneman (1974) representativeness heuristics. The model is

remarkably in agreement with the observed behavior of forecasters data. The diagnostic

expectation model exaggerates correct predictions relative to a baseline prediction. Bor-

dalo et al. (2018b) introduce distorted forecasting distribution at time t, given model m,

of the form:

lθt (Xt+1|m) ∝ lt(Xt+1|m)
(
lt(Xt+1|m)
Bt(Xt+1|m)

)θ
, (3.2)

where θ > 0 quantifies the departure between the Bayesian forecast and diagnostic one,

while Bt(Xt+1|m) is a baseline prediction ofXt+1. For instance it may be specified as being

constant or as the prediction done with past information, i.e: Bt(Xt+1|m) = lt−1(Xt+1|m).

In the latter case, lθt (Xt+1|m) overweights values of Xt+1 which are more likely under

model m and current information relatively to assessments done with model m and past

information. From the point of view of Bayesian inference, one can also interpret the right

hand side of expression (3.2) as a pseudo-likelihood, which, for a given Xt+1 over-wights in

the posterior beliefs of those models that explain better the data, relatively to the past.
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This suggest the following non-Bayesian updating rule:

p1(m) ∝ lθ0(X1|m)p0(m). (3.3)

where lθ0(X1|m) induces a change of measure from prior beliefs to posterior beliefs

which departs from the Bayesian one. Here, we are not assuming that the agent is

equipped with a joint probability distribution over the product space of data and models

and, as such, expression (3.3) is a legitimate change of measure, as any other change of

measure is. We ask: i) in which sense is the Bayesian change of beliefs (3.1) optimal

and ii) can we interpret (3.3) as an optimal constrained Bayesian updating? The answers,

formally developed in the next sections, are: i) the Bayesian updating optimally trades-off

a cost of moving beliefs and the ability to fit the data. With a cognitive constraint on the

description length used from time t to time t+ 1, departures from the Bayesian updating

of the form of (3.3) emerge as optimal constrained rules.

Relax now the assumption that the agent is equipped with a joint probability distribution

over the product space of models and data. A time t = 0 (and similarly for subsequent

times), the agent has a prior belief over models, p0(m), and she observes some datum X1.

How should the agent revise her beliefs? Next section introduce a variational optimization

framework to shed light on beliefs updating in terms of optimal information processing.

We will recover the Bayesian updating as well as model (3.3) as special cases.



108 Bounded Surprise and Overreaction to Information

3.3 Bayesian updating as optimal information pro-

cessing

3.3.1 Notation

Information theory started with the seminal work of Claude Shannon, Shannon (1948),

aimed at quantifying the information content a random variable. It has been imported

into economics with the seminal work of Sims (2003).

We employ the same language, first to reinterpret Bayesian updating from the perspec-

tive of optimal information processing, while later to discuss non Bayesian updating as

solutions of constrained problems. Finally, we will discuss the relation with the ratio-

nal inattention setting as well as with the one of robust inference. We introduce some

notation first.

Definition 1. A divergence between between two equivalent (i.e. with same support)

probability distributions2 f and g is a non negative valued function, D(f, g) ≥ 0, such

that D(f, g) = 0 if and only if f = g (almost everywhere).

A divergence between two equivalent probability distributions f and g, is a measure

of discrepancy between the two. It is not, in general, a symmetric function of f and g,

and it does satisfy, in general, the triangular inequality. As such, a divergence is a weaker

concept than that of a distance. We now introduce an important and well known instance

of divergences, together with its main properties (for additional details, see Cover and

Thomas (2012)).

Proposition 2. Consider the the Kullback-Leibler (KL) divergence (or relative entropy)

2We stick to probability densities for the sake of having a simpler notation.
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between f and g, defined as:

DKL[f, g] =
∫

supp(g)
f(x) log f(x)

g(x)dx =
∫

supp(g)

f(x)
g(x) log f(x)

g(x) g(x)dx.

The Kullback-Leibler satisfies the following properties.

1. DKL[f, g] ≥ 0.

2. DKL[f, g] = 0 if and only if f = g.

3. DKL[f, g] is convex in (f, g).

4. DKL does not satisfy the triangular inequality.

It can be interpreted as quantifying the average log-likelihood experienced by an agent

that thinks that the data are drawn from g, while in fact they are draw from f . The

Kullback-Leibler divergence is closely related to the concept of description length or sur-

prise.

Definition 2. The surprise of Xt associated to model m is:

− log l0(Xt|m).

This is quantity in used in Bayesian statistics for model comparison as as well as in

information theory for data compression Cover and Thomas (2012).

When the probability of the data given model m is close to one, the surprise is low: typical

events are expected and therefore not surprising. On the contrary, when the probability

of the data given model m is close to zero, the surprise is high: rare events are surprising.

Note that here the measure of surprise also depends on the model m considered.

Finally, the representativeness of the data, given a model relative to benchmark B, for
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a given data set Xt is defined in line with (Tenenbaum et al. (2001)) as an increasing

function of the likelihood ratio:

f(Xt|m)
B(Xt)

.

Taking the log, representativeness can be in fact interpreted as the difference between

the surprise of the data given model m and a benchmark assessment for data surprise,

such as the average surprise B(Xt) = f(Xt) or the surprise associated with a benchmark

model m∗: B(Xt) = l(Xt|m∗). Describing data more surprising than the norm is costly:

the representativeness precisely quantifies this cost3.

In the context of one period Bayesian updating at time t, it is convenient to consider the

KL divergence between a candidate posterior distribution f and the prior distribution pt:

DKL[f, pt] =
∫
M
f(m) log f(m)

pt(m)dm.

In the case of Bayesian updating (3.1), it reads:

0 ≤ DKL[pt+1, pt] =
∫
M
pt(m) lt(Xt+1|m)

lt(Xt+1) log lt(Xt+1)|m)
lt(Xt+1) dm

= − log(lt(Xt+1))−
(
Et+1

[
− log lt(Xt+1|m)

])
≤ (Et − Et+1) [− log lt(Xt+1|m)].

The previous expression shows that a Bayesian agent moves her beliefs to avoid sur-

prise. Indeed, if Xt+1 is equally likely under any model m ∈M, then it is not informative:

the posterior belief will equal the prior belief and DKL[pt+1, pt] = 0. This shows that

3In information theory, the surprise it is also connected to the notion of description lenght, which is the
amount of physical resources needed to correctly describe on average a stochastic process which follows
model m. Representativeness thus can only be interpreted by a gain/loss of resources when moving from
the benchmark presentation fo the data to the one dictated by model m
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Bayesian updating reduce the average surprise of the data. Why this is optimal?

Next section builds on this intuition in order to provide a variational approach to belief

updating.

3.3.2 Bayesian updating: an information theoretic perspective

Consider an economic agent as a machine, whose goal is to came up with models which

predict well. Suppose that at time t, the agent has a reasonable representation of the

world, modeled as beliefs pt(m), which rationalize possible mechanisms explaining the

data. At time t + 1, the agent observes some new datum Xt+1. We show that the

Bayesian updating of beliefs in light of new information is the solution of the following

variational optimization problem.4

Theorem 8 (Bayesian updating as optimal information processing). The Bayesian pos-

terior (3.1) is the solution to the following variational optimization problem:

pt+1 = arg min
f

(
DKL(f ||pt) + Ef [− log lt(Xt+1|·)]

)
, (3.4)

subject to the normalization constraint:
∫
M f(m)dm = 1.

The Bayesian posterior is therefore an optimal trade-off between two forces. One force

is the relative entropy DKL(f ||pt), which discipline the cost of moving beliefs. It quantifies

how costly moving beliefs from pt to f is. The second force is the average surprise (or

description length) of Xt+1 given modelm. The average is taken with respect to candidate

posterior distributions f . It quantifies how much surprising the data are to the agent on

average, given agents class of modelsM and possible posterior beliefs. To quantitatively

assess the interpretation of the two forces, consider the two terms in isolation. Consider

first an agent that only experiences the first cost. She has a well calibrated prior and she
4For the following, we will assume the probability densities to be regular enough such that all integrals

considered are well defined.
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sticks to that. Therefore, she solves:

pt+1 = arg min
f
DKL(f ||pt),

subject to the normalization constraint:
∫
M f(m)dm = 1. It is clear that the obvious

solution to this problem is pt+1 = pt. This approach completely disregard the surprise

coming from the data. It is reliable if the accuracy of representation pt is high or if there

is some reason to distrust the data.

Consider, on the contrary, an agent that only wants to best fit the data she sees. She

solves:

pt+1 = arg min
f

Ef [− log lt(Xt+1|·)]

subject to the normalization constraint:
∫
M ft+1(m)dm = 1. After a technical assump-

tion5 and a bit of algebra (see Appendix B), one can show that the solution to this problem

is:

pt+1 ∝ δ(m−mML(Xt+1)),

where mML(Xt+1) is the maximum likelihood estimator:

mML(Xt+1) = arg max
m∈M

l(Xt+1|m),

and δ(m−mML(Xt+1)) is a Dirac delta distribution centered in the maximum likelihood

5This variational optimization problem is linear and as such one cannot rely on first order conditions
to find the solution. However, the original problem is convex instead: one can therefore regularize (i.e.
convexify) the problem by adding the additional term εDKL(f ||pt) in the objective function, find the
optimal solution and finally take the limit ε→ 0.
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estimator. Appendix A provides its definition; intuitively it can be thought as a Gaussian

distribution peaked at mML(Xt+1) and with vanishingly small variance.

In this second case, the agent completely ignore the cost of moving beliefs, in fact she

tries to best fit the data, within the class M of models. She therefore chooses posterior

beliefs such that actual data are maximally explained. This approach is reliable if the

sample is large enough and if the data generating process is well approximated by one of

the models the agent conceives.

Thus, Bayesian updating optimally trades-off a good description of the data (low surprise)

and and stable beliefs (low divergence). Next, consider the optimal updating solution of an

agent which attaches different weights to those two forces as captured by an exogenously

specified parameter θ:

pt+1 = arg min
f

(
DKL(f ||pt) + (1 + θ)Ef [− log lt(Xt+1|·)]

)
, (3.5)

subject to the normalization constraint:
∫
M f(m)dm = 1. The next theorem characterizes

the solution to problem (3.5).

Theorem 9 (Non Bayesian updating as optimal constrained rule). For θ ≥ −1, the

posterior beliefs which solve the following variational optimization problem:

pt+1 = arg min
f

(
DKL(f ||pt) + (1 + θ)Ef [− log lt(Xt+1|·)]

)
,

subject to the normalization constraint:
∫
M f(m)dm = 1, is:

pt+1(m) ∝ ptlt(Xt+1|m)
(
lt(Xt+1|m)

)θ .

Moreover:



114 Bounded Surprise and Overreaction to Information

lim
θ→−1

pt+1(m) = pt(m)

lim
θ→0

pt+1(m) ∝ pt(m)lt(Xt + 1|m)

lim
θ→∞

pt+1(m) ∝ δ(m−mML(Xt+1))

and:

DKL[ lim
θ→−1

pt+1, pt] = 0

DKL[lim
θ→0

pt+1, pt] > 0

DKL[ lim
θ→∞

pt+1, pt] = +∞.

The previous theorem characterizes a class of information theoretic variational op-

timization problems which are built on the trade-off between minimizing costly beliefs

movements and avoiding surprise (i.e. fitting well the data).

Can we understand the representativeness distorted Bayesian updating (3.3) in terms of

an optimal updating rule?

Theorem 10 (Constrained Bayesian updating and representativeness heuristics). Con-

sider the Lagrangian which gives rise to the Bayesian updating:

pt+1 = arg min
f

(
DKL(f ||pt) + Ef [− log lt(Xt+1|·)]

)
,

subject to the normalization constraint:
∫
M f(m)dm = 1, and to following constraint:

Ef [− log lt(Xt+1|·)] = Ef [− logBt(Xt+1|·)]
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where Ef [− logBt(Xt+1|·)] is a constraint on the average surprise allowed. Then:

pt+1(m) ∝ ptlt(Xt+1|m)
(
lt(Xt+1|m)
Bt(Xt+1|m)

)θt+1

where θt+1 is the Lagrange multiplier associated to the limited surprise constraint, which,

in general, depend on Xt+1. Moreover, θt+1 is the solution of the equation:

(
d logZt(Xt+1, λ)

dλ

)
|λ=θ = 0

where:

Zt(Xt+1, λ) =
∫
M
pt(m)lt(Xt+1|m)

(
lt(Xt+1|m)
Bt(Xt+1|m)

)λ
dm.

When the average description length allowed is smaller then the Bayesian one, i.e.

Ept+1 [− log lt(Xt+1|·)] > Ef [− logBt(Xt+1|·)], the agent optimally move beliefs further

away from the prior relative to the Bayesian case, in order to better fit the data and there-

fore she experiences less surprise. As such, her posterior will over-weight those models

m that, on average, fit better the data than Bt(Xt+1|m), as prescribed by the represen-

tativeness heuristics. In this case, θt+1 > 0. On the contrary, when the average descrip-

tion length is forced to be larger than the Bayesian one, i.e. Ept+1 [− log lt(Xt+1|·)] <

Ef [− logBt(Xt+1|·)], then −1 < θt+1 < 0 and the agent updates less, relative to the

Bayesian case. Let us consider some concrete examples.

Example 1

Consider the case of a constant surprise bound logBt(Xt+1|m) = C. Then, the solution

to the optimization problem, in the case that the surprise bound is saturated is:
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pt+1 ∝ lt(Xt+1|m)
(
lt(Xt+1|m)

)θ .

In this case the agent exaggerates the posterior weight, relative to the Bayesian case,

of those models m which better fit the data. Suppose the data is a string of binary sym-

bols (e.g. toin cosses), namely X = {0, 1}, and suppose that the agent conceives only

i.i.d. models: M = {p = Pr(Xt = 1), p ∈ [0, 1]}. Assume the her prior is a uniform (or

symmetric) distribution on M and that C is small enough so that θ > 0. Then, after

observing a string of data X1,t, with more ones than zeros, namely such that ∑t
i=1 Xi >

t
2 ,

she over-weights, relative to a Bayesian agent, models with high p.

Example 2

Consider the case Bt(Xt+1|m) = lt−1(Xt+1|m). This case compares the actually experi-

enced average surprise at time t, with a benchmark one that the agent would experience

if no fundamental news about the process X realizes from time t to time t + 1. This

seems closely related to the diagnostic expectation model of Bordalo et al. (2018b). Con-

sider indeed the class of autoregressive processes of order one, with zero long run mean

(without loss of generality) and persistence ρ ∈ [0, 1]. Assume moreover, for simplicity,

that the agent has dogmatic correct beliefs about the volatility σ, while she forms beliefs

about the persistence ρ ∈ [0, 1] of the process. ThusM = {ρ ∈ [0, 1]}. In this case, the

agent over-weights models m under which the realized value Xt+1 is more likely under

time t information, relative to time t − 1 information. Therefore, after positive news,

i.e. Xt+1 > Xt, the agent will over-weight the persistence of the process, relative to the

Bayesian case.
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3.3.3 From updating to predictions

We now compare Bayesian forecasts versus distorted forecasts. Under a standard quadratic

loss function, the Bayesian agent exploits the marginal likelihood for predictions at time

t about Xt+1
6:

Ft[Xt+1] =
∫
X
Xt+1lt(Xt+1)dXt+1 =

∫
X
Xt+1

∫
M
lt(Xt+1|m)pt(m)dmdXt+1.

The θ-distorted agent uses the θ-distorted to compute predictions:

F θ
t [Xt+1] :=

∫
X
Xt+1l

θ
t (Xt+1)dXt+1 :=

∫
X
Xt+1

∫
M lt(Xt+1|m′)

(
lt(Xt+1|m′)
Bt(Xt+1|m′)

)θ
pt(m′)dm′∫

X lt(X ′t+1|m) lt(X
′
t+1|m)

Bt(X′t+1|m)dX
′
t+1

dXt+1.

The details of forecasting departure from the Bayesian agent depend on the class

of models used by the agent, M and on the specification of the bound on the surprise

Bt(Xt+1|m). Let us consider some examples.

Exmaple 2 (continued)

Consider again example 2, with l(Xt+1|m) ∼ N (ρXt, σ
2) andBt(Xt+1|m) = N (ρ2Xt−1, σ

2).

In this case, we get:

6 We use the quadratic function here for the purpose of simplicity, because it is by far the most popular
loss function. Different loss functions implies forecasting rules different from the conditional expectations,
which can however be computed given beliefs and likelihood function.
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F θ
t [Xt+1] =

∫
X
Xt+1

∫
M lt(Xt+1|m)

(
lt(Xt+1|m)
Bt(Xt+1|m)

)θ
pt(m)dm∫

X lt(X ′t+1|m) lt(X
′
t+1|m)

Bt(X′t+1|m)dX
′
t+1

dXt+1

=
∫
X
Xt+1

∫
M

1√
2πσ2

e(Xt+1−ρ(1+θ)Xt+θρ2Xt−1)pt(ρ)dρdXt+1

=
∫
M

(∫
Xt+1

1√
2πσ2

e(Xt+1−ρXt−θσρεt)dXt+1

)
pt(ρ)dρ

=
∫
M

(ρXt + θρσεt) pt(ρ)dρ = Et[ρ]Xt︸ ︷︷ ︸
Bayesian forecast

+θEt[ρ]σεt

This is an exact analog of the diagnostic expectation model, where however she attaches

beliefs to the persistence ρ of the process. The Bayesian as well as the distorted forecasts

depend on the first subjective moment only of the persistence parameter. Moreover, the

expression reduces exactly to the one of the diagnostic expectation model in the limiting

case in which there a exists a true persistence ρ∗ and the agent knows such value, i.e.

pt(ρ) = δ(ρ − ρ∗). This provides a foundation for distorted forecasting rules even in the

absence of learning.

3.4 Noisy signals and bounded surprise

Consider the effect of exogenously specified noise, or partial observation. Consider an

agent which observes a noisy version ofXt+1, denoted byXη
t+1 ∼ ηt+1, such that Et[Xη

t+1] =

Xt+1: The Bayesian updating reads:

pt+1(m) ∝ lt(Xt+1|Xη
t+1,m)pt(m).

The agent has to filter the time series of interest X1,t out of the observed noisy signals,

other than learn the data generating process.
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For the sake of simplicity we consider the filtering problem as known to the agent, namely

the agent knows the map Xη
t = Xη

t (Xt) , while in full generality this task may entail an

additional learning problem. How beliefs movement compare with the Bayesian agent?

First, we show that, the average description length (or average surprise) in a noisy world

is larger than the one in a noiseless world:

∫
M
f(m)

(∫
X

[
− log(lt(Xt+1|ηt+1,m))

]
ft(ηt+1|m)dηt+1

)
dm ≥∫

M
f(m)

(
− log

(∫
X
lt(Xt+1|ηt+1,m)ft(ηt+1|m)dηt+1

))
dm = Ef [− log lt(Xt+1|,m)],

where f is a candidate posterior distribution. This shows that, under noise, the

expected description length is larger than in the noiseless case. For a fixed resource

constraint of the expected description length, our setting predicts that the more the envi-

ronment is noisy the more the agent relies of the representativeness heuristics, compared

to the Bayesian case. This result can also be interpreted in terms of a sharp change of

the noisiness of signals, which makes more likely judge according to representativeness.

3.5 Relation to model misspecification and ambigu-

ity aversion

We sketch an intriguing connection with the setting of Hansen and Sargent (2008) of robust

prediction. In the simplest version of such setting, the agent recognizes that the class of

modelsM is limited and it is likely that it does not include the true model generating the

data. A agent may therefore look for robust posterior beliefs. In out framework we did not

take a stand on the true model being inM or not, yet we implicitly assume that the agent

is not concerned about robustnesses with respect to the class of models considered. Robust

posterior beliefs are constructed by: first performing a standard Bayesian updating and
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then looking into an exogenously fixed neighbor of the Bayesian posterior, for alternative

posterior beliefs. This recipe will heal the problem of choosing posterior beliefs under

which the the objective of the agent is not stable. When estimating a model, the agent

minimizes the Bayesian expectation of a loss function:

min
f

Ef [U(Xt+1)],

where U(Xt+1,m) is a generic loss function, with Ut(Xt+1) = − log l(Xt+1|m) recover-

ing our setting. The minimization problem is subject to the normalization constraint∫
M f(m)dm = 1 and the robustness constraint:

DKL(f ||pBt+1) ≤ C.

The constraint explores a neighbor of the Bayesian pBt+1, with the purpose of being

robust in the case of model misspecification. The solution to this optimization problem

when Ut(Xt+1) = − log l(Xt+1|m) is:

pROBt+1 ∝ pλt+1,

where however −1 < λ < 0, thus leading to a choice of cautious, or tempered, pos-

terior. There are two crucial differences with our setting. First, a negative λ implies

that the agents is conservative as opposed to the behavior dictated by the representative-

ness heuristics. Second the framework does not specify a benchmark distribution and as

such departures from Bayesian rationality do not depend on past information, or, more

generally, on the relevant context.
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3.6 Conclusion

We showed that the representativeness heuristic follows from a Bayesian updating frame-

work, where however the agent has an upper bound she can experience from the data.

To do so, we first reinterpreted Bayesian updating as an optimal information processing

problem. We showed that it is the trade-off between: i) the cost of moving beliefs and ii)

and the fitting ability (surprise). Introducing a constraint on the surprise, due to cogni-

tive finite resources, the agent naturally distorts Bayesian assessments of representative

features in order to the met the resource capacity. Predictions in this setting feature

systematic biases, which in general depend on the form of the constraint. We recovered

over-reaction to news - as featured in the diagnostic expectation model of Bordalo et al.

(2018b) - when the coding cost bound is adaptive and the depends on the past history. Fi-

nally we commented on the relation with rational inattention and model misspecification

literatures.
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A The Dirac delta distribution

Suppose xt+1 ∼ N (µ, σ2). We want to capture the idea that we perfectly observe xt+1.

Intuitively, this is done by considering the limit σ → 0. The result need to be carefully

defined mathematically. However, it turns out that the the limit distribution is a degener-

ate distribution with no mass everywhere except on µ. Such distribution is denoted with

the symbol δ(y − µ) and it is called Dirac delta distribution. Let us recall two main and

intuitive properties of the delta distribution:

1. Normalization:

∫
R
δ(y − µ)dy = 1.

2. Expectation of a ("well behaved") function f :

∫
R
f(y)δ(y − µ)dy = f(µ).

Property 1. recall the usual normalization for probability densities. Property 2. can be

easily interpreted thinking that the support of the Dirac delta is {µ}, yet it is normalized.
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B Proofs

Proof. Consider the Lagrangian for the variational problem:

Lt[f, λ, θ] :=
∫
M
f(m) log f(m)

pt(m)dm−
∫
M
f(m) log lt(Xt+1|m)dm− λ

(∫
M
f(m)dm− 1

)

− θ
∫
M
f(m) log lt(Xt+1|m)

Bt(Xt+1|m)dm.

The third term is the normalization constraint, while the fourth one is the surprise con-

straint. Consider the variation δL relative to f :

δL =
∫
M

(
log f(m)

pt(m) + 1− λ− lt(Xt+1|m)− θ log lt(Xt+1|m)
Bt(Xt+1|m)

)
dm.

Setting δL = 0, we get:

pt+1(m) ∝ pt(m)lt(Xt+1|m)eθ log
(
lt(Xt+1|m)
Bt(Xt+1|m)

)
.

The normalization constants, λ and θ are both dependent on Xt+1 and on the past history,

since the constraints are. We can get rid of λ, since the posterior distribution can be

normalized ex-post. Let us discuss θ. Using the description length constraint:

∫
M
pt+1(m) log lt(Xt+1|m)

Bt(Xt+1|m)dm = 0

⇐⇒
∫
M

lt(Xt+1|m)
Zt(θ,Xt+1)

(
lt(Xt+1|m)
Bt(Xt+1|m)

)θ
pt(m) log lt(Xt+1|m)

Bt(Xt+1|m)dm = 0

⇐⇒ d logZt(θ,Xt+1)
dθ

= 0.
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This provides us with an equation for θ. We can investigate the limiting cases, θ → 0,

θ → −1 and θ →∞.

lim
θ→−1

pt+1 = pt

lim
θ→0

pt+1 = pt

lim
θ→−1

pt+1(m) ∝ pt(m)lt(Xt+1|m)δ(m−m∗t (Xt+1))

where:

m∗t (Xt+1) = arg max
m∈M

lt(Xt+1|m)
Bt(Xt+1|m)
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C Relation to Maximum Entropy Method

The maximum entropy principle (or minimum relative entropy principle) provides a be-

havioral foundation on how to move beliefs for a non ideological rational agent. This

literature has been initiated by Jeynes (see Jaynes (2003)). The principle says: given the

prior belief, the agent should revise it only in light of new information. In particular, if

no information arrives, the agent should not move her beliefs at all. If, on the contrary,

some information is observed, the agent should move as minimally as possible her beliefs,

constrained by the observed evidence. Let us formalize those thoughts. Later, we will

prove the equivalence with the Bayesian updating.

Additional notation: joint prior and joint posterior

1. Joint prior distribution: pt(θ, x̄t, xt+1).

2. Joint candidate posterior distribution: pt+1(θ, x̄t, xt+1).

Note that joint prior and candidates posterior agree on what happened up to time t (i.e.

the marginal distribution integrating on θ and xt+1 is degenerate).7

We will see that the Basyesian posterior will also agree on what happens at time t+ 1

(consistency with observed data).

Note also that both the joint prior and the joint posteriors are defined on the space Θ×X
8. X denotes the space on which Xt takes values. For example, if Xt follows an AR(1)

process, then X = R.
7Actually, for the time t + 1 updating, the prior is completely free to be specified. It does not need

to be consistent with information up to time t. Here, we consider for convenience a sequencial bayesian
updating setting.

8Or we can define them on the space Θ×X t+1, where the marginal distributions integrating on θ and
xt+1 are degenerate. This is an esthetic choice.
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Let us now discuss what we mean with the posterior being constrained by the evidence.

We mean that after observing xt+1 = x̄t+1, its distribution is degenerate, namely xt+1 ∼

δ(xt+1 − x̄t+1). This information should be taken into account into the posterior, while it

is not incorporated into the prior (since xt+1 = x̄t+1 is not observed yet and thus xt+1 is

a random variable from the perspective of time t.)

Formally, the joint posterior needs to satisfy the constraint:

∫
Θ
pt+1(θ′, x̄t, xt+1)dθ′ = δ(xt+1 − x̄t+1).

Note that we assumed both prior and posterior need to be consistent with information

observed up to time t, namely:

∫
Θ×X

pt+1(θ′,xt, x′t+1)dθ′dx′t+1 = δ(xt − x̄t).

and for the prior:

∫
Θ×X

pt(θ′,xt, x′t+1)dθ′dx′t+1 = δ(xt − x̄t).

Theorem 11 (Bayesian updating minimizes relative entropy subject to new information).

Consider the optimization problem9:

min
pt+1

DKL[pt+1, pt]

9This is a variational problem, the posterior pdf has to satisfy regularity conditions for the problem
to be well posed.
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subject to the constraints:

1. Normalization:

∫
Θ×X

pt+1(θ′, x̄t, x′t+1)dθ′ dx′t+1 = 1.

2. Consistency with observed data:

∫
Θ
pt+1(θ′, x̄t, xt+1)dθ′ = δ(xt+1 − x̄t+1).

Denote as p∗t+1 the solution to the minimization problem. Then p∗t+1(θ|x̄t, x̄t+1) is the

Bayesian posterior.
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D Processsing consistency

We comment on different ways of processing evidences from the data. The agent in fact

could update her beliefs after each datum she observes, or she could update beliefs less

frequently, i.e. after a number of observations. He and Xiao (2017) dub the property of

Bayesian posterior beliefs of being invariant with respect to the way a string of data is

processed, as processing consistency. A pseudo-likelihood10 satisfies processing consistency

if and only if, for any subset Pk of {1, . . . , T + 1} with k elements:

log lθ1(XT+1|m) =
∑
i∈Pk

log lθti(Xti+1 |m).

The Bayesian updating is not the only updating which satisfies it (for instance, model

(3.3) with constant B does), yet the processing consistency impose the following strong

restriction on updating:

logB1(XT+1|m) =
∑
i∈Pk

logBti(Xti+1 |m).

The diagnostic expectation model of Bordalo et al. (2018b) does not feature such con-

sistency, in general: updating does not depend on the data only but also on the updating

path, which may set the benchmark distribution Bt(Xt+1|m) at time time t. As such, one

should not expect this property to hold in the diagnostic expectation model. We will not

consider the choice of when updating, while we focus on the features of the constrained

updating we will introduce.

10note that, given the arbitrariness of Bt(Xt+1|m) there is no loss of generality in considering as general
the updating dictated by (3.3).
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