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Preface

Dynamic Factor Models (DFM) have been proposed as an useful way to summarize the infor-

mation contained in large datasets with a few latent factors.

A simple way to represent DFM is to view them as in Stock Watson (2005), as a restricted

vector autoregressive model where the time series set includes observable variables and a few

(latent) static factors (which can be consistently estimated with principal components from a

large dataset with T observations and N series). These particular VAR models have been called

Factor Augmented VARs (FAVARs).

Inferential theory for these models is reported in a series of papers published in Econometrica

by Jushan Bai and Serena Ng, where they show that the factor loadings are
p
T consistent and

asymptotically normal if
p
T =N ! 0 also when the factors are generated by a VAR process.

The same theoretical results have been extended to applications like di¤usion index forecasts

in Bai-Ng (2006a) and to tests for the null hypothesis that an observed economic series is the

unobserved factor (Bai-Ng(2006b)).

In this thesis we look at these problems and applications trying to �nd to what extent there

are asymptotic theory-based tests failures , and to what extent bootstrap methods can help

us in �xing them. The main result is that asymptotic theory con�dence intervals are heavily

in�uenced by data generating process parameters and by small sample biases, especially for

highly nonlinear statistics. Bootstrap methods are designed for dealing with these problems,

but there are so many techniques for resampling and providing bootstrap con�dence intervals,

that each application or model may require a di¤erent strategy. These methods are very helpful

when we deal with biased estimates, because they provide a relatively simple way to estimate

the bias, also if bias correction maybe counterproductive (as an example with the common
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component). The block bootstrap and simple percentile intervals work well when we deal with

the common component and if we want to give an economic interpretation to our latent factors.

Semiparametric bootstrap are more helpful when we deal with complicated nonlinear functions,

as in the second paper related to impulse responses.
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Chapter 1

Di¤usion Index Forecasts:

Asymptotic Theory and Bootstrap

Methods

1.1 Introduction

Dynamic Factor Models (DFM) have been proposed as an useful way to summarize the infor-

mation contained in large datasets with a few latent factors.

A simple way to represent DFM is to view them as in Stock Watson (2005), as a restricted

vector autoregressive model where the time series set includes observable variables and a few

(latent) static factors (which can be consistently estimated with principal components from a

large dataset with T observations and N series). These particular VAR models have been called

Factor Augmented VARs (FAVARs).

Inferential theory for these models is reported in a series of papers published in Econometrica

by Jushan Bai and Serena Ng, where they show that the factor loadings are
p
T consistent and

asymptotically normal if
p
T =N ! 0 also when the factors are generated by a VAR process.

The same theoretical results have been extended to applications like di¤usion index forecasts

in Bai-Ng (2006a) and to tests for the null hypothesis that an observed economic series is the

unobserved factor (Bai-Ng(2006b)).
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Stock Watson (1999) show that a few static factors provide more precise US in�ation fore-

casts Other papers which apply this technique to US data are

Stock Watson (2002b), Bernanke Boivin(2003) and Boivin Ng(2003); for other countries

see Forni, Hallin, Lippi and Reichlin (2003b, Euro Area), Brisson, Campbell, Galbraith (2002,

Canada) and Artis, Banejee and Marcellino (2001, UK).

In this paper we show that if we look at a static factor model with a more complicated

dynamic structure than the one reported in the previous literature, the forecast con�dence

intervals obtained according to asymptotic theory are too small in small samples. We want to

check if bootstrap methods can provide con�dence intervals with a rejection probability close

to the nominal one and with a reasonable length.

This paper has six sections, including this introduction.

In the second section we present the Dynamic Factor Model, as presented in Bai (2003) and

we review estimation issues and asymptotic theory. In the third section we present di¤erent

bootstrap methods which depend on how we create arti�cial samples and on how we build

con�dence intervals.

The fourth section discusses a DFM model with two common shocks and four static fac-

tors and compares con�dence intervals for the common part based on asymptotic theory and

bootstrap methods in terms of coverage probability and interval length . The �fth section

presents a simulation related to di¤usion index forecasts similar to the one proposed in Bai-Ng

(2006), and in the sixth section we illustrate the methods with an empirical example related to

forecasting of industrial production and in�ation.

1.2 The model

The dynamic factor model expresses each series as a function of contemporaneous and lagged

dynamic factors and idiosyncratic error terms:

Xti = ft
_
�i(L) + eti; i = 1; :; n (1.1)
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_
�i(L) =

pX
j=0

��i;jL
j (1.2)

where eti is the idiosyncratic error while ft is a 1� q vector of covariance stationary unob-

served dynamic factors and
_
�i(L) is a q�1 vector of lag polynomials. Factors and idiosyncratic

terms are assumed to be uncorrelated with each other. Moreover:

E(etiesj) = 0 for all i,j,t,s, if i 6= j (1.3)

This last strong assumption characterizes the "Exact Dynamic Factor Model " (DFM)

proposed by Geweke (1977) and Sargent and Sims (1978). Chamberlain and Rothschild (1983)

introduced the Approximate Dynamic Factor Model (ADFM) which allows for a limited amount

of correlation between di¤erent idiosyncratic terms; they assume that the maximum eigenvalue

of the matrix 
 = E (ete0t) is bounded.

The 1 � r vector Ft =
h
ft ft�1 ::: ft�p

i
includes r contemporaneous and lagged

factors. The maximum of r is equal to q(p+1) if all factors and lagged factors are loaded with

nonzero loadings. �i includes all stacked factor loadings, so that the dynamic factor model in

static form can be written as:

Xti = Ft�i + eti (1.4)

In this paper we will focus our attention on the asymptotic theory proposed in Bai (2003),

which can be applied to a more general approximate factor model which allows for limited time

series and cross section dependence in the idiosyncratic components. His results can be applied

to our exact dynamic factor model.

Following his notation the DFM can be summarized as:

X
TxN

= F
Txr

��
rxN

+ e
TxN

(1.5)
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Small scale DFM can be estimated by Gaussian Maximum Likelihood using the Kalman

�lter (Engle and Watson (1981), Stock and Watson (1989,1991), Sargent (1989), and Quah

and Sargent (1993)). This estimation strategy is in the literature considered unfeasible for

large panels, but in a recent paper Doz, Giannone and Reichlin show that a quasi-maximum

likelihood estimation method can be applied to this case. We follow the results in Chamberlain

and Rothschild (1983) who show that the principal components method is equivalent to ML

when N goes to in�nity.

The principal component method minimizes the function

(NT )�1
TX
t=1

NX
i=1

[Xti � Ft�i]2 that, under the normalization F�F/T=Ir, corresponds to max-

imizing tr(F 0(XX 0)F ):

F̂ will be equal to
p
T times the eigenvectors corresponding to the �rst r eigenvalues of XX�,

while �̂ =
�
F̂ 0F̂

��1
F̂ 0X = F̂ 0X=T:

In his paper Bai provides asymptotic distributions for F̂ under assumptions which allow

for a VAR structure of F, factor loadings independently distributed with respect to factors

and idiosyncratic shocks, limited time series and cross section dependence in the idiosyncratic

components, weak dependence between factors and idiosyncratic shocks, plus other additional

technical assumptions.

He shows that under these assumptions, as N,T! 1 if
p
N=T ! 0, for each t up to an

invertible matrix H:

p
N
�
F̂t �H 0Ft

�
= V �1NT

 
F̂ 0F

T

!
1p
N

NX
i=1

�ieti + op(1)!
d

N(0; V �1Q�tQ
0V �1) (1.6)

Where VNT is a diagonal matrix with the �rst r eigenvalues of XX�/NT in decreasing order,

V are the �rst r eigenvalues of �1=2� �F�
1=2
� and Q = V 1=2�0�

�1=2
� , where � is the matrix of

the r eigenvectors associated to V, with �0� = I:

Moreover, �t = lim
N!1

1
N

NX
i=1

NX
j=1

�i�
0
jE (etietj) ; �F = p lim

1
T

TX
i=1

FiFi; and jj�0�=N ���jj !

0
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He suggests a consistent estimator for this covariance matrix under the assumption of cross-

section independence for the idiosyncratic shocks:

�̂t = V
�1
NT

 
F̂ 0F̂

T

! 
1

N

NX
i=1

ê2ti�̂i�̂
0
i

! 
F̂ 0F̂

T

!
V �1NT (1.7)

He derives under the same assumptions the asymptotic distribution of the loadings (if
p
T=N ! 0) :

p
T
�
�̂i �H�1�i

�
= V �1NT

 
F̂ 0F

T

!�
�0�

N

�
1p
T

NX
i=1

Fteti + op(1)!
d

N(0; (Q0)�1�iQ
�1) (1.8)

Where �i = p lim
T!1

1
T

TX
s=1

TX
t=1

E [FtF
0
tesieti] :

He suggests a Newey and West (1987) HAC estimator, constructed with the estimated series:

�̂i = D0;i +

qX
v=1

�
1� v

q + 1

��
Dvi +D

0
vi

�
(1.9)

Dvi =
1

T

qX
t=v+1

F̂têtiêt�v;iF̂t�v (1.10)

In the same paper, under the assumption of no cross section correlation between idiosyn-

cratic shocks the asymptotic distribution (with convergence rate �NT = min(
p
T ;
p
N) of the

common component Cti = Ft�i is:

�NT

�
Ĉti � Cti

�
q

�2NT
N Vti +

�2NT
T Wti

!
d
N (0; 1) (1.11)

Vti = �0i�
�1
� �t�

�1
� �i (1.12)

Wti = F 0t�
�1
F �i�

�1
F Ft (1.13)

These last two quantities can be consistently estimated as:
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V̂ti = �̂
0
i

 
�̂0�̂

N

!�1 
1

N

NX
i=1

ê2ti�̂i�̂
0
i

! 
�̂0�̂

N

!�1
�̂i (1.14)

Ŵti = F̂ 0t�̂iF̂t (1.15)

In his paper he showed that these asymptotic estimators work well in a Montecarlo experi-

ment with q=1 and a White Noise factor.

In this literature one empirical issue is the choice of the number of factors. In another paper

(Bai-Ng (2002)) propose information criteria for the choice of r and they show with Montecarlo

simulations that these criteria allow us to select an appropriate number of factors when the

number of observations is higher than 40. Stock &Watson (2005) show with another Montecarlo

simulation which mimics their sample�s structure that the most reliable is the criterion ICp2(k):

ICp2(k) = ln
�
V
�
k; F̂ k

��
+ k

�
n+ T

nT

�
ln (min (n; T )) (1.16)

where V
�
k; F̂ k

�
= min

�

1
NT

nP
i=1

TP
t=1

�_
Xti � �ki F̂ kt

�2
is the sum of squared residuals from the

time series regressions of
_
Xtion F̂ kt :

Other criteria are proposed in Hallin & Liska (2007) and Amengual & Watson (2007).

In this paper, for the sake of simplicity, we assume to know the true number of factors, but

studying the e¤ects of its information-based determination on the small-sample properties of

factor estimators is an interesting topic for future research..

1.3 The Bootstrap

Bootstrap methods were introduced in Efron (1979) as a way to obtain standard errors for

complicated statistics without relying on asymptotic theory.

If we have a sample X which is randomly drawn from an unknown probability distribution F

and we want to create a con�dence interval for the parameter of interest � we need an unbiased

estimator �̂ = t(X) and its standard error s:e:F
�
�̂
�
=

rZ
(t(X)� EF (t (X)))2 dF .
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While for the mean of an iid sample it is easy to derive the standard error, this is much harder

for more complicated parameters, especially in the presence of correlated random variables.

The bootstrap substitutes the unknown F with the empirical distribution F �, the one which

assigns probability 1/N to the N observations of the available sample. In practice B simulated

samples are drawn from the empirical distribution, and the estimated variance is the variance

of the bootstrap estimates across the simulated samples.

In simple linear models with exogenous regressors arti�cial samples are created by drawing

without replacement from the estimated residuals, but this procedure depends on the assump-

tion that the residuals are iid; if the residuals are autocorrelated this Bootstrap procedure does

not provide consistent estimates.

In the literature there are basically four bootstrap methods for autoregressive models.

Parametric (Montecarlo) methods rely on the estimation of the residual�s ARMA structure

and on assumptions about their distribution. As an example in Forni, Giannone, Lippi and

Reichlin, (2005) they estimate the model:

Xit = Bi (L) �t + uit = �it + uit (1.17)

where �t are the common shocks with unit variance and mutually uncorrelated and uit are

idiosyncratic shocks with an AR structure:

ai(L)uit = �ivit (1.18)

The common shocks and the iid residuals vit are drawn from a N(0,1) distribution in order

to obtain the simulated series.

Semiparametric methods (sieve bootstrap) are similarly based on the estimation of the

autoregressive structure, but the samples are drawn from the residuals�empirical distribution

Nonparametric methods do not assume a parametric AR structure, but recognize the pres-

ence of autocorrelated residuals by resampling blocks of residuals (the block bootstrap). An

important issue with block bootstrap is the estimation of the optimal block length (or the op-

timal average length), a choice that depends on the implicit loss function. There are di¤erent

types of block bootstrap, as an example Politis-White (2004) report two di¤erent types: the
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circular bootstrap (CB) and the stationary bootstrap (SB)

The Circular Bootstrap assumes that the block length is the same for each block, while the

Stationary Bootstrap assumes that the length changes randomly at each draw; in their paper

they provide an automatic procedure which selects the mean block length which minimizes the

mean squared error of the asymptotic variance of the autocorrelated series. This optimal length

depends on the persistence of the series: if we have high persistence, the e¤ect of a shock lasts

longer and we need to draw a longer block in order to preserve the series�autocorrelation.

Another strategy is to work in the frequency domain, where it is possible to �nd iid variable

which can be exploited in bootstrapping. As an example, Ramos (1984) proposed to estimate

the spectral density function of a covariance stationary series, generate pseudo- Fourier coe¢ -

cients and pseudo-data from these pseudo-Fourier coe¢ cients. This is possible because for each

frequency the ratio between the fourier coe¢ cients and the square root of the spectral density

function is asymptotically distributed as a N(0,1/2).

There is a trade-o¤ between non-parametric and parametric methods: the former are more

likely to encompass the true model, while the latter are more precise. As an example, Berkowitz

and Kilian compare the con�dence intervals of the T-Bill rate impulse response to a standard

deviation shock. They show with a Montecarlo simulation where the DGP is a ARMA(2,4),

that the parametric bootstrap has an higher coverage probability if confronted to the block

bootstrap and Ramos�bootstrap. We think that in our model robustness is a more important

issue than precision.

One very important issue which will especially encounter in the second paper is estimation

bias.

As an example in small samples VAR parameters are systematically biased: Kilian (1998)

shows that the small sample distribution of the impulse responses are not Gaussian, and that

simple naive quantile con�dence intervals have a lower coverage than expected.

In other words, if we simply look at the �=2 and 1-�=2 quantiles of the B simulated �Bi;j

(the vector of VAR parameters):

Prob
�
�i 2

h
�Bi;B�=2; �

B
i;B(1��=2)

i�
< 1� � (1.19)
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For this reason Kilian (1998) proposed a simulation-based correction, where in the case of

a stationary VAR the bootstrap replications are drawn after correcting for the bias
^

Bias =
BX
j=1

�Bi;j=B � �̂i:

But correcting for small sample estimation bias is not enough for testing and reporting

con�dence intervals with the appropriate coverage.

In order to have exact tests with the help of simulations, the statistic of interest should be

pivotal: it should not depend on unknown parameters.

Tests based on bootstrap replications are very often asymptotically pivotal: the larger is the

sample size, the lower is the dependence of the coverage probability from unknown parameters.

In MacKinnon (2002) there are various examples where he shows a few asymptotically

pivotal bootstrap tests. He shows con�dence interval coverage probability as a function of the

true parameter for a given number of observations t and that when t increases it becomes �at

at a faster rate than tests based on asymptotic theory. This is not always the case, since each

speci�c model require an extensive montecarlo evaluation in order to understand if a reliable

bootstrap procedure for providing accurate con�dence interval exists.

Given the number of parameters it is a quite impossible task to provide an extensive eval-

uation of asymptotic pivotalness when we deal with the DFM. We will only see an example in

the second paper, when we will look at the AR(1) parameter in a very simple DFM.

There is not just one way to build bootstrap-based con�dence intervals. The simple per-

centile con�dence interval now coexist with more complicated intervals which have been devel-

oped when it became clear that estimation bias and asymptotic pivotalness were two important

issues . Benkowitz-Lutkepohl-Wolters (2001) propose the following methods:

1. The percentile con�dence interval: CI(�) =
h
�Boot�=2 ; �

Boot
(1��=2)

i
:

2. The Hall(1992) percentile con�dence interval:

CIH(�) =
h
2�̂ � �Boot(1��=2); 2�̂ � �

Boot
�=2

i
3. The studentized percentile con�dence interval:

CISH(�) =
�
�̂ � tBoot2(1��=2)

q
V ar(�̂); �̂ � tBoot2�=2

q
V ar(�̂)

�
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The percentile con�dence interval is the most naive: it is obtained directly by sorting

the parameters estimated from each arti�cial sample. These intervals have not the desired

coverage probability when the estimator is biased, since this con�dence interval derives from

this assumption. For this reason it does not work when we deal with biased AR model parameter

estimators.

The Hall percentile con�dence interval takes account of this bias, since it is based on the

assumption that the di¤erence between the estimate �̂ and the average estimate across simulated

samples ��Boot is equivalent to the estimator bias.

In order to understand the logic behind this con�dence interval, let start by assuming that

we have a biased estimator such that

�̂ � N(� +Bias; �2
�̂
) (1.20)

Given the bootstrap principle we can also assume that the estimator obtained from the

bootstrap sample is biased and normally distributed:

�̂
B � N(�̂ +Bias; �2

�̂
B ) (1.21)

From the empirical distribution we can estimate the bias as the di¤erence between the

average bootstrap estimate and the original estimate:

^
Bias = ��

Boot � �̂ =
PB
i=1 �

Boot
i

B
� �̂ (1.22)

Under these assumptions:

Pr

0@z�=2 � �̂ � � �
^

Bias

��̂
� z1��=2

1A = 1� � (1.23)

And the bias-corrected con�dence interval becomes:

�
�̂ �

^
Bias� z1��=2��̂ �̂ �

^
Bias� z�=2��̂

�
(1.24)

Under this normal approximation z� is the 100�-th percentile of a gaussian distribution
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while the parameter variance can be estimated as the standard deviation of the bootstrap

parameters:

�̂�̂ =
1

B � 1

BX
i=1

�
�Booti � ��Boot

�2
(1.25)

If we relax the normality assumption we can approximate the z distribution by studentizing

the empirical distribution. In practice it means that: z� is the 100�th percentile of

tBooti =
(�Booti � ��Boot)

�
�̂
B

: (1.26)

Under the assumption that the bootstrap estimator standard deviation �
�̂
B and estimator

standard deviation ��̂ are equal we can derive the Hall Percentile interval as:

�̂ �
^

Bias� z1��=2��̂ = �̂ �
�
��
Boot � �̂

�
� �̂�̂

(�Boot(1��=2) � ��
Boot

)

�
�̂
B

=

= 2�̂ � ��Boot � �Boot(1��=2) +
��
Boot

= 2�̂ � �Boot(1��=2)

This method and the studentized con�dence interval derives by the observation in the boot-

strap literature that by studentizing it is possible to obtain a better approximation of the

bootstrap to the real distribution.

The studentized percentile con�dence interval requires much more computation because

it is a double bootstrap. B2 arti�cial samples are simulated starting from the bootstrapped

parameters �Booti ; in order to estimate V ar(�Booti ).

The con�dence interval has the following structure:

CISH =

�
�̂ � tBoot2(1��=2)

q
V ar(�̂); �̂ � tBoot2�=2

q
V ar(�̂)

�
(1.27)

Where V ar(�̂) is the estimated variance of the bootstrapped parameters �Booti :

V ar(�̂) =
1

B � 1

BX
i=1

�
�Booti � ��Boot

�2
(1.28)
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The con�dence interval�s critical values come from the studentized bootstrap parameters;

they require a second draw of B2 arti�cial samples, in order to estimate V ar(�Booti ):

tBoot2i =
�
�Booti � �̂

�
=

q
V ar(�Booti ) (1.29)

V ar(�Booti ) =
1

B2 � 1

BX
i=1

�
�Boot2i � ��Boot2i

�2
(1.30)

In the bootstrap literature there is also another percentile con�dence interval: the Bias

Corrected percentile con�dence interval (BC, see DeCiccio Efron (1996)).

Let us assume that it exists a monotone increasing transformation of our parameter of

interest � = m(�) such that:

�̂ = m(�̂) � N(�� z0; 1) (1.31)

Under this assumption (which is weaker than in the previous case where � = m(�)) there

is another monotone transformation � =M(�) such that �̂ =M(�̂)=� +W; with W having the

same distribution for any � and the �th percentile of �̂ is:

�̂(�) = � �W (1� �) (1.32)

In practice if we de�ne �(:) as the cumulative distribution function of a N(0,1) variable

(where z(�) = ��1(�); so that z(0:025) = 1:96) and G(c) is the cumulative distribution empirical

function, we have that:

G(c) =
I(�Booti < c)

B
(1.33)

ẑ0 = ��1
�
G(�̂)

�
(1.34)

�BC� = G�1(�( 2ẑ0 + z
(�))) (1.35)
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And the bias corrected percentile interval with signi�cance level � is:

BC(�) =
h
�BC�=2; �

BC
(1��=2)

i
This last interval is equivalent to the simple percentile one if there is no bias, since if ẑ0 = 0;

�( z(�=2)) = �=2 and G�1 (�=2) = �Boot�=2 :

Concluding this section we have seen �ve di¤erent ways to construct con�dence intervals:

Efron simple percentile intervals, Hall percentile, Bias corrected percentile, normal approxi-

mation (bias corrected) and studentized percentile. Di¤erent models may require or not bias

corrected intervals, computation-intensive studentized percentile intervals or simple normal ap-

proximations.

In the next sections we will evaluate these di¤erent methods by simulating a dynamic factor

model and looking at the common component and at forecast intervals.

1.4 Our Montecarlo simulations

In this section we want to examine the small sample properties of con�dence intervals based on

asymptotic theory in a model more complex than Bai�s (2003) and see if we can obtain better

results with the bootstrap. While in his model there is only an iid dynamic factor, in our model

there are q=2 dynamic factors, modelled as independent AR(2) processes (h=2); these factors

are loaded as an MA(1) (p=1). This speci�cation is closer to what we observe empirically; as

an example Stock Watson (2005) model a panel of 132 time series of the US economy as a DFM

with 9 static factors and 7 common shocks.

Hence, our DGP is the following :
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Xt;i =

0BBBBBB@
h
�i1;0 �i2;0 �i1;1 �i2;1

i
26666664

f1;t

f2;t

f1;t�1

f2;t�1

37777775

1CCCCCCA

0

+ �iet;i (1.36)

24 f1;t
f2;t

35 =

24 �11 0

0 �21

3524 f1;t�1
f2;t�1

35+ (1.37)

24 �12 0

0 �22

3524 f1;t�2
f2;t�2

35+
24 �u1 0

0 �u2

3524 ut;1
ut;2

35 (1.38)

In this model we assume that et;i; ut;1 and ut;2 are iid random variables with unit variance.

If we de�ne the static factor Ft as the r=q(p+1)=4 vector:

Ft =

26666664
f1;t

f2;t

f1;t�1

f2;t�1

37777775

0

(1.39)

we can rewrite the model in static form as:

Xti = Ft�i + �ieti (1.40)

Ft =

26666664
f1;t

f2;t

f1;t�1

f2;t�1

37777775

0

=
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1 0 0 0

0 1 0 0

37777775
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37777775
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0

+

0BBBBBB@
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�u1 0

0 �u2

0 0

0 0

37777775
24 u1;t
u2;t

35
1CCCCCCA

0

= Ft�1� + ut
u (1.41)
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As an example let�s assume that our n series are driven by two common shocks, and that

the q=2 orthogonal factors have the following AR structure, where the second shock is more

persistent:

(1� 0:1L)(1� 0:7L)f1t = ut;1 (1.42)

(1� 0:3L)(1� 0:9L)f2t = ut;2 (1.43)

We assume that each series is also a function of lagged factors (p=1). Factor loadings assume

value 0 with probability 50% and a value in the intervals [-2,-1] or [1, 2] with probability 25%

in both cases.

In this way the simulated dataset is driven by 4 static factors, and when we apply principal

components also the third and the fourth factor explain a fair share of the total variance.

Otherwise Bai-Ng (2002) criteria would select no more than 2 static factors.

Before dealing with forecasting as a �rst exercise we show the rejection probability over

1000 simulated arti�cial samples for the common component.

From the second section we know that asymptotically the common part is distributed as

a normal distribution, where the asymptotic covariance matrix takes into account both the

uncertainty in estimating the factors and in estimating the factor loadings:

�
Ĉti � Cti

�
q

1
N V̂ti +

1
T Ŵti

!
d
N (0; 1) (1.44)

V̂ti = �̂
0
i

 
�̂0�̂

N

!�1 
1

N

NX
i=1

ê2ti�̂i�̂
0
i

! 
�̂0�̂

N

!�1
�̂i (1.45)

Ŵti = F̂ 0t�̂iF̂t (1.46)

Given the de�nition of the rejection probability as the probability that the true parameter

is not inside the con�dence interval at �% con�dence level, we calculated it as the average over

n series, t observations and m=1000 arti�cial samples of an indicator function which assumes

value 1 when the studentized common part value is larger in absolute value of the 100(1-�=2)th

percentile of the normal distribution:
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RP (t; n) =

0@ mX
k=1

tX
i=1

nX
j=1

I

 ����� (Ĉkij�Ckij)q
1
n
V̂ kij+

1
t
Ŵk
ij

����� > z(1�a=2)
!1A

tnm
(1.47)

Table(1) shows our results when the nominal con�dence level is � =5% (z(1�a=2) = 1:96);

the rejection probability for the con�dence intervals based on asymptotic theory is close to

the nominal one only when we have 100 series and 200 observations. However, it is very high

(around 20%) when we deal with samples which are small either in the N or in the T dimensions.

Common Part n=15 n=25 n=50 n=100
t=25 0.24261 0.22161 0.24968 0.28158
t=50 0.23228 0.20729 0.24414 0.29693
t=100 0.20791 0.16677 0.19406 0.24662
t=200 0.18632 0.10382 0.072631 0.060652
Table 1:Common Part asymptotic confidence intervals.
Rejection Probabilities average over 1000 simulations, n series
and t observations at the 5% significance level

Rejection Probabilities given asymptotic confidence intervals

This is the main reason why we want to evaluate whether applying bootstrap methods we

can obtain an appropriate coverage probability also in small samples.

In particular, we propose a bootstrap method based on the block bootstrap. We choose this

method in order to avoid the bias related to the estimation of the static factors�VAR structure

and because it is consistent with the model structure.

When we estimate the static factors with principal components we have (r+n) independent

autocorrelated stationary series: r estimated factors and n idiosyncratic errors.

X
TxN

= F
Txr

��
rxN

+ e
TxN

(1.48)

We can resample these series with the stationary bootstrap proposed in Politis-Romano.

Their procedure requires two steps:

1. Draw from a geometric distribution the length of the ith block; the average length depends

on the time series�autocorrelation.

2. Draw with repetition the ith block with the length extracted in the �rst step.
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These two steps must be iterated untill we obtain a sample with the required length. In this

way we obtain B=1000 bootstrap samples and by re-estimating the common part we have an

empirical distribution of t*n parameters. Table(2) shows the rejection probability average over

parameters and m=1000 arti�cial samples when con�dence intervals are constructed with Efron

Percentile, Hall percentile, Normal approximation and bias corrected percentile interval.

Efron n=15 n=25 n=50 n=100
t=25 0.050917 0.05344 0.057778 0.060725
t=50 0.049469 0.050751 0.055296 0.058186
t=100 0.047135 0.047843 0.051659 0.054565
t=200 0.045709 0.046891 0.049427 0.052969

Hall n=15 n=25 n=50 n=100
t=25 0.19613 0.17963 0.16213 0.15145
t=50 0.15188 0.13549 0.11803 0.10753
t=100 0.11603 0.10173 0.082943 0.073741
t=200 0.097058 0.080697 0.059366 0.05368

Normal Approximation n=15 n=25 n=50 n=100
t=25 0.19622 0.17502 0.16005 0.14965
t=50 0.14867 0.13443 0.11700 0.10842
t=100 0.11517 0.10196 0.08371 0.07413
t=200 0.09889 0.08272 0.06221 0.05545

BC Perc n=15 n=25 n=50 n=100
t=25 0.20615 0.18663 0.17338 0.16454
t=50 0.15803 0.14385 0.12884 0.11970
t=100 0.12172 0.10793 0.09103 0.08181
t=200 0.10089 0.08469 0.06410 0.05640
Table 2 Rejection Probabilities average for common part over
 m=1000 simulations and t*n parameters at the 5% significance level
 Bootstrap samples are created with an algorithm based on the
Stationary Block Bootstrap, with B=1000 replications

Common part: CI Rejection probabilities

We can observe in Table(2) that in every bootstrap con�dence interval the rejection proba-

bility is closer to the nominal one (5%) if confronted with the asymptotic con�dence interval.

In particular Efron�s simple percentile interval is in practice always equal to 5%. The other

three converge rapidly to the nominal level as the number of observations and series increase.

The big di¤erence with the simple percentile interval is related to bias correction: as ex-
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plained in section 3 Efron�s percentile interval is simply obtained by sorting the common part

estimated in each arti�cial sample. The other con�dence intervals take account of bias correc-

tion, measured as the di¤erence between the average bootstrapped parameter value and the

estimated one.

The bootstrap average of the j-th observation common component for the ith series �CBOOTji

is always close to 0, which is the theoretical expected common component value. In practice

bias correction gives too much weight to short term movements of the common component from

its expected value when we deal with small samples.

In Figure(1) we show as an example four di¤erent con�dence intervals and the actual com-

mon part of one of the arti�cial series when we have t=25 observations and n=15 series.
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Figure 1: Common Part Asymptotic vs Bootstrap Con�dence intervals when t=25 and n=15.

If we look at the length of these di¤erent con�dence intervals, we observe that con�dence

intervals based on asymptotic theory are in general smaller than the con�dence intervals based
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on the bootstrap. This �nding is con�rmed in table 3, which shows the average length across

observations, series and arti�cial samples, calculated as the di¤erence between the upper bound

and the lower bound of a 5% level con�dence interval.

AL(t; n) =

0@ mX
k=1

tX
i=1

nX
j=1

(UBij;k � LBij;k)

1A
tnm

Asymptotic n=15 n=25 n=50 n=100
t=25 1.3608 1.3302 1.1712 1.0592
t=50 1.1509 1.1172 0.92262 0.78831
t=100 0.98759 0.95376 0.73077 0.58621
t=200 0.86358 0.84108 0.61846 0.46453

Efron n=15 n=25 n=50 n=100
t=25 3.4292 3.2634 3.1709 3.0871
t=50 3.5236 3.2591 3.1452 3.0975
t=100 3.6066 3.5659 3.3651 3.1688
t=200 3.6272 3.505 3.2875 3.2061

Normal Approximation n=15 n=25 n=50 n=100
t=25 3.5475 3.3883 3.2815 3.2240
t=50 3.5699 3.4241 3.2978 3.2293
t=100 3.6026 3.4558 3.3161 3.2367
t=200 3.6233 3.4521 3.3010 3.2188

BC Perc n=15 n=25 n=50 n=100
t=25 2.5662 2.4932 2.4241 2.3888
t=50 2.6009 2.5357 2.4411 2.3889
t=100 2.6428 2.5811 2.4709 2.4087
t=200 2.7002 2.6277 2.5033 2.4223
Table 3: Confidence interval average length for common part
over m=1000 simulations and t*n parameters at the 5%
significance level given asymptotic and bootstrap methods
Bootstrap samples are created with an algorithm based on
the Stationary Block Bootstrap, with B=1000 replications

Common Part: CI Average Length

Summarizing these results we have seen that with an appropriate bootstrap algorithm we can

obtain con�dence intervals which do not underestimate the variance of the common component

if our goal is to get a rejection probability close to the nominal one, but this may lead us to
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report too large con�dence intervals.

Bearing in mind what we have seen for the common component, we can now focus on

forecasting. We look at the Montecarlo simulations reported in Bai-Ng (2005), where they

simulate for each arti�cial sample, and for h=4 steps ahead, the following series y:

yt+h = 1 + f1t + f2t + f1t�1 + f2t�1 + "t+h (1.49)

where "t+h is an iid N(0,1)

If we assume that the factors are observable, we can estimate this equation with OLS and

derive the optimal forecast and the asymptotic forecast error variance, as reported below.

yt+i =
h
ĉ �̂y1;0 �̂y2;0 �̂y1;1 �̂y2;1

i
26666666664

1

f1;t

f2;t

f1;t�1

f2;t�1

37777777775
+ "̂y;t+h = (1.50)

= �̂0yzt + "̂y;t+h = ŷt+hjt + "̂y;t+h (1.51)

AsyV ar(yt+h � ŷt+hjt) = �̂2" + z
0
tAsyV ar(�̂

0
y)zt=T (1.52)

In their paper they showed under the regularity conditions that we reported in the second

section that if the factors have been estimated with principal components, the asymptotic

variance should take account of this unobservable factors uncertainty:

AsyV ar(yt+h � ŷt+hjt) = �̂2" + ẑ
0
tAsyV ar(�̂

0
y)ẑt=T + (1=N) �

h
�̂y1;0 �̂y2;0 �̂y1;1 �̂y2;1

i
AsyV ar

�
F̂t

�
26666664
�̂y1;0

�̂y2;0

�̂y1;1

�̂y2;1

37777775 (1.53)
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With these results in mind we can construct a 95% con�dence interval for yt+h :

h
ŷt+hjt � 1:96

q
AsyV ar(yt+h � ŷt+hjt)

i
(1.54)

If we want to show a con�dence interval based on bootstrap methods we must simulate the

forecast error distribution. If the factors are known this con�dence interval can be estimated

in three steps:

1. Estimate "̂y;t+i with the �rst t observations, generate B1 = 100 arti�cial samples "
j
y;t+i;

with the block bootstrap and simulate B1 series y
j
t+i:

2. For each arti�cial sample yjt+i estimate the forecasting errors "̂
j
y;t+i; and from its empirical

distribution resample B2 = 100 forecasting errors "
j;k
y;t+i:

3. Sort "j;ky;t+i ,save the �=2 and (1 � �=2) percentiles and create the percentile con�dence

interval for yt+i :

h
ŷt+ijt + "

j;k
y;t+i(�=2); ŷt+ijt + "

j;k
y;t+i(1� �=2)

i
If the factors are unknown this algorithm requires also in step 1 to draw B1 arti�cial samples

from the empirical distribution of the r estimated static factors F̂ and the n idiosyncratic shocks

ê via the block bootstrap. In this way we can simulate B1 arti�cial samples X(j), and reestimate

the factors F̂ (j) which we will use in the second step for obtaining "̂jy;t+h = y
j
t+h� �̂0y

24 1

F̂
(j)
t

35 :
As before we evaluated these con�dence intervals considering samples with t observations

and n series. In our experiment the forecast sample corresponds to the last (0.2t-h) observations.

As an example if we have t=50 observations and we forecast h=4 steps ahead, we use the

�rst 0.8t=40 observations of X for estimating the factors and observations j=(5,6,..44) of the

forecasted variable y in order to estimate the direct forecast equation. This means that we

evaluate the forecast intervals only for the last 7 observations.

Figure(2) shows this example connected with an arti�cial series when we have only 50

observations and 50 series in X. In practice there is not a big di¤erence between the two

con�dence intervals.
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Figure(2): An example of Asymptotic and Percentile Forecast intervals when t=50, n=50

Table 4 shows the rejection probability average over m=1000 simulation and (0.2t-4) fore-

cast sample observations of asymptotic theory vs bootstrap percentile con�dence intervals.

Surprisingly we see that when con�dence intervals are based on asymptotic theory the rejection

probability is closer to the nominal one than what we obtained with our bootstrap algorithm.

This is associated, as it can be seen in Table 5 with slightly larger con�dence intervals. One

possible reason is that the bootstrap algorithm that we proposed has not captured all the un-

certainty. If for example we resample idiosyncratic shocks conditionally on a �rst draw of static

factors, we obtain percentile bootstrap con�dence intervals with rejection probability close to

0 but their average length doubles.
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n=15 n=25 n=50 n=100
t=25 0.1375 0.1425 0.1525 0.15875
t=50 0.069643 0.072143 0.0775 0.085
t=100 0.045882 0.046618 0.053382 0.055294
t=200 0.038514 0.03973 0.042838 0.046892

n=15 n=25 n=50 n=100
t=25 0.3375 0.32625 0.3375 0.35
t=50 0.14357 0.14929 0.14643 0.14071
t=100 0.083382 0.084265 0.081618 0.082794
t=200 0.061216 0.061419 0.060203 0.063378

simulations and forecast sample, with h=4

Bootstrap Percentile

Table 4: Rejection Probabilities average over 1000

Asymptotic Theory
Rejection Probabilities for Forecast CI

n=15 n=25 n=50 n=100
t=25 4.6751 4.4094 4.2854 4.138
t=50 4.6179 4.4135 4.2254 4.0954
t=100 4.6876 4.4553 4.2592 4.1227
t=200 4.6843 4.4422 4.2357 4.1067

n=15 n=25 n=50 n=100
t=25 2.9563 2.8346 2.7666 2.7083
t=50 3.7599 3.6176 3.5323 3.4779
t=100 4.1254 3.9524 3.8506 3.7778
t=200 4.2478 4.0767 3.9684 3.8953

and forecast sample, with h=4

Bootstrap Percentile

Table 5: CI average length over 1000 simulations

Forecast CI average length
Asymptotic Theory

Summarizing the results of this Montecarlo simulation we can observe that when we deal

with parameters which are a simple linear combination of the DGP parameters asymptotic

theory con�dence intervals work well when we deal with samples which have a reasonable

length. This is not true when our goal is to provide con�dence intervals for the common part in

small samples: in this case bootstrap methods perform far better, but we should bear in mind

that any particular statistical model requires a di¤erent bootstrap algorithm. When we deal

with the common part bias correcting is counterproductive. With forecasting there is probably
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a problem related with the algorithm that we used, because it fails in providing an appropriate

level of uncertainty.

We should take account of two important issues: the desirability of a correct but large

con�dence interval and the trade o¤between a correct con�dence interval and the computational

time needed. Both arguments are in favour of asymptotic theory con�dence intervals.

1.5 Empirical Application: Bai Ng 2005

In this part we present two empirical examples: we will forecast the growth rate of industrial

production and of in�ation, as in Bai-Ng (2005) and Stock & Watson (2002a).

In this way we will show the equivalence of the two method when we deal with large samples.

We use a balanced panel with 160 series out of 215 series in the original paper in order to

have a balanced sample with 481 observations in the period 1959:2-1999:2.

We consider the one-year ahead growth rate which is de�ned as:

y12t+12 = 100(ln(IPt+12)� ln(IPt)) (1.55)

And given the de�nition of the annualized industrial production growth rate as:

yt = 1200(ln(IPt)� ln(IPt�1)) (1.56)

We have the following forecast based on the Di¤usion Index Autoregressive (DI-AR) model:

ŷ12t+12jt = ĉ12 + �̂12F̂t +

pX
j=1


̂12;jyt�j+1 (1.57)

For what concerns our example if we consider the BIC criterion we have p=1, and two

speci�cations: the AR speci�cation without factors, and the DI-AR speci�cation which includes

nine factors estimated recursively.
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Figure(3): Confront with the asymptotic CI in the original paper and between the two methods

Figure(3) shows that, as expected given our simulation results with large N and large T,

asymptotic and bootstrap con�dence intervals are very similar. We report also �gure (2a) in
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Bai-Ng (2005) paper for a comparison.

As a second empirical example we consider one-year ahead in�ation forecasting, which is

de�ned as �12t = 100 ln(CPIt+12=CPIt). Since the Consumer Price Index turns out to be I(2),

we consider the model .

ŷ12t+12jt = ĉ12 + �̂12F̂t +

pX
j=1


̂12;jyt�j+1 (1.58)

y12t+12 = �12t � �1t = 100 ln(CPIt+12=CPIt)� 1200 ln(CPIt=CPIt�1) (1.59)

yt = 1200� ln(CPIt=CPIt�1) (1.60)

The DI-AR speci�cation has 6 lags and provides the forecasting con�dence interval reported

in �gure (4). Figure(4) shows also what is reported in Bai-Ng (2005).Also in this case both

con�dence intervals are very similar.
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Figure(4)Confront with the asymptotic CI in the original paper and between the two methods

1.6 Conclusion

In this �rst chapter we have presented the Dynamic Factor Model in static form and the

asymptotic theory developed by Bai and Ng. In the third section we have seen that there is
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not a single way to apply bootstrap methods and that each model and each problem requires a

di¤erent procedure. This is the main goal of this thesis; in this chapter we looked at the common

part and at di¤usion index forecasts. We have seen for the common part that a simple percentile

interval work well for any (t,n) combination, also if in this case we risk to obtain it at the cost of

having a naive interval. Moreover we have seen that bias correction can be counterproductive

when the bootstrap mean is already close to the theoretical mean: the common component has

mean zero and bias-correcting intervals are relatively large because they give too much weight

to short term shocks.

On the other hand our bootstrap algorithm does not work when we deal with forecasting:

any application of the bootstrap requires a careful montecarlo experiment before we can

propose a suitable algorithm for dealing with our problem.
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Chapter 2

Bootstrap Methods for DFM:

con�dence intervals for impulse

responses

2.1 Introduction

Dynamic Factor Models (DFM) have been proposed as an useful way to summarize the infor-

mation contained in large datasets with a few latent factors.

Di¤erent techniques have been proposed in order to obtain forecasts, identify common fac-

tors and the e¤ects of speci�c shocks in a DFM framework.

Inferential theory based on asymptotic theory for these models is reported in a series of

papers published in Econometrica by Jushan Bai and Serena Ng, where for example they show

that the FAVAR parameters are
p
T consistent and asymptotically normal if

p
T =N ! 0:

They also propose in their papers con�dence intervals for factors and di¤usion index forecasts,

but they do not provide con�dence intervals for impulse responses function. Only recently Forni

and Gambetti (2008) showed con�dence intervals for impulse responses which are based on the

block bootstrap.

In the �rst paper we dedicated a section to the asymptotic theory proposed by Jushan Bai

and Serena Ng and a section to bootstrap methods. We confronted con�dence intervals for
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di¤usion index forecasts and the common component. In this paper we want to show how

bootstrap techniques can be applied to the task of providing con�dence intervals for nonlinear

functions of the DGP parameters: impulse responses.

After this introduction this second paper has two other sections, plus the conclusion.

The second section applies asymptotic theory and bootstrap methods to the task of providing

impulse responses con�dence intervals for a DFM with a single common shock when there are

no identi�cation problems (apart to the sign of the impact e¤ect). The third section presents

and explain how with a rotation matrix we can rotate the estimated impulse responses in

order to track the actual impulse responses. The conclusion summarizes the results and report

preliminary results for the complicated model: the block bootstrap is probably a good choice

for our task.

2.2 Con�dence intervals for impulse responses when identi�ca-

tion is not a problem

In this section we evaluate the performance of asymptotic methods in providing reliable con-

�dence intervals for impulse responses when we have a simple Dynamic Factor Model. Before

doing it we will exploit this simple model for showing something that was hard to see in the

preceding chapter: how con�dence intervals based on asymptotic theory are heavily in�uenced

by key DGP parameters.

The model is an exact dynamic factor model with one single common factor ( which is

modeled as a AR(1)), up to 200 observations and to 100 series.

Loadings, idiosyncratic and common shocks are extracted from independent N(0,1) distri-

butions, so by construction the common component explains a share of the total variance for

each series which is equal to �2i =(1 + �
2
i ):

We can represent this model with two equations:

Xit = �ift + eit (2.1)

ft = �ft�1 + ut (2.2)
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Where � = 0:9; �u =
p
(1� �2) and �f = 1:

In Bai (2003) and in the �rst paper we have seen that con�dence intervals based on asymp-

totic theory have good coverage probability, if we have a reasonable large number of observations

and series, but we have not seen how these results are in�uenced by important parameters, as

it is � in our example. This is a typical situation where we can appreciate the asymptotic

pivotalness of con�dence intervals based on the bootstrap.

As a �rst step we revisit the Montecarlo simulations proposed in Bai(2003). In order to

show factor and factor loadings con�dence intervals, he observes that the estimated factor is

a linear combination of the true factor. For this reason after regressing the true factor on the

estimated one:

ft = f̂t�̂ + "̂t (2.3)

The estimated asymptotic con�dence interval for
p
Nft (when the signi�cance level is 5%)

becomes:

p
Nf̂t�̂ � 1:96�̂

q
�̂t (2.4)

If we estimate the common factor with principal components and look at the estimated

asymptotic variance of the factors, we see in this simple case that only when the number of

series and observations relatively high, the probability that the real factor is not inside the

proposed con�dence interval is closer to 5% regardless of the AR(1) parameters

This is shown in Table(1), which is the result of a simulation with 2000 arti�cial samples,

with 100 series and 200 observations which share the same loadings and the AR(1) parameter

�.
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α=0 n=15 n=25 n=50 n=100
t=25 0.11456 0.09244 0.07524 0.07428
t=50 0.09628 0.07630 0.06222 0.06148
t=100 0.08801 0.06944 0.05609 0.05601
t=200 0.08640 0.06869 0.05657 0.05435

α=0.5 n=15 n=25 n=50 n=100
t=25 0.08789 0.07737 0.07286 0.07183
t=50 0.07460 0.06680 0.06097 0.05951
t=100 0.06976 0.06084 0.05809 0.05511
t=200 0.06943 0.05991 0.05501 0.05460

α=0.9 n=15 n=25 n=50 n=100
t=25 0.25476 0.19048 0.15704 0.13172
t=50 0.14954 0.11136 0.09388 0.08168
t=100 0.11064 0.08209 0.06846 0.05977
t=200 0.08777 0.06801 0.05793 0.05328
Table 1: Rejection Probabilities average over 1000 simulations,
for factor asymptotic confidence intervals.
The factor is identified with a simple regression  and generated
with an AR(1) process with parameter α
The significance level is 5%

Rejection Probabilities for factors asymptotic CI

This table shows a signi�cant increase of the rejection probabilities when � = 0:9:

We can observe the same pattern when looking at the rejection probability of the con�dence

intervals for the factor loadings.

Considering that in order to apply principal components we need to normalize the series by

dividing for the standard deviation of the single series, the asymptotic con�dence interval for
p
T�i (when the signi�cance level is 5%) will be:

p
T
�̂xi �̂i

�̂
� 1:96 �̂xi

�̂

q
�̂i (2.5)

Also in this case the rejection probability is heavily in�uenced by the parameter �, as it is

shown in Table(2).
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α=0 n=15 n=25 n=50 n=100
t=25 0.16687 0.12832 0.10566 0.09921
t=50 0.13120 0.08656 0.06270 0.05773
t=100 0.10853 0.04740 0.02170 0.01705
t=200 0.01887 0.00000 0.00000 0.00000

α=0.5 n=15 n=25 n=50 n=100
t=25 0.11257 0.10126 0.09780 0.09251
t=50 0.09067 0.07091 0.06460 0.06014
t=100 0.06971 0.04457 0.03151 0.02750
t=200 0.02752 0.00537 0.00129 0.00071

α=0.9 n=15 n=25 n=50 n=100
t=25 0.21793 0.14212 0.10482 0.08734
t=50 0.18300 0.11236 0.08180 0.06872
t=100 0.19733 0.10400 0.06876 0.05641
t=200 0.28993 0.12016 0.06154 0.04773
Table 2: Rejection Probabilities average over 1000 simulations,
for factor loadings asymptotic confidence intervals.
The factor is identified with a simple regression  and generated
with an AR(1) process with parameter α
The significance level is 5%

Rejection Probabilities for factor loadings asymptotic CI

We obtain even worse results in terms of rejection probabilities when we look at the asymp-

totic con�dence interval for the common part Cti = ft�0i , which is:

�̂xiĈit � 1:96�̂xi

s
V̂it
N
+
Ŵit

T
(2.6)

The rejection probability is close to the theoretical one only when t=200, n=100 and � = 0:9

, as it can be seen in the table(3) for the normalized residuals "̂ĉit :

"̂ĉit =

�
�̂xiĈit � Cit

�
�̂xi

q
V̂it
N + Ŵit

T

(2.7)
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α=0 n=15 n=25 n=50 n=100
t=25 0.12273 0.12186 0.15339 0.17222
t=50 0.08530 0.08005 0.09480 0.10608
t=100 0.06097 0.05170 0.05278 0.05430
t=200 0.04265 0.03340 0.02830 0.02330

α=0.5 n=15 n=25 n=50 n=100
t=25 0.20069 0.22268 0.25806 0.29441
t=50 0.14009 0.15876 0.18817 0.22939
t=100 0.08379 0.08741 0.10100 0.12476
t=200 0.04896 0.03979 0.03298 0.02855

α=0.9 n=15 n=25 n=50 n=100
t=25 0.26459 0.29996 0.35263 0.41412
t=50 0.19159 0.23359 0.29764 0.37696
t=100 0.12854 0.15292 0.20780 0.30106
t=200 0.06341 0.05542 0.05036 0.04860
Table 3: Rejection Probabilities average over 1000 simulations,
for common part asymptotic confidence intervals.
The factor is identified with a simple regression  and generated
with an AR(1) process with parameter α
The significance level is 5%

Rejection Probabilities for common part asymptotic CI

These normalized residuals where analyzed in Bai(2003), where he reported mean and stan-

dard deviations for these residuals, but he did not report rejection probability tables.

As an example in our simulations only when we have 2000 arti�cial samples and with

� = 0:9; we obtain a slightly biased distribution for "̂ĉ50;100 :, with standard deviation close to

1, as it can be seen in Figure(1).
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Figure(1)

Summarizing not only we �nd the same small sample rejection probability problems which

we found in the �rst paper, but we have also seen that asymptotic con�dence intervals are

in�uenced by important parameters like �:

In this paper we are mainly interested in the small-sample distribution of the impulse re-

sponses of the single series to the common factor. In this simple example, the impulse responses

of each series to a unitary shock to the single common shock depends only on the parameters

�i, � and h.

�i(h) �
@Xi;t+h
@ut

= �i�
h (2.8)

We start with � = 0:9. There is a small downward bias for the OLS estimator of �, as it

can be seen in the �gure(2), which shows the histogram of 2000 Montecarlo simulations for �̂ols

estimated with the actual factors.:
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Figure(2)

The shape of the histogram for this AR parameter when we don�t have the actual factor is

very similar; what changes is an higher bias, which is only marginally in�uenced by the number

of series, as it can be seen in table 4.

b=2000 n=15 n=25 n=50 n=100
t=25 0.675235 0.684257 0.69086 0.694214
t=50 0.781532 0.788258 0.793147 0.795325
t=100 0.837005 0.842287 0.845663 0.847282
t=200 0.862025 0.866396 0.869092 0.870171
Table 4
Mean estimated alpha over 2000 simulations
when the factor is estimated with n series
and t observations

Mean Estimated Alpha with PC

The dynamics of the impulse responses depend on the parameter � while the impact e¤ect

depends on the parameter �i. Given this relation between factor loadings and impulse responses,

in order to observe the coverage probability of such estimator, we simply propose for the h-steps

ahead impulse responses the following estimator:
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�̂i(h) =
�̂xi �̂i

�̂
�̂h (2.9)

With the help of the delta method, we can derive the asymptotic variance of the impulse

responses (where �̂xi and �̂ are considered constant since they are simply the parameters which

allow us to span the real �i).

p
T
�
�̂i(h)� �i(h)

�
!
d
N
�
0; V ar(�̂i(h))

�
(2.10)

V ar(�̂i(h)) = V ar(
�̂xi �̂i

�̂
�̂h) =

h
@�̂i(h)

@�̂i

@�̂i(h)
@�̂

i24 �̂i 0

0 �̂�

3524 @�̂i(h)

@�̂i
@�̂i(h)
@�̂

35 =
=

h
�̂xii

�̂
�̂h

�̂xi �̂i

�̂
h�h�1

i24 �̂i 0

0 �̂�

3524 �̂xii

�̂
�h

�̂xi �̂i

�̂
h�h�1

35 = (2.11)

= �̂2h
�
�̂xii

�̂

�2
�̂i + (

�̂xi �̂i

�̂
h�̂h�1)2�̂�

The asymptotic variance of � (de�ned as �̂�) can be estimated with Newey-West method

in much the same way as for �i ; these two parameters are not correlated because the common

shock is not correlated with the idiosyncratic shocks. An asymptotic con�dence interval for
p
T�i(h) is:

p
T
�̂xi �̂i

�̂
�̂h � 1:96

q
V ar(�̂i(h)) (2.12)

These con�dence intervals have good coverage, provided that �̂ is not too far from the real

�; table 5 shows the average coverage probability across series and simulations, when � = 0:9.
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b=2000 n=15 n=25 n=50 n=100
t=25 0.225033 0.21942 0.20115 0.15571
t=50 0.1385 0.13272 0.12278 0.09882
t=100 0.087067 0.08408 0.07801 0.06687
t=200 0.062267 0.06086 0.05748 0.0477

b=2000 n=15 n=25 n=50 n=100
t=25 0.720333 0.70784 0.69322 0.656985
t=50 0.550767 0.5349 0.51969 0.48297
t=100 0.3993 0.37294 0.34649 0.3177
t=200 0.304533 0.27252 0.25093 0.228895
Table 5
Mean rejection probability over 2000 simulations
for different n and t (when a=0.9)
(Probability that the real impulse response to the
common shock is not inside the confidence interval)

1 step ahead

12 steps ahead

Rejection probability for Impulse Responses

Table(5) shows that when there is a large bias Bias(�̂) = E(�̂) � � also such nonlinear

functions of � as the impulse responses are in�uenced in terms of rejection probability.

When the actual parameter is low also the bias is low; this is con�rmed by the rejection

probabilities when � = 0:5 reported in table 5b; we can see that they are signi�cantly di¤erent

from the ones reported in table 5.

b=2000 n=15 n=25 n=50 n=100
t=25 0.1333 0.13688 0.14696 0.13715
t=50 0.089833 0.09162 0.09387 0.086975
t=100 0.061 0.06048 0.05928 0.04985
t=200 0.053467 0.05224 0.04715 0.029675

b=2000 n=15 n=25 n=50 n=100
t=25 0.520833 0.52262 0.51305 0.50447
t=50 0.422333 0.4237 0.40879 0.40319
t=100 0.342 0.33232 0.32395 0.31356
t=200 0.272333 0.2557 0.25514 0.24419
Table 5b
Mean rejection probability over 2000 simulations
for different n and t (when a=0.5)
(Probability that the real impulse response to the
common shock is not inside the confidence interval)

Rejection probability for Impulse Responses
1 step ahead

12 steps ahead
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This di¤erence means that the studentized statistic
p
T(�̂i(h)��i(h))p
V ar(�̂i(h))

, which is asymptotically

distributed as a N(0,1) is not a pivotal statistic, since it depends on �:

Summarizing we have two main problems: in small samples: �̂ is biased and the statistics

of interest are not pivotal, especially the impulse responses. We also should consider that

these statistics are a nonlinear function of the basic parameters, for this reason there is a huge

di¤erence between the impact impulse response and the impulse response 12 steps ahead.

In order to solve the �rst problem we can apply the Kilian (1998) bootstrap-after-bootstrap

correction, which in our case can be implemented as follows:

1. Estimate �̂; �̂i; êi and û with principal components and OLS regressions, generate B1

arti�cial samples X(j) by resampling from the residuals and for each arti�cial sample

estimate �̂(j):

2. Estimate the bias for � as 	(�) =
B1X
j=1

�̂(j)=B1 � �̂; and generate B2 new samples with

the parameter ~�=�̂� 	(�); obtaining B2 new estimates ~�(j) and ~�
(j)
i : If ~� � 1; shrink

iteratively the bias 	(�), until ~� < 1:

3. Finally, evaluate the distribution of the statistic of interest (as an example the impulse

responses) as a function of ~�(j)� =(~�(j) �	(�))), ~�(j)i and �̂xi

This correction works well for the estimation of �; if the number of observations is higher

than 25 (see table 6).

b=100 n=15 n=25 n=50 n=100
t=25 0.769322 0.781846 0.781781 0.793754
t=50 0.853963 0.856962 0.858212 0.85818
t=100 0.893894 0.894326 0.893664 0.896168
t=200 0.89857 0.900077 0.900205 0.901392
Table 6
Mean Bias­corrected α over 100 simulations
(Actual α=0.9)

Mean bias­corrected α

In Kilian (1999) it is shown that simple percentile intervals based on bias-corrected pa-

rameters perform better than more sophisticated studentized percentile intervals in small
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samples and for nonlinear statistics. Table 7 shows similar results in our case for di¤erent

�, with 100 arti�cial samples for each � and when we have 100 observations and 100

series. In this case B1=100 and B2=100.

Actual α 0.1 0.5 0.9
Mean estimated α 0.092663 0.479481 0.842317
Mean bias­corrected α 0.108467 0.509152 0.896168
Rejection probability for α 0.04 0.06 0.06
Rejection probability for φ(1) 0.0277 0.0278 0.0283
Rejection probability for φ(12) 0.0217 0.0217 0.028
Table 7
Mean estimated α and rejection probabilities related
to 3 simulations with different alpha, 100 artificial samples,
100 series, 100 observations and 100 bootstrap replications
φ(h) is the impulse response h­steps ahead of the single φ
series to the common shock.

Bootstrap­after­bootstrap for different α

The rejection probabilities are on average over 100 series and 100 replications, and they

measure how many times the real � or the real �i(h) are not inside the 95% percentile

bootstrap intervals. Table 7 shows clearly that these bootstrap-after-bootstrap con�dence

intervals are more reliable than the ones based on asymptotic theory, also if we observe

that the rejection probabilities are too low, meaning that the simple percentile intervals

used here are too large.

2.3 Rotation matrices

In this section we come back to the DGP that we proposed in the �rst paper: we have now two

common shocks modelled as independent AR(2) processes (h=2); the two factors are loaded as

an MA(1) (p=1).
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Xit =
h
�i1;0 �i2;0 �i1;1 �i2;1

i
26666664

f1;t

f2;t

f1;t�1

f2;t�1

37777775+ �iei;t (2.13)

24 f1;t
f2;t

35 =

24 �11 0

0 �21

3524 f1;t�1
f2;t�1

35+ (2.14)

24 �12 0

0 �22

3524 f1;t�2
f2;t�2

35+
24 �u1 0

0 �u2

3524 u1;t
u2;t

35 (2.15)

In this model we assume that ei;t; u1;t and u2;t are iid random variables with unit variance.

If we de�ne the static factor Ft as the q(p+1) vector:

Ft =

26666664
f1;t

f2;t

f1;t�1

f2;t�1

37777775 (2.16)

we can rewrite the model in static form as:

Xit = �iFt + �iei;t (2.17)

Ft =

26666664
f1;t

f2;t

f1;t�1

f2;t�1

37777775 =
26666664
�11 0 �12 0

0 �21 0 �22

1 0 0 0

0 1 0 0

37777775

26666664
f1;t�1

f2;t�1

f1;t�2

f2;t�2

37777775+
26666664
�u1 0

0 �u2

0 0

0 0

37777775
24 u1;t
u2;t

35 =(2.18)
= �Ft�1 +
uut (2.19)

The moving average representation of this model as a function of common and idiosyncratic

shocks is:
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Xit = �i

1X
j=0

�j
uut�j + �iei;t

And the impulse responses to the common shocks are:

@Xit+j
@ut

= �i�
j
u

This static model is observationally equivalent to a model where static factors are rotated

by a full rank matrix H, as for example:

~Ft = HFt = H�H
�1HFt�1 +H
uut = ~� ~Ft�1 + ~vt (2.20)

Xit = �iH
�1HFt + �iei;t = ~�i ~Ft + �iei;t (2.21)

So when we apply principal components to the real variables, we obtain an estimate of ~Ft;

~�; ~vt; ~�i

If we want to estimate the impulse responses we must take account of the fact that the

(p+1)q static factors are driven by q common shocks. The relation between the reduced form

common shocks ~vt and the real common shocks is the following:

~vt = H
uut , �~v � E(~vt~v0t) = (2.22)

= H
uE
�
utu

0
t

�

0uH

0 (2.23)

= H
u

0
uH

0 (2.24)

But we can also �nd orthogonal shocks ~ut = R(�)0ut, where R(�)R(�)0 = Iq = R(�)0R(�);

such that ~vt = ~H ~
u~ut:

R(�) is a q-by-q rotation matrix which depends on the q(q-1)/2-by-1 vector of parameters

�.

In general R(�) is the product of q(q-1)/2 matrices Qj , where j corresponds to the indexation

of the q(q-1)/2 combinations (without repetition) of the integers 1,2,..q. As an example if q=7,
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we have 7(7-1)/2=21 combinations: (1,2) (1,3) (1,4),... and so on until (6,7).

Each matrix Qj is a function of only one parameter �j 2 [0; 2�], as it can be seen below.

R(�) =

q(q�1)=2Y
j=1

Qj where for example Q2 =

26666666666666664

cos(�2) 0 sin(�2) 0 0 0 0

0 1 0 0 0 0 0

� sin(�2) 0 cos(�2) 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

37777777777777775
(2.25)

In our simple case with q=2, we need only one parameter � and the rotation matrix will

simply be:

R(�) =

24 cos(�) sin(�)

� sin(�) cos(�)

35 (2.26)

As an alternative we can specify a rotation matrix where the elements of the main diagonal

have opposite sign, for example when q=2:

R(�) =

24 cos(�) sin(�)

sin(�) � cos(�)

35 (2.27)

If we look at the model the matrix 
v should have rank q, but when we estimate a VAR(1)

for the estimated static factors, 
̂v̂ has rank q(p+1).

In order to estimate 
u I followed a procedure involving singular value decomposition:

1. Estimate eigenvectors and eigenvalues of �̂~v; order eigenvalues in descending order in the

diagonal matrix D, and accordingly sort the associated eigenvectors in the matrix P.

2. Apply a singular value decomposition to the �rst q columns of PD0:5: We will obtain a

q(p+1)-by- q(p+1) matrix U that we can interpret as H; a (p+1)*q-by-q matrix S with

a structure similar to 
u; and a q-by-q diagonal matrix V. If we premultiply our static
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factors with U�, we obtain an estimate of 
u as 
̂u = SV 0:

We can estimate the impulse responses of the single series to a generic common shock ~u:

@X̂it+j
@~ut

= �̂iU
�
U 0�̂U

�j
SV 0 (2.28)

In order to estimate the impulse responses to the identi�ed shock ut = R(�)~ut it will

be su¢ cient to post-multiply the impulse responses with the rotation matrix, where � is

chosen according to identifying restrictions.

As we have done in the �rst paper we assume that our n series are driven by two common

shocks, and that the q=2 orthogonal factors have the following AR structure, where the

second shock is more persistent:

(1� 0:1L)(1� 0:7L)f1t = u1t (2.29)

(1� 0:3L)(1� 0:9L)f2t = u2t (2.30)

In this DGP we impose that the �rst shock has a positive e¤ect on impact, while the

second shock has a negative impact e¤ect (�i1;0 > 0; �i2;0 < 0 for all variables).

This rotation matrix can be useful in a Montecarlo simulation where we know the real

impulse responses, because in order to show how bootstrap methods can provide good

impulse responses con�dence intervals we must overcome any identi�cation problems by

choosing an appropriate rotation of the shocks.

Moreover a small example shows that t these rotation matrices can be the tools we need

if we want to apply for this model a sort of partial identi�cation strategy which consists

in choosing a set of � 2 [0; 2�] such that the impulse responses satisfy a set of sign

restrictions:

1) The �rst shock has a positive impact e¤ect on all variables.

2) The second shock has a negative impact e¤ect on all variables.

3) The e¤ect of a shock to the �rst factor dies out rapidly, so we can expect that after 12

periods all impulse responses are close to zero.
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As an example look at �gure (3) which shows the actual impulse responses to the �rst shock:

Figure(3): Actual impulse responses of 100 arti�cial series to the �rst shock

1. While the e¤ects of the second shock is much more persistent, as it can be seen in �gure

(4).
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Figure(4): Actual impulse responses of 100 arti�cial series to the second shock

If we just estimate the impulse responses without identifying the shocks, we can obtain

impulse responses with opposite sign (as it was the case for this example), or maybe the

second estimated shock is equal to the opposite of the real �rst one. In our case inside a

grid of 6283 �s we found only 119 �s (equal to approximately the 2% of the grid) which

satis�ed the restrictions.

Figure(5) shows for each column the impulse responses of the 20th series to the two shocks.

The second row shows the actual impulse responses, the �rst ones all the rotations which

satisfy the sign restrictions while the third row shows the impulse responses related to

the median �:
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We show this example because before analyzing any bootstrap procedure for impulse re-

sponses we must be sure to identify the right path.

2.4 Conclusions

In this paper we examined closely the issue of providing con�dence intervals for impulse re-

sponses in a simple model and how to reach identi�cation in our complicated model.

In an Montecarlo which we did not reported we simulated a DGP similar to what we have

seen in the previous section: there is a positive e¤ect of all the arti�cial series to a positive �rst

shock, and a negative e¤ect to a positive second shock (except for one of the series, where we

imposed a zero impact e¤ect to the second shock).

Also in this case with the block bootstrap: static factors and idiosyncratic shocks were

resampled in order to obtain arti�cial samples. The rotation matrix was used in order to just

identify our model: a zero restriction on the e¤ect of the second shock to the �rst variable is

theoretically enough for �xing the rotation parameter �:

When using the block bootstrap we observed a persistence problem similar to what we saw
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in the second section with the AR(1) parameter �:While in that simple case � was a measure of

the persistence for a single factor, when we deal with two dynamic factors and four static factors

the persistence of a common shock can be measured either by the companion form estimated

matrix �̂ of the static factor VAR, or by the average block length of the factor that we estimate

starting from the arti�cial samples.

If we do not take account of this aspect in a satisfactory way what we obtain are impulse

responses from bootstrapped samples with a very low persistence, and which fail in containing

the actual impulse response. A natural extension of this paper must deal with this problem,

taking account of the fact that probably with such a complicated dynamic model we should use

the parametric bootstrap instead of the block bootstrap.
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Chapter 3

Bootstrap Methods for DFM: An

application to latent factors

3.1 Introduction

. In this paper we want to show how simple bootstrap methods can improve the power of a test

where the null hypothesis is that a given macroeconomic time series is a latent factor. These

tests can be useful if we want to give an interpretation to factor forecasts and for the task of

preselecting variables from our dataset when they are mainly driven by noise, following the

suggestion in Boivin-Ng (2003).

3.2 Observed and latent factors

In Bai-Ng(2004) the authors propose a way to evaluate if an observable variable Gjt can be

considered a latent factor.

They consider the factor model:

xit = �
0
iFt + eit (3.1)

And they want to test the null hypothesis that Gjt = �0jFt for any t. In order to do it

they propose to regress the observable variable Gjt on the factors extracted with principal
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components methods ~Ft; obtaining Ĝjt = 
̂0j ~Ft: In this way they obtain a kind of t-statistics.

� t(j) =

�
Ĝjt �Gjt

�
q
V ar(Ĝjt)

(3.2)

^

V ar(Ĝjt) =
1

N

̂0j ~V

�1~�t ~V
�1
̂j (3.3)

~�t is a consistent estimate of H 0�1�tH�1: If the idiosyncratic errors are stationary it is still

possible to obtain a consistent estimator when there is cross-section correlation between the

idiosyncratic shocks. They refer to it as CS-HAC estimator, where n
min[N;T ] ! 0. In practice

they average over k estimates obtained from k random samples which involve k series, where

k=min[
p
N;
p
T ]:

~� =
1

n

nX
i=1

nX
j=1

~�i~�
0
j

1

T

TX
t=1

~eti~etj (3.4)

If the idiosyncratic shocks are not cross-sectionally correlated there is an estimator which

allows also for heteroskedasticity.

~�t =
1

N

NX
j=1

~e2ti
~�i~�

0
i (3.5)

While if E(e2ti) = �
2
e for all t and for all i, the estimator becomes:

~� =

 
1

NT

NX
i=1

TX
t=1

~e2ti

!
�̂0�̂

N
(3.6)

Under the regularity conditions which we reported in the �rst paper � t(j) is asymptotically

distributed as a N(0,1). A way to test the null hypothesis is to look at the frequency with which

this statistics is higher in absolute value than the critical value of a standard N(0,1) They de�ne

with �� the (1-�) percentile of this distribution (so if � = 0:025; �� = 1:96) and with A(j) this

frequency which should tend to 2�:

A(j) =
1

T

TX
i=1

1(j�̂ t(j)j > ��) (3.7)
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This statistic is equivalent to the rejection probability of the asymptotic con�dence interval

for Gjt, which corresponds in this case to:

(Ĝjt � ��
q
V ar(Ĝjt)) (3.8)

These tests are heavily in�uenced by small sample bias related to both the t and n dimension,

as it,can be seen in Table (1a), which is the result of the same Montecarlo simulation reported

in table(1a) in Bai-Ng (2004).

N T j A(j) M(j) NS(j) CI(j) R2 R2­ R2+ Boot­A(j)
50 50 1 0,03936 0,033 0,028264 0,96408 0,97258 0,95783 0,98733 0,0554
50 50 2 0,03794 0,03 0,027883 0,96568 0,97293 0,95837 0,9875 0,05556
50 50 3 0,18526 0,714 0,068114 0,96184 0,93646 0,90359 0,96933 0,06118
50 50 4 0,1885 0,735 0,068371 0,96356 0,93622 0,90324 0,96921 0,06114
50 50 5 0,85224 1 5,4854 0,94306 0,22716 0,13477 0,31955 0,37998
50 50 6 0,85458 1 5,053 0,93646 0,22717 0,1348 0,31953 0,38026
50 50 7 0,94926 1 354,9 0,94822 0,040253 0,019695 0,060811 0,73362

100 50 1 0,03448 0,016 0,013651 0,96906 0,98655 0,97919 0,9939 0,0529
100 50 2 0,03448 0,02 0,013666 0,96832 0,98653 0,97917 0,99389 0,05392
100 50 3 0,28426 0,97 0,052827 0,96616 0,94995 0,92365 0,97624 0,05838
100 50 4 0,28048 0,965 0,052362 0,96544 0,95036 0,92427 0,97645 0,05832
100 50 5 0,8962 1 5,6152 0,93132 0,22541 0,1341 0,31671 0,38514
100 50 6 0,8993 1 5,6508 0,93692 0,22083 0,13059 0,31107 0,38556
100 50 7 0,96438 1 187,12 0,92922 0,041874 0,020535 0,063213 0,73002

50 100 1 0,03653 0,024 0,028273 0,9651 0,97255 0,96211 0,983 0,05485
50 100 2 0,03752 0,03 0,028231 0,96443 0,97259 0,96216 0,98302 0,05469
50 100 3 0,18126 0,809 0,068636 0,9648 0,93589 0,91242 0,95937 0,05992
50 100 4 0,18121 0,815 0,06833 0,9643 0,93617 0,91279 0,95955 0,06023
50 100 5 0,85771 1 4,5255 0,9486 0,2077 0,14505 0,27035 0,38895
50 100 6 0,85737 1 4,4209 0,95086 0,20728 0,1445 0,27005 0,38675
50 100 7 0,96628 1 465,58 0,96489 0,018981 0,011821 0,02614 0,81256

200 100 1 0,0301 0,014 0,006724 0,97121 0,99332 0,99072 0,99592 0,05219
200 100 2 0,0305 0,01 0,006745 0,97074 0,9933 0,99069 0,99591 0,05215
200 100 3 0,41015 1 0,046274 0,96856 0,95581 0,93927 0,97235 0,05726
200 100 4 0,4056 1 0,046098 0,96796 0,95598 0,93949 0,97246 0,0574
200 100 5 0,92581 1 4,267 0,94208 0,21398 0,14975 0,2782 0,37962
200 100 6 0,92885 1 4,6148 0,94169 0,20635 0,144 0,2687 0,38944
200 100 7 0,98222 1 484,28 0,94748 0,01938 0,012072 0,026688 0,81331
100 200 1 0,0301 0,007 0,013554 0,97059 0,98663 0,98298 0,99029 0,05227
100 200 2 0,03042 0,007 0,013502 0,97034 0,98668 0,98304 0,99032 0,05239
100 200 3 0,27621 0,999 0,053409 0,96981 0,94933 0,936 0,96265 0,05722
100 200 4 0,27696 1 0,053421 0,96954 0,94932 0,93599 0,96265 0,057945
100 200 5 0,89876 1 4,2167 0,95576 0,20405 0,15969 0,24841 0,3838
100 200 6 0,89969 1 4,2666 0,95317 0,20233 0,15823 0,24642 0,38632
100 200 7 0,98153 1 569,36 0,95462 0,010277 0,007484 0,01307 0,86081

Table 1a

The �rst two columns show number of series and observations while j is the index of seven

Gjt = �
0
jFt + "jt where �j is a 2-by-1 vector of weights and "jt � �"(j)N(0; var(�0jFt)):
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j 1 2 3 4 5 6 7

�j1 1 1 1 1 1 1 0

�j2 1 0 1 0 1 0 0

�e 0 0 .2 .2 2 2 1

The �rst two observable variables are exact factors and the third and fourth factors are close

to exact factors. Fifth and sixth observable variables are highly contaminated by idiosyncratic

shocks, while the seventh is completely unrelated to the two common factors. Measures of the

relative weight of common factors and noise are the Noise-Signal ratio and the R2 which are

reported in table(1).

NS(j) =

^

V ar("̂(j))
^

V ar(Ĝ(j))

(3.9)

R2(j) =

^

V ar(Ĝ(j))
^

V ar(G(j))

(3.10)

The table reports also the probability that, under the assumption that the idiosyncratic

shocks are not correlated, the maximum absolute value of the statistic �̂ t(j) is higher than the

appropriate critical value.

M(j) = max
1�t�T

j�̂ t(j)j (3.11)

P (M(j) � x) � [2�(x)� 1]T (3.12)

We concentrate our attention on the statistic A(j). We can observe that the results are

heavily in�uenced by the number of observations and the number of variables, while the same

is not true if we use a simple Efron Percentile con�dence interval. This is obtained by drawing

arti�cial samples of factors via the block bootstrap, and assuming that the observable variable

are exact factors.
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3.3 Conclusion

The preliminary results show that when we deal with simple statistics, bootstrap methods can

provide easy to use ways to obtain bootstrap rejection probabilities which help us in providing

tests which are not a¤ected by small sample biases. This result is heavily related with what

with have seen in the �rst paper, where the rejection probabilities which we reported for the

common part naive percentile where in practice the rejection probability of A(j).
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