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Abstract 

Quantifying the potential spatial spread of an infectious pathogen is key to defining effective containment and con-
trol strategies. The aim of this study is to estimate the risk of SARS-CoV-2 transmission at different distances in Italy 
before the first regional lockdown was imposed, identifying important sources of national spreading. To do this, 
we leverage on a probabilistic model applied to daily symptomatic cases retrospectively ascertained in each Italian 
municipality with symptom onset between January 28 and March 7, 2020. Results are validated using a multi-patch 
dynamic transmission model reproducing the spatiotemporal distribution of identified cases. Our results show 
that the contribution of short-distance ( ≤ 10km) transmission increased from less than 40% in the last week of Janu-
ary to more than 80% in the first week of March 2020. On March 7, 2020, that is the day before the first regional 
lockdown was imposed, more than 200 local transmission foci were contributing to the spread of SARS-CoV-2 in Italy. 
At the time, isolation measures imposed only on municipalities with at least ten ascertained cases would have 
left uncontrolled more than 75% of spillover transmission from the already affected municipalities. In early March, 
national-wide restrictions were required to curb short-distance transmission of SARS-CoV-2 in Italy.
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Introduction
The assessment of the potential spatial spread of an infec-
tious pathogen in human populations is key to design 
interventions to effectively contain local outbreaks, con-
trol the ongoing transmission, and avoid widespread 
epidemics.

The sudden increase in ascertained cases of COVID-19 
worldwide experienced in 2020 [1–3] led several coun-
tries to apply unprecedented restrictions at the national 
level, including national lockdowns, to mitigate the 
pressure caused by the increasing number of patients 
on healthcare systems [2, 4]. Difficulties in implement-
ing effective containment measures in early 2020 were 
determined by a combination of factors, including the 
high proportion of silent transmission caused by asymp-
tomatic cases, the initial lack of knowledge about SARS-
CoV-2 epidemiology, and the limited availability of 
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diagnostic tests during the first months of the pandemic 
[5].

During the initial phase of an epidemic, sporadic 
importation of cases from most affected areas often 
results in geographical heterogeneities in the infection 
spread [6–8]. In this phase, containment measures should 
rely on the timely detection of cases, but the definition 
of the adequate spatial scale of control strategies would 
benefit from the identification of areas representing 
important sources of national spreading [9–11]. Whether 
adopting local restrictions to contain the spatial spread 
of a new emerging pathogen is more appropriate than 
moving towards national-level interventions depends on 
a variety of factors. These include the distance at which 
the infection transmission likely occurs and how the 
number of local clusters of cases could increase over time 
and across different geographical areas in the absence of 
restrictions.

Several models proposed to describe the spatiotem-
poral spread of epidemics integrate data quantitatively 
describing human mobility patterns, e.g. the number 
of individuals commuting or traveling across different 
areas as estimated from surveys or census data [12–14] 
or detailed records collected through mobile phones and 
wearable devices to measure individuals’ movements 
over different periods of time [15]. A wide set of models 
of human mobility have been also developed to describe 
movement fluxes between areas in terms of population 
densities and distance [16]. The underlying assumption 
of most of these approaches is that population flows 
are driving the pathogen spread among the individuals. 
However, a quantitative assessment of the risk of SARS-
CoV-2 transmission at different distances from epidemio-
logical data is still lacking.

On February 20, 2020, Italy was the first country where 
a locally acquired infection of SARS-CoV-2, with no link 
to cases directly or indirectly related to endemic areas, 
was identified in Europe [2]. Several studies have already 
highlighted that COVID-19 was already circulating in 
the country well before this date [2, 17, 18] with possible 
marked heterogeneity in the epidemic risk across differ-
ent regions [19].

The aim of our work is to leverage consolidated and 
detailed records of COVID-19 symptomatic cases 
occurring in Italy in early 2020 to investigate the trans-
mission of SARS-CoV-2 within and between municipal-
ities, quantifying the proportion of local transmission 
and the number of transmission foci likely present in 
the country before a lockdown was imposed in Italy. 
We here analyze the time series of cases by symptom 
onset between January 26 to March 7, 2020 (corre-
sponding to the 6 epidemiological weeks preceding the 
first regional lockdown in Italy) as obtained for each 

municipality of Italy by retrospective investigations 
of cases and case contacts [2]. By using a probabilis-
tic approach, we investigate the likely source locations 
of infection of COVID-19 cases in the early pandemic 
phase and we estimate the contribution of each munici-
pality to the spread of SARS-CoV-2 both locally and at 
the national level.

Methods
Study population and data
The first autochthonous case of COVID-19 in Italy was 
microbiologically diagnosed in the Lombardy Region 
on February 20, 2020. At the time, intensive testing, iso-
lation of confirmed cases, and quarantine of case con-
tacts were in place in the entire country [19]. Following 
the rapid increase of SARS-CoV-2 laboratory-con-
firmed infections, local and national health authori-
ties imposed increasingly strict physical distancing 
measures, with a quarantine imposed on all individuals 
residing in 10 municipalities in the Lombardy Region 
and one in the Veneto Region on February 23, 2020 
[2]. A regional lockdown in Lombardy and a national 
lockdown were imposed respectively on March 8 and 
March 10, 2020 [20]. Applied measures included the 
suspension of teaching activities and restrictions on 
individuals’ movements across different regions and 
culminated in the closure of all non-essential retail and 
shops and a “stay at home” order applied throughout 
the entire Italian territory.

Since January 2020, data on PCR-confirmed SARS-
CoV-2 infections have been collected in the 19 Ital-
ian Regions and the two Autonomous Provinces and 
reported to National Integrated Surveillance System [19]. 
A central database of all infections confirmed in Italy was 
formally established the February 27, 2020 and managed 
by the Italian National Institute of Health. For any con-
firmed infection, information was collected on the date of 
diagnosis, municipality of residence, and clinical severity; 
the date of symptom onset was also recorded for sympto-
matic cases. The initial line list of laboratory-confirmed 
cases was retrospectively consolidated, through informa-
tion gathered with standardized interviews to ascertained 
infections and PCR testing of their close contacts.

Our analysis is based on the consolidated dataset of 
all ascertained cases with symptom onset between Janu-
ary 26 and March 7, 2020, corresponding to the 6 epide-
miological weeks preceding the first regional lockdown 
imposed in Lombardy on March 8, 2020. We focus our 
analysis on this period to reduce the potential biases led 
by the introduction of strict restrictions to the popula-
tion. Data used to perform the presented analysis were 
extracted in February 2021.
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Probabilistic approach
By adapting a method previously developed to estimate 
sources and sinks of malaria parasites in Madagascar 
[21], we investigate the likely source locations of infec-
tion of each symptomatic case retrospectively identified 
by public health authorities in Italy with symptom onset 
in the 6 weeks between January 26 and March 7. For each 
case residing in municipality i with symptom onset on 
day t, we describe the risk that the case was infected T 
days previously because of contacts with people residing 
in the municipality j as:

where Ci,j represents the number of individuals daily 
traveling from i to j , G(T ) is the probability distribution 
of the SARS-CoV-2 generation time (assumed to be equal 
to the distribution of the serial interval estimated in [2]), 
Yj(t − T ) is the number of infected individuals residing in 
j who developed symptoms at time t − T  , and Nj is the 
total number of individuals residing in j.

The amount of travels across the different munici-
palities of Italy ( Ci,j ) is modeled by means of a radiation 
model [22], which is based on data on the size of the 
population residing in each municipality, the distance 
between their centroids, and the proportion of daily com-
muters recorded by Italian National Institute of Statistics 
in 2019 (Figure S1) [23].

We estimate the probability that a case residing in 
municipality i with symptom onset on day t, was infected 
by a case residing in municipality j as:

where M is the total number of municipalities in Italy in 
2020 (namely, 7926).

Similarly, the probability that a case residing in munici-
pality i and developing symptoms during the period π 
was infected by a case from municipality j is computed 
as:

Finally, we estimate the probability that individuals 
developing symptoms during the period π were infected 
within a distance D from their residence as:

Li,j(t,T ) = Ci,jG(T )
Yj(t − T )

Nj

pi,j(t) =
∞

T=1Li,j(t,T )

M
j=1

∞

T=1Li,j(t,T )

pi,j(π) =

∑
t∈πpi,j(t)Yi(t)
∑

t∈πYi(t)
.

pD(π) =

∑
i

∑
j:di,j<Dpi,j(π)Yi(π)
∑

iYi(π)

where possible sources j run over all municipalities with a 
distance from i (namely, di,j ) lower than D.

The contribution of each municipality j in the num-
ber of infection episodes occurring at time t in all 
the other municipalities of Italy is quantified as ∑

i  =jpi,j(t)Yi(t)/
∑M

j=1

∑
i  =jpi,j(t)Yi(t).

We estimate the number of epidemic foci occurred 
in Italy up to March 7, 2020. To this aim, we identify 
for each week w those municipalities characterized by a 
non-negligible number of ascertained symptomatic cases 
( 
∑

t∈wYi(t) > 10 ) and incidence ( 
∑

t∈wYi(t)/Ni > 0.001 ), 
and by the majority of transmission episodes estimated 
as occurring between individuals residing in the munici-
pality ( pi,i(w) > 0.5).

Mobility patterns and model validation through a dynamic 
transmission model
In the probabilistic approach, we assume that the mobil-
ity fluxes among municipalities can be modeled through 
a radiation model. Although the radiation model has 
been effectively employed to describe the spatial spread 
of infectious diseases in high-income countries [22, 24], 
following the approach already used in Gatto et al. [13], 
we show that the flows of individuals obtained through 
the radiation model are in good agreement with mobil-
ity data across the 12 provinces of the Lombardy region, 
based on 2016 census data adjusted with the population 
projections for 2020 [25] (see Figures S2 and S3). Fur-
thermore, we use a dynamic metapopulation transmis-
sion model based on a susceptible-infectious-recovered 
(SIR) schema to test if the radiation model is reasonably 
able to capture the observed spatial spread of COVID-
19 in Italy and the overall temporal increase of COVID-
19 patients across regions from February 1 up to March 
7, 2020. To compare model simulations with data, we 
assume that 3% of all infections were ascertained by 
public health authorities, either in real time or retro-
spectively through contact tracing operations and epi-
demiological investigations [26]. In the dynamic model, 
infected individuals residing in the municipality j are 
assumed to exert a time dependent force of infection 
�i,j(t) on individuals residing in municipality i defined as 
�i,j(t) = βCi,jIj(t)/Nj , where β is the SARS-CoV-2 trans-
mission rate, Ci,j is the amount of individuals daily trave-
ling from i to j as obtained by using the radiation model, 
Ij(t) and Nj are, respectively, the overall number of infec-
tious individuals and the population size in municipal-
ity j . Based on the simulation results, we compute the 
probability that an individual residing in municipality i 
and infected at day t was infected by a case from munici-
pality j as pi,j(t) = �i,j(t)/

∑M
j=1�i,j(t) , with M represent-

ing the overall number of municipalities of Italy in 2020; 
pi,j(π) is computed as in the probabilistic approach, but 
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using the overall number of infections estimated by the 
dynamic model instead of the symptomatic cases ascer-
tained in the data. Given the large uncertainty surround-
ing the ability of the public health system in identifying 
(either in real time or retrospectively) cases that occurred 
in the early pandemic phase, we repeat the analysis and 
estimate the risk of SARS-CoV-2 transmission at differ-
ent distances by assuming also a 10% ascertainment ratio.

The SIR model is parametrized to reproduce at the 
national level an epidemic curve associated with an expo-
nential growth rate r corresponding to a basic reproduc-
tion number R0 = 2.8 , representing the transmissibility 
potential of SARS-CoV-2, estimated for the Lombardy 
Region between February 12 and March 9, 2020 [2, 20]. 
The average duration of the infectivity period is assumed 
to be equal to the mean serial interval G [2]. The R0 asso-
ciated with the simulated epidemic curve is computed by 
considering the growth rate r associated with the num-
ber of new cases simulated by the model at the national 
level and using the standard equation R0 = 1+ rG . The 
model is initialized on February 1 (at t0 = 0 ) with a num-
ber of infected individuals I0 that is consistent with the 
ascertainment ratio in Italy during the early pandemic 
phase (3% by March 8, 2020 [26]; 10% was considered 
for sensitivity analysis), and the consolidated number 
of ascertained cases developing symptoms before strict 
restrictions were imposed on the general population 
(namely, 517 individuals on February 23, 2020). The 
dynamic model considered in this work is determinis-
tic. However, initial infections are distributed over the 
national territory by random sampling from a multino-
mial distribution with probabilities proportional to the 
cumulative number of symptomatic cases retrospec-
tively identified in Italy across the different municipali-
ties as of February 15, 2020. To explore the uncertainty 
characterizing the initial spatial dispersal of SARS-CoV-2 
infections, model simulations are repeated 100 times by 
randomly sampling the municipalities of residence of 
infectious individuals at the start of simulations. Results 
are presented both in terms of model mean estimates and 
95% Prediction Intervals (PI) associated with different 
initial conditions, and in terms of model estimates asso-
ciated with initial conditions minimizing the root mean 
square error between the time series of cases retrospec-
tively identified at the regional level and those estimated 
by simulating the dynamic SIR model.

Results
Spatial dispersal and transmission foci of SARS‑COV‑2
The retrospective and prospective investigation of the 
first laboratory-confirmed cases identified 1,274 COVID-
19 cases with symptom onset between January 28 and 
February 20 (i.e., the earliest date of diagnosis of an 

autochthonous case in Italy), already scattered across 
more than 600 municipalities in 18 regions. Between 
February 20 and March 7, public health authorities con-
firmed 8,596 COVID-19 cases (Table 1), while additional 
15,402 symptomatic cases with symptom onset in this 
period were retrospectively ascertained in the following 
weeks [2]. According to the consolidated dataset, as of 
March 7, 2020, new COVID-19 cases were emerging in 
2,644 municipalities and all regions were affected by sus-
tained SARS-CoV-2 transmission (Table 2, Figure S4).

Our analysis shows that up to February 1, 2020, less 
than 20% of transmission episodes occurred because 
of interactions between individuals residing 5  km apart 
(Fig.  1a), with more than 20% of cases likely infected at 
more than 50  km from their municipality of residence. 
In this period, less than 40% of transmission episodes 
were likely occurring at a distance within 10 km (see Fig-
ure S5). In contrast, we estimate that after mid-February 
more than 80% of transmission events were occurring 

Table 1  Identified symptomatic cases by date of notification 
across the six epidemiological weeks  between January 26 and 
March 7, 2020

Identified cases by date of notification

Week Number of 
cases

Number of 
municipalities
(% of the total 
7,926)

Number of 
regions
(% of the total 20)

Jan 26 – Feb 01 0 0 (0%) 0 (0%)

Feb 02 – Feb 08 0 0 (0%) 0 (0%)

Feb 09 – Feb 15 0 0 (0%) 0 (0%)

Feb 16 – Feb 22 88 42 (0.5%) 4 (20%)

Feb 23 – Feb 29 1,540 533 (6.7%) 16 (80%)

Mar 01 – Mar 07 6,968 1,490 (18.8%) 20 (100%)

Table 2  Retrospectively identified symptomatic cases by date of 
symptom onset across the six epidemiological weeks  between 
January 26 and March 7, 2020

Retrospectively identified cases by date of 
symptoms onset

Week Number of 
cases

Number of 
municipalities
(% of the total 
7,926)

Number of 
regions
(% of the total 20)

Jan 26 – Feb 01 168 144 (1.8%) 15 (75%)

Feb 02 – Feb 08 174 141 (1.8%) 10 (50%)

Feb 09 – Feb 15 413 271 (3.4%) 14 (70%)

Feb 16 – Feb 22 1,606 608 (7.7%) 18 (90%)

Feb 23 – Feb 29 5,822 1,408 (17.8%) 20 (100%)

Mar 01 – Mar 07 17,089 2,644 (33.3%) 20 (100%)
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within 10 km, while less than 5% of cases were attribut-
able to transmission episodes occurring at a distance 
greater than 20  km (Fig.  1a). Estimates of the overall 
cumulative distribution of the geographic distances of 
transmission that occurred up to March 7, 2020, can be 
found in Fig. 1b.

We compare the estimates obtained with the probabil-
istic model to those obtained with a dynamic SIR model, 
simulating the temporal spread of all SARS-CoV-2 infec-
tions across different municipalities of Italy between 
February 1 and March 7, 2020. The dynamic SIR model 
is statistically accurate in identifying regions where at 
least one symptomatic case was notified at different times 
(Cohen’s kappa coefficient > 0.5; see Table S1). The rela-
tively lower amount of spatial dispersal estimated by the 
model with respect to what observed in the data (Figs. 2 
and S6) might be partially explained by the intrinsic 
stochasticity of the transmission process and the likely 
occurrence of repeated importations of infectious cases 
from abroad, which are not accounted for in the dynamic 
model. Nonetheless, a particularly good agreement with 
data on the number of cumulative cases with symptom 
onset between February 1 and March 7, 2020, is found 
for regions with more than 50 daily cases ascertained 
on March 8 (Figure S7). As an overall measure of good-
ness of fit, we compute the percentage of variance in the 
data explained by model estimates at a regional grain (20 
regions), which results in a coefficient of determination 
R2 of 0.97 when considering the initial conditions best 
reproducing the observed time series of cases (see Fig-
ures S8 and S9 for more details).

Estimates of the overall cumulative distribution of the 
geographic distances of transmission occurred up to 
March 7, 2020 (Fig. 1b) as obtained with the dynamic SIR 
values well compare with what is evaluated through the 
probabilistic model. To test the robustness of our results 
with respect to different values of the ascertainment 
ratio, we repeat the analysis based on the dynamic SIR 
model by assuming a 10% case ascertainment ratio up to 
March 8, 2020. Obtained results were almost identical to 
those obtained under our baseline assumption (see Fig-
ures S10 and S11).

Using the probabilistic approach, we analyze the pro-
gressive increase of potential foci of SARS-CoV-2 trans-
mission in Italy up to March 7, 2020, by identifying for 
each week those municipalities with 1) more than 10 
ascertained symptomatic cases per week, 2) an incidence 
of at least 1 symptomatic case per 1000 residents per 
week, and 3) more than 50% of transmission caused by 
social interactions likely occurring between individuals of 
the same municipality. According to this definition, only 
six municipalities are identified as possible transmission 
foci between February 16 and February 22, 2020. This 
number increases to 45 between February 23 and Febru-
ary 29, 2020, and to 209 in the first week of March 2020 
(Fig. 3a). Consistent results are also obtained when esti-
mating the progressive increase in the number of trans-
mission foci in Italy through the dynamic SIR model. 
Specifically, according to simulated epidemic trajectory 
minimizing the root mean square error with regional 
data, we estimate 0 (mean across all the considered initial 
conditions: 0, 95%PI: 0–1), 24 (mean: 12, 95%PI: 3–25), 

Fig. 1  a Cumulative distribution of the probability that a COVID-19 case was infected at a distance D from their residence, as estimated 
with the probabilistic approach, for 6 consecutive weeks between January 26 and March 7, 2020. b Cumulative distribution of the probability 
that a COVID-19 case was infected at distance D from their residence, as estimated with the probabilistic approach (blue) and the dynamic SIR 
model (red), considering the entire time interval between January 26 and March 7, 2020. Vertical lines show the range from 2.5 to 97.5 percentiles 
associated with 100 simulation runs
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Fig. 2  a Spatial spread of COVID-19 cases with date of symptom onset from February 1 to March 7, 2020, across different municipalities of Italy 
as observed in the data [2]. b As a, but as obtained by simulating a SIR dynamic transmission model, under the assumption that 3% of infected 
individuals were ascertained by public health authorities. Panel b shows results for the SIR simulation that minimize the root mean square error 
with respect to the time series of cases retrospectively identified at the regional level. Mean estimates across all different model simulations are 
shown in Figure S6

Fig. 3  a Spatial distributions of potential transmission foci (dark blue) as estimated with the probabilistic approach over 3 different weeks, namely 
February 16 – 22, February 23 – 29, and March 1 – 7, 2020. Municipalities with at least one individual developing symptoms in the corresponding 
week are shown in light blue. b As a, but as obtained by simulating a SIR dynamic transmission model: foci in red, municipalities with at least 
one notified case in pink. The inset shows the number of epidemic foci as estimated with the probabilistic approach (blue line) and as estimated 
with 100 simulation runs of the dynamic transmission model (red boxplots)
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and 257 (mean: 293, 95%PI: 206–381) foci for the weeks 
February 16 – 22, February 23 – 29, and March 1 – 7, 
respectively (Fig. 3b).

Impact of local restrictions based on ascertained cases 
on the spatial spread of SARS‑CoV‑2
Despite our results suggest that, on February 23, most of 
the cases were infected at short distances (≤ 10 km) from 
their municipality of residence, municipalities with at 
least 10 cumulative notified cases in the data accounted 
only for less than 5% of the inter-municipality spillover 
of the infection over the national territory, represent-
ing transmission episodes occurring because of contacts 
between individuals residing in different municipalities 
(Fig. 4). This result highlights that, at that time, prohibit-
ing residing individuals to exit these municipalities would 
have had a marginal impact on the spatial spread of 
SARS-CoV-2. All the municipalities with at least 1 ascer-
tained symptomatic or asymptomatic infection (counting 
more than 3 million citizens in total), were likely respon-
sible for only 20% of spillover episodes at the national 
level. On March 7, 2020, the day before a lockdown was 
imposed in the entire Lombardy Region, a policy to limit 
the mobility outside the municipality of residence for 
individuals residing in those municipalities with at least 
one notified positive individual would have left more 
than 20% of spillover transmission uncontrolled, while 
affecting almost 32 million Italian citizens (~ 54% of 
the total population). The same policy imposed only on 
municipalities with at least ten ascertained cases would 
have left uncontrolled more than 75% of spillover trans-
mission and would have affected about 10 million indi-
viduals (~ 17% of the total population).

Comparable results are obtained with the two con-
sidered modeling approaches (probabilistic model vs 
dynamic SIR model; see Fig. 4).

Discussion
Estimates on the probability of observing transmis-
sion episodes between individuals at different distances 
are instrumental for defining appropriate strategies to 
control the spread of infectious diseases. The timely 
identification of areas representing the main source of 
infection and contributing the most to the disease spread 
is a key factor to settle effective containment and control 
measures.

We investigate the spatiotemporal dynamics of SARS-
CoV-2 in Italy before the first European lockdown was 
imposed in Lombardy region on March 8, 2020. To do 
this, we use a probabilistic model informed with sympto-
matic cases that occurred over time in each municipality 
of the country as identified by contact-tracing operations 
and retrospective epidemiological investigations of ascer-
tained infections.

Our analysis provides estimates of the probability of 
transmission at different distances, showing when the 
infection dynamics switched from the phase when most 
of the transmission occurred because of the erratic spillo-
ver and importation of cases from most affected areas to 
a phase where the spread of the infection was locally sus-
tained. Obtained results also give insights into the spatial 
distribution of transmission foci in Italy at the very early 
stages of the pandemic. We also highlighted the potential 
effect of quarantining only those municipalities where 
COVID-19 cases were identified in terms of the percent-
age of averted spillover transmission from affected areas 

Fig. 4  a Percentage of transmission ascribable to infected individuals residing in municipalities with at least 1, 5, 15, 20 cumulative notified cases 
in the data, as estimated with the probabilistic approach at different times. b As a, but as obtained by simulating a SIR dynamic transmission model. 
c Total number of individuals residing in municipalities with at least 1, 5, 15, 20 cumulative notified cases in the data
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into the rest of the country. We find that the probability 
of transmission at short distances progressively increased 
during the initial pandemic phase, with the proportion 
of short-distance transmission (≤ 10 km) rising from less 
than 40% in early February to more than 80% in the first 
week of March 2020. These findings suggest that at the 
beginning of March, when major restrictions on physi-
cal distancing were imposed to the general population in 
Italy, the spread of COVID-19 was predominantly driven 
by contacts occurring within each single municipality or 
through short-distance travels. At this date, we estimate 
that more than 200 transmission foci were contribut-
ing to the spread of SARS-CoV-2 over the Italian terri-
tory, but that less than 25% of the spillover transmission 
episodes occurring inter municipalities were ascribable 
to municipalities with more than 10 notified cases. On 
March 7, 2020, the day before a lockdown was imposed 
on all residents of the Lombardy Region, municipalities 
with no ascertained infections were likely contributing to 
more than 20% of spatial spread of SARS-COV-2 in Italy.

The analysis of detailed spatiotemporal records of 
COVID-19 symptomatic cases occurred in Italy in early 
2020 therefore suggests that—shortly after the first 
autochthonous case was diagnosed in the country—poli-
cies focusing on reducing the transmission of SARS-CoV-2 
within each municipality and applied at national level were 
required to interrupt the disease spread. In fact, given the 
estimated large proportion of short-distance transmission 
and the large number of epidemic foci over the national 
territory, restrictions applied only to individuals residing 
in municipalities with ascertained cases or limiting only 
the inter-municipality mobility would have not been suf-
ficient to counter the surge of COVID-19 cases.

Combined with evidence from previous studies [27, 
28], with the relatively low SARS-CoV-2 infection ascer-
tainment ratio [26], and with the possibly low detection 
rates of cases imported from abroad [29], our analysis 
highlights the need for an immediate response based on 
multiple non-pharmaceutical interventions (encompass-
ing among others bans of mass gatherings, school clo-
sures, and stay-at-home orders) applied at national level 
during the early phase of the COVID-19 pandemic.

The following limitations should be considered when 
interpreting the presented results. Local restrictions 
applied before March 7, 2020, as well as measures 
applied at the national level shortly after the first diag-
nosis of SARS-CoV-2 on February 23, were not investi-
gated in the proposed analysis. In addition, the number 
of cases ascertained in low-transmission settings is 
subject to inherent biases in clinical case reporting, and 
our results could be affected by the potential heteroge-
neity across Italian regions in the ascertainment ratio 
of SARS-CoV-2 infections during the early pandemic 

phase. Changes in the reporting that occurred in the 
early stage of the pandemic cannot be excluded as well.

In our analysis, the use of a radiation model allowed us 
to keep as simple as possible the human mobility frame-
work, while overcoming potential biases associated with 
mobility patterns inferred from empirical data repre-
senting only specific periods or age-segments of the 
population. Although mobility patterns are expected to 
dramatically change as a consequence of interventions, 
it has been proven that in the early stages of an epi-
demic, the use of real data on individuals’ movements 
does not increase forecast performance compared to a 
non-parametric radiation model [30]. We showed that 
the radiation model is reasonably able to capture avail-
able data on individuals’ commuting (Figures S2 and 
S3) as well as the overall temporal increase of COVID-
19 cases across regions (Figures S7-S9). Nonetheless, 
the proposed deterministic dynamic SIR model is not 
appropriate to describe the exact trajectory and spatial 
dispersal of SARS-CoV-2 infections identified during 
the initial pandemic phase. While alternative modeling 
approaches would better reflect the stochastic nature 
of the transmission process and the disease spread in 
the population, the development of such models would 
require additional assumptions on the epidemic seed-
ing, considering repeated importation of cases from 
abroad. Finally, the spatial resolution of the analyzed 
data was insufficient to disentangle the contribution of 
within-household transmission to the disease spread.

Despite these limitations, our study represents a first 
attempt to quantify the probability of transmitting the 
SARS-CoV-2 infection at different distances in the 
absence of strict restrictions, and the contribution of 
the municipalities where the transmission was already 
detected to the initial spread of COVID-19 in Italy.
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