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Abstract

The thesis consists of three chapters on econometrics analysis, both theoretical and applied.
In the first chapter, which is coauthored with Andrea Carriero, Todd Clark and Massimiliano Mar-

cellino, we propose a hierarchical shrinkage approach for multi-country VAR models. To make the ap-
proach operational, we consider three different scale mixtures of Normals priors — specifically, Horse-
shoe, Normal-Gamma, and Normal-Gamma-Gamma priors. We provide new theoretical results for the
Normal-Gamma prior. Empirically, we use a quarterly data set for G7 economies to examine how model
specifications and prior choices affect the forecasting performance for GDP growth, inflation, and a short-
term interest rate. We find that hierarchical shrinkage, particularly as implemented with the Horseshoe
prior, is very useful in forecasting inflation. It also has the best density forecast performance for output
growth and the interest rate. Adding foreign information yields benefits, as multi-country models generally
improve on the forecast accuracy of single-country models.

In the second chapter, which is coauthored with George Kapetanios and Massimiliano Marcellino, we
consider kernel-based non-parametric estimation and inferential theory for large heterogeneous panel data
models with stochastic time-varying coefficients. We propose mean group and pooled estimators, derive
asymptotic distributions and show the uniform consistency and asymptotic normality of path coefficients.
Then, we extend the procedures to the case with possibly endogenous regressors and propose a time-
varying version of the Hausman exogeneity test. The finite sample performance of the proposed estimators
is investigated through a Monte Carlo study and an empirical application on multi-country Phillips curve
with time-varying parameters.

In the third chapter, I develop time-varying continuously updated GMM estimation and inferential
theory for models whose parameters vary stochastically and smoothly over time. Then, I propose two
structural stability tests in this context. After deriving the asymptotic properties of the estimators and
test statistics, I assess their finite sample performance by an extensive Monte-Carlo study and illustrate
their application by an empirical example on dynamic asset pricing models with stochastic discount factor
(SDF) representation.
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Chapter 1

Macroeconomic Forecasting in a Multi-country
Context

1

1.1 Introduction

Since the seminal studies by Doan et al. [1984] and Litterman [1986], Bayesian vector autoregressions
(VARs) have become workhorse models in macroeconomic forecasting. Reduced-form VARs are richly
parameterized, which brings the risk of overfitting the data and large uncertainty for the future path pro-
jected by the model. It is well known that shrinkage generally improves forecasting performance, and
Bayesian methods offer an effective way to shrink parameters by using prior information.

Due to increasing international trade and financial flows in recent decades, individual countries are
more and more interlinked, which may make it helpful to use multi-country forecasting models and meth-
ods. The VAR literature includes three main approaches: (1) factor-augmented VAR models; (2) global
vector autoregressive (GVAR) models; and (3) multi-country VARs. In factor-augmented VAR models,
each country-specific VAR is augmented with “foreign variables,” constructed by using principal compo-
nents to extract common factors from all variables in foreign countries. In GVARs, used in studies such
as Pesaran et al. [2009], Cuaresma et al. [2016], Huber [2016], and Dovern et al. [2016], each country-
specific VAR is augmented with weakly exogenous “foreign variables,” constructed by aggregating other
countries’ variables with international trade flows as weights. Then, country-specific models are combined
to form a global model for the forecasting exercise. In multi-country VARs, used in studies such as Canova
et al. [2007], Giannone et al. [2009], Korobilis [2016], Dées and Güntner [2017], and Koop and Korobilis
[2019], variables for multiple countries are jointly modeled, with various degrees of cross-country interac-
tions. Shrinkage is imposed to deal with the curse of dimensionality and is performed either by considering

1This is a joint work with Andrea Carriero, Todd Clark and Massimiliano Marcellino.
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the panel dimension in the data or by simply treating the multi-country model as a large-scale BVAR and
specifying priors on model coefficients.

While conventional Minnesota-type priors are shown to be useful in macroeconomic forecasting and
are still widely used in the literature, other work suggests instead applying scale mixtures of Normals priors
or other alternatives on single-country BVARs. These prior specifications have advantages with respect to
the Minnesota-type prior, since they involve less hyperparameter tuning. They are also computationally
more efficient than spike-and-slab priors while enjoying similarly nice theoretical properties at the same
time. Huber and Feldkircher [2019] propose applying the Normal-Gamma prior, originally introduced
by Griffin and Brown [2010], to BVARs and show that it is beneficial for macroeconomic forecasting.
Follett and Yu [2019] use the Horseshoe prior, popular in the statistical literature (Carvalho et al. [2010]),
and find that it improves forecast accuracy in a single-country context. Cadonna et al. [2020] propose
a more general Normal-Gamma-Gamma prior, originated in Griffin and Brown [2017], for time-varying
parameter BVARs and find that it delivers more sparse parameter estimates (but do not address forecast
performance). Recently, there has been some limited interest in applying these types of priors in multi-
country VARs. Korobilis [2016] proposes the stochastic search specification selection prior, which is a
modification of the stochastic search variable selection prior proposed by George et al. [2008] applicable
under some model restrictions. Korobilis finds that, to design priors for better forecasting performance,
it is important to consider the panel structure in the data. However, the prior specifications considered
there introduce dependence across equations, which makes efficient estimation, such as the approach of
Carriero et al. [2019], difficult to apply.

In this paper, we propose and examine the use of hierarchical shrinkage approaches in multi-country
VARs used for macroeconomic forecasting. To make the approach operational, we use three different
scale mixtures of Normals priors that have been shown to be successful in single-country BVARs but
have not been examined in multi-country models. These priors include the Horseshoe, Normal-Gamma,
and Normal-Gamma-Gamma specifications. The hierarchical shrinkage is able to handle restrictions sug-
gested in Canova and Ciccarelli [2013] for multi-country VARs. It is shown to be computationally more
efficient than the existing stochastic search specification selection prior and also delivers better forecast-
ing performance than the existing alternatives. We also provide some novel theoretical results for the
Normal-Gamma prior.

Empirically, we work with a quarterly Group of Seven (G7) data set to examine the (point and density)
forecasting ability of the new priors for three key macroeconomic variables: output growth, inflation,
and a short-term interest rate. We also compare forecasting accuracy across various models with other
specification choices. These models include: (1) country-specific VARs, either with Minnesota-type priors
or hierarchical shrinkage proposed by Chan [2021]; (2) country-specific factor-augmented VARs; (3)
GVARs; and (4) multi-country VARs in which shrinkage is performed either by imposing a particular
hierarchical factor structure on the model parameters or by using priors. Because stochastic volatility
(SV) has been found to be widely useful in macroeconomic forecasting with single-country models and
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also improves performance in our results, we include SV in all of our model specifications. In addition,
since Cross et al. [2020] have raised some questions on the usefulness of scale mixtures of Normals priors
in single-country macroeconomic forecasting, we consider alternative hierarchical shrinkage approaches
for a robustness check (the appendix includes these results in the multi-country context).

Our results show that hierarchical shrinkage of multi-country VARs, particularly as implemented with
the Horseshoe prior, improves macroeconomic forecast accuracy. It has outright advantages for infla-
tion forecasting, and the Horseshoe specification of a multi-country VAR also performs best in density
forecasts of output growth and the interest rate.2 In point forecast accuracy, the Normal-Gamma prior
performs best for output growth, whereas Canova and Ciccarelli [2009]’s factor shrinkage approach of
multi-country models performs best for the interest rate. These results indicate that, although the Normal-
Gamma-Gamma prior is more flexible than the Horseshoe prior and serves as a heavy-tailed extension
of the Normal-Gamma prior, these advantages do not yield consistently better forecasting performance.
We also find that modeling cross-country interactions achieves gains, as multi-country models generally
outperform single-country models. As is common in the literature, we also find that models’ forecasting
performance varies over both countries and time. There are countries in which alternative models and
priors do better than our hierarchical shrinkage of a multi-country VAR implemented with the Horseshoe
prior, but there are no consistent patterns in which one of the alternatives is clearly better. In the interest of
brevity, the paper’s appendix provides results confirming that stochastic volatility is one important feature
to improve forecast accuracy in the multi-country context.

The paper is structured as follows. Section 2 briefly introduces multi-country VAR models, existing
prior specifications, and their challenges. Section 3 provides our new hierarchical shrinkage approach for
multi-country VARs, the prior specifications, and some new theoretical results. Section 4 gives a brief
summary of estimation algorithms and highlights some computational comparisons. Section 5 describes
the data, forecasting metrics, and design of our forecasting exercise. Section 6 presents the main empirical
results. Section 7 concludes. Technical details, sampling algorithms for various models, and additional
empirical results are provided in the appendix.

1.2 Multi-country VARs

1.2.1 The model

The multi-country VAR model we consider has the form

yi,t = ci + Bi(L)Yt−1 + ui,t, (1.1)

2Koop and Korobilis [2019] and Feldkircher et al. [2021] also find that multi-country VARs are more beneficial for inflation
forecasting.
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where i = 1, . . . ,N and t = 1, . . . ,T ; yi,t is a G × 1 vector of variables for each country i, and Yt =

(y′1,t, . . . , y
′
N,t)
′; ci is a G × 1 vector of constant terms for each i, Bi(L) =

∑p
`=1 Bi,`L`, where Bi,` are G × NG

coefficient matrices associated with lag `, ` = 1, ..., p; and ui,t is a G × 1 vector of disturbances. The lag
length is assumed to be p. Combining equations across countries, the VAR can be written in matrix form
as:

Yt = c +

p∑
`=1

B`Yt−` + ut, (1.2)

where c = (c′1, c
′
2, . . . , c

′
N)′, each B` has dimension NG × NG, and ut = (u′1,t, . . . , u

′
N,t)
′. For the stochastic

volatility (SV) specification, we assume that

ut = A−1H0.5
t εt, εi,t ∼ i.i.d. N(0, ING),

where A−1 is a lower triangular matrix with diagonal elements equal to 1, and Ht is diagonal with generic
j-th element h j,t evolving as a random walk (RW):3

ln h j,t = ln h j,t−1 + e j,t, j = 1, . . . ,NG, (1.3)

where et = (e1,t, e2,t, . . . , eNG,t)′ and et ∼ N(0,Φ) with a full covariance matrix Φ as in Primiceri [2005].
The reduced-form error covariance matrix is Σt = A−1HtA−1′.

While some work has examined time-varying coefficient VAR models (see, e.g., Cogley and Sargent
[2005]; Primiceri [2005]; Koop et al. [2009]; and D’Agostino et al. [2013]), we restrict attention to con-
stant coefficient VAR models with stochastic volatility for two reasons. First, time-varying coefficient
VAR models are rarely used with more than 4-5 variables. This is mainly due to computational com-
plexity and makes recursive forecasting with MCMC methods computationally infeasible. Second, in a
forecasting context, reaching parsimony (in terms of both controlling time variation and getting rid of
irrelevant regressors) in large models with time-varying coefficients remains a challenging task.4

1.2.2 Existing priors

The specification in (1.2) can incorporate complex dynamic structures for each variable in different coun-
tries. However, it also suffers from the curse of dimensionality due to the high dimensionality of the

3The RW specification may come at the cost of generating excessively thick forecast densities. Alternatively, the SV process
(1.3) could be specified as an AR(1) process, and ei j,t could be assumed to be t-distributed to incorporate fat tails. However,
Clark and Ravazzolo [2015] find that these alternative specifications fail to dominate a baseline RW specification.

4To have parameter time variation in large VARs, Koop and Korobilis [2019] introduce forgetting factors, and Kapetanios
et al. [2019b] use non-parametric methods combined with stochastic coefficient constraints. Yet, both methods become com-
putationally infeasible if combined with the commonly used stochastic volatility specification. Gefang et al. [2019] develop
variational Bayes methods (which utilize approximations of conventional posteriors) that permit large models with time-varying
parameters and volatilities. Empirically, since forecasts are computed recursively, we implicitly consider the potential time vari-
ation of parameters in the model.



5

parameter space. For instance, in the forecasting exercises we use data on 3 dependent variables (G = 3)
for the G7 countries (N = 7) and four lags (p = 4). A multi-country VAR with such choices would have
1,785 VAR coefficients. Thus, shrinkage is desirable.

In a single-country framework, the macro VAR literature generally relies on Bayesian shrinkage by
imposing a Minnesota-type prior (Litterman [1986]) on the VAR coefficients. Applied analogously in our
multi-country setup, the prior for B is vec

(
B
)
∼ N(vec(µ

B
),ΩB), and ΩB is set to

Var
(
B(ii)
`

)
=
λ1

`λ3
, ` = 1, . . . , p (1.4)

Var
(
B(i j)
`

)
=
λ2

`λ3

σ2
i

σ2
j

, ∀i , j, ` = 1, . . . , p, (1.5)

where B(i j)
` denotes the element in row i and column j of the matrix B`, λ = (λ1, λ2, λ3)′ is the collection

of prior hyperparameters, and σ2
i , σ2

j are local scale parameters. For each element i of the intercept vector
c, it is common to specify an uninformative prior by setting the prior variance equal to 100 × σ2

i .
In view of the fact that the usual Minnesota-type prior ignores the panel structure in the data, Angelini

et al. [2019] recently proposed a modified Minnesota-type shrinkage prior to carefully deal with the panel
structure. In particular, a different hyperparameter λ4 is introduced in (1.5) on coefficients related to other
countries’ variables. Angelini et al. [2019] apply this approach in a forecasting exercise with a Euro area
data set and find that it provides some gains. However, this still belongs to the class of Minnesota-type
priors. This may come with costs due to parameter uncertainty, since the hyperparameters (λ1, λ2, λ3, λ4)
and local scale parameters σ2

i , σ2
j (commonly obtained from AR(1) estimates) are fixed.

Since there are a variety of restrictions of interest in multi-country VARs, another strand of literature
suggests designing shrinkage priors to explore these restrictions. Consider the coefficient matrix Bl defined
in (1.2):

B` =


B11,` · · · B1N,`
...

. . .
...

BN1,` · · · BNN,`

 , ` = 1, . . . , p, (1.6)

where each block Bi j,`, i, j = 1, . . . ,N, has dimension G ×G. According to Canova and Ciccarelli [2013],
it is interesting to check whether certain restrictions exist and what their implications are. For example,
cross-sectional heterogeneity (CSH) exists when ∃ i, j, i , j, such that Bii,l , B j j,l for some l and ci , c j.
Dynamic interdependencies (DI) occur when at least one block Bi j,l , 0 for a given i, l and i , j.5

In a special case with one lag (p = 1) and no SV, Koop and Korobilis [2016] develop the stochastic

5There is one other class of possibly important restrictions: static interdependencies (SI), which occur when the covariance
matrix Σt is not block diagonal. However, it is not easy to implement these restrictions when stochastic volatility is allowed.
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model specification search (SSSS) prior:

vec(BDI
i j,1) ∼ (1 − γDI

i j )N(0, τ2
i j × cDI × IG) + γDI

i j N(0, τ2
i j × IG), i, j = 1, . . . ,N, i , j (1.7)

vec(BCSH
ii,1 ) ∼ (1 − γCSH

ii )N(vec(B j j,1), ξ2
i j × cCSH × IG) + γCSH

ii N(vec(B j j,1), ξ2
i j × IG), i, j = 1, . . . ,N, (1.8)

where γDI, γCSH are indicators, τ2
i j, ξ

2
i j are prior variance parameters, and cDI, cCSH are small constants to

make prior variances smaller in the spike components. The priors in (1.7)-(1.8) provide an extension of
the stochastic search variable selection (SSVS) prior in George et al. [2008] to multi-country VARs. It
is the first attempt to examine the existence (or absence) of certain dependencies and homogeneities for
coefficients in multi-country VARs. If γDI

i j = 0, the coefficients on the lags of all country j variables for
country i are set to very small values near zero. If γCSH

i j = 0, the coefficients on the lags of all country
i variables for itself are to be concentrated at coefficients related to country j. Korobilis [2016] uses
this prior in a multi-country forecasting exercise for bond yields of Eurozone countries and finds that it
performs comparably with alternative shrinkage priors.

In terms of MCMC estimation, application of the DI restrictions is relatively straightforward, while
application of the CSH restrictions is non-trivial, since we seek to use priors to push the model toward
equality of matrices Bii,` = B j j,` for i , j and ` = 1, . . . , p. Koop and Korobilis [2016] provide a novel
solution to the problem, but it still introduces prior dependence across equations, which also appears in
the conditional posteriors, making it difficult to apply efficient algorithms as in Carriero et al. [2019] to
estimate the model equation by equation. In addition, the priors of (1.7)-(1.8) involve tuning many hyper-
parameters. For example, if we specify hyper-priors to infer γDI

i j ∼ Bernoulli(πi j), γCSH
ii ∼ Bernoulli(πii),

and τ2
i j ∼ Ga(a1, ai j), ξ2

i j ∼ Ga(b1, bi j), then we need to specify many more hyperparameters related to
those hyper-priors. Moreover, in contrast to the case of the scale mixtures of Normals priors we use, the
theoretical properties are not known.

The next section introduces hierarchical shrinkage priors for multi-country VARs. Our priors make
efficient MCMC algorithms easy to apply, without the need to tune many hyperparameters, and with the
ability to push the model toward both CSH and DI restrictions.

1.3 Hierarchical shrinkage in multi-country VARs

The hierarchical shrinkage we consider is inspired by recent advances in the literature on scale mixtures
of Normals priors and their successful applications in single-country Bayesian VARs. Since the seminal
work by Carvalho et al. [2010], a variety of scale mixtures of Normals priors have been proposed in the
literature. These priors include the Horseshoe prior (Carvalho et al. [2010]), the Normal-Gamma prior
(Griffin and Brown [2010]), the Normal-Gamma-Gamma prior (Griffin and Brown [2017]), and several
other alternatives. Compared to a conventional Normal prior, these prior distributions are spiked at the
origin to provide severe shrinkage towards zero for the parameters of interest, while at the same time they
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also have heavy-tails to allow little shrinkage of, say, intercept terms in (1.2). In addition, these priors have
computational advantages compared to the spike-and-slab prior (Carvalho et al. [2009]). Applications to
single-country Bayesian VARs mostly focus on the Normal-Gamma prior; see, for instance, Huber and
Feldkircher [2019] and Korobilis and Pettenuzzo [2019]. Follett and Yu [2019] introduce the Horseshoe
prior. These papers find that scale mixtures of Normals priors serve as competing alternatives to Minnesota
priors, in terms of both forecasting and structural analysis.

For setting up priors on the parameters associated with model (1.2), let βi = vec([ci, Bii,1, . . . , Bii,p]′), i =

1, . . . ,N, and βCSH = (β1, . . . , βN)′ be the collection of coefficients related to CSH restrictions. Due to the
forecasting focus, we consider further splitting βCSH into three blocks:

βCSH
c =

(
c′1, c

′
2, · · · , c

′
N
)′
,

βCSH
AR =

(
diag(B11,1), diag(B22,1), . . . , diag(BNN,1), . . . , diag(B11,p), . . . , diag(BNN,p)

)
,

βCSH
o = βCSH \ {βCSH

c , βCSH
AR },

where βCSH
o includes the set of parameters related to cross-variable lags that are in βCSH and not re-

lated to the intercept terms and own lags. Similarly, let β∗il = vec([Bi1,l, . . . , Bii−1,l, Bii+1,l, . . . , BiN,l]′), i =

1, . . . ,N, l = 1, . . . , p, and βDIi = (β∗i1, . . . , β
∗
ip)′ be the collections of coefficients related to DI restric-

tions in country i. Finally, define α as the free elements in A−1. We have N + 4 blocks of coefficients:
βCSH

c , βCSH
AR , βCSH

o , βDI1 , . . . , βDIN , α.
Using β as a generic notation for one block of coefficients, the hierarchical shrinkage we consider takes

the form:
β j ∼ N(0, λω j), ω j ∼ F , (1.9)

where j = 1, . . . , dim(β) and F denotes some pre-specified distribution for the local shrinkage parameter
ω j, which will be defined later. λ serves as a global shrinkage parameter, which can be specified as an
additional hyper-prior to learn the values from the data. Taking βDI1 as an example, because λ loads for
all elements in βDI1 , if λ → 0, all βDI1 are assumed to be identical (centered at zero), which implies that
there is no dynamic interdependence for country 1. It is worth mentioning that, since both local and
global shrinkage parameters are fully learned from the data, the hierarchical shrinkage approach offers
more flexibility than the conventional Minnesota prior, in which all hyperparameters are fixed at some
pre-specified values.

1.3.1 Choices of the priors

What remains is to specify F and hyper-priors on the global shrinkage parameters. Here we focus on three
different scale mixtures of Normals priors, since they have been applied successfully in single-country
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Bayesian VARs.6

The first prior we consider is the Horseshoe prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j |γ

2
j ∼ G

(1
2
, γ2

j
)
, γ2

j ∼ G
(1
2
, λ

)
, (1.10)

where G denotes the Gamma distribution.7 We use the parameterization of the Horseshoe prior as in Ar-
magan et al. [2011]. It can be shown that the marginal distribution of ω2

j follows C+(0, 1), where C+(0, 1)
denotes a half-Cauchy distribution on R+ with scale parameter 1, and λ serves as the global shrinkage pa-
rameter, which is the original parameterization in Carvalho et al. [2010] and used in Follett and Yu [2019].
The prior (1.10) has computational advantages, since the conditional posteriors are conjugate (Makalic
and Schmidt [2015]), making MCMC estimation straightforward. For the global shrinkage parameter λ,
we also follow Armagan et al. [2011] and set λ ∼ C+(0, 1).

The second prior we consider is the Normal-Gamma prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j ∼ G

(
aω,

aωκ2

2
)
. (1.11)

The above, with a slightly different parameterization, is first introduced in Griffin and Brown [2010] and
has recently been applied in single-country Bayesian VARs (Huber and Feldkircher [2019]) and time-
varying parameter models (Bitto and Frühwirth-Schnatter [2019]). Using Monte-Carlo simulations, Bitto
and Frühwirth-Schnatter [2019] find that aω controls the origins of the marginal prior distribution of p(β j)
and κ2 is the global shrinkage parameter. It can also be shown that (1.11) simplifies to Bayesian Lasso
(Park and Casella [2008]) if aω = 1 (Griffin and Brown [2010]). To infer hyperparameter values, we follow
Bitto and Frühwirth-Schnatter [2019] to set aω ∼ E(b) and κ2 ∼ G(d1, d2), where E denotes the exponential
distribution.

The final prior we consider is the Normal-Gamma-Gamma prior:

β j|τ
2
j , λ

2
j ∼ N

(
0, φ

τ2
j

λ2
j

)
, τ2

j ∼ G(a, 1), λ2
j ∼ G(c, 1), (1.12)

where φ = 2c/(aκ2). The above, again with a slightly different parameterization, is first introduced in
Griffin and Brown [2017]. Cadonna et al. [2020] apply it to time-varying parameter models. They show
that specification in (1.12) is very general and nests some commonly used shrinkage priors. They also
provide a comprehensive analysis of the properties of the Normal-Gamma-Gamma prior. It can be shown
that a controls the origin and c controls the asymptotic tail behavior of the marginal prior distribution
of p(β j). φ is the global shrinkage parameter. Using both simulated and real macroeconomic data, they

6Recently, there is a growing interest in the Dirichlet-Laplace prior; see Koop et al. [2020] for an application. However, we
do not consider it here, since the Dirichlet-Laplace prior is the scale mixture of the Laplace prior, which is not the main focus
of this paper.

7We use the parameterization of the G(a, b) distribution with pdf given by f (y) ∝ ya−1 exp(−by).
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find that the specification in (1.12) delivers relatively sparse solutions in time-varying parameter models.
However, no attempts have been made so far to examine its performance for macroeconomic forecasting.
Following Cadonna et al. [2020], we set 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and κ2|a, c ∼ F(2a, 2c) to learn
these hyperparameter values, where B denotes the Beta distribution and F is the standard F distribution.

1.3.2 Comparisons of the priors

Theoretically, the scale mixtures of Normals priors are typically compared in terms of the concentration
properties at the origin and the asymptotic tail behavior. Results for the Horseshoe prior and the Normal-
Gamma-Gamma prior can be found in Carvalho et al. [2010] and Cadonna et al. [2020], respectively.
However, no results are available for the Normal-Gamma prior. In the following theorem, we formally
characterize the tail behavior and concentration properties for the Normal-Gamma prior.

Theorem 1.3.1. Let β j ∼ NG(aω, κ2), whereNG is the Normal-Gamma prior parameterized as in (1.11).
Then, the marginal density πNG(β j) satisfies the following:

• Concentration properties: As
∣∣∣β j

∣∣∣→ 0, we have

1. if aω > 1
2 , πNG(β j) = O(1);

2. if 0 < aω < 1
2 , πNG(β j) = O

(
1

|β j|
1
2 −aω

)
;

3. if aω = 1
2 , πNG(β j) = O

(
1

log
(
|β j|

));
• Asymptotic tail behavior: As

∣∣∣β j

∣∣∣→ ∞, we have πNG(β j) = O
(
|β j|

aω−1

exp
(√

aωκ2|β j|
)).

Proof. See Appendix A. �

The results for Horseshoe, Normal-Gamma, and Normal-Gamma-Gamma priors in terms of both
asymptotic tail behavior and concentration properties are summarized in Table 1.1. Clearly, Normal-
Gamma and Normal-Gamma-Gamma priors share similar concentration properties, possessing unbounded
density near the origin if either 0 < aω < 1

2 or 0 < a < 1
2 . Both priors diverge to infinity with a poly-

nomial order, much faster than the Horseshoe prior (with a logarithmic order). For the tail behavior, it
follows from straightforward calculation that lim|β j|→∞ πNG(β)/β−2 = 0 and lim|β j|→∞ πNGG(β)/β−2 = ∞ if
0 < c < 1

2 , which implies that the Normal-Gamma prior has lighter tails than the Horseshoe prior, but the
Normal-Gamma-Gamma prior has heavier tails than the Horseshoe prior. The Normal-Gamma-Gamma
prior is the only one that can achieve a polynomial rate of convergence in both the tails and the origin. It
extends the Normal-Gamma prior by having heavier tails. Compared to the Horseshoe prior, it puts more
probability mass at the origin and offers more flexibility in modeling tails by the hyperparameter c.
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Tail Decay Concentration at zero

Horseshoe O
(

1
β2

j

)
O
(

log
( 1
|β j |

))
Normal-Gamma O

(
|β j |

aω−1

exp
(√

aωκ2 |β j |
) ) O(1) if aω > 1

2

O
(

1

|β j |
1
2 −aω

)
if 0 < aω < 1

2

O
(

1
log

(
|β j |

) ) if aω = 1
2

Normal-Gamma-Gamma O
(

1
β2c+1

j

)
O(1) if a > 1

2

O
(

1
|β j |

1−2a

)
if 0 < a < 1

2

O
(

1
log

(
|β j |

) ) if a = 1
2

Table 1.1: Tail behavior and concentration around zero for Horseshoe, Normal-Gamma, and Normal-Gamma-Gamma priors

Empirically, Cadonna et al. [2020] use Euro area macroeconomic data and find that the Normal-
Gamma-Gamma prior achieves more sparse parameter estimates than other shrinkage priors in a time-
varying parameter model framework. However, as pointed out in Giannone et al. [2021], sparsity does not
necessarily imply good forecasting performance. As we shall see, heavy tails is an important feature to
obtain better forecasting performance in multi-country VARs, since the Horseshoe prior forecasts well in
many cases. The extension to the Normal-Gamma-Gamma prior is less useful. The light-tailed Normal-
Gamma prior is useful for output growth forecasts in some cases, but it is outperformed by Horseshoe and
Normal-Gamma-Gamma priors for inflation and interest rate forecasts.

1.3.3 Other competing models

In addition to the multi-country VARs mentioned above, we also consider several alternative models which
are commonly used in macroeconomic forecasting. These models include country-specific VARs with SV
in which priors are specified as either Minnesota-type or hierarchical Normal-Gamma as in Chan [2021];
country-specific factor-augmented VAR (FAVAR) models with SV; global VAR (GVAR) with SV; and
multi-country VAR-SV with factor shrinkage as in Canova and Ciccarelli [2009]. We use the country-
specific VAR-SV with Minnesota prior as the benchmark, as it is the most commonly used model in the
macroeconomic forecasting literature. A description of all the models under comparison is provided in
Table 1.2. More details on the specification of the various models and associated priors can be found in
the Appendix.
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Model Description

CVAR country-specific VAR(p) with Minnesota prior

CVAR-H country-specific VAR(p) with hierarchical shrinkage as in Chan [2021]

CFAVAR country-specific factor-augmented VAR(p), with factors extracted from foreign variables

GVAR Global VAR(p)

CC parameters are assumed to follow an exact factor structure, as in Canova and Ciccarelli [2009]

MIN priors are Minnesota-type as in Angelini et al. [2019]

SSSS stochastic specification search and selection prior as in Korobilis [2016]

HS hierarchical shrinkage with Horseshoe prior

NG hierarchical shrinkage with Normal-Gamma prior

NGG hierarchical shrinkage with Normal-Gamma-Gamma prior

Note: All the models include SV.

Table 1.2: List of competing models

1.4 Estimation Algorithms

1.4.1 Estimation outline

We estimate all of the models listed in Table 1.2 using Markov Chain Monte Carlo (MCMC) methods. All
of our estimates are based on 30,000 posterior draws, with the first 10,000 discarded and the remaining
20,000 post-burn-in draws retained. This section provides a brief overview of our methods. The Appendix
and the studies cited below provide more details on algorithms and priors.

For country-specific VARs with SV and factor-augmented VARs with SV, we use the non-conjugate
Minnesota-type prior. The Gibbs sampling details of the country-specific VAR with SV are provided in
Carriero et al. [2019]. The intercept and autoregressive coefficients are estimated by the corrected trian-
gular algorithm proposed in Carriero et al. [2021].8 Stochastic volatility is estimated with the algorithm in
Del Negro and Primiceri [2015]. For free elements in A, we use the algorithm as in Cogley and Sargent
[2005]. The Gibbs sampler used in country-specific VARs with SV can be easily extended to allow for
augmented factors extracted from foreign variables. For the GVAR, we use a Minnesota-type prior similar
to Huber [2016]; details of the algorithms are provided there. For the CVAR-H, CFAVAR, and GVAR
specifications, we follow Chan [2021] and put hyper-priors on the overall shrinkage parameters. An ad-
ditional step is needed to update these parameters. In the case of the CVAR-H model, we use the default
setting as in Chan [2021], and sampling details can be found there.

To estimate the multi-country VAR with SV and the factor shrinkage approach (the CC model), we use
an exact factorization as in Canova et al. [2007] and Korobilis [2016]. Algorithms are provided in these
papers. SV can be easily added to this model and estimated similarly as in the country-specific case. In the

8A summary of the corrected triangular algorithm is provided in Appendix C.4.
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case of the MIN specification that features a Minnesota-type prior, the algorithm can be obtained similarly,
but for the Minnesota-type prior we use a specification similar to Angelini et al. [2019]. We also put a
hyper-prior on the overall shrinkage parameter related to coefficients on lagged foreign variables. Finally,
for the three hierarchical shrinkage approaches (HS, NG, and NGG), the Gibbs samplers are again very
similar as in other models, but additional blocks of sampling are needed to update the hyperparameters.
In particular, the details of the NG and NGG priors can be adapted as in Bitto and Frühwirth-Schnatter
[2019] and Cadonna et al. [2020], respectively. For the HS prior, since we use a different parameterization,
algorithms in Follett and Yu [2019] cannot be directly applied, but sampling schemes in Armagan et al.
[2011] for univariate regression models can be extended. We provide a summary of the MCMC algorithms
below.

Algorithm 1: MCMC inference for multi-country VARs with SV

Step 1: initialization;
Step 2: for i = 1, . . . ,NG do

Use the corrected triangular algorithm in Carriero et al. [2021] to obtain posterior draws from
VAR mean coefficients (intercepts and autoregressive coefficients);

end
Step 3: Use the algorithm in Cogley and Sargent [2005] to update the free elements in A;
Step 4: Update the hyperparameters in prior error covariance matrices, with conditional posteriors
that depend on prior choices which can found in Appendix B.2;

Step 5: Use the algorithm in Del Negro and Primiceri [2015] to update the volatilities ht and error
variance of innovations Φh.

1.4.2 Computational efficiency

In this section, we briefly compare the computational efficiency of the MCMC algorithms for the multi-
country VARs (note that we omit the CC specification, which is covered elsewhere in the literature). To
assess the efficiency of the algorithms, we compute the potential scale reduction factors (PSRFs) detailed
in Brooks and Gelman [1998]. A value of the PSRFs below 1.1 is generally taken as indication that the
chain has satisfactory mixing properties. In Table 1.3, we report average PSRFs of parameters needed to
construct forecasts and obtain predictive distributions: vec

(
B
)
, α, and vech

(
Φ
)
. We use the data set as in

our forecasting exercises (21 variables) and all models include 4 lags. As is clear, our algorithms show
satisfactory mixing and convergence properties.
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MIN SSSS HS NG NGG

vec
(
B
)

1.005 1.002 1.002 1.002 1.008

α 1.004 1.004 1.002 1.002 1.004

vech
(
Φ
)

1.061 1.040 1.046 1.077 1.069

Notes: The lags are set to 4 for all models except SSSS, in which we use 1 lag, to match the specification of our forecasting application.

Table 1.3: Mixing and convergence statistics (PRSFs) for multi-country VARs with 21 variables

As we discussed above, to handle CSH restrictions, the SSSS prior introduces dependence across
equations, which prevents the use of an efficient sampling algorithm for the VAR’s coefficients. Table
1.4 shows the computational time (in seconds) necessary to produce 10,000 draws from the posteriors
of multi-country VARs including 21 variables. For this time comparison, all models include only 1 lag.
Clearly, the specification with the SSSS prior takes much longer to estimate, roughly 5 times slower than
the other specifications. In forecasting, computations can be extremely burdensome as estimation has to
be done many times. Interestingly, the added blocks of sampling for hyperparameters in our proposed HS,
NG, and NGG methods have very small additional computational costs compared to the Minnesota-type
prior of the MIN specification.

MIN SSSS HS NG NGG

393 2077 367 324 427

Table 1.4: Time (in seconds) taken to obtain 10,000 posterior draws for various multi-country VARs with 21 variables and 1 lag

1.5 Data and Forecast Evaluation

1.5.1 Data

We examine the forecast performance of the various specifications using a G7 country data set: USA,
UK, Germany (DEU), France (FRA), Italy (ITA), Japan (JPN), and Canada (CAN). In brief, we build a 3-
variable data set for each country at the quarterly frequency, with a sample period of 1973Q1-2019Q4. The
variables consist of real GDP growth, CPI inflation, and a short-term interest rate (the 3-month government
bill rate). Table 1.5 presents the details of the data set along with the transformations of the variables and
the corresponding sources.9 Note that, like most other multi-country studies, we do not consider real-time
data and use data from the last available vintage, owing to the lack of availability of real-time data for all
seven countries.

9We obtain data from different sources due to data availability. In particular, the OECD provides real GDP growth data for
Germany before 1991, and the GFD provides very long coverage for interest rate data in many countries.
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Variable Data source Transformation

Real GDP growth OECD 4yt

CPI inflation FRED 400 log(yt/yt−1)

Interest rate GFD None

Notes: Because the OECD reports GDP growth as quarterly percent changes, we multiply the source data by 4 to obtain an approximate annual rate.
FRED refers to the database maintained by the Federal Reserve Bank of St. Louis. CPI inflation is measured with the annualized quarterly percent change
in the quarterly average level of the monthly CPI. GFD refers to Global Financial Database, from which we obtain the 3-month government bill rate and
form the quarterly series as the average of values for the months of each quarter.

Table 1.5: Data description and variable transformation

1.5.2 Forecast evaluation

We consider both point and density forecasts at horizons up to 12 steps (three years) ahead. The forecasting
exercise is performed in pseudo-real time; i.e., we do not use information that is not available when the
forecast is made. Parameter estimation and forecasting are done recursively, using an expanding window
of data for model estimation. The initial estimation sample runs from 1973Q1 to 1994Q4, the first available
forecast is for 1995Q1, and forecasts are generated up to 12 quarters ahead. Our last estimation sample
runs from 1973Q1 to 2016Q4, yielding forecasts from 2017Q1 to 2019Q4.

For all the models considered here, the full distribution of the forecasts is not available in closed form,
and a simulation algorithm is required. At each post burn-in draw, we compute the implied path of ŷ( j)

t+h to
generate a total of 20,000 draws from the predictive distribution.

Each point forecast is measured as the median of the predictive density. We evaluate them in terms of
root mean squared forecast error (RMSFE). Letting ŷt+h(M) be the forecast of the (scalar, for simplicity of
notation here) target variable yt+h made by model M and P be the total number of generated forecasts, the
RMSFE made by model M for horizon h is

RMSFEM
h =

√
1
P

∑
(ŷt+h(M) − yt+h)2. (1.13)

In the case of the density forecasts, we use the continuous ranked probability score (CRPS) proposed by
Gneiting and Raftery [2007], which is less sensitive to outliers than other density evaluation measures,
such as the log score. The CRPS metric for the each variable at time t for horizon h is defined as

CRPSt(F, yo
t+h) = EF

∣∣∣yd
t+h − yo

t+h

∣∣∣ − 1
2
EF

∣∣∣yd
t+h − ydd

t+h

∣∣∣, (1.14)

where F denotes the cumulative distribution function associated with the predictive density f , yo
t+h denotes

the observed value, and yd
t+h, ydd

t+h are independent draws from the predictive posterior distribution. Fol-
lowing Smith and Vahey [2016], we compute (1.14) by numerical integration methods, which is shown to
be more accurate and efficient. It is also worth mentioning that the lower the value of the CRPS, the more
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accurate the predictive density is.
Finally, to provide a statistical comparison of predictive accuracy, we apply the Diebold and Mariano

[1995] (DM) test for equal forecast accuracy. Yet, our models are nested in many cases. It is well known
that the DM test for nested models is undersized, and the results can be viewed as conservative for equal
forecast accuracy in finite samples. We follow Coroneo and Iacone [2020] to apply fixed-smoothing
asymptotics for the DM test, which is shown to deliver predictive accuracy tests that are correctly sized
even when the number of out-of-sample observations are small.

1.6 Empirical Results

1.6.1 Overall forecast performance

We first provide a summary of the forecast evaluation exercise in Table 6. As we have 7 countries and
forecasts are generated from 1 to 12 steps ahead, for each variable we have 84 forecasts from each model.
The table reports the number of cases in which each model is best, for all horizons, short horizons (h 6 6),
and long horizons (h > 6).

Based on Table 6, the results can be summarized as follows. First, our proposed hierarchical shrink-
age in multi-country VARs — used in the HS, NG, and NGG specifications — is quite helpful. This is
particularly true with the HS prior. It has the most wins for inflation in terms of both point and density
forecast, and it is the best performing model for output growth and the interest rate in terms of density
forecasts. More specifically, for output growth, the HS prior is the best in 31 (out of 84) cases in terms of
density forecasts, compared to 15 cases for the second-best performing model, which is the multi-country
VAR with the NG prior. For inflation, the HS specification performs the best in more than half (44) of the
cases in terms of point forecasts and exactly half of the cases in terms of density forecasts. The benefits
are also more evident at long horizons, with 29 wins in point forecasts and 27 wins in density forecasts.
For the interest rate, the HS prior also has the most wins (22 cases) for density forecasts, compared to 16
cases obtained from the factor shrinkage approach of the CC specification. Second, the NG specification
is the best in nearly half (40) of the cases for output growth in terms of point forecasts, compared to 19
cases from the SSSS prior. The CC specification has the most wins for the interest rate in terms of point
forecasts. However, the NG and CC specifications do not forecast well for other variables. For instance,
for inflation at long horizons, the NG and CC specifications are never selected as best. SSSS never be-
comes the best for density forecasts of the interest rate. Third, including information across countries
is very useful particularly for output growth; the single-country CVAR and CVAR-H specifications are
never the best in point or density forecasts of output. Although the baseline single-country CVAR has the
second best forecast performance for inflation, with 13 wins in terms of point forecast and 10 wins for
density forecast, it is clearly outperformed by the multi-country HS specification. Regarding the CFAVAR
and GVAR specifications, they perform better for inflation than the other variables but also fall short of
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the HS approach. The single-country CVAR-H specification that imposes hierarchical shrinkage works
better for the interest rate than output growth or inflation, but still falls short of other models, including
the multi-country HS specification.

Overall, the usefulness of hierarchical shrinkage for multi-country VARs in forecasting key macroeco-
nomic variables emerges rather clearly. In general, the HS prior is better than the other two scale mixtures
of Normals priors. As discussed in Section 3, with more hyperparameters controlling both origins and
tails, the NGG prior is theoretically more flexible than the HS prior, which also provides a heavy-tailed
extension of the NG prior. However, the theoretical advantages do not necessarily transfer to better fore-
casting performance, as it only ranks first (tied) in the case of density forecasts of the interest rate at short
horizons.

The summary results should be interpreted with care, as they are based on deterministic comparisons
(i.e., the best model could be not statistically better than the second best model). They also ignore the
cross-country differences and the potential differences of model performance over time. Yet, they pro-
vide a broad overview of the models’ performance. More detailed results and statistical comparisons are
presented in the next subsection.
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All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth point density point density point density Inflation point density point density point density

CVAR 0 0 0 0 0 0 CVAR 13 10 7 7 6 3

CVAR-H 0 0 0 0 0 0 CVAR-H 0 2 0 2 0 0

CFAVAR 1 3 0 0 1 3 CFAVAR 8 6 3 2 5 4

GVAR 0 0 0 0 0 0 GVAR 3 10 2 3 1 7

CC 4 1 2 1 2 0 CC 0 0 0 0 0 0

MIN 5 7 1 2 4 5 MIN 8 9 8 8 0 1

SSSS 19 11 12 11 7 0 SSSS 4 3 4 3 0 0

HS 9 31 4 9 5 22 HS 44 42 15 15 29 27

NG 40 15 21 12 19 3 NG 1 2 1 2 0 0

NGG 6 16 2 7 4 9 NGG 3 0 2 0 1 0

Interest rate point density point density point density

CVAR 6 10 3 4 3 6

CVAR-H 6 13 6 9 0 4

CFAVAR 0 0 0 0 0 0

GVAR 0 1 0 1 0 0

CC 30 16 11 3 19 13

MIN 1 1 1 1 0 0

SSSS 8 0 2 0 6 0

HS 19 22 7 8 12 14

NG 10 11 8 7 2 4

NGG 4 10 4 9 0 1

Notes: See Table 1.2 for a list of models and Section 1.5.2 for the evaluation criteria.

Table 1.6: Summary statistics: number of cases when one model becomes the best

1.6.2 Forecast evaluation: cross-country differences

Building on the previous section’s overview of the forecast performance of the various model specifica-
tions, we turn now to a more quantitative assessment of forecast accuracy across models and countries.
To this end, Tables 7-9 report relative RMSFEs and CRPSs for all G7 countries at selected horizons,
h = 1, 4, 8, 12. Entries shaded in grey indicate the best performing model. RMSFEs and CRPSs in levels
from the benchmark model are reported in the appendix’s Table 1.17.

Consider first the results for output growth. In general, the best performing specifications are the
multi-country VARs with scale mixtures of Normals priors (i.e., one of HS, NG, or NGG). In all but a few
cases, these specifications improve on the point and density forecast accuracy of the CVAR benchmark.
In general, hierarchical shrinkage of multi-country VARs, in particular with the HS prior, is rather a safe
option for forecasters since it provides gains for both point and density forecasts in most of the cases.
The other specifications do not fare as well in improving on the accuracy of the benchmark. One of the
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better alternatives is the SSSS specification, which is best for a few countries at short horizons, although
in some other cases it is fairly strongly beaten by both other approaches (i.e., its performance is somewhat
uneven). The MIN specification — a multi-country VAR estimated with a Minnesota-type prior — is only
best in a few instances, all long-horizon forecasts for the USA. Similarly, the CC (factor-based shrinkage of
coefficients) and CFAVAR (factor-augmented single-country models) are selected as best for no more than
a few country/horizon/type of forecast combinations. Perhaps not surprisingly, the accuracy of the CVAR-
H specification (single-country with hierarchical shrinkage) is relatively similar to the CVAR baseline,
sometimes a little better and sometimes a little worse.

Moving to the inflation forecasts of Table 8, both some commonalities and different stories are evident.
First, the multi-country HS specification continues to provide the best forecast in many cases, particularly
for Canada, France, Italy, and Japan at longer horizons, as well as for density forecasts for the USA.
Second, other competing specifications, including CFAVAR, GVAR, MIN, and SSSS, are occasionally the
best model, but they are relatively less accurate in other cases. For example, the SSSS specification is the
best for the USA at the 1-step-ahead and 4-steps-ahead horizons in terms of point forecast and 4-steps-
ahead horizon in terms of density forecast, but it does not provide gains to forecasts for Italy. Third, results
are somewhat different for the UK, perhaps due to historical inflation in the UK being rather different, with
stronger peaks in the 1970s and a volatile period around the Black Wednesday crisis. In the case of the
UK, the best-performing forecasting model is the benchmark specification, with RMSFE and CRPS ratios
that exceed 1 in all but one case.

Turning to the interest rate forecasts, which are presented in Table 9, we again see similarities as well
as some different patterns. Sorting through differences across countries, the multi-country HS specification
continues to perform relatively well. For most, although not all, countries, forecasts from this model are
more accurate than the benchmark, by margins as large as 32 percent. The other two multi-country scale
mixtures of Normals priors — NG and NGG — don’t offer any clear advantages over the HS specification,
sometimes slightly to modestly improving accuracy and other times reducing accuracy (relative to the HS
prior). Of the other multi-country VAR specifications, the CC model performs better in forecasting interest
rates than output growth and inflation. For a few country/horizon combinations, the CC model is most
accurate, whereas for some others, it is notably less accurate than the CVAR benchmark. The performance
of the SSSS specification is also uneven, often much less accurate than the benchmark (e.g., for Canada)
but occasionally more accurate (e.g., 4- and 8-steps-ahead forecasts for Germany). The performance of
the GVAR is also inconsistent.
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RMSFE Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.993 0.903 0.940 1.008 1.000 0.845 0.927 0.865 0.861 0.981 0.891 0.937 1.084 0.981 0.853 0.972 0.899 0.921

h = 4 1.007∗ 1.009 0.986∗ 1.117 0.991 0.992 0.945 0.954 0.947 0.998 0.987 0.990 1.141 0.982 0.977 0.996 0.994 0.995

h = 8 1.006 0.993 1.002 1.237 1.003 1.032 0.976 0.975 0.982 0.997 0.996 1.001 1.193∗ 1.002 1.019 0.985 0.974 0.983

h = 12 1.000 0.988 0.992 1.268 1.013 1.031 0.988 1.003 0.994 0.999 0.996 1.001 1.186 0.996 1.025 0.974 0.977 0.976

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.989 0.962 0.971 1.038 1.024 0.954 0.971 0.934 0.929 0.981 0.980 1.008 0.959 1.075 0.981 1.021 0.984 1.000

h = 4 0.991 0.991 0.996 1.190 0.977 1.032 0.933 0.908 0.920 0.999 0.986 1.017 1.070 1.007 1.010 0.957 0.935 0.952

h = 8 0.985∗ 1.002 0.996 1.290 0.993 1.117 0.931 0.919 0.924 1.004 1.002 1.027∗ 1.020 1.016 1.022∗ 0.961 0.953 0.955

h = 12 0.983 1.001 0.994 1.374 1.001 1.143∗ 0.932 0.921∗ 0.940 1.008 0.998 1.027∗ 0.967 1.020 1.003 0.971 0.980 0.980

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.005 0.983 0.993 1.128 1.014 0.948∗ 0.983 0.966 0.971 1.019 1.018 1.009 0.924 1.136 0.954 1.000 1.051 1.015

h = 4 0.991 0.986 0.996 1.122 0.988 0.978 0.978 0.954 0.966 1.003 1.002 1.005 1.075 0.974 0.943 0.949 0.930 0.936

h = 8 0.994 0.995 0.996 1.126 0.999 0.979 0.972 0.963 0.958 1.013∗ 1.006 1.002 1.099 0.981 0.959 0.972 0.965 0.961

h = 12 0.990 0.991 0.993 1.102 0.990 1.010 0.969∗ 0.960 0.956 1.007 1.002 1.001 1.206 1.001 0.959 0.989 1.003 0.988

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.989 0.972 1.010 1.080 1.027 0.921 0.977 0.936 0.947

h = 4 0.985 1.016 1.025 1.223 0.968 0.965 0.973 0.966 0.965

h = 8 0.994 1.016 1.020 1.386 0.962 0.962 0.984 1.013 0.992

h = 12 0.986 1.027∗ 1.035 1.499∗ 0.974 0.976 0.986 1.001 0.990

CRPS Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.994 0.935 0.953 1.053 0.990 0.880 0.943 0.902 0.894 0.997 0.913 0.961 1.169∗ 0.972 0.880∗ 0.974 0.933 0.947

h = 4 1.009 1.011 0.978∗ 1.167 0.989 0.971 0.943 0.956 0.951 1.008 0.989 0.991 1.332∗ 0.982 0.969 1.002 1.005 1.004

h = 8 1.005 0.994 0.996 1.314 1.020 1.017 0.981 0.986 0.993 1.008 0.997 0.998 1.432∗ 1.000 1.011 0.977 0.982 0.980

h = 12 1.005 0.989 0.989 1.390∗ 1.020 1.054 0.990 1.016 0.997 1.009 1.000 0.998 1.480∗ 0.995 1.043 0.980 1.002 0.987

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.994 0.968 0.980 1.065 1.002 0.947 0.964 0.946 0.932 0.994 0.994 1.023 0.978 1.062 0.995 1.002 1.005 0.996

h = 4 0.984 0.997 0.990 1.233 0.968 1.007 0.922 0.907 0.915 1.000 0.996 1.025 1.098 1.013 1.003 0.958 0.944 0.957

h = 8 0.974∗ 1.006 0.996 1.383 0.988 1.089∗ 0.915 0.918 0.916 0.998 1.013 1.034 1.121 1.019 1.029 0.951 0.961 0.952

h = 12 0.973∗ 0.997 0.996 1.493 0.997 1.133∗ 0.924 0.921 0.929 1.007 0.992 1.030 1.150 1.008 1.039 0.954 0.976 0.963

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.998 0.983 0.993 1.125 1.010 0.955∗ 0.979 0.969 0.960 1.031 1.020 1.008 0.976 1.114 0.970 1.000 1.055 1.018

h = 4 0.991 0.986 0.996 1.251∗ 0.990 0.978 0.973 0.952 0.958 1.008 1.005 1.003 1.149 0.971 0.945 0.944 0.937 0.947

h = 8 1.012 0.993 0.997 1.316∗ 1.009 0.973 0.974 0.972 0.959 1.013 1.004 0.998 1.245 0.986 0.977 0.968 0.975 0.976

h = 12 1.008 0.992 0.994 1.294∗ 0.995 0.987 0.970 0.975 0.959 1.013 0.999 1.004 1.384∗ 1.009 1.030 0.990 1.030 1.007

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.991 0.987 1.009 1.127∗ 1.004 0.945 0.965 0.942 0.944

h = 4 0.989 1.024 1.024 1.319∗ 0.973 0.976 0.973 0.978 0.976

h = 8 0.987 1.024 1.022 1.506∗ 0.958 0.970 0.978 1.007 0.992

h = 12 0.990 1.033 1.035 1.628∗ 0.971 1.020 0.967 0.997 0.977

Notes: The models are detailed in Table 1.2. For each specification, the upper panel presents the ratios of RMSFEs relative to the CVAR benchmark. The
lower panel presents the ratios of CRPSs relative to the CVAR benchmark. Values below 1 indicate the model outperforms the benchmark and vice versa.
Gray shading indicates the best performing model. To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use
a Diebold-Mariano t-statistic with fixed-smoothing asymptotics as in Coroneo and Iacone [2020]. Differences in accuracy that are statistically different
from zero are denoted by an asterisk, corresponding to the 5 percent significance level.

Table 1.7: Out-of-sample output growth forecast performance: RMSFE and CRPS ratios in terms of CVAR benchmark, selected horizons
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RMSFE Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.000 1.005 1.019 1.037 0.979 0.998 0.978 0.962 0.965 0.999 0.996 0.988 1.136∗ 0.996 1.062 1.004 1.023 1.020

h = 4 1.000 1.019 1.037 1.063 0.931 0.996 0.937 0.965 0.956 1.010 0.950 0.955 1.237∗ 0.947 1.010 0.968 1.004 0.982

h = 8 1.001 1.053 0.990 1.134 0.934 1.086 0.901 1.024 0.934 1.027 0.914 0.925 1.580∗ 0.929∗ 1.020 0.934 0.985 0.962

h = 12 0.978 1.029 0.955 1.228 0.932 1.185 0.845 0.998 0.887 1.017 0.900 0.899 1.937 0.934 1.091 0.897∗ 0.964 0.928

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.003 0.999 1.006 1.039 0.998 1.048 0.996 1.019 0.999 1.004 0.998 1.014 1.040 1.005 1.021 1.010 1.030 1.002

h = 4 1.017 1.029 1.011 1.029 0.949 0.988 0.938 0.996 0.955 1.005 1.047 1.036 1.122 1.014 1.048 0.979 1.059 0.989

h = 8 1.009 1.058 1.011 1.252 1.006 1.041 0.932 1.058 0.971 0.980 1.081 1.049 1.261 1.090 1.177∗ 0.914 1.151 0.970

h = 12 1.017 1.082 0.990 1.535∗ 1.032 1.091 0.912 1.151 0.987 0.971 1.090 1.017 1.386 1.117 1.318 0.852 1.199∗ 0.952

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.997 0.989 0.985 1.138∗ 0.964 1.059 0.980 0.998 0.978 1.026 1.024 1.015 1.005 1.006 1.079 1.035 1.121 1.092

h = 4 1.004 1.026 0.978 1.115∗ 0.973 1.045 0.969 1.020 0.985 1.051 1.126 1.078 1.131 1.116∗ 1.192 1.130 1.363∗ 1.246

h = 8 1.008 1.026 0.968 1.256∗ 0.960 1.055∗ 0.947 1.007 0.962 1.058 1.170 1.053 1.235 1.196 1.292 1.088 1.407∗ 1.179

h = 12 1.003 1.000 0.963 1.369∗ 0.952 1.042 0.943 1.006 0.954 1.038 1.190 1.008 1.285 1.276 1.444∗ 1.036 1.489 1.151

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.016 0.970 0.976 1.060 0.955 0.953 0.967 0.973 0.961

h = 4 1.021 0.993 0.960 1.139∗ 0.975 0.943 0.973 1.010 0.982

h = 8 1.021 1.045 0.976 1.297∗ 1.024 1.018 0.980 1.040 0.993

h = 12 0.999 1.048 0.980 1.500∗ 1.018 1.021 0.967 1.017 0.966

CRPS Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.002 1.010 1.014 1.040 0.979 0.995 0.987 0.972 0.972 0.989 0.991 0.980 1.122∗ 0.982 1.057∗ 0.999 1.010 1.011

h = 4 1.003 0.991 0.993 1.088∗ 0.911∗ 0.990 0.933 0.928 0.939 1.002 0.953 0.954 1.214∗ 0.944 1.029 0.968 0.995 0.981

h = 8 1.019 1.001 0.945 1.186∗ 0.902∗ 1.086 0.886 0.978 0.910 1.016 0.900 0.916 1.534∗ 0.926∗ 1.044 0.937 0.974 0.955

h = 12 1.008 0.987 0.916∗ 1.304∗ 0.889∗ 1.186 0.849∗ 0.956 0.873∗ 1.020∗ 0.899∗ 0.893∗ 1.925∗ 0.932∗ 1.183 0.906 0.966 0.931

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.002 1.003 1.009 1.041 0.986 1.047 0.986 1.014 0.988 0.992 1.018 1.006 1.055∗ 1.013 1.030 1.019 1.069 1.023

h = 4 1.020 1.024 1.010 1.010 0.944∗ 1.006 0.930∗ 0.996 0.944 1.006 1.068 1.035 1.166∗ 1.004 1.049 0.999 1.074 1.009

h = 8 1.011 1.039 0.996 1.201 0.987 1.102∗ 0.913 1.017 0.942 0.989 1.083 1.045 1.279∗ 1.073 1.202∗ 0.919 1.115 0.961

h = 12 1.018 1.053 0.955∗ 1.469∗ 0.995 1.251∗ 0.888 1.101 0.950 0.980 1.083 0.995 1.380∗ 1.077 1.388∗ 0.847 1.142∗ 0.917

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.994 0.992 0.985 1.146∗ 0.978 1.053 0.970 1.012 0.975 1.036 1.037 1.012 1.032 1.046 1.110∗ 1.030 1.114 1.073

h = 4 1.011 1.024 0.980 1.208∗ 0.998 1.070∗ 0.961 1.026 0.976 1.043∗ 1.091 1.040 1.142∗ 1.128 1.200∗ 1.077 1.302∗ 1.170∗

h = 8 1.017 1.034 0.968 1.337∗ 0.989 1.098∗ 0.941 1.021 0.959 1.069 1.117 1.017 1.266∗ 1.181 1.319∗ 1.052 1.334∗ 1.128

h = 12 1.004 1.016 0.966 1.448∗ 0.983 1.156∗ 0.940 1.032 0.955 1.019 1.141 0.986 1.359∗ 1.187 1.489∗ 1.027 1.377∗ 1.127

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.029 0.988 0.984 1.098 0.987 0.992 0.993 1.029 0.996

h = 4 1.047∗ 1.025 0.963 1.211∗ 0.993 0.957 0.971 1.039 0.990

h = 8 1.048 1.052 0.962 1.379∗ 1.008 0.995 0.968 1.055 0.993

h = 12 1.037 1.048 0.954 1.661∗ 0.994 1.059 0.940 1.022 0.960

Notes: The models are detailed in Table 1.2. For each specification, the upper panel presents the ratios of RMSFEs relative to the CVAR benchmark. The
lower panel presents the ratios of CRPSs relative to the CVAR benchmark. Values below 1 indicate the model outperforms the benchmark and vice versa.
Gray shading indicates the best performing model. To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use
a Diebold-Mariano t-statistic with fixed-smoothing asymptotics as in Coroneo and Iacone [2020]. Differences in accuracy that are statistically different
from zero are denoted by an asterisk, corresponding to the 5 percent significance level.

Table 1.8: Out-of-sample inflation forecast performance: RMSFE and CRPS ratios in terms of CVAR benchmark, selected horizons
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RMSFE Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.993 0.994 1.044 1.036 1.084 1.210 1.021 1.075 1.044 1.011 0.939 0.939 1.065 0.980 1.005 0.946 0.947 0.929

h = 4 0.968 1.025 1.042 0.938 1.141 1.382 0.987 1.044 1.038 1.059 0.853∗ 0.826∗ 1.018 0.851∗ 0.839 0.791∗ 0.739∗ 0.774∗

h = 8 0.961 1.042 1.040 0.815 1.147 1.708∗ 0.912∗ 0.985 0.970 1.080∗ 0.802∗ 0.777∗ 1.094 0.829∗ 0.953 0.727∗ 0.736∗ 0.775∗

h = 12 0.956 1.016 1.035 0.834 1.087 2.147∗ 0.830∗ 0.925 0.875∗ 1.067∗ 0.776∗ 0.763∗ 1.213 0.863∗ 1.201 0.700∗ 0.776∗ 0.789∗

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.954 0.937 0.922 0.931 0.906 1.087 0.932 0.945 0.896 0.991 0.965 0.971 1.044 0.942 1.136 0.948 1.063 0.959

h = 4 0.983 0.929 0.881 0.822 0.863∗ 1.183 0.856 0.902 0.833 0.988 0.975 0.953 0.892 0.935 1.053 0.839 0.795 0.811

h = 8 0.989 0.928 0.878 0.767 0.886∗ 1.435 0.783 0.832∗ 0.778∗ 0.953 0.971 0.945 0.741 0.972 1.106 0.779 0.762 0.763

h = 12 0.986 0.966 0.900 0.883 0.966 1.918 0.777 0.908∗ 0.821∗ 0.942 1.000 0.955 0.689 1.030 1.231 0.777 0.855 0.793

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.997 0.966 0.986 1.356 1.002 1.243 0.923 1.015 0.960 0.976 0.964 0.984 1.171 1.182 1.598∗ 0.951 1.146 0.986

h = 4 1.025 0.924 0.943 0.753 0.971 0.841 0.852 0.900 0.850 1.001 1.015 1.024 1.110 1.218 1.972∗ 0.994 1.048 1.000

h = 8 1.030 0.906 0.903 0.622 0.944 0.893 0.816 0.912 0.818 1.014 1.061 1.078 1.101 1.269∗ 2.661∗ 1.011 1.088 1.028

h = 12 1.018 0.909 0.891 0.789 0.954 1.280 0.818 0.979 0.847 1.017 1.061∗ 1.111 1.171 1.277∗ 3.521∗ 0.990 1.124 1.007

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.003 1.091 1.032 1.257∗ 1.265 1.311 1.073 1.209∗ 1.123

h = 4 0.981 1.111 1.061∗ 1.089 1.154 1.017 1.024 1.045 1.053

h = 8 0.971 1.108 1.056∗ 0.995 1.105 0.876 0.992 0.975 0.985

h = 12 0.964 1.065 1.035∗ 1.036 1.034 0.856 0.947 0.902 0.915

CRPS Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.010 1.013 1.041 1.027 1.056 1.507∗ 1.013 1.075 1.042 1.020 0.948 0.943 1.123 0.959 1.078 0.925 0.976 0.923

h = 4 0.976 0.995 1.016 0.937 1.081 1.389∗ 0.953 0.979 0.986 1.063∗ 0.863∗ 0.817∗ 1.032 0.839∗ 0.882 0.770∗ 0.739∗ 0.762∗

h = 8 0.952 1.015 1.053 0.822 1.132 1.455∗ 0.877∗ 0.915 0.906∗ 1.066∗ 0.796∗ 0.761∗ 1.002 0.809∗ 0.877 0.690∗ 0.705 0.711∗

h = 12 0.939∗ 1.004 1.084 0.804 1.100 1.584∗ 0.814∗ 0.873 0.844∗ 1.050∗ 0.761∗ 0.747∗ 1.053 0.863 1.008 0.677∗ 0.747∗ 0.721∗

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.993 0.950 0.921∗ 1.026 0.911∗ 1.410∗ 0.908 0.957 0.887 1.023 0.958 0.965 1.035 0.934 1.135 0.934 1.053 0.948

h = 4 0.990 0.923 0.854∗ 0.853 0.834∗ 1.165 0.829∗ 0.847∗ 0.813∗ 1.021 0.983 0.962 0.901 0.928 1.006 0.838 0.782 0.803

h = 8 0.983 0.930 0.858∗ 0.752 0.873∗ 1.205 0.771∗ 0.784∗ 0.757∗ 0.975 0.981 0.949 0.737 0.974 1.010 0.785 0.754 0.761

h = 12 0.984 0.983 0.897 0.829 0.979 1.434∗ 0.775∗ 0.860∗ 0.795∗ 0.954 1.030 0.979 0.675 1.051 1.098 0.774 0.833 0.787

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.987 0.998 0.980 1.624∗ 1.077 1.477∗ 0.980 1.146 1.041 0.984 1.005 1.004 1.405∗ 1.255∗ 1.884∗ 0.987 1.228∗ 1.043

h = 4 1.016 0.959 0.958 1.087 1.005 1.054 0.912 1.022 0.939 1.002 1.038 1.055∗ 1.175 1.260 1.789∗ 1.026 1.134 1.055

h = 8 1.011 0.938 0.933 0.926 0.972 1.084 0.867 0.994 0.891 1.017 1.080 1.108∗ 1.146 1.360∗ 2.073∗ 1.036 1.144 1.070

h = 12 0.973 0.910 0.905 1.065 0.957 1.323 0.831 0.994 0.868 1.021 1.085∗ 1.140∗ 1.150 1.386∗ 2.321∗ 1.019 1.172 1.054

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.996 1.118 1.040 1.383∗ 1.313∗ 1.358∗ 1.069 1.209∗ 1.115

h = 4 0.968 1.167 1.071∗ 1.132 1.207 1.054 1.047 1.053 1.074

h = 8 0.960 1.189 1.067 0.994 1.174 0.961 1.041 1.008 1.034

h = 12 0.946 1.127 1.044 0.982 1.076 0.999 0.981 0.910 0.944

Notes: The models are detailed in Table 1.2. For each specification, the upper panel presents the ratios of RMSFEs relative to the CVAR benchmark. The
lower panel presents the ratios of CRPSs relative to the CVAR benchmark. Values below 1 indicate the model outperforms the benchmark and vice versa.
Gray shading indicates the best performing model. To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use
a Diebold-Mariano t-statistic with fixed-smoothing asymptotics as in Coroneo and Iacone [2020]. Differences in accuracy that are statistically different
from zero are denoted by an asterisk, corresponding to the 5 percent significance level.

Table 1.9: Out-of-sample interest rate forecast performance: RMSFE and CRPS ratios in terms of CVAR benchmark, selected horizons
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1.6.3 Investigating forecast performance over time

We have so far conducted a comprehensive evaluation of how different model specifications and prior
choices affect forecast accuracy in the multi-country context, finding that multi-country VARs with hierar-
chical priors, in particular, the HS prior, are very helpful in forecasting inflation, as well as output growth
and the interest rate. To get a better understanding of the source of the gains, we evaluate the models’ fore-
casting performance over time. We plot in Figures 1-6 the cumulative sums of both RMSFEs and CRPSs
at the selected horizons of 1,4,8, and 12 periods over the evaluation sample, averaged (arithmetic mean)
across countries. Different colors with corresponding markers indicate different model specifications. The
most recent Great Recession-financial crisis period (2007Q1-2009Q4) is highlighted in grey. For illustra-
tion, we only report results obtained from the benchmark and multi-country VARs with the three different
scale mixtures of Normals priors (HS, NG, and NGG).

We first examine results obtained for output growth (Figures 1-2). The Great Recession-financial crisis
clearly has a large effect on RMSFE and CRPS accuracy; all models’ cumulative RMSFEs and CRPSs
markedly increase after 2008. Before the crisis, the single-country CVAR benchmark performs similarly to
multi-country VARs with hierarchical shrinkage and even does slightly better at long horizons. However,
hierarchical shrinkage applied to multi-country VARs tends to be more beneficial after the crisis, which is
particularly evident in the 4- and 8-steps-ahead density forecasts. Overall, in these aggregated measures,
the NG specification is the best at short horizons, but the HS specification is better at long horizons, for
both point and density forecasts.

When we compare the performance for inflation forecasts (Figures 3-4), there are several differences.
First, compared to the results for output growth, we do not see as sharp an increase in cumulative RMSFEs
and CRPSs during and after the financial crisis. There is some increase, but not as large as in the case of
output growth forecasts. Second, when averaged across countries, before the crisis these models’ forecast-
ing performance is very similar at the 1-step-ahead horizon; after the crisis, the NG prior specification is
slightly less accurate than the others. However, as the forecast horizon increases, the multi-country VAR
with the HS prior becomes relatively more accurate, in both point and density forecasts. The light-tailed
NG prior is clearly the worst among the three different scale mixtures of Normals priors and even worse
than the single-country CVAR benchmark, particularly at longer horizons.

Moving to interest rate forecasts (Figures 5-6), the effects of the Great Recession-financial crisis are
clear at multi-step forecast horizons, but less dramatic than for output growth forecasts. As interest rates in
all G7 countries hit their effective lower bound, all models have difficulties in capturing the abrupt changes
in short-term interest rates. At the 1-step-ahead horizon, the performance of the models is broadly similar,
with the exception of the light-tailed NG prior; although comparable to others, the HS specification has
slightly better accuracy. As the forecast horizon increases, the benefits obtained from the multi-country
VARs with hierarchical priors become more evident; these specifications clearly outperform the single-
country CVAR benchmark. The HS prior is better than the more flexible NGG prior, while the NG prior
is clearly the worst among the three scale mixtures of Normals priors.
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To conclude, we confirm that hierarchical shrinkage in multi-country VARs, especially coupled with
the HS prior, delivers more accurate and robust forecasts over time for all three target variables. In these
results aggregated across countries, for output growth, the NG prior is more preferable at short horizons,
but the HS prior does better at long horizons. Gains are mainly obtained in the post-crisis evaluation period.
For inflation, gains from the multi-country VAR with the HS prior are more evident as the forecast horizon
increases. For the short-term interest rate, all models show difficulties in obtaining accurate forecasts as
the horizon increases. Hierarchical shrinkage in multi-country VARs is generally better than the single-
country benchmark as the horizon increases, and the HS prior tends to be more beneficial than the other
scale mixtures of Normals priors.

Figure 1.1: The figure presents cumulative sums (taken over time and averaged across countries) of RMSFEs for output growth forecasts at selected
horizons: h = 1, 4, 8, 12. The models are detailed in Table 1.2.
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Figure 1.2: The figure presents cumulative sums (taken over time and averaged across countries) of CRPSs for output growth forecast at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 1.2.

Figure 1.3: The figure presents cumulative sums (taken over time and averaged across countries) of RMSFEs for inflation forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 1.2.
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Figure 1.4: The figure presents cumulative sums (taken over time and averaged across countries) of CRPSs for inflation forecast sat selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 1.2.

Figure 1.5: The figure presents cumulative sums (taken over time and averaged across countries) of RMSFEs for interest rate forecasts at selected
horizons: h = 1, 4, 8, 12. The models are detailed in Table 1.2.
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Figure 1.6: The figure presents cumulative sums (taken over time and averaged across countries) of CRPSs for interest rate forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 1.2.

1.6.4 Some robustness checks

In this subsection, we conduct several robustness checks of our main results presented above. We focus
on the multi-country VAR with the Horseshoe prior (the HS specification) as overall it delivers the best
forecast performance. In the interest of space, we briefly summarize the main findings; the details of
results can be found in Appendix D.

Prior grouping of coefficients. As a check of the baseline prior’s grouping of coefficients, we consider
three alternative groupings of coefficients compared to the one used in the main results. First, we group
all coefficients related to CSH together (HS-CSH) and assume that the priors of elements in vec(βCSH)
follow (1.9). Second, we do not make any attempt to search for restrictions but instead group both the
intercepts and all autoregressive coefficients together (HS-A) and assume that all coefficients follow the
same prior distributions as in (1.9). This has been examined in the single-country Bayesian VAR context
by Cross et al. [2020], who find that scale mixtures of Normals priors do not improve the forecasting
accuracy compared to conventional Minnesota priors. Finally, we group coefficients based on equations
(HS-E) by assuming that priors for coefficients in each equation of (1.1) are the same. The equation-based
shrinkage priors are more often seen in single-country Bayesian VARs. Follett and Yu [2019] and Huber
and Feldkircher [2019] use this type of specification for the HS and NG priors, respectively. Cadonna
et al. [2020] also propose an equation-wise specification for single-country time-varying parameter VARs.

In Tables 1.10-1.12, we report summary statistics on the percentage of gains for the alternative speci-
fications described above compared to the specifications we use in the main results for all horizons, short
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horizons (h 6 6), and long horizons (h > 6). The results can be summarized as follows. First, the
HS-CSH, HS-A, and HS-E priors all improve forecast accuracy for the interest rate, especially at long
horizons, with average percentage gains of more than 10 percent. Even though neither HS-A nor HS-E
consider the underlying structure of model parameters, for the interest rate they forecast better than the
HS-CSH specification. Second, these three alternatives are not helpful in forecasting output growth. The
average gains are all negative, and they lead to loss of forecast accuracy in more than 75 percent of all
cases. The HS-A prior has the overall worst forecast performance for output growth, and while output
growth forecast performance from HS-CSH and HS-E is roughly similar, these approaches are outper-
formed by the HS specification used in the main results. Third, for inflation, the HS-CSH prior delivers
forecast performance similar to our HS specification. The average gains are close to zero; in around half
of all cases, the gains are positive. However, the HS-A and HS-E specifications generally reduce forecast
accuracy (with HS-A the worst alternative), with impacts that are negative in more than 70 percent of all
cases, and average losses of roughly 2 percent. Overall, these results suggest that it is not possible to
improve our overall results by modifying our baseline grouping of coefficients.

Stochastic volatility. As another check, we also assess whether stochastic volatility is useful to improve
forecast accuracy in the multi-country context. We modify the distributional assumption of ut in (1.2) by
assuming that ut ∼ i.i.d. N(0,Σ). We specify a Normal prior for the VAR’s coefficients and an Inverse
Wishart prior for Σ and use the corrected triangular algorithms proposed in Carriero et al. [2021] to esti-
mate and forecast. In Table 1.13, we provide summary statistics on the percentage differences in accuracy
of forecasts from the models with and without SV. The results clearly indicate the usefulness of stochastic
volatility. The constant volatility models are outperformed by stochastic volatility models for all horizons
and all target variables. The benefits are particularly evident in forecasting inflation and the interest rate.
For inflation, introducing stochastic volatility in multi-country VARs delivers gains in all cases at long
horizons, and average gains are large: 34 percent for point forecasts and 27 percent for density forecasts.
For the interest rate, stochastic volatility is more beneficial at short horizons. The average gains are around
12 (20) percent for point (density) forecasts, and gains are positive in nearly 80 (85) percent of cases for
point (density) forecasts.

Estimation scheme. There is a long debate on the relative forecast performance of rolling and expand-
ing window (recursive scheme) estimation in the forecasting literature. While rolling window estimates
can be more robust to structural breaks, expanding window parameter estimates can be more efficient,
helping forecast precision. In Table 1.14, we compare point and density forecasts from rolling and recur-
sive schemes, taking as a benchmark the recursive scheme used in the paper’s main results. The rolling
scheme results use a window of 22 years of data, corresponding to the size of the sample used to generate
the first forecast observation in our main results. On average, the rolling scheme forecasts are slightly
better than the recursive forecasts, but the two methods perform broadly similarly. Compared to the re-
cursive baseline, average gains to the rolling scheme are small and generally not statistically significant.
By looking at the percentage of cases in which a given method outperforms the other, it appears that the
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rolling scheme does relatively better for inflation, for point forecasts for output growth, and interest rate
forecasts at long horizons.

Univariate forecasting benchmarks. To understand the relative merits of our models with respect to
univariate models, which are often tough benchmarks in the forecasting literature, we compare forecasts
from the HS specification to those from univariate models with SV. We choose AR(p) models for output
growth and the interest rate, with p = 2 and 4 lags, respectively, following Clark and Ravazzolo [2015].
For inflation, we choose an unobserved component model with SV as in Chan [2018]. Table 1.15 provides
summary statistics for these accuracy comparisons. In these results, the multi-country HS specification
yields more accurate forecasts of inflation and the interest rate. The average gains for the interest rate
exceed 7 percent. Gains are positive in more than 90 percent of cases for density forecasts of inflation.
For output growth, average gains from the HS specification are small but still positive. Overall, our main
results based on a single-country VAR baseline still obtain when the baseline is changed to common
univariate models.

Effective lower bound on interest rates. Since the 2007-2009 financial crisis put interest rates in all
G7 countries at the effective lower bound for a number of years, one concern is that our reduced-form
VAR models may forecast interest rates to be much higher than actual rates.10 In Figures 1.7 and 1.8, we
present point forecasts and associated 95 percent interval forecasts of the interest rate for all G7 countries
obtained from the multi-country VAR with the Horseshoe prior (the HS specification) at horizons of 1
and 12 steps, respectively. We find that the ELB does not seem to be a major concern for short horizon
(1-step-ahead) forecasts, as our model is able to track the true interest rate rather well even during the ELB
period. However, some bias in the forecasts emerges during the ELB period when we look at 12-steps-
ahead forecasts. Our model generally predicts the interest rate to be higher than the actual rate. While
more evident in the ELB period, the problem is present even before the ELB period. However, in the case
of Japan, we see that our model forecasts the interest rate to be much higher than the true value early in the
sample, but the forecasts gradually decline and are able to track the realized values fairly well for much of
the sample. We conclude from these results that the ELB has some impact on our interest rate forecasting
results — as it likely will for most any VAR — but does not necessarily entirely distort them.

Directional forecasts. Finally, to provide a rough gauge on whether our forecasting models are also
able to predict turning points, we use the nonparametric test developed by Pesaran and Timmermann
[1992] to assess directional forecast performance for (1-step ahead) changes of output growth. In Table
1.16, we report test statistics and associated p-values for all 7 countries from both the multi-country VAR-
SV model with the Horseshoe prior and the single-country VAR-SV benchmark. The results show that,
except for Canada, for multi-country VAR-SV with Horseshoe prior, the test strongly rejects the null of
no predictability. However, for the single-country VAR-SV benchmark, we cannot reject the null for all 7
countries. This provides clear evidence that the multi-country VAR-SV model with Horseshoe prior has

10Japan hit the ELB earlier than other countries. The short-term interest rate in Japan remains around zero in the entire
forecast evaluation period.
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better predictive power also for the directional forecasts of output growth.

1.7 Conclusions

In this paper, we use hierarchical shrinkage in multi-country Bayesian VARs and examine its macroeco-
nomic forecasting ability. To make the approach operational, we consider three different scale mixtures of
Normals priors, namely the Horseshoe prior, the Normal-Gamma prior, and the Normal-Gamma-Gamma
prior, which have been shown to benefit macroeconomic forecasting in single-country settings. We also
provide some new theoretical results for the Normal-Gamma prior. Empirically, we compare the forecast
accuracy with country-specific VARs, country-specific factor-augmented VARs, global VARs, and alterna-
tive shrinkage approaches for multi-country VARs that have been used in the macroeconomic forecasting
literature. All of our models include stochastic volatility, which is helpful to forecast accuracy. We confirm
the benefits from enlarging single-country information sets to include information across countries. Hier-
archical shrinkage in the multi-country VAR model with the Horseshoe prior has the overall best forecast
performance.
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Appendix A: Proof of Theorem 1

In the following proof, the notation ∼ indicates asymptotic equivalence. We say that a is asymptotically
equivalent to b if a/b = O(1).

As shown in equation (14) of Bitto and Frühwirth-Schnatter [2019], the marginal density for β j ∼

NG(λ, κ), given λ, κ, can be expressed as

πNG(β j) =

(√
λκ

)λ+ 1
2

√
π2λ−

1
2 Γ(λ)

∣∣∣β j

∣∣∣λ− 1
2 Kλ− 1

2

(√
λκ

∣∣∣β j

∣∣∣),
where Kp(·) is the modified Bessel function of the second kind of index p. Let us first consider the
concentration properties. If λ > 1

2 , then λ− 1
2 > 0. By 9.6.9 in Abramowitz and Stegun [1965], as

∣∣∣β j

∣∣∣→ 0,

Kλ− 1
2

(√
λκ

∣∣∣β j

∣∣∣) ∼ 1
2

Γ
(
λ −

1
2
)(1

2

√
λκ

∣∣∣β j

∣∣∣) 1
2−λ
.

Then,

πNG(β j) ∼
(√
λκ

)λ+ 1
2

√
π2λ−

1
2 Γ(λ)

∣∣∣β j

∣∣∣λ− 1
2 ×

1
2

Γ
(
λ −

1
2
)(1

2

√
λκ

∣∣∣β j

∣∣∣) 1
2−λ

=

√
λκ
√
π

Γ(λ − 1
2 )

Γ(λ)
×

1
2

= O(1).

If 0 < λ < 1
2 , recall that

Kλ− 1
2

(√
λκ

∣∣∣β j

∣∣∣) =
1
2
π

I 1
2−λ

(√
λκ

∣∣∣β j

∣∣∣) − Iλ− 1
2

(√
λκ

∣∣∣β j

∣∣∣)
sin

(
(λ − 1

2 )π
) ,

where Ip(·) is the modified Bessel function of the first kind with index p. By 9.6.7 in Abramowitz and
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Thus,
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which completes the proof.
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Appendix B: Model specifications and priors

Appendix B.1: Country-specific VARs

The country-specific VAR(p) model — denoted the CVAR specification in the paper’s results — is speci-
fied as

yi,t = ci +

p∑
l=1

Bi,lyi,t−l + ui,t (1.15)

ui,t = A−1
i H0.5

i,t εi,t, εi,t ∼ i.i.d. N(0, IG), (1.16)

where i = 1, . . . ,N, t = 1, . . . ,T , and the dimension of yi,t, ui,t and εi,t is G × 1. A−1
i is a lower triangular

matrix with diagonal elements equal to 1. Hi,t is diagonal with generic j-th element hi j,t evolving as a
random walk (RW):

ln hi j,t = ln hi j,t−1 + ei j,t, j = 1, . . . ,G, (1.17)

where eit ∼ N(0,Φi) with a full covariance matrix Φi as in Primiceri [2005].
Letting Bi = [ci, Bi,1, . . . , Bi,p]′, the priors are specified as:

vec(Bi) ∼ N(0,ΩBi
)

vec(Ai) ∼ N(0,ΩAi
)

Φi ∼ IW(Q0,W0).

For the prior variances of the autoregressive coefficient matrices, we set them as in the Minnesota prior:

ΩB(mn)
i,l

=


λ1
lλ3

1
σ2

n
for the coefficients on own lags

λ2
lλ3

σ2
m
σ2

n
for the coefficients on cross-variable lags

λ0σ
2
m for the intercept,

(1.18)

where m, n = 1, . . . ,G. λ1 measures the overall tightness to coefficients related to own lags. λ2 is related
to cross-variable shrinkage. We assume Gamma priors for these two hyperparameters: λ1 ∼ G(1, 0.04),
λ2 ∼ G(1, 0.042). λ3 determines the additional shrinkage for coefficients associated with higher order
lags and is set to 2 (quadratic decay). The scale parameters σ2

m, σ2
n are obtained from univariate AR(1)

regressions. We elicit an uninformative prior for the intercept by setting λ0 = 100. In the case of the free
elements in the contemporaneous matrix Ai, we set the prior mean to 0 and the prior variance to be non-
informative: ΩAi

= 10 × I. Finally, as in the previous section, we follow the literature and set a modestly
informative prior for Φ: Φ ∼ IW(Q0,W0), where Q0,W0 take very conservative values: W0 = 0.01 × I and
Q0 = G + 2.11

11See, e.g., D’Agostino et al. [2013] and Clark and Ravazzolo [2015].
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For the country-specific VAR with hierarchical shrinkage (CVAR-H), we follow exactly the approach
in Chan [2021]. Following Chan, the reduced-form model (1.15) is expressed in structural form

Aiyi,t = c̃i +

p∑
l=1

B̃i,lyi,t−l + H0.5
i,t εi,t,

where c̃i = Aci, B̃i,l = ABi,l, and the innovations ei j,t in (1.17) are assumed to be independent across
variables (equation j = 1, . . . ,G of the VAR for country i): ei j,t ∼ N(0, σ2

ei j
). The priors are specified as

βi, j|λ1, λ2, ψi, j,Ci, j ∼ N(0, 2λi, jψi, jCi, j),

where λi, j equals λ1 if βi, j are related to own lags but equals λ2 for coefficients related to cross-variable
lags. Ci, j are specified according to

Ci,l =

 1
lλ3

1
σ2

n
for the coefficients on own lags

1
lλ3

σ2
m
σ2

n
for the coefficients on cross-variable lags


and ψi, j are assumed to follow a Gamma prior:

ψi, j ∼ G(νψ, νψ/2),

with an additional hyper-prior on νψ ∼ G(1, 1). For σ2
ei j

, priors are assumed to be σ2
ei j
∼ IG(5, 0.04).

Appendix B.2: Factor augmented country-specific VARs

The factor-augmented country-specific VAR (CFAVAR) takes the form:yi,t

Ft

 = ci +

p∑
l=1

Bi,l

yi,t−l

Ft−l

 + ui,t

Y∗t = ΛFt + εt

Ft =

q∑
l=1

ΠlFt−l + vt, vt ∼ i.i.d. N(0,Σv),

where Y∗t = (y′1,t, . . . , y
′
i−1,t, y

′
i+1,t, y

′
N,t)
′ is the collection of foreign variables. Ft is a r × 1 vector of weakly

exogenous unobservable factors representing foreign information, which affect the variables in country i
via the loadings B∗i,l, i = 1, . . . ,N, l = 1, . . . , p. Factors are estimated (recursively, as forecasting moves
forward in time and the estimation sample expands) by principal components (see, e.g., Stock and Watson
[2002a] and Stock and Watson [2002b]) and assumed to follow a VAR process with lag length q. In the
VAR for [yi,t, Ft], the innovation vector ui,t includes the stochastic volatility structure previously indicated
in the country-specific VAR’s equation (1.16).
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Priors for ci and Bi,l are specified in the same way as in the country-specific VARs. The same hyper-
priors are imposed on (λ1, λ2), which are the overall tightness parameters on coefficients related to own
lags and cross-variable lags. We specify the maximum number of factors and lag length to be rmax = 4
and qmax = 4, respectively. The number of factors is determined by Bai and Ng [2002]’s IC2 information
criterion, and the number of lags is determined by the Bayesian Information Criterion (BIC). The VAR for
the factors is separately estimated by Bayesian methods with non-informative priors. Specifically, letting
π = vec([Π1, . . . ,Πq]′), we specify π ∼ N(0, 100× Ir2q). Following Korobilis [2016], Σ̂v is fixed at the OLS
estimate to streamline computations (it also eliminates the uncertainty associated with covariance matrix
estimation).

Appendix B.3: Global VARs

A GVAR model consists of a number of country-specific equations that are combined to form a global
model. Assuming that the global economy consists of N + 1 countries, in the first step, we estimate the
following country-specific VARX model for every country i = 0, 1, ...,N:

yi,t = ci +

p∑
l=1

Bi,lyi,t−l +

p∗∑
l=0

B∗i,ly
∗
i,t−l + ui,t, (1.19)

ui,t = A−1
i H0.5

i,t εi,t, εi,t
i.i.d.
∼ N(0, IG), (1.20)

where t = 1, ...,T , yi,t is a G×1 vector of endogenous variables in country i, ci is a G×1 vector of intercept
terms, Bi,l(l = 1, ..., p) denotes the G×G matrix of parameters associated with lagged endogenous variables
and B∗i,l(l = 0, 1, ..., p∗) is the matrix of parameters associated with contemporaneous and lagged weakly
exogenous variables. The weakly exogenous foreign variables y∗i,t are constructed as a weighted average
of the endogenous variables in other countries:

y∗i,t =

N∑
j=0

wi, jy j,t (1.21)

and the weights satisfy the following two restrictions: wi,i = 0 and
∑N

j=0 wi, j = 1. Weights are constructed
from standardized bilateral trade flows. The data is available from Mohaddes and Raissi [2018].

In the second step, N + 1 country-specific VARX models are stacked to form a global model, which is
given by

Gyt = c +

Q∑
q=1

Hqyt−q + ut, (1.22)

where yt = (y′1,t, ..., y
′
N,t)
′, Q = max(p, p∗), and G and Hq are both NG × NG dimensional coefficient

matrices. Details on how to solve the global model can be found in Pesaran et al. [2009] and Huber
[2016].
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Priors for ci and Bi,l are specified in the same way as in the CFAVAR. More specifically, ci and Bi,l

follow the same specification as in (1.18). For the prior on the elements of B∗i,l, means are set to zero and

variances are defined as: λ4
σ2

m
σ2

n
, where σ2

m, σ
2
n are obtained from univariate AR(1) regressions. We assume

a Gamma prior for λ4 ∼ G(1, 0.022). Both p and p∗ are set to 4.

Appendix B.4: Multi-country VARs

Appendix B.4.1: Factor shrinkage approach

The factor shrinkage approach used with the CC specification relies on the VAR written in system form.
We define Xt = ING ⊗ x′t , where xt = (1,Y ′t−1, . . . ,Y

′
t−p)′, βi is the k× 1 vector containing coefficients related

to each i, k = NGp + 1, and β = (β′1, . . . , β
′
N)′ is the NGk × 1 vector containing all coefficients. Write the

VAR as
Yt = Xtβ + ut, (1.23)

where ut ∼ i.i.d. N(0,Σt).
Canova and Ciccarelli [2009] assume that the vector of coefficients β can be expressed as:

β =

F∑
i=1

Ξiθi (1.24)

where Ξ = [Ξ1, . . . ,ΞF] are known matrices and θ = (θ′1, . . . , θ
′
F)′ is a low dimensional vector (dim(θ) < K,

where K = kNG) of unknown parameters, and θ1, . . . , θF are mutually orthogonal.12

We consider the factorization used in Canova et al. [2007] and Canova and Ciccarelli [2013]. We
assume F = 4. θ1 is a scalar factor which is common across all countries, θ′2 = (θ2,1, . . . , θ2,N)′ is a N × 1
vector of country-specific factors, θ′3 = (θ3,1, . . . , θ3,G)′ is a G × 1 vector of variable-specific factors and
θ′4 = (θ4,1, . . . , θ4,p−1)′ is a (p − 1) × 1 vector of lag-specific factors.13 Ξ1, . . . ,Ξ4 are assumed to be known
with elements associated with the corresponding original parameters equal to 1 and 0 otherwise. For
example, consider a multi-country VAR model in (1) with N = 2,G = 2, p = 1. In this case, Ξ1 is a 20× 1
vector of ones, and Ξ2 and Ξ3 take the form:

Ξ2
20×2

=


ι1 0
ι1 0
0 ι2

0 ι2

 , Ξ3
20×2

=


ι3 0
0 ι4

ι3 0
0 ι4

 ,
12A more general form is β =

∑F
i=1 Ξiθi +e, where e ∼ N(0,Σ⊗σ2I) is an approximation error uncorrelated with ut. However,

most of the literature assumes an exact factorization (σ2 = 0); see, for example, Canova et al. [2007], Canova and Ciccarelli
[2009], Dées and Güntner [2017]. Koop and Korobilis [2019] estimate σ2 by a forgetting factor approach and find that it is very
small (< 0.01). In some limited checks, we found that considering the approximation error harms forecasting performance.

13To avoid collinearity with θ1, θ4 can contain at most p − 1 components.
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where ι1 = (0, 1, 1, 0, 0)′, ι2 = (0, 0, 0, 1, 1)′, ι3 = (0, 1, 0, 1, 0)′, and ι4 = (0, 0, 1, 0, 1)′. Thus, we can
rewrite (1.23) as:

Yt = Xtβ + ut

= Xt(Ξθ) + ut = X̃tθ + ut. (1.25)

In this case, dim(θ) = N + G + p. By construction, the X̃t’s are linear combinations of the original
right-hand-side variables in (1.23), and the parameterization above can capture comovement across lagged
variables.

To incorporate SV, we decompose Σt as Σt = A−1HtA′−1, where A is lower diagonal with diagonal
elements equal to 1, and the diagonal elements in Ht evolve according to (1.17).

We specify the priors for θ, A, and Φ as (independent), Normal, Normal, and Inverse Wishart, respec-
tively:

θ ∼ N(0,Ωθ), a ∼ N(0,Ωa), Φ ∼ IW(Q0,W0), (1.26)

where a denotes the vector of free elements in A. The prior mean for θ is set to zero, and the prior
covariance matrix Ωθ is assumed to be diagonal. Letting ωθi, j be the elements in Ωθ associated with the jth
elements in θi, where i = 1, . . . , 4, then

ω
θi, j

=


NG∑
m=1

σ2
m i = 1, 2, 3

NG∑
m=1

σ2
m

l2 , i = 4, l = 2, . . . , p

.


The prior mean for a is set to 0, and the prior variance is set to Ωa = 10 × I. Q0,W0 are specified as
Q0 = NG + 2, W0 = 0.01 × I.

Appendix B.4.2: Prior specifications for other models

For the approach in Angelini et al. [2019] and the hierarchical shrinkage considered in this paper, the prior
for free elements in A is assumed to be Normal with zero mean and variance equal to 10 × ING. The prior
for Φ takes the form Φ ∼ IW(Q0,W0), and Q0,W0 are specified as Q0 = NG + 2, W0 = 0.01 × I.

For the prior in (1.18), σ2
i , σ2

j are obtained from univariate AR(1) regressions. The prior for the
intercept is assumed to be uninformative by setting the prior variance equal to 100×σ2

i , where σ2
i is again

from a univariate AR(1) regression. The hyper-priors on overall shrinkage parameters are specified in the
same way as in country-specific VARs. For the additional hyperparameter λ4 controlling the tightness for
coefficients related to cross-variable lags for foreign countries, we use a prior of λ4 ∼ G(1, 0.022).

For the SSSS prior, we follow Korobilis [2016] exactly. For (1.7) and (1.8), we set ξ2
i j = τ2

i j = 4 and
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cDI = cCSH = 0.0025. The prior for indicators are specified as

γDI
i j ∼ Bernoulli(πDI

i j ), πDI
i j ∼ B(1, 1)

γCSH
i j ∼ Bernoulli(πCSH

i j ), πCSH
i j ∼ B(1, 1).

For the Horseshoe prior, no more prior specifications are needed. For the Normal-Gamma prior, recall
that we specify aω ∼ E(b) and κ2 ∼ G(d1, d2). We set b equal to the number of coefficients in each block
and elicit a non-informative prior for κ2 by setting d1 = d2 = 0.01. For the Normal-Gamma-Gamma prior,
recall that 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and we set αa = αc = 2, βa = βc = 1.

Appendix B.5: Univariate models

For AR(p)-SV models applied to each scalar output growth or interest rate variable, generally denoted yt,
we have

yt = c +

p∑
`=1

ρ`yt−` + ut,

ut = h0.5
t vt, vt

i.i.d.
∼ N(0, 1),

log ht = log ht−1 + et, et
i.i.d.
∼ N(0, σ2

e).

As in Clark and Ravazzolo [2015], lag length is set to 2 for output growth and 4 for the interest rate.
Letting θ = (c, ρ1, . . . , ρp)′, we specify the following priors:

θ ∼ N(0,V), σ2
e ∼ IG(vh, S h), log h0 ∼ N(a0, b0).

V is assumed to be diagonal with elements equal to θ1
`θ2

, ` = 1, . . . , p, for autoregressive coefficients and
100 × σ̂2

y for the intercept. θ1 is set to 0.04, θ2 is set to 2, and σ̂2
y is obtained from a univariate AR(1)

regression. We use a modestly informative prior for σ2
e to control the time variation by setting vh equal to

2 and S h to 0.04. For the prior on initial conditions, we set a0 = 0 and b0 = 10.
For UCSV model, we have

yt = τt + ε
y
t , ε

y
t ∼ N(0, eht),

τt = τt−1 + ετt , ε
τ
t ∼ N(0, egt),

ht = ht−1 + εh
t , ε

h
t ∼ N(0, ω2

h),

gt = gt−1 + ε
g
t , ε

g
t ∼ N(0, ω2

g),

with initial conditions τ0, h0 and g0 as unknown parameters. We can rewrite the above UCSV model in
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the non-centered parameterization:

yt = τt + e
1
2 (h0+ωhh̃t)ε̃

y
t ,

τt = τt−1 + e
1
2 (g0+ωgg̃t)ε̃τt ,

h̃t = h̃t−1 + ε̃h
t ,

g̃t = g̃t−1 + ε̃
g
t ,

where h̃0 = g̃0 = 0 and ε̃y
t , ε̃τt , ε̃h

t , and ε̃g
t are all i.i.d. N(0, 1). We assume Normal priors for all model

parameters: ωh ∼ N(0, 0.22), ωg ∼ N(0, 0.22), h0 ∼ N(0, 10), g0 ∼ N(0, 10), and τ0 ∼ N(0, 10).

Appendix C: Algorithms

Appendix C.1: Algorithms for VARs with Minnesota-type prior

For all the country-specific VARs, country-specific factor-augmented VARs, global VARs, and multi-
country VARs with Minnesota prior, the MCMC samplers follow almost exactly the steps in Carriero et al.
[2021], but an additional step is needed to update prior tightness parameters. We highlight three issues
related to the sampler, and refer the interested readers to Appendix A.3 in their paper for other details.

Step 1: Update β|·. We update the coefficients equation by equation, as in the corrected triangular
algorithm in Carriero et al. [2021]. Details can be found in Appendix C.5.

Step 2: Update λi|·, i = 1, 2, 4. Let S λi , i = 1, 2, 4, be the collection of all indexes such that parameters
associated with the overall shrinkage parameters belong to this set. It can easily shown that, with a Gamma
prior, λi ∼ G(1, ci), conditional posteriors follow a Generalized Inverse Gaussian distribution:

λi|· ∼ GIG
(
1 −

dim(S λi)
2

, 2ci,
∑

(i, j)∈S λi

β2
i, j

2Ci, j

)
.

The density of x ∼ GIG(p, a, b) is given by f (x) ∝ xp−1 exp
(
−(ax+b/x)/2

)
. dim denotes the dimension of

the set, and Ci, j are the prior local variance parameters (the elements in (1.18) without an overall shrinkage
parameter).

Step 3: Update the volatility. For the volatility estimation, let ũt = Aut denote the rescaled residuals.
The elements of ũt obey the following process:

ln ũ2
i j,t = ln hi j,t + ln ε2

i j,t, i = 1, . . . ,N, j = 1, . . . ,G.

So, together with state equation (1.16), we have a non-linear and non-Gaussian state space system. To get
the volatility estimates, we use the KSC algorithm, first introduced in Kim et al. [1998] and detailed for
VAR models in Del Negro and Primiceri [2015]. We use a 10-state mixture of Normals to approximate the
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distribution of non-Gaussian errors ln ε2
i j,t. The details of approximation are provided in Table 1 of Omori

et al. [2007].
Step 4: Update the free elements in A. This can be done with the equation-by-equation approach of

Cogley and Sargent [2005] or with the joint approach of Chan [2017]. For the latter, letting a denote the
free elements in A, it can be shown that a can be interpreted as the coefficients from the regression:

ut = Kta + et, et ∼ N(0,Dt),

where Dt = diag(h1,t, . . . , hNG,t), and Kt is given as

Kt =



0 0 0 0 0 · · · · · · 0

−u1t 0 0 0 0 · · · · · ·
...

0 −u1t −u2t 0 0 · · · · · ·
...

...
. . .

. . . · · · · · · 0
0 · · · · · · · · · 0 −u1t · · · −u(NG−1)t


.

This permits drawing a jointly. Given the prior a ∼ N(0,Ωa), the posterior is also Gaussian a|β, h,Φ,Y ∼
N(µa,Ωa), where

Ωa = (Ω−1
a + K′H−1K)−1

µa = ΩaK′H−1u.

This algorithm can be more efficient than the equation-by-equation approach, because a is updated jointly.
However, the band matrix Kt does not have a fixed bandwidth (the number of non-zeros elements increases
with model size). Thus, letting n denote the number of variables in the model, the complexity of this
algorithm is still O

(
n3), and the estimation quickly becomes computationally demanding as the model size

increases. Accordingly, for country-specific models, which are small (n = N = 3), we use this algorithm
to update a. But for multi-country models, which are large (n = NG = 21), we use Cogley and Sargent
[2005]’s algorithm to draw a equation by equation.

Step 5: Update Φ|·. Since we elicit a conditionally conjugate prior, the conditional posterior takes the
same form, which can be shown to be:

Φ|· ∼ IW
(
Q0 + T,W0 +

T∑
t=1

(
log(ht) − log(ht−1)

)(
log(ht) − log(ht−1)

)′)
.

Appendix C.2: Algorithm for multi-country VAR with factor shrinkage

Most of the steps of the algorithm for the CC specification follow from the previous section, except that
we have to adapt step 1’s treatment of the VAR’s coefficients. With the transformation, we see that given
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θ ∼ N(0,Ωθ), the conditional posterior θ|Y, a, h,Φ is multivariate Normal, N(µθ,Ωθ), with moments:

Ωθ = (Ω−1
θ + Z̃′Σ̃−1Z̃)−1

µθ = ΩθZ̃′Σ̃−1Y,

where Y, Z̃ are stacked versions of Yt, Z̃t and Σ̃ = diag(Σ1, . . . ,ΣT ).

Appendix C.3: Algorithms for multi-country VARs with hierarchical shrinkage

As in Algorithm 1 in the main text, the MCMC estimation involves 5 steps. The only new step compared
to above is to update the prior variance parameters and associated hyperparameters. We provide details of
the conditional posterior distributions for these parameters.

First, consider the Horseshoe prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j |γ

2
j ∼ G

(1
2
, γ2

j
)
, γ2

j ∼ G
(1
2
, λ

)
,

and λ ∼ C+(0, 1). It follows from straightforward calculation that

ω2
j |· ∼ GIG(0, 2γ2

j , β
2
j),

where GIG(p, a, b) denotes the Generalized inverse Gaussian distribution with pd f given by f (x) ∝
xp−1 exp

(
− (ax + b/x)/2

)
. For the conditional posterior of γ2

j |·, since the Gamma distribution is conjugate
for the Gamma likelihood function, we have that

γ2
j |· ∼ G

(
1, λ + ω2

j
)
.

To update λ|·, it follows the same as above since the prior admits the hierarchical representation: λ ∼
G
( 1

2 , ξ
2), ξ ∼ G(1

2 , 1
)
.

Second, consider the Normal-Gamma prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j ∼ G

(
aω,

aωκ2

2
)
,

and aω ∼ E(b) and κ2 ∼ G(d1, d2). It follows similarly as in the Horseshoe prior that

ω2
j |· ∼ GIG

(
aω − 0.5, aωκ2, β2

j
)
.

The conditional posterior for aω|· is not available in closed form. We use adaptive Random Walk Metropolis-
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Hastings algorithms as in Roberts and Rosenthal [2009] with acceptance probability given by

min
{

1,
p(aω,new)aω,new

p(aω)aω
∏

j

p(β j|aω,new, κ2)
p(β j|aω, κ2)

}
,

where the marginal prior is given by

p(β j|aω, κ2) =

(√
aωκ2)aω+ 1

2

√
π2aω− 1

2 Γ(aω)

∣∣∣β j

∣∣∣aω− 1
2 Kaω− 1

2

(√
aωκ2

∣∣∣β j

∣∣∣),
and K(·) denotes a modified Bessel function of the second kind. At each iteration i, a new value aω,new is
proposed according to

log aω,new = log aω + ε j, ε j ∼ N(0, σ2(i)
ψ j

). (1.27)

The variance of the increments is fixed at 1 for the first 50 iterations, and then updated by

logσ2(i+1)
aω = logσ2(i)

aω +
1
iq (α̂ − α∗), (1.28)

where α̂ is the estimated acceptance probability of current draws and α∗ is the desired acceptance proba-
bility. The parameter q controls the degree of vanishing adaption, which is necessary to make the adaptive
algorithm valid.14 This algorithm leads to an average acceptance rate that converges to α∗. Following
Griffin and Brown [2017], we set q = 0.55, α∗ = 0.3. Then updating κ2|· is quite straightforward since it
again follows a Gamma distribution:

κ2|· ∼ G
(
Maω + d1, d2 + aω

∑
j

ω2
j

)
,

where M denotes the number of parameters in each block.
Finally, consider the Normal-Gamma-Gamma prior:

β j|τ
2
j , λ

2
j ∼ N

(
0, φ

τ2
j

λ2
j

)
, τ2

j ∼ G(a, 1), λ2
j ∼ G(c, 1),

where φ = 2c/(aκ2), 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and κ2|a, c ∼ F(2a, 2c). We proceed as in Cadonna
et al. [2020]. As we use marginalized distributions in each step to improve sampling efficiency, the steps
described below are not interchangeable.

Step a: Update a|·. Use the prior p(β j|λ
2
j , a, c), marginalized w.r.t. τ2

j , to draw a|· via an adaptive
Random Walk Metropolis-Hastings algorithm on z = log

(
a/(0.5 − a)

)
. The variance of the increments is

14This means that the variances of increments are fixed as i → ∞. Two conditions are provided in equations (1.1) and (1.2)
of Roberts and Rosenthal [2009]. The condition in equation (1.2) in their paper is generally satisfied provided that ψ is bounded
above.
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updated as in the Normal-Gamma case. At each iteration m, letting a∗ be the candidate draw and a(m−1) be
the previous draw, the acceptance probability is given by

min
{

1,
qa(a∗)

qa(a(m−1))

}
, qa(a) = p(a|·)a(0.5 − a).

Letting m be the number of parameters in each block, log qa(a) is given by

log qa(a) = a
(
− m log 2 +

m
2

log κ2 −
m
2

log c +
1
2

∑
j

log λ2
j +

1
2

∑
j

log β2
j

)
+

5
4

m log a + m
a
2

log a − m log Γ(a + 1)

+
∑

j

log Ka− 1
2

(
β j

√
λ2

jκ
2a/c

)
− logB(a, c) + a

(
log a + log

( κ2

2c
))
− log a − (a + c) log

(
1 +

aκ2

2c

)
+ (αa − 1) log(2a) − (βa − 1) log(1 − 2a)

+ log a + log(0.5 − a).

Step b: Update τ2
j |·. This step is simple, as the conditional posterior is again GIG:

τ2
j |· ∼ GIG

(
a −

1
2
, 2,

λ2
jβ

2
j

φ

)
.

Step c: Update c|·. Use the prior p(β j|τ
2
j , a, c), marginalized w.r.t. λ2

j , to draw c|· via an adaptive
Random Walk Metropolis-Hastings algorithm on z = log

(
c/(0.5 − c)

)
. The variance of the increments is

updated as in the Normal-Gamma case. At each iteration m, letting c∗ be the candidate draw and c(m−1) be
the previous draw, the acceptance probability is given by

min
{

1,
qc(c∗)

qc(c(m−1))

}
, qc(c) = p(c|·)c(0.5 − c).



43

Letting m be the number of parameters in each block, log qc(c) is given by

log qc(c) = m log Γ(c + 0.5) − m log Γ(c + 1) +
m
2

log c

− (c + 0.5)
(∑

j

log
(
4cτ2

j + β2
jκ

2a
)
−

∑
j

log(4cτ2
j)
)

− logB(a, c) − (a − 1) log c − (a + c) log
(
1 +

aκ2

2c
)

+ (αc − 1) log(2c) + (βc − 1) log(1 − 2c)

+ log c + log(0.5 − c).

Step d: Update λ2
j |·. This step is simple; the conditional posterior is G:

λ2
j |· ∼ G

(1
2

+ c,
β2

j

2φτ2
j

+ 1
)
.

Step e: Update κ2|·. Notice that the prior of κ2 admits the following hierarchical representation: κ2|a ∼
G(a, d2), d2|a, c ∼ G

(
c, 2c

a

)
. Then updating κ2|· involves first sampling from

d2|· ∼ G
(
a + c, κ2 +

2c
a

)
,

then sampling from (m is the number of parameters in each block)

κ2|· ∼ G
(m

2
+ a,

a
4c

∑
j

λ2
j

τ2
j

β2
j + d2

)
.

Appendix C.4: Corrected triangular algorithm

Consider an n-variable reduced-form VAR(p) model as in Carriero et al. [2021]:

yt = Π′xt + A−1Λ0.5
t εt, εt

i.i.d.
∼ N(0, In),

where t = 1, . . . ,T , xt is a (np + 1) × 1 dimensional vector containing the lags of yt and an intercept,
Π = (Π0,Π1, . . . ,Πp)′ is a (np + 1) × n matrix of coefficients, A−1 is a unit lower triangular matrix, and
Λ0.5

t is diagonal with the log of the generic j-th element following a random walk process.
Defining ỹt = Ayt with generic j-th element ỹ j,t = y j,t + a j,1y1,t + · · ·+ a j, j−1y j−1,t, consider the triangular

representation of the system:

ỹt = AΠ′xt + Λ0.5
t εt = A(x′tΠ)′ + Λ0.5

t εt,
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which can be expressed as the following system of equations:

ỹ1,t = x′tπ
(1) + λ0.5

1,t ε1,t

ỹ2,t = a2,1x′tπ
(1) + x′tπ

(2) + λ0.5
2,t ε2,t

ỹ3,t = a3,1x′tπ
(1) + a3,2x′tπ

(2) + x′tπ
(3) + λ0.5

3,t ε3,t

...

ỹn,t = an,1x′tπ
(1) + · · · + an,n−1x′tπ

(n−1) + x′tπ
(n) + λ0.5

n,t εn,t,

where π( j) denotes the coefficients of the j-th equation. Clearly, π( j) appears not only in equation j but also
in equations j + 1 through n. Letting z j+l,t = ỹ j+l,t −

∑ j+l
i, j,i=1 a j+l,ix′tπ

(i), for l = 0, ..., n − j, and ai,i = 1,
consider the following system of equations:

z j,t = x′tπ
( j) + λ0.5

j,t ε j,t

z j+1,t = a j+1, jx′tπ
( j) + λ0.5

j+1,tε j+1,t

...

zn,t = an, jx′tπ
( j) + λ0.5

n,t εn,t.

Then, using the above triangular representation, the full conditional posterior of π( j)|· follows immediately
from standard Bayesian linear regression results (assuming that prior means are zero):

π( j)|· ∼ N
(
µπ( j) ,Ωπ( j)

)
,

where

Ω
−1
π( j) = Ω−1

π( j) +

n∑
i= j

a2
i, j

T∑
t=1

1
λi,t

xtx′t

µπ( j) = Ωπ( j) ×
( n∑

i= j

ai, j

T∑
t=1

1
λi,t

xtzi,t

)
,

with ai,i = 1.

Appendix C.5: Algorithms for SSSS prior

The algorithms described in Appendix A.3 of Korobilis [2016] can be easily extended to our case with SV.
Only step 1 has to be modified. In particular, let Y = (y1 · · · yT )′, xt = (1, y′t−1)′, and X = (x1 · · · xT )′,
and write the model as

Y = XB + U,
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where U = (u1 · · · uT )′. The sampler involves the following steps:
Step a: Update vec(B)|·. It can be shown that

vec(B)|· ∼ N
(
Γ × µB,DB

)
,

where

DB =
(
V +

T∑
t=1

(
Σ−1

t ⊗ x′t xt
))−1

, µB = DB

(
vec

( T∑
t=1

xty′tΣ
−1
t

))
.

The diagonal matrix V contains prior variances; details of constructing the indicator matrix Γ can be found
in Korobilis [2016].

Steps b,c,d,e: These follow exactly as in steps 2,3,4,5 in Korobilis [2016].
Steps f,g,h: Update free elements in A, stochastic volatility, and related parameters. These steps follow

the corresponding steps used for the multi-country VAR with the Minnesota-type prior.

Appendix C.6: Algorithms for country-specific VAR with hierarchical shrinkage

We follow exactly the algorithms described in Chan [2021]. Estimation for the intercept, autoregressive
coefficients, free elements in A, and stochastic volatility are very similar to the algorithms used in this
paper. It is worth mentioning that, as in Chan [2021], the model has been first transformed to structural
form, and then estimation is performed equation by equation. For hyperparameters related to the Normal-
Gamma prior, since a slightly different parameterization is used there, the updating of hyperparameters
is slightly different. The conditional posterior for ψi, j|· is also GIG, but with a slightly different param-
eterization. An independent Metropolis-Hastings algorithm is used to update νψ|·. We refer the reader to
section 4 and Appendix B in that paper for more details.

Appendix C.7: Algorithms for univariate models

We use the algorithms as described in Clark and Ravazzolo [2015] to estimate AR(p)-SV models. The
steps to draw intercept and autoregressive parameters follow from standard linear regression results. To
estimate stochastic volatility and related parameters, we follow the procedures described in section 7.1 in
Chan [2017]. For the UCSV model, we estimate it in non-centered parameterization and then transform
back to the centered parameterization to perform predictive simulation. Estimation details can be found in
Appendix B in Chan [2018] and in section 7.2 in Chan [2017].
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Appendix D: Additional empirical results

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.229 -1.999 -0.623 -1.236 -1.836 -2.761 Mean -0.204 0.087 -1.018 -0.759 0.610 0.933

Median -1.053 -2.029 -0.610 -1.183 -2.209 -3.580 Median 0.325 0.264 0.287 0.077 0.349 0.639

Min -6.251 -7.402 -3.926 -5.022 -6.251 -7.402 Min -8.772 -7.086 -8.772 -7.086 -6.593 -5.164

Max 3.282 3.078 2.128 2.284 3.282 3.078 Max 10.556 10.025 3.519 4.223 10.556 10.025

% > 0 32.143 28.571 35.714 28.571 28.571 28.571 % > 0 57.143 55.952 54.762 52.381 59.524 59.524

%p <= 0.05 0 2.381 0 2.381 0 2.381 %p <= 0.05 0 1.190 0 2.381 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 7.951 6.192 3.960 2.191 11.942 10.193

Median 6.169 5.192 3.180 1.804 10.788 8.174

Min -4.416 -5.618 -4.416 -5.618 0.337 0.383

Max 28.668 23.514 21.308 14.492 28.668 23.514

% > 0 90.476 86.905 80.952 73.810 100 100

%p <= 0.05 8.333 10.714 2.381 2.381 14.286 19.048

Notes: ”HS-CSH” is the multi-country VAR model in which all the parameters related to CSH restrictions follow the same Horseshoe prior specification.
The table provides summary statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics
include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the
competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone
[2020].

Table 1.10: Comparison of HS-CSH and baseline HS: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.592 -3.194 -1.386 -2.642 -1.798 -3.746 Mean -2.180 -1.956 -2.282 -2.190 -2.079 -1.721

Median -1.626 -3.109 -1.160 -2.488 -2.434 -4.376 Median -2.037 -1.909 -1.173 -1.290 -2.533 -3.450

Min -7.806 -12.719 -7.806 -10.600 -7.287 -12.719 Min -12.187 -10.419 -12.187 -10.419 -9.568 -8.276

Max 4.116 3.688 2.804 3.197 4.116 3.688 Max 9.258 10.280 3.404 4.276 9.258 10.280

% > 0 33.333 28.571 33.333 28.571 33.333 28.571 % > 0 28.571 25 28.571 21.429 28.571 28.571

%p <= 0.05 1.190 4.762 2.381 4.762 0 4.762 %p <= 0.05 0 0 0 0 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 10.697 10.033 4.370 3.699 17.023 16.367

Median 9.769 10.128 4.496 3.532 17.011 16.445

Min -7.071 -10.052 -7.071 -10.052 6.479 7.464

Max 25.761 26.416 17.567 15.201 25.761 26.416

% > 0 90.476 86.905 80.952 73.810 100 100

%p <= 0.05 21.429 38.095 9.524 23.810 33.333 52.381

Notes: ”HS-A” is the multi-country VAR model in which all the parameters follow the same Horseshoe prior specification. The table provides summary
statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics include average, median,
minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing models are
statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone [2020].

Table 1.11: Comparison of HS-A and baseline HS: descriptive statistics for all horizons
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All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.154 -2.286 -1.212 -2.101 -1.095 -2.470 Mean -1.756 -2.309 -2.332 -2.680 -1.181 -1.939

Median -1.454 -2.461 -1.105 -1.768 -1.608 -2.767 Median -1.109 -2.087 -1.109 -2.370 -1.036 -1.991

Min -7.244 -10.132 -7.244 -9.228 -6.265 -10.132 Min -13.790 -15.398 -13.790 -15.398 -9.156 -10.805

Max 4.161 3.987 3.126 3.642 4.161 3.987 Max 11.063 9.459 3.316 4.634 11.063 9.459

% > 0 33.333 28.571 38.095 28.571 28.571 28.571 % > 0 26.190 26.190 28.571 30.952 23.810 21.429

%p <= 0.05 0 1.190 0 2.381 0 0 %p <= 0.05 0 3.571 0 7.143 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 11.280 10.700 4.059 3.313 18.501 18.087

Median 10.568 10.984 2.596 2.770 16.977 17.372

Min -7.634 -11.672 -7.634 -11.672 6.737 7.870

Max 34.537 28.239 25.968 19.593 34.537 28.239

% > 0 83.333 82.143 66.667 64.286 100 100

%p <= 0.05 13.095 20.238 2.381 9.524 23.810 30.952

Notes: ”HS-E” is the multi-country VAR model in which all the parameters in each equation follow the same Horseshoe prior specification. The table
provides summary statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics include
average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing
models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone [2020].

Table 1.12: Comparison of HS-E and baseline HS: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.852 -3.445 -0.893 -2.525 -2.811 -4.364 Mean -22.974 -19.720 -11.820 -12.712 -34.127 -26.727

Median -1.962 -3.434 -1.123 -2.603 -2.722 -4.309 Median -16.394 -15.737 -7.538 -8.186 -24.002 -19.492

Min -9.097 -11.549 -6.032 -8.837 -9.097 -11.549 Min -98.999 -69.770 -56.606 -52.922 -98.999 -69.770

Max 5.197 4.580 5.197 4.580 2.362 0.835 Max 4.018 0.548 4.018 0.548 -7.184 -7.248

%> 0 28.571 19.048 38.095 28.571 19.048 9.524 %> 0 4.762 1.190 9.524 2.381 0 0

%p <= 0.05 3.571 5.952 0 2.381 7.143 9.524 %p <= 0.05 15.476 15.476 16.667 16.667 14.286 14.286

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -9.429 -13.515 -12.149 -20.332 -6.709 -6.698

Median -7.592 -6.062 -8.375 -14.525 -7.590 -2.534

Min -57.608 -73.394 -57.608 -73.394 -27.100 -47.395

Max 10.402 14.686 9.970 11.987 10.402 14.686

%> 0 26.190 28.571 21.429 14.286 30.952 42.857

%p <= 0.05 11.905 28.571 16.667 42.857 7.143 14.286

Notes: The table provides summary statistics for the performance of the alternative model with SV compared to the multi-country HS specification with
SV. Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in
which the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics
as in Coroneo and Iacone [2020].

Table 1.13: Comparison of Horseshoe priors with and without SV: descriptive statistics for all horizons
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All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.095 0.342 1.229 0.707 0.960 -0.023 Mean 3.268 1.872 3.989 2.046 2.546 1.698

Median 0.849 0.160 1.102 0.528 0.759 0.002 Median 3.006 1.788 3.533 2.128 2.742 1.208

Min -1.632 -1.930 -1.632 -1.930 -0.688 -1.772 Min -1.479 -3.063 -1.318 -2.326 -1.479 -3.063

Max 7.256 4.464 7.256 4.464 3.948 3.023 Max 10.905 5.850 10.905 5.495 7.575 5.850

%> 0 83.333 54.762 80.952 59.524 85.714 50 %> 0 92.857 85.714 95.238 88.095 90.476 83.333

%p <= 0.05 3.571 4.762 7.143 9.524 0 0 %p <= 0.05 0 0 0 0 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.928 1.330 0.539 -0.077 3.317 2.738

Median 1.435 0.461 -0.338 0.043 3.237 1.713

Min -6.350 -6.095 -6.350 -6.095 -2.769 -4.450

Max 12.168 12.503 9.226 9.878 12.168 12.503

%> 0 59.524 57.143 47.619 50 71.429 64.286

%p <= 0.05 10.714 4.762 7.143 0 14.286 9.524

Notes: The table provides summary statistics for the performance of the HS model estimated with a rolling approach relative to the paper’s baseline
recursive approach. Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the
percentage gains in which the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-
smoothing asymptotics as in Coroneo and Iacone [2020].

Table 1.14: Comparison of Horseshoe priors with expanding versus rolling windows: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 0.535 0.732 0.290 0.396 0.779 1.067 Mean 1.279 3.874 0.252 0.927 2.306 6.822

Median -0.513 -0.461 -0.342 -0.406 -0.750 -0.744 Median 2.022 3.073 1.740 1.213 2.572 7.117

Min -3.642 -4.655 -3.616 -3.813 -3.642 -4.655 Min -13.484 -7.475 -13.484 -7.475 -11.329 -3.670

Max 7.571 10.119 5.646 6.972 7.571 10.119 Max 13.247 17.693 6.875 7.681 13.247 17.693

%> 0 38.095 40.476 40.476 42.857 35.714 38.095 %> 0 70.238 77.381 59.524 64.286 80.952 90.476

%p <= 0.05 13.095 14.286 11.905 7.143 14.286 21.429 %p <= 0.05 0 8.333 0 0 0 16.667

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 8.982 7.799 8.442 7.370 9.522 8.227

Median 10.504 10.207 8.651 8.779 14.056 16.663

Min -19.264 -28.167 -15.896 -22.757 -19.264 -28.167

Max 28.698 29.027 24.232 25.927 28.698 29.027

%> 0 78.571 63.095 85.714 69.048 71.429 57.143

%p <= 0.05 11.905 25 9.524 23.810 14.286 26.190

Notes: This table presents descriptive statistics on comparisons of forecasting performance for the multi-country VAR-SV model with the Horseshoe
prior (the paper’s HS specification) relative to univariate models with SV. For output growth and the interest rate, we use an AR(p)-SV model, with p = 2
for output growth and p = 4 for the interest rate. For inflation, we use an unobserved component model with SV, as in Chan [2018]. Descriptive statistics
include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the
competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone
[2020].

Table 1.15: Comparison with univariate models with HS baseline featuring SV: descriptive statistics for all horizons
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Figure 1.7: The figures present 1-step-ahead short-term interest rate forecasts for all G7 countries. The blue line and shaded areas are point forecasts and
associated 95 percent forecast intervals. The black line shows the true values.

Figure 1.8: The figures present 12-steps-ahead short-term interest rate forecasts for all G7 countries. The blue line and shaded areas are point forecasts
and associated 95 percent forecast intervals. The black line shows the true values.
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CAN DEU FRA ITA JPN UK USA

HS -0.380 6.715 2.508 5.870 7.556 8.174 9.225

(0.648) (0.000) (0.006) (0.000) (0.000) (0.000) (0.000)

CVAR -2.183 0.421 -2.928 -2.307 -2.318 -1.668 -3.797

(0.986) (0.337) (0.998) (0.990) (0.990) (0.952) (0.999)

Notes: This table presents test statistics and associated p-values for directional predictive performance of 1-step ahead changes of output growth from
multi-country VAR-SV model with Horseshoe prior and single-country VAR-SV benchmark. The test statistics are computed according to equation (6)
in Pesaran and Timmermann [1992].

Table 1.16: Directional forecast: 1-step ahead changes of output growth

RMSFE CRPS

Output growth h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 2.319 2.712 2.637 2.647 1.245 1.466 1.419 1.402

DEU 3.592 3.595 3.569 3.470 1.832 1.805 1.798 1.764

FRA 1.630 2.068 2.116 2.144 0.892 1.115 1.134 1.149

ITA 2.539 2.985 2.964 2.935 1.335 1.580 1.553 1.515

JPN 4.185 4.167 4.156 4.251 2.208 2.187 2.159 2.261

UK 2.070 2.542 2.509 2.534 1.080 1.311 1.282 1.287

USA 2.335 2.548 2.594 2.542 1.266 1.364 1.393 1.367

Inflation h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 1.870 1.722 1.816 1.809 0.998 1.006 1.060 1.085

DEU 1.140 1.277 1.377 1.376 0.663 0.743 0.814 0.794

FRA 1.118 1.410 1.439 1.456 0.618 0.783 0.848 0.875

ITA 0.934 1.498 1.690 1.777 0.503 0.830 0.946 1.005

JPN 1.652 1.797 1.846 1.858 0.891 0.978 1.015 1.023

UK 0.982 1.215 1.384 1.358 0.542 0.701 0.778 0.813

USA 2.151 2.227 2.223 2.193 0.988 1.102 1.185 1.160

Interest rate h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 0.474 1.327 2.130 2.588 0.231 0.704 1.187 1.502

DEU 0.323 1.068 1.795 2.202 0.162 0.589 1.083 1.374

FRA 0.416 1.298 2.083 2.445 0.192 0.675 1.182 1.419

ITA 0.461 1.502 2.518 3.190 0.234 0.777 1.393 1.817

JPN 0.177 0.740 1.342 1.577 0.068 0.278 0.536 0.676

UK 0.418 1.233 1.884 2.289 0.189 0.630 1.012 1.295

USA 0.353 1.188 2.076 2.644 0.173 0.648 1.205 1.588

Table 1.17: Loss function levels for the benchmark CVAR specification
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Chapter 2

Estimation and inference in large
heterogeneous panels with stochastic
time-varying coefficients

1

2.1 Introduction

Since the study by Pesaran and Smith [1995], large heterogeneous panel data models have received a lot
of attention in both theoretical work and practical applications. Surveys of the literature on large heteroge-
neous panels are provided by Hsiao and Pesaran [2008] and Chapter 28 of Pesaran [2015]. Double-index
panel data models enable researchers to explore both dynamic information over the time-span and hetero-
geneity over cross-sections, which may be difficult to examine by applying purely cross sectional or time
series models. It is now quite common to have panels with both large cross-sectional units (N) and time-
series periods (T ) and it has been found that neglected heterogeneity may lead to misleading inferences
[Ul Haque et al., 1999].

Various methods have been proposed to identify and handle structural change in econometric models.
As parameter instability is pervasive [Stock and Watson, 1996], allowing coefficients to vary over time
would offer benefits for flexible modeling of the true relationship between economic and financial vari-
ables. Evolutions of parameters can be either discrete and abrupt, such as in Markov Switching models
[e.g., Hamilton, 1989], or continuous and smooth. Continuous and smooth time variation can be driven
by observed variables, as in smooth transition models [Teräsvirta, 1994], or by unobserved shocks, as in
random coefficient models [e.g., Nyblom, 1989]. In these models, parameters typically evolve as random
walk or autoregressive processes and are mostly estimated by the Kalman Filter in classical context or by

1This is a joint work with Massimiliano Marcellino and George Kapetanios.
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Bayesian Markov Chain Monte Carlo (MCMC) methods.
Yet another strand of the vast and growing literature on dealing with parameter instability allows for

a smooth evolution of parameters without specifying the form of parameter time variation. The evolution
can be either deterministic, as in Robinson [1991] and Chen and Hong [2012], or stochastic, as in Giraitis
et al. [2014, 2018]. These papers have provided theoretical, Monte Carlo and empirical results to justify
their estimation methods and showed that they indeed perform very well in finite samples. Such esti-
mates are nonparametric and can have computational advantages over MCMC and other simulation-based
methods.2 The approach has also been extended to panel data models. Chen and Huang [2018] propose
methods to estimate and test smooth structural changes in panel data models with exogenous regressors
and homogenous time-varying coefficients. Liu et al. [2018] and Liu et al. [2020] develop methods to
estimate time-varying coefficients in large panel data models with cross-sectional dependence, but focus
on the case of exogenous regressors.

When the parameters of interests are coefficients attached to endogenous variables, endogeneity bias
invalidates least square estimation and instrumental variable (IV) estimation comes to play a role. A
usual assumption made when carrying out IV estimation is that the parameters in the entertained model
are constant over time. This assumption is clearly restrictive, because relations between economic vari-
ables as well as instruments and endogenous variables may vary over time. Recently, some papers have
attempted to develop estimation methods in the IV framework that account for the possible presence of
parameter instability. Hall et al. [2012] develop inferential theory for linear GMM estimator with en-
dogenous regressors in the structural change context. Chen [2015] extends the framework of deterministic
smooth evolution of parameters to the IV case. Giraitis et al. [2020a] propose non-parametric kernel-based
estimation and inferential theory for time-varying IV regression, with either deterministic or random coef-
ficients. There is also limited but growing attention in the panel data literature to models allowing for both
endogenous regressors and parameter instability. Baltagi et al. [2016] and Baltagi et al. [2019] develop
an estimation procedure for large heterogeneous panels with cross-sectional dependence in the structural
change context by extending the work of Pesaran [2006] and Harding and Lamarche [2011].

This paper makes the following contributions to the literature. First, we introduce a new class of large
heterogeneous panels in which parameters are not only heterogeneous but also vary stochastically over
time. The model extends both standard random coefficient panel data model as in Hsiao and Pesaran
[2008] and panel random coefficient autoregression model as in Horváth and Trapani [2016]. We propose
non-parametric kernel-based mean group and pooled estimators, derive their asymptotic distributions and
show the uniform consistency and asymptotic normality of the path coefficients. Second, we extend the
work of Giraitis et al. [2020a] to large heterogeneous panels. We show that both kernel-based mean group
and pooled estimators can be extended to settings with possibly endogenous regressors. We also derive
the properties of time-varying IV mean group and pooled estimators and show their uniform consistency

2See, for instance, Kapetanios et al. [2019a], for a comparison between kernel-based methods and simulation-based methods
in a vector autoregression context.
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and asymptotic normality under similar conditions to the case of time-varying least square estimators. We
further propose a pointwise time-varying version of the Hausman exogeneity test in a large heterogeneous
panels context, which compares time-varying OLS and IV estimators, possibly also allowing for changes
in the endogeneity status of regressors over time. The finite sample performance of proposed estimators
and the time-varying Hausman test is evaluated in an extensive Monte Carlo study. For the estimators,
we evaluate the biases of point estimates and coverage probabilities of the coefficients paths under the
scenarios of both exogenous and endogenous regressors. We also compute both the size and power of the
time-varying Hausman test. The results are encouraging, and can be also used to provide guidelines on
the choice of the kernel bandwidth parameters.

Finally, we provide an empirical application to explore in practice the use of our proposed estimators.
We estimate panel versions of time-varying hybrid Phillips curves with 19 Eurozone countries over the
period 2000M1–2019M12. We find trade-off between unemployment and inflation is time-varying, but
the coefficients are small and only significant roughly around the period of year 2005 and 2014–2016.
Endogeneity issues may arise not only because inflation expectation is not observed, but also the fact
that inflation is measured with error. In general, IV delivers much larger estimates than OLS for persistent
parameters. Backward-looking is a dominating feature for Eurozone inflation, except for the period around
year 2015.

The remainder of this paper is organized as follows. Section 2 describes our framework and the
time-varying least square estimators, and derives the related theoretical results. Section 3 extends the
work to the case of possibly endogenous regressors, proposes time-varying IV estimators, derives their
theoretical properties and introduces the time-varying Hausman test. In Section 4 we evaluate our proposed
estimators and pointwise Hausman exogeneity test in an extensive Monte Carlo study, under the scenarios
of both exogenous and endogenous regressors. Section 5 presents the empirical application related to
multi-country Phillips curves. Section 6 summarizes our main results and concludes the paper. The proofs
of all results are presented in the appendices.

NOTATION: The letter C stands for a generic finite positive constant, ‖A‖sp =
√
λmax(A′A) is the

spectrum norm of matrix A, where λmax(·) is the maximum eigenvalue of ·. ‖·‖p denotes the Lp norm,
‖·‖ is the Euclidean norm. |·|p and |·| denote the associated norm when · is one dimensional. an = O(bn)
states that the deterministic sequence {an} is at most of order bn. an = o(bn) states that the deterministic
sequence {an} is of smaller order than bn. xn = Op(yn) states that the vector of random variables xn is at
most of order yn in probability, and xn = op(yn) is of smaller order than yn in probability. The operator

p
→

denotes convergence in probability, and
d
→ denotes convergence in distribution. (N,T )→ ∞ denotes joint

convergence of N and T .
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2.2 Theoretical considerations

In this section, we present our model and set out the proposed estimators and their properties. We consider
the following model:

yit = x′itβit + uit, i = 1, 2, ...,N, t = 1, 2, ...,T, (2.1)

where yit denotes the explained variable, xit is a k × 1 dimensional vector of explanatory variables, one of
them being a constant (e.g., x1,it = 1), and uit is the disturbance term. We make the following assumptions
on this model.

Assumption 2.2.1. Elements in xit, uit have the properties:

(i) There exists θ > 4 such that E
∣∣∣x`,it∣∣∣θ < ∞ and E

∣∣∣u`,it∣∣∣θ < ∞, uniformly over `, i, t;

(ii) ∀(`, i, t), (x`,it − Ex`,it), and (u`,it) are strong-mixing processes with mixing coefficients α j
k satisfying

α
j
k 6 c jφ

k
j, k > 1 (2.2)

for some 0 < φ j < 1 and c j > 0, where j = {x, u}.

Assumption 2.2.2. The coefficients βit follow the random coefficient model:

βit = βt + eit, i = 1, 2, · · · ,N, t = 1, 2, · · · ,T, (2.3)

(i) Let ei = (ei1, ei2, · · · , eiT )′, ui = (ui1, ui2, · · · , uiT )′, xi = (x′i1, x
′
i2, · · · , x

′
iT )′, (xi, ui, ei)′ are indepen-

dently distributed over i;

(ii) ∀(`, i, t), E[e`,it|β`,t, x`,it] = 0;

(iii) ∀(`, i, t), E[u`,it|x`,it, β`,t, e`,it] = 0;

(iv) ∀t, we have

Ωe,t = lim
N→∞

Var
( 1
√

N

N∑
i=1

eit

)
= O(1)

Assumption 2.2.3. ∀(`, i, t), elements in βt = (β`,t), eit = (e`,it) satisfy the following smoothness condition:

∣∣∣β`,t − β`,s∣∣∣ 6 ( |t − s|
T

)γ1
r(1)
`,ts,

∣∣∣e`,it − e`,is
∣∣∣ 6 ( |t − s|

T

)γ1
r(2)
`,i,ts, t, s = 1, 2, · · · ,T (2.4)

for some 0 < γ1 < 1 and the distribution of each variable in X(1)
u = {β`,t, e`,it, r

(1)
`,ts, r

(2)
`,i,ts} has a thin tail E(α):

P(
∣∣∣X(1)

u

∣∣∣ > ω) 6 exp(−c1|ω|
α), ω > 0,

for c1 > 0, α > 0 which does not depend on t, s,T.
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Assumption 2.2.4. The matrix Σxx,it = E(xitx′it) is such that

(i) max
t=1,··· ,T

∥∥∥Σxx,it

∥∥∥
sp
< ∞, ∀i; (ii)

∥∥∥Σxx,it − Σxx,is

∥∥∥
sp
6 C
|t − s|

T
, ∀i, t.

Assumption 2.1(i) impose some moment conditions on regressors and error terms. Assumption 2.1(ii)
are strong mixing conditions to control temporal dependence, which are weaker than the conditions im-
posed in Chen and Huang [2018] since we allow (uit) and (xituit) to be serially correlated sequences. In
Assumption 2.2(i), as in (2.3), βt is a K × 1 vector of stochastic time-varying coefficients and eit is a K × 1
vector of random variables. If βt = β and eit is i.i.d. across t for every i, we have the model as in Horváth
and Trapani [2016]. If βt = β and eit = ei, ∀t, the model simplifies to the standard random coefficient
model settings with time-invariant coefficient [see Hsiao and Pesaran, 2008]. Assumption 2.2(ii) and (iii)
impose exogeneity conditions for xit. Assumption 2.2(ii) rules out correlated random effects. Assumption
2.2(iii) imposes contemporaneous exogeneity condition on xit. xit are neither correlated with error terms
nor with idiosyncratic components in βit. Assumption 2.2(iv) is the condition to ensure that asymptotic
variance of the proposed estimators are positive definite. Assumption 2.3 implies that elements in (βt),
(eit) are smoothly varying persistent stochastic processes. If r(1)

`k,t and r(2)
`k,t are equal to 1 and γ1 = 1, we ob-

tain the case of deterministic smoothly time varying coefficient model. For example, consider an array of
random processes (bounded random walk) defined as β`,t = 1

√
T

u`,t, where u`,t are random walk processes:

u`,t − u`,t−1
i.i.d.
∼ N(0, 1), satisfying Assumption 2.2(ii). As shown in Lemma 1 of Dendramis et al. [2020],

Assumption 2.2(ii) is satisfied if ω`,t = u`,t − u`,t−1 is α-mixing and has a thin tail.3 Other allowable pro-
cesses are discussed by Giraitis et al. [2014, 2018]. Assumption 2.4(i) states that the second order moment
of (xit), Σxx,it, is uniformly bounded for each i. In Assumption 2.4(ii), we allow Σxx,it to vary over time but
the variations have to be smooth, which are essential to establish weak law of large numbers (WLLN, see,
Lemma A1).

Remark 1. Consider x1,it = 1, let x−1,it be the remaining regressors in xit and β−1,it be the associate
coefficients, then, the model (2.1) can be rewritten as yit = β1,t + x′

−1,itβ−1,it + e1,it + uit, i = 1, 2, ...,N, t =

1, 2, ...,T . As shown in Theorem 1, the component β1,t can be consistently estimated by our proposed
kernel methods. e1,it captures unobserved heterogeneity across both i and t, which bridges our model
and the conventional random effects panel data model. In standard random effects panel data model, e1,it

are either specified in additive form e1,it = e1
i + e(1)

t or interactive form e1,it = (e1
i )′e(1)

t . However, in our
framework it is not required to specify the forms to model unobserved heterogeneity. We just need to
assume that it is independent over i and change smoothly over time.

Remark 2. The condition in (2.4) are the key assumptions to ensure consistency and applicability of cen-
tral limit theorem (CLT). Unlike Chen and Huang [2018], we focus on path coefficients βt, t = 1, 2, · · · ,T
under conditions on their increments rather than estimating deterministic functions β( t

T ). Our assumptions

3Dendramis et al. [2020] derive this under the case γ1 = 0.5, but extensions are quite straightforward.



56

also differ from the micro panel literature (large N, fixed T ). For example, unlike Graham and Powell
[2012], we do not require βt to be stationary and even i.i.d. across t.

The main objective in this section is to construct estimators for βt and derive uniform consistency rates
and asymptotic distributions for the estimators. The individual specific estimates can be obtained from a
time-varying parameter least-square estimator (TVP-OLS):

β̂i,t =
( T∑

j=1

b j,t(H)xi jx′i j

)−1( T∑
j=1

b j,t(H)xi jyi j

)
. (2.5)

The kernel weights b j,t(H) are defined as

b j,t(H) = K
( | j − t|

H

)
,

where the bandwidth parameter H satisfies H = o(T ) as T → ∞. K(x) is a non-negative continuous
function with either bounded or unbounded support satisfying

|K(x)| 6 C(1 + xν)−1, |(d/dx)K(x)| 6 C(1 + xν)−1,

for some C > 0 and ν > 2. Examples include K(x) = 1
2 I{|x| 6 1}, K(x) = 3

4 (1 − x2)I{|x| 6 1} and
K(x) ∝ exp(−cxα) with c > 0, α > 0.

As in the literature of large heterogenous panels, we propose two types of estimators. The first is a
mean group estimator (TVP-OLS-MG), given by

β̂MG,t =
1
N

N∑
i=1

β̂i,t, (2.6)

where β̂i,t is defined in (2.5). The second is a pooled estimator (TVP-OLS-P):

β̂P,t =
( N∑

i=1

T∑
j=1

b j,t(H)xi jx′i j

)−1( N∑
i=1

T∑
j=1

b j,t(H)xi jyi j

)
. (2.7)

Before analyzing the theoretical properties of these estimators, we assume that the bandwidth parameter
H satisfies:

c1T 1/(θ/4−1)+δ1 6 H 6 c2T 1−δ2 (2.8)

for some θ > 4 as in Assumption 2.1, and c1, c2 > 0, δ1, δ2 > 0 are sufficiently small. In the next
theorem, we establish uniform consistent rate, asymptotic distributions for (2.6) and (2.7) and how to
obtain consistent estimates of asymptotic covariance matrices.

Theorem 2.2.1. Under Assumptions 2.1–2.4 and assuming that the bandwidth parameter H satisfies (2.8),



57

as (N,T )→ ∞, we have the following:

(1) Uniform consistency: β̂MG,t, β̂P,t have the property

max
t=1,2,··· ,T

∥∥∥β̂∫ ,t − βt

∥∥∥ = Op(r1
N,T,H,γ,α),

where r1
NT,H,α =

(H
T

)γ1 log1/α T +

√
log T
NH +

log1/α T
√

N
for ∫ = {MG, P}.

(2) Asymptotic normality: Suppose that ( H
T )γ1 = o(N−1/2),

(i) Mean group estimator:
√

N
(
Ωe,t

)−1/2 (
β̂MG,t − βt

) d
−→ N(0, Ik),

where Ωe,t is given by

Ωe,t = lim
N→∞

Var
( 1
√

N

N∑
i=1

eit

)
.

(ii) Pooled estimator: Suppose that Σxx,t = plim(N,T )→∞
1

NKt

∑N
i=1

∑T
j=1 b jtxi jx′i j = Op(1), then

√
N Σxx,t R−1/2

t

(
β̂P,t − βt

) d
−→ N(0, Ik),

where Rt is given by

Rt = lim
N→∞

Var
( 1
√

N

N∑
i=1

Σxx,iteit

)
.

Even though both Ωe,t and Rt contain eit, which is not observed, in Appendix B1, we show that they
can be consistently estimated by Ω̂e,t and R̂t:

Ω̂e,t =
1
N

N∑
i=1

(
β̂i,t − β̂MG,t

)(
β̂i,t − β̂MG,t

)′
(2.9)

R̂t =
1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtxi jx′i j

)
(β̂i,t − β̂MG,t)(β̂i,t − β̂MG,t)′

( 1
Kt

T∑
j=1

b jtxi jx′i j

)]
. (2.10)

Three comments are in order. First, the uniform consistency rate is different from the time series
setting ((19) in Giraitis et al. [2020a]). The first term in r1

NT,H,α is the same as before, since it only relates
to the properties of the parameter of interests (Assumption 2.3). The second term is different, since N
appears in the rate. The third term is new, due to the heterogeneity in model parameters eit. Indeed, panel
dimension N is helpful to improve the rate. Second, as in the setting of standard random coefficient model
(Hsiao et al. [1998]), both estimators have standard root N rate of convergence. However, the requirement
( H

T )γ1 = o(N−1/2) is different from time series setting, which is ( H
T )γ1 = o(H−1/2). Third, Inference on Mean
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group estimator β̂MG,t is straightforward, since the asymptotic variance only depends on the variance of eit.
Inference on pooled estimator β̂P,t is slightly more involved, since asymptotic variance relies on additional
assumption and the second order moments of (xit).

The use of estimates β̂MG,t and β̂P,t makes it necessary to choose the bandwidth parameter H. Whereas
uniform consistency holds under minimal restrictions on H (see (2.8)), asymptotic normality results re-
quire stronger restrictions: ( H

T )γ1 = o(H−1/2). This condition implies that
√

N( H
T )γ1 → 0 when both

(N,T ) → ∞. As in Giraitis et al. [2014, 2020a], a practical suggestion for H is to set H = Tα, for
some 0 < α < 1. Then, the condition simplifies to

√
N/T γ1(1−α) → 0. If we assume that βt follows the

bounded random walk process and set H = T 0.5, the condition becomes
√

N/T 0.25 → 0 as (N,T )→ ∞. A
practically meaningful implication is that T has to diverge at a faster rate than N.

2.3 Endogenous regressors

Consider again the model proposed in section 2:

yit = x′itβit + uit,

βit = βt + eit, i = 1, 2, · · · ,N, t = 1, 2, · · · ,T.

In Assumption 2.2(iii), we impose contemporaneous exogeneity condition on xit, which is rather restric-
tive. This condition is likely to be violated in many empirical applications, due to simultaneity, measure-
ment error, or omitted variables.

In this section, we consider an extension of the proposed TVP-OLS type estimators to the Instrumental
variable regression (IVR) context. Let us consider the following model:

yit = x′itβit + uit, (2.11)

xit = Ψ′itzit + vit, (2.12)

βit = βt + eit, i = 1, 2, · · · ,N, t = 1, 2, · · · ,T, (2.13)

where zit = (z1,it, z2,it, · · · , zp,it)′ is a p × 1 vector of instruments, Ψ′it = (ψ`k,it) is a k × p parameter matrix
and vit = (v1,it, v2,it, · · · , vp,it)′ is a k × 1 vector of error terms. We shall make the following additional
assumptions.

Assumption 2.3.1. Elements in zit, vit have the properties:

(i) There exists θ > 4 such that E
∣∣∣z`,it∣∣∣θ < ∞ and E

∣∣∣v`,it∣∣∣θ < ∞, uniformly over `, i, t;

(ii) ∀`, i, t, (z`,it − Ez`,it) and (v`,it) are strong-mixing processes with mixing coefficients α j
k satisfying

α
j
k 6 c jφ

k
j, k > 1 (2.14)
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for some 0 < φ j < 1 and c j > 0, where j = {z, v}.

Assumption 2.3.2. The coefficients Ψit follow the random coefficient model:

Ψit = Ψt + Υit, i = 1, 2, · · · ,N, t = 1, 2, · · · ,T, (2.15)

(i) Let Υi = (Υi1,Υi2, · · · ,ΥiT )′, vi = (vi1, vi2, · · · , viT )′, zi = (z′i1, z
′
i2, · · · , z

′
iT )′, (xi, zi, ui, vi, νi,Υi) are

independently distributed over i;

(ii) ∀`, k, E[u`,it|z`,it, β`,t, e`,it,Ψ`k,t] = 0, E[v`,it|z`,it,Ψ`k,t,Υ`k,it] = 0, ∀(i, t);

(iii) ∀`, k, E[Υ`k,it|Ψ`k,t, z`,it] = 0, E[e`,it|β`,t, x`,it, z`,it,Ψ`k,t,Υ`k,it] = 0, ∀(i, t).

Assumption 2.3.3. ∀`, k, i, t, elements in Ψt = (ψ`k,t), Υit = (υ`k,it) satisfy the following smoothness condi-
tion: ∣∣∣ψ`k,t − ψ`k,s∣∣∣ 6 ( |t − s|

T

)γ2
q(1)
`k,ts,

∣∣∣υ`k,it − υ`k,is∣∣∣ 6 ( |t − s|
T

)γ2
q(2)
`k,i,ts, t, s = 1, 2, · · · ,T (2.16)

for some 0 < γ2 < 1 and the distribution of each variable in X(2)
u = {ψ`k,t, υ`k,t, q

(1)
`k,ts, q

(2)
`k,i,ts} has a thin tail

E(α):
P(

∣∣∣X(2)
u

∣∣∣ > ω) 6 exp(−c1|ω|
α), ω > 0,

for c1 > 0, α > 0 which does not depend on t, s,T.

Assumption 2.3.4. The matrices Σzz,it = E(zitz′it), ΣΨzzΨ,it = Ψ′tΣzz,itΨt and Σzx,it = E(zitx′it) are such that

(i) maxt=1,··· ,T

∥∥∥Σzz,it

∥∥∥
sp
< ∞, ∀i;

∥∥∥Σzz,it − Σzz,is

∥∥∥
sp
6 C |t−s|

T , ∀i, t;

(ii) maxt=1,··· ,T

∥∥∥Σzx,it

∥∥∥
sp
< ∞, ∀i;

∥∥∥Σzx,it − Σzx,is

∥∥∥
sp
6 C |t−s|

T , ∀i, t;

(iii) maxt=1,··· ,T

∥∥∥ΣΨzzΨ,it

∥∥∥
sp
< ∞, ∀i, a.s..

Since we introduce the first stage regression in our IV context, restrictions on moments and mixing
conditions are imposed for zit and vit as in Assumptions 3.1. In Assumption 3.2, we impose similar con-
ditions for random coefficients Ψit as for βit. Additional assumptions, as in Assumption 3.2(ii)-(iii), are
required for identification4. Assumption 3.3 imposes similar smooth conditions on newly introduced time-
varying components: ψt and Υit, but we have a different smoothness parameter γ2 and random components
q(1)
`k,ts, q(2)

`k,ts. Assumption 3.4(i) parallels Assumptions 2.4(i) and 2.4(ii). Assumption 3.4(ii) ensures that,
given i, E(zitx′it) has full column rank, ∀t, which implies that identification condition holds for all t. As-
sumption 3.4(iii) is taken from (20) in Giraitis et al. [2020a], which is a high level assumption to ensure
that certain sums are uniformly bounded in probability.

4Note that, unlike the micro panel literature, these assumptions rule out the correlated random coefficient panel data model.
In our context, endogeneity is caused by the fact that xit are correlated with uit.
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The main objectives in this section are to construct consistent estimates for βt and to derive asymptotic
distributions for the estimator of βt. We aim to generalize the estimators proposed in Chen [2015] and
Giraitis et al. [2020a] to the panel setting. The individual specific estimator can be obtained as the kernel-
based two-stage least square estimator (2SLS):

β̂IV
i,t =

( T∑
j=1

b j,t(H)Ψ̂′jzi jz′i jΨ̂ j

)−1( T∑
j=1

b j,t(H)Ψ̂′jzi jyi j

)
, (2.17)

where b j,t(H) is the kernel function with bandwidth H and Ψ̂ j are the consistent estimates of Ψ j. At the
first stage, Ψ̂t can be easily obtained as either the TVP-OLS-MG estimator

Ψ̂MG,t =
1
N

N∑
i=1

Ψ̂i,t, (2.18)

where

Ψ̂i,t =
( T∑

j=1

b j,t(L)zi jz′i j

)−1( T∑
j=1

b j,t(L)zi jx′i j

)
,

or the TVP-OLS-P estimator

Ψ̂P,t =
( N∑

i=1

T∑
j=1

b j,t(L)zi jz′i j

)−1( N∑
i=1

T∑
j=1

b j,t(L)zi jx′i j

)
, (2.19)

where b j,t(L) is the kernel function with bandwidth L, where L can be different from H. We assume that
both bandwidth parameters H, L satisfy (2.8).

Define

rN,T,H,γ,α =
(H

T

)γ
log1/α T +

log1/α T
√

N
+

√
log T
NH

. (2.20)

In the next lemma, we establish uniform consistency results for the estimates Ψ̂MG,t and Ψ̂P,t. Since As-
sumptions 2.1–2.4 are satisfied for the first stage regression, it follows immediately from Theorem 1(1),
with a possibly different bandwidth L and smoothness parameter γ2.

Lemma 2.3.1. Under Assumptions 3.1–3.4 and assuming that the bandwidth parameters L satisfy (2.8),
as (N,T )→ ∞, we have

max
t=1,2,··· ,T

∥∥∥Ψ̂∫ ,t − Ψt

∥∥∥
sp

= Op(rN,T,L,γ2,α).

Then, at the second stage, we propose two estimators for βt. As in the previous section, we consider
both mean group and pooled estimators. The TVP-IV-MG estimator is defined as

β̂IV
MG,t =

1
N

N∑
i=1

β̂IV
i,t , (2.21)
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where β̂IV
i,t is given by (2.17). The TVP-IV-P estimator can be computed as

β̂IV
P,t =

( N∑
i=1

T∑
j=1

b j,t(H)Ψ̂′jzi jz′i jΨ̂ j

)−1( N∑
i=1

T∑
j=1

b j,t(H)Ψ̂′jzi jyi j

)
. (2.22)

In the next theorem, we establish uniform consistency rates and asymptotic distributions for (2.21) and
(2.22).

Theorem 2.3.2. Under Assumptions 2.1–2.3 (except Assumption 2.2(iii)), Assumptions 3.1–3.4 and as-
suming that the bandwidth parameters H, L satisfy (2.8), then as (N,T )→ ∞ we have the following:

1. Uniform consistency: β̂IV
MG,t, β̂

IV
P,t have the property

max
t=1,2,··· ,T

∥∥∥β̂∫ ,t − βt

∥∥∥ = Op

(
1
√

N

((
log T

)1/αr1,T,H,γ1,α + rN,T,L,γ2,α

))
,

where ∫ = {MG, P} and rNT,H,α, rNT,L,α are defined as in (2.20);

2. Asymptotic normality: Suppose that ( H
T )γ1 = o(N−1/2), L = o

(
L/ log

γ2
α T

)
, log1/α T = o(N−1/2),

k = p,

(i) Mean group estimator:

√
N Ψt

(
ΩIV

e,t

)−1/2(
β̂IV

MG,t − βt

) d
−→ N(0, Ik),

where ΩIV
e,t is given by

ΩIV
e,t = lim

N→∞
Var

( 1
√

N

N∑
i=1

Σ−1
zz,itΣze,iteit

)
.

(ii) Pooled estimator: Suppose that ΣΨzzΨ,t = plim(N,T )→∞
1
N

∑N
i=1

∑T
j=1 b jtΨ

′
jzi jz′i jΨ j = Op(1), then

√
N ΣΨzzΨ,t Ψ−1

t

(
RIV

P,t

)−1/2(
β̂IV

P,t − βt

) d
−→ N(0, Ik),

where RIV
P,t is given by

RIV
P,t = lim

N→∞
Var

( 1
√

N

N∑
i=1

Σze,iteit

)
.

Several comments are in order. First, the uniform rates derived are different from (21) in Giraitis et al.
[2020a] in the time series setting. The first term in the parenthesis

(
log T

)1/αr1,T,H,γ1,α is nearly identical
to (21) in Giraitis et al. [2020a], except for the fact that γ1 = 1/2 there. The second term is different,
since first stage estimates Ψ̂t are obtained from panel regression, N appears in the rates. The overall rates
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are also scaled by root N, indicating that panel dimension is useful to improve the rates. Second, as in
Giraitis et al. [2020a], we only present the exact identification case: k = p. If the model is overidentified:
p > k, Ψt is not invertible and appears in the limiting distribution, inference is complex. Third, since
asymptotic normality requires that the first stage estimates Ψ̂t are uniformly consistent, additional two

conditions, L = o
(
L/ log

γ2
α T

)
and log1/α T = o(N−1/2), are needed to achieve asymptotic normality. The

later condition implies that T cannot diverge too fast compared to N. Finally, unlike Theorem 1, for both
β̂IV

MG,t and β̂IV
P,t, asymptotic normality relies on weighted averages of eit. Normal approximations of β̂IV

MG,t

and β̂IV
P,t are very different. The finite sample performance may differ more compared to OLS case. For

pooled estimator, we do require another condition ΣΨzzΨ,t = Op(1), making inference more involved.
As in (2.9), the above inference results can be operationalised by replacing Ψt with Ψ̂t and the fact that

Ω̂IV
e,t =

1
N

N∑
i=1

(
β̂IV

i,t − β̂
IV
MG,t

)(
β̂IV

i,t − β̂
IV
MG,t

)′ p
−→ ΨtΩ

IV
e,t Ψ

′
t

R̂IV
P,t =

1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)
(β̂IV

i,t − β̂
IV
MG,t)(β̂

IV
i,t − β̂

IV
MG,t)

′
( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)] p
−→ ΨtRIV

P,tΨ
′
t .

As the endogeneity of xit can change over time, we can apply the Hausman test for the null hypothesis
of exogeneity for each t. The pointwise null hypothesis is formally stated as: H0 : E(uitvit) = 0,∀i, for
each t, t = 1, 2, · · · ,T . A common formulation of the Hausman test is in terms of the quadratic differences
between the (time-varying) OLS and IV estimators. In our case, it is given by

Ht = N
(
β̂IV
∫ ,t
− β̂∫ ,t

)′
V̂−1

H

(
β̂IV
∫ ,t
− β̂∫ ,t

)
, (2.23)

where V̂H = Avar
(
β̂IV
∫ ,t
− βt

)
− Avar

(
β̂∫ ,t − βt

)
, ∫ = {MG, P} and Avar is the asymptotic variance given

in Theorems 1 and 2. Under Assumptions in Theorems 1 and 2, it can easily be shown that for each t,
Ht

d
→ χ2

k , under the pointwise null hypothesis, that the regressors are exogenous for each t.
Of course, all the other test statistics in the IV framework can be generalized to the panel data model

with time-varying coefficients. For example, a time-varying version of the J-test for overidentifying
restrictions is given by

Jt = N
( 1
N

N∑
i=1

T∑
j=1

b jtz′i jûi j

)( 1
N

N∑
i=1

T∑
j=1

b jtzi jz′i j

)−1( 1
N

N∑
i=1

T∑
j=1

b jtz′i jûi j

)
, (2.24)

where ûi j = yi j − x′i jβ̂t. It can be easily shown that for each t, Jt
d
→ χ2

p−k, under the null hypothesis of valid
overidentifying restrictions and assumptions in deriving Theorem 2.
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2.4 Monte Carlo study

In this section, we conduct Monte-Carlo experiments to evaluate the finite sample performance of the
time-varying OLS and IV estimators (2.6), (2.7), (2.21), (2.22) and the pointwise time-varying Hausman
test (2.23). We generate data using the model defined in (2.11) with one regressor xit:

yit = x′itβit + uit,

xit = Ψ′itzit + c1vit, i = 1, 2, ...,N, t = 1, 2, ...,T,

where we introduce an additional parameter c1 to control the strength of instruments and we set it to 0.5.
We introduce time-varying correlation between uit and vit by specifying them as

uit = a(αit + s)e1,it + e2,it, vit = (αit + s)e1,it + e3,it,

where e j,it, j = 1, 2, 3 are generated independently from N(0, 1) and s = 1. We set a = 1 if xit is
endogenous, otherwise (if exogenous) we set a = 0. We also introduce a time-varying component αit to
measure the time-varying correlations between uit and vit.

The time-varying parameters βit, Ψit and αit are generated according to

βit = βt + eit

Ψit = Ψt + Υit

αit = αt + ιit,

where elements in X(1)
MC = {βt, eit, ψt,Υit, αt, ιit} are generated from the scaled random walk processes, such

that X`,t = ξ`,t/
√

t, for ξ`,t − ξ`,t−1
i.i.d.
∼ N(0, 1), t = 1, 2, · · · ,T . The instrument zit is again generated from

N(0, 1) and it is independent from e j,it, j = 1, 2, 3 and elements in X(1)
MC. Each experiment was replicated

1,000 times for each (N,T ) pair with N,T = 50, 100, 200, 500.
To compute both TVP-OLS and TVP-IV type estimators,5 we use a two-sided normal kernel K(x) =

exp(−x2/2) with bandwidth set to take values Tα for α = 0.2, 0.4, 0.5, 0.7. Lower values of α increase the
robustness of estimates to parameter changes but decrease efficiency, and in the panel case lower values
for α also make it more likely the condition ( H

T )γ1 = o(N−1/2) holds. Thus, it is interesting to evaluate
the impact of the bandwidth on the performance of estimators and of the pointwise Hausman test for
exogeneity. The global performance of the estimators is evaluated by both the average of median absolute
deviations (MADs), 1

M

∑M
r=1 medt=1,2,··· ,T

∣∣∣β̂r,t − βr,t

∣∣∣, and 95% coverage rates, computed starting from the
second-half of the sample period, t = [T/2]+1, · · · ,T . For the time-varying Hausman test, we report both
the size and power of the test evaluated at the middle point t = [T/2].

To get a rough idea of the estimates and 95% confidence intervals, we report a single replication of

5To compute those estimators, we normalize all kernel weights so that
∑T

j=1 b jt(H) = 1 and
∑T

j=1 b jt(L) = 1.
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the estimates for N = 50,T = 200 and H = T 0.5, L = H = T 0.5 in Figures 1 and 2. Evidently, TVP-OLS
estimators perform well when xit is exogenous, but they lead to substantial bias and poor coverage rates
when xit is endogenous. The performance of TVP-IV estimators is quite satisfactory under the case of
endogeneity of xit.

Table 1 reports the average MAD and coverage probability of both TVP-OLS-MG and TVP-OLS-P
estimators for the normal kernel with various values of bandwidth H. A number of comments can be made.
First, both cross-sectional and time series dimensions are useful to reduce the bias of the estimates. All
values become closer to zero as (N,T ) increases. Second, regarding the bandwidth parameter H = Tα,
smaller values of α often yield the lowest values of MAD and higher coverage probabilities. However,
results are very similar if α is replaced with a value lower than 0.5. If α is larger than 0.5, MAD increases
and coverage probability decreases. Recall that the bandwidth parameter H = Tα is required to be such
that H = o(T ) and asymptotic normality requires

√
N

T (1−α)γ → 0. This means that we cannot set α to be a value
close to 1 otherwise these conditions will fail. Finally, TVP-OLS-MG and TVP-OLS-P estimates deliver
very similar results.

Tables 2 and 3 present average MADs and coverage probabilities, respectively, in the case of endo-
geneity. For the bandwidth parameters, we set H = L. We report the results from TVP-IV type estimates
obtained either from mean group or pooled estimators at the first stage. For comparison purposes, we also
include OLS results in the bottom panel of each table. First, TVP-OLS estimates clearly yield much large
biases and lower coverage probabilities when xit is endogenous. There is no sign of convergence as (N,T )
increases, as expected. Second, TVP-IV estimates have much better performance with significantly lower
MADs and higher coverage probabilities. Regarding the bandwidth, it seems that setting H = T 0.2 ∼ T 0.4

leads to the lowest MAD and H = T 0.2 has the best overall performance. However, smaller bandwidth is
often associated with larger confidence intervals, which implies higher uncertainty around point estimates.
In general, H = T 0.4 and H = T 0.5 deliver comparable results with H0.2. Recall that asymptotic normality
again requires

√
N

T (1−α)γ → 0. If we let α increase, we should also let T be much larger than N to make
the above condition hold. As shown in Tables 2 and 3, when α gets larger, the lowest MADs are obtained
when (N,T ) = (500, 500) and the best coverage probabilities are always obtained when (N,T ) = (50, 500).
Third, it does not seem to make a difference whether Ψ̂ j is obtained either by mean group or pooled es-
timates at the first stage. However, when the bandwidth is small, H = T 0.2, the pooled estimator seems
to be slightly worse than the mean group estimator for MAD at the second stage, but not for coverage
probability. As the bandwidth H increases, both mean group and pooled estimators deliver similar results
in terms of both MAD and coverage probability.

Table 4 reports the size and power of the time-varying Hausman test with nominal size equal to 5%.
The bandwidth parameters are set to H = L. First, we find that setting H = T 0.2 or H = T 0.4 leads to sizes
close to the nominal value. As the bandwidth H increases, size distortion becomes sizable, especially when
N is larger than T . Recall that an asymptotically χ2 distribution of the test statistic requires asymptotic
normality of the estimators to hold. As explained in the previous paragraph, if we increase α, we also
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need very large T (compared to N) to make the condition
√

N
T (1−α)γ → 0 hold. For instance, consider the case

when Ψ̂ j is obtained by pooled estimator and H = T 0.4; empirical size is 0.033 when (N,T ) = (50, 500),
which is close to 0.05. However, when (N,T ) = (500, 50), empirical size becomes 0.256, which is clearly
oversized. Second, in terms of power, because the convergence rate of the estimator is the square root of
N, we expect that power increases with N, and this is confirmed by Table 4. The power also increases
slightly with bandwidth H, and with larger (N,T ). Setting H = T 0.5 leads to the highest power when
(N,T ) = (500, 500). In general, test power is very similar across different values of bandwidth H.

2.5 Empirical application

In this section, we consider an empirical application on modeling inflation dynamics. We estimate a multi-
country version of the Phillips curve that links inflation to unemployment and also possibly to inflation
expectations. The main goals are to understand whether unemployment is indeed significantly related to
inflation, when and if forward looking behavior of inflation dominates backward looking behavior and
whether there are changes in these features over time.

We use monthly data for 19 Eurozone countries6 over the period 2000M1–2019M12. We consider the
hybrid Phillips curve, along the lines of Galı́ and Gertler [1999],

πi,t = ci,t + γi,tπi,t−1 + αi,tui,t + ρi,tπ
e
i,t+1 + νi,t. (2.25)

Let εi,t = ρi,t(πe
i,t+1 − πi,t+1) + νi,t, we can also write the above as

πi,t = ci,t + γi,tπi,t−1 + αi,tui,t + ρi,tπi,t+1 + εi,t. (2.26)

It is clear that, since πe
i,t+1 is not observed, we have to replace it by πi,t+1, endogeneity arises again due to

measurement error. In view of Hansen and Lunde [2014] and Galı́ and Gambetti [2019], endogeneity may
also arise due to measurement error of πi,t and simultaneity of πi,t and ui,t. We use an intercept, three lags
of inflation and two lags of unemployment as instruments: (1, πi,t−2, πi,t−3, πi,t−4, ui,t−1, ui,t−2)′7.

Figure 2.3 provides plots of estimates for ρt, αt and γt. Left panel of Figure 2.3 provides plots of time-
varying estimates for ρt, the common part of coefficients on inflation expectations. OLS estimates are
small (less than 0.2), only significant around 2005–2013 and remain almost stable over time. IV estimates
are more volatile, and are significant in shorter periods, around 2004 and 2014. Middle panel of Figure 2.3
provides plots of time-varying estimates of α̂t, the common part of coefficients on unemployment. Point
estimates generally fluctuate below the zero line, which indicates that there is a trade-off between unem-

6Data are taken from Eurostat. The countries are Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Portugal, Slovenia, Slovakia and Spain.

7Model (2.26) is a dynamic heterogeneous panel and lagged variables are used as instruments. As is well known in the
literature [e.g., Pesaran and Smith, 1995], pooling gives inconsistent estimates. Thus, we only report results for mean group
estimates.
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ployment and inflation, but the coefficients are very small (less than -0.1) over the whole sample period.
The estimates from both OLS and IV are roughly similar (except around 2008–2014), but IV estimates
are smaller and are less ”significant” than OLS estimates. Both estimates are statistically significant and
very similar around 2014–2018. Moreover, IV estimates are significant around 2005, but OLS estimates
are significant around 2005-2010. Turning to the persistence parameter estimates, which are shown in the
right panel of Figure 2.3, we see that OLS estimates are small (less than 0.2) and significant from 2016–
2013. However, IV estimates are much larger until 2015. Our findings are in line with Hansen and Lunde
[2014], who find that OLS estimates are biased towards zero for persistent parameter when time series are
measured with error.

Plots of p-values of time-varying pointwise Hausman test from (2.26) are provided in Figure 2.4. The
null of exogeneity is rejected in most of the period (until 2016). Indeed, we see from Figure 2.3 that OLS
and IV estimates are very different for ρt and γt, but estimates for αt from OLS and IV are almost identical
after 2016.

As a robustness check, in Appendix C, we report estimation results and p-value of time-varying point-
wise Hausman test from both backward-looking Phillips curve and forward-looking Phillips curve, ob-
tained either by setting ρi,t = 0 or γi,t = 0. The results are similar compared to Figures 2.3 and 2.4, but
there are also some differences, particularly for forward-looking Phillips curve. First, IV estimates for αt

are also significant around 2005–2008. Second, there are shorter periods in which the null of exogeneity
is rejected, round around 2005, 2010–2012 and 2014.

In summary, this simple but economically interesting empirical application highlights the importance
of allowing for parameter time variation and usefulness of the IV method. There is a small but vary-
ing impact of unemployment on inflation. OLS deliver smaller persistence parameter estimates than IV.
Forward-looking feature only dominates backward-looking feature for inflation around year 2015. Endo-
geneity may not only come from inflation expectation but also measurement error of inflation series. In
terms of sources of endogeneity, measurement error is likely to be more important than unobservable of
inflation expectation and simultaneity between inflation and unemployment. Ignoring these features lead
to bias and misleading results.

2.6 Conclusion

Large heterogeneous panel data models are becoming increasingly popular in empirical applications, but
the parameters are typically assumed to be constant over time and regressors are treated as exogenous.
However, the vast literature on panels, structural change and parameter instability has highlighted the
importance of considering both time variation of parameters and endogeneity. In this paper, we introduce
a new class of large heterogeneous panel data models whose parameters are not only heterogeneous but
also vary stochastically over time. We propose time-varying mean group and pooled least square and IV
estimators, taking a non-parametric approach in order to remain as agnostic as possible regarding the type
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of parameter evolution.
We derive theoretical properties for the proposed time-varying mean group and pooled estimators

in both the least square and IV contexts. We show the uniform consistency and derive the asymptotic
distributions of the proposed estimators. We also propose a pointwise time-varying Hausman exogeneity
test, which compares time-varying least square and IV estimators, possibly also allowing for changes in
the endogeneity status of the regressors over time.

Next, we evaluate the finite sample properties of the estimators and size and power of the time-varying
Hausman tests in an extensive Monte Carlo study. The results show that least square type estimates
perform very well when regressors are exogenous, but have large biases and low coverage probabilities
when regressors are endogenous. The IV type estimates have small finite-sample biases and satisfactory
coverage probabilities when regressors are endogenous, especially if the bandwidth is chosen to be a value
smaller than T 0.5. The size of the time-varying Hausman test statistic is also reasonable if bandwidth is
smaller than T 0.5. The test has a good power and is not strongly affected by the bandwidth choice.

Finally, we provide an empirical application to illustrate in practice the use of time-varying mean group
and pooled estimators. We estimate the panel version of time-varying hybrid Phillips curves for 19 Eu-
rozone countries over the period 2000M1–2019M12. This simple but economically meaningful empirical
application highlights the relevance of allowing for both parameter time variation and endogeneity in the
panel framework.
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Figures and Tables

Figure 2.1: Realization of βt, TVP-OLS-MG and TVP-OLS-P estimates with a two-sided normal kernel and H = T 0.5 for
(N,T ) = (50, 200). The solid red lines show the true realization of βt. The solid blue lines show the point estimates and the
grey shaded areas show the 95% pointwise confidence intervals.

Figure 2.2: Realization of βt, TVP-OLS-MG, TVP-IV-MG, TVP-OLS-P and TVP-IV-P estimates with a two-sided normal
kernel and H = T 0.5, H = L = T 0.5 for (N,T ) = (50, 200). The solid red lines show the true realization of βt. The solid blue
lines show the OLS point estimates and the blue shaded areas show the 95% pointwise confidence intervals. The solid grey
lines show the IV point estimates and the grey shaded areas show the 95% pointwise confidence intervals.
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Figure 2.3: Empirical results for model (2.26). The solid blue lines show the point TVP-OLS estimates and the blue shaded
areas show the 95% pointwise confidence intervals. The red solid lines show the point TVP-IV estimates and the red shaded
areas show the 95% pointwise confidence intervals.

Figure 2.4: p-values of time-varying Hausman test for model (2.26).
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(N,T ) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

MAD H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-OLS-MG

50 0.157 0.143 0.131 0.126 0.194 0.165 0.150 0.141 0.217 0.193 0.172 0.158 0.287 0.271 0.248 0.227

100 0.132 0.119 0.104 0.091 0.179 0.146 0.129 0.112 0.204 0.176 0.154 0.132 0.279 0.260 0.238 0.212

200 0.117 0.106 0.086 0.071 0.172 0.136 0.116 0.097 0.199 0.169 0.145 0.120 0.276 0.258 0.232 0.204

500 0.109 0.095 0.073 0.055 0.167 0.129 0.108 0.086 0.196 0.164 0.139 0.112 0.280 0.253 0.232 0.201

TVP-OLS-P

50 0.161 0.147 0.136 0.131 0.195 0.167 0.151 0.142 0.217 0.193 0.172 0.158 0.287 0.270 0.248 0.227

100 0.134 0.121 0.107 0.095 0.177 0.146 0.129 0.112 0.202 0.176 0.154 0.132 0.277 0.259 0.238 0.212

200 0.116 0.106 0.087 0.074 0.169 0.135 0.116 0.097 0.197 0.168 0.144 0.120 0.274 0.257 0.232 0.204

500 0.105 0.094 0.073 0.056 0.164 0.127 0.107 0.086 0.193 0.162 0.138 0.112 0.278 0.252 0.231 0.201

Coverage probability H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-OLS-MG

50 0.875 0.889 0.916 0.917 0.765 0.828 0.865 0.880 0.702 0.756 0.807 0.840 0.530 0.565 0.612 0.664

100 0.813 0.847 0.887 0.923 0.652 0.748 0.795 0.851 0.578 0.652 0.708 0.784 0.410 0.439 0.485 0.548

200 0.720 0.753 0.838 0.898 0.522 0.625 0.695 0.771 0.447 0.515 0.585 0.672 0.305 0.320 0.363 0.428

500 0.552 0.596 0.717 0.838 0.359 0.451 0.526 0.622 0.298 0.359 0.416 0.505 0.190 0.220 0.243 0.284

TVP-OLS-P

50 0.888 0.894 0.920 0.921 0..783 0.838 0.873 0.884 0.702 0.756 0.807 0.840 0.543 0.573 0.619 0.666

100 0.838 0.860 0.894 0.926 0.673 0.763 0.805 0.856 0.578 0.652 0.708 0.784 0.423 0.446 0.489 0.551

200 0.763 0.783 0.858 0.907 0.552 0.646 0.712 0.779 0.447 0.515 0.585 0.672 0.314 0.325 0.368 0.430

500 0.607 0.637 0.749 0.857 0.385 0.475 0.544 0.635 0.298 0.359 0.416 0.505 0.198 0.224 0.246 0.285

Note: See Section 4 for details on the computations of mean absolute deviation (MAD) and coverage probability.

Table 2.1: Small sample properties of TVP-OLS-MG and TVP-OLS-P estimators in the case of an exogenous regressor:
Average MAD and coverage probability
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MAD

(N,T ) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

IV, MG in first stage H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-IV-MG

50 0.332 0.289 0.274 0.264 0.359 0.301 0.277 0.260 0.391 0.333 0.298 0.273 0.516 0.456 0.404 0.367

100 0.249 0.233 0.205 0.196 0.289 0.259 0.221 0.202 0.318 0.298 0.255 0.220 0.434 0.427 0.377 0.332

200 0.213 0.189 0.165 0.148 0.268 0.219 0.189 0.166 0.305 0.264 0.225 0.193 0.435 0.394 0.355 0.303

500 0.177 0.154 0.125 0.106 0.244 0.193 0.161 0.136 0.285 0.240 0.205 0.169 0.428 0.376 0.333 0.303

TVP-IV-P

50 0.352 0.307 0.293 0.283 0.372 0.314 0.284 0.264 0.401 0.340 0.302 0.276 0.529 0.458 0.408 0.368

100 0.262 0.242 0.217 0.207 0.293 0.264 0.225 0.206 0.321 0.301 0.257 0.222 0.436 0.431 0.376 0.333

200 0.220 0.197 0.173 0.156 0.273 0.224 0.192 0.169 0.307 0.267 0.226 0.194 0.438 0.396 0.355 0.304

500 0.180 0.158 0.129 0.111 0.245 0.196 0.163 0.138 0.285 0.241 0.207 0.170 0.428 0.376 0.333 0.303

IV, P in first stage H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-IV-MG

50 0.333 0.291 0.276 0.267 0.357 0.301 0.277 0.260 0.386 0.333 0.296 0.273 0.516 0.455 0.402 0.366

100 0.251 0.233 0.207 0.198 0.288 0.258 0.222 0.202 0.317 0.299 0.256 0.220 0.430 0.427 0.372 0.332

200 0.213 0.188 0.167 0.149 0.267 0.220 0.190 0.166 0.303 0.263 0.224 0.193 0.429 0.394 0.355 0.302

500 0.177 0.154 0.125 0.107 0.241 0.193 0.161 0.136 0.284 0.239 0.204 0.169 0.424 0.376 0.332 0.303

TVP-IV-P

50 0.337 0.295 0.282 0.272 0.361 0.307 0.280 0.261 0.394 0.336 0.300 0.274 0.517 0.455 0.405 0.366

100 0.251 0.236 0.209 0.200 0.289 0.261 0.222 0.204 0.316 0.300 0.255 0.221 0.430 0.429 0.371 0.332

200 0.212 0.192 0.168 0.151 0.268 0.221 0.190 0.168 0.304 0.264 0.225 0.193 0.431 0.394 0.355 0.303

500 0.175 0.154 0.125 0.108 0.241 0.194 0.161 0.136 0.283 0.240 0.205 0.169 0.424 0.376 0.332 0.303

OLS H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-OLS-MG

50 0.590 0.589 0.583 0.586 0.586 0.588 0.581 0.584 0.586 0.586 0.580 0.584 0.595 0.592 0.582 0.585

100 0.582 0.585 0.579 0.578 0.580 0.583 0.577 0.576 0.579 0.581 0.576 0.575 0.588 0.586 0.579 0.572

200 0.583 0.573 0.589 0.578 0.580 0.572 0.587 0.577 0.580 0.571 0.586 0.575 0.581 0.576 0.587 0.571

500 0.589 0.569 0.583 0.578 0.585 0.568 0.581 0.577 0.585 0.567 0.580 0.576 0.593 0.574 0.580 0.573

TVP-OLS-P

50 0.532 0.528 0.518 0.523 0.537 0.532 0.520 0.524 0.542 0.537 0.524 0.526 0.562 0.556 0.540 0.542

100 0.516 0.517 0.507 0.503 0.525 0.520 0.511 0.506 0.529 0.526 0.515 0.510 0.549 0.545 0.534 0.524

200 0.512 0.500 0.512 0.498 0.521 0.506 0.516 0.502 0.526 0.512 0.521 0.505 0.542 0.532 0.539 0.519

500 0.514 0.495 0.507 0.498 0.523 0.500 0.512 0.502 0.528 0.506 0.516 0.506 0.548 0.528 0.533 0.520

Note: See Section 4 for details on the computations of mean absolute deviation (MAD) and coverage probability. For bandwidth parameters for TVP-IV
estimators, we set H = L.

Table 2.2: Small sample properties of TVP-OLS and TVP-IV types of estimators in the case of an endogenous regressor:
Average MAD
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Coverage probability

(N,T ) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

IV, MG in first stage H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-IV-MG

50 0.939 0.953 0.956 0.961 0.892 0.931 0.940 0.950 0.857 0.896 0.915 0.933 0.758 0.779 0.808 0.841

100 0.928 0.941 0.955 0.963 0.845 0.900 0.922 0.940 0.793 0.842 0.874 0.910 0.647 0.676 0.706 0.752

200 0.893 0.910 0.936 0.957 0.758 0.839 0.871 0.912 0.687 0.748 0.792 0.855 0.536 0.562 0.570 0.644

500 0.807 0.835 0.898 0.946 0.616 0.708 0.775 0.846 0.538 0.592 0.657 0.749 0.380 0.406 0.429 0.483

TVP-IV-P

50 0.940 0.948 0.954 0.959 0.896 0.929 0.940 0.949 0.866 0.895 0.916 0.934 0.763 0.781 0.809 0.842

100 0.930 0.944 0.952 0.961 0.850 0.903 0.922 0.941 0.800 0.842 0.877 0.911 0.657 0.678 0.709 0.754

200 0.899 0.913 0.939 0.957 0.768 0.844 0.876 0.914 0.698 0.756 0.796 0.858 0.545 0.570 0.574 0.645

500 0.823 0.849 0.908 0.948 0.634 0.721 0.786 0.850 0.557 0.602 0.664 0.753 0.391 0.412 0.433 0.485

IV, P in first stage H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-IV-MG

50 0.933 0.951 0.954 0.959 0.889 0.930 0.939 0.949 0.854 0.895 0.914 0.933 0.756 0.779 0.808 0.841

100 0.923 0.940 0.952 0.961 0.842 0.898 0.920 0.940 0.789 0.840 0.872 0.910 0.648 0.674 0.708 0.752

200 0.889 0.907 0.934 0.955 0.758 0.838 0.870 0.911 0.686 0.746 0.792 0.855 0.537 0.559 0.569 0.644

500 0.804 0.834 0.895 0.944 0.615 0.708 0.774 0.846 0.536 0.593 0.657 0.748 0.377 0.404 0.429 0.482

TVP-IV-P

50 0.943 0.952 0.956 0.962 0.899 0.932 0.941 0.951 0.867 0.898 0.916 0.935 0.762 0.782 0.809 0.843

100 0.933 0.946 0.955 0.963 0.853 0.904 0.921 0.942 0.802 0.844 0.877 0.913 0.660 0.677 0.711 0.754

200 0.902 0.918 0.942 0.959 0.771 0.846 0.878 0.915 0.699 0.756 0.798 0.858 0.546 0.567 0.573 0.645

500 0.832 0.853 0.912 0.952 0.636 0.725 0.787 0.852 0.555 0.604 0.667 0.754 0.390 0.411 0.433 0.484

OLS H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

TVP-OLS-MG

50 0.220 0.203 0.194 0.200 0.216 0.200 0.187 0.189 0.226 0.208 0.195 0.195 0.236 0.225 0.228 0.218

100 0.112 0.088 0.094 0.082 0.130 0.097 0.101 0.085 0.140 0.114 0.116 0.096 0.162 0.150 0.149 0.136

200 0.052 0.045 0.026 0.027 0.077 0.061 0.039 0.035 0.091 0.077 0.055 0.047 0.119 0.107 0.096 0.091

500 0.020 0.015 0.012 0.007 0.040 0.027 0.019 0.012 0.051 0.039 0.029 0.020 0.067 0.067 0.058 0.049

TVP-OLS-P

50 0.426 0.416 0.428 0.430 0.387 0.393 0.398 0.399 0.372 0.375 0.385 0.390 0.334 0.339 0.358 0.353

100 0.310 0.282 0.302 0.293 0.276 0.261 0.277 0.262 0.268 0.252 0.266 0.255 0.242 0.240 0.249 0.247

200 0.191 0.185 0.166 0.176 0.179 0.177 0.155 0.160 0.179 0.176 0.158 0.163 0.178 0.171 0.162 0.172

500 0.090 0.084 0.067 0.059 0.099 0.090 0.074 0.063 0.104 0.099 0.083 0.074 0.105 0.108 0.101 0.098

Note: See Section 4 for details on the computations of mean absolute deviation (MAD) and coverage probability. For bandwidth parameters for TVP-IV
estimators, we set H = L.

Table 2.3: Small sample properties of TVP-IV-MG and TVP-IV-P estimators in the case of an endogenous regressor: Cover-
age probability, t = [T/2]
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(N,T ) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

Mean group in first stage

Size H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

Mean group

50 0.037 0.036 0.031 0.034 0.062 0.049 0.030 0.033 0.090 0.081 0.043 0.039 0.157 0.155 0.142 0.111

100 0.034 0.031 0.027 0.020 0.088 0.059 0.034 0.027 0.143 0.090 0.073 0.042 0.213 0.239 0.194 0.173

200 0.046 0.034 0.028 0.028 0.156 0.074 0.049 0.038 0.222 0.166 0.109 0.079 0.296 0.343 0.334 0.259

500 0.092 0.063 0.041 0.028 0.256 0.156 0.094 0.064 0.383 0.268 0.190 0.123 0.493 0.470 0.478 0.384

Pooled

50 0.027 0.034 0.025 0.021 0.055 0.045 0.033 0.020 0.086 0.065 0.048 0.030 0.153 0.169 0.158 0.109

100 0.046 0.034 0.025 0.019 0.088 0.058 0.040 0.026 0.144 0.099 0.083 0.035 0.219 0.270 0.227 0.187

200 0.054 0.040 0.026 0.014 0.155 0.081 0.051 0.034 0.233 0.169 0.121 0.071 0.320 0.358 0.346 0.298

500 0.094 0.059 0.035 0.019 0.279 0.176 0.105 0.065 0.412 0.294 0.225 0.130 0.513 0.485 0.501 0.427

Power H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

Mean group

50 0.415 0.460 0.421 0.405 0.528 0.516 0.500 0.489 0.550 0.571 0.532 0.516 0.570 0.600 0.579 0.600

100 0.595 0.594 0.580 0.566 0.712 0.653 0.659 0.639 0.730 0.693 0.703 0.668 0.717 0.694 0.707 0.767

200 0.725 0.728 0.741 0.698 0.789 0.789 0.791 0.778 0.803 0.806 0.806 0.790 0.790 0.799 0.822 0.809

500 0.838 0.858 0.850 0.832 0.905 0.891 0.905 0.884 0.896 0.894 0.929 0.904 0.875 0.908 0.889 0.901

Pooled

50 0.363 0.416 0.394 0.346 0.497 0.485 0.468 0.424 0.534 0.546 0.508 0.463 0.553 0.596 0.575 0.569

100 0.518 0.524 0.525 0.491 0.645 0.595 0.609 0.584 0.677 0.648 0.652 0.622 0.684 0.676 0.689 0.740

200 0.663 0.681 0.670 0.642 0.752 0.737 0.743 0.725 0.760 0.767 0.768 0.743 0.775 0.783 0.796 0.800

500 0.795 0.822 0.810 0.787 0.868 0.859 0.878 0.865 0.866 0.868 0.901 0.883 0.858 0.889 0.874 0.879

Pooled in first stage

Size H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

Mean group

50 0.040 0.039 0.035 0.034 0.057 0.050 0.032 0.034 0.095 0.077 0.040 0.040 0.158 0.158 0.141 0.111

100 0.028 0.037 0.026 0.025 0.087 0.059 0.038 0.028 0.138 0.090 0.075 0.040 0.212 0.237 0.197 0.175

200 0.051 0.033 0.036 0.027 0.144 0.077 0.053 0.036 0.221 0.162 0.106 0.076 0.297 0.339 0.337 0.261

500 0.094 0.062 0.045 0.030 0.257 0.148 0.091 0.062 0.372 0.265 0.187 0.116 0.491 0.465 0.481 0.380

Pooled

50 0.023 0.028 0.019 0.023 0.053 0.044 0.028 0.019 0.088 0.066 0.043 0.029 0.157 0.168 0.160 0.107

100 0.039 0.025 0.021 0.016 0.087 0.055 0.040 0.024 0.135 0.107 0.085 0.036 0.220 0.265 0.222 0.187

200 0.038 0.036 0.022 0.015 0.144 0.078 0.049 0.034 0.232 0.160 0.120 0.071 0.316 0.355 0.345 0.295

500 0.079 0.053 0.031 0.018 0.270 0.169 0.101 0.063 0.409 0.290 0.221 0.128 0.517 0.486 0.500 0.427

Power H = T 0.2 H = T 0.4 H = T 0.5 H = T 0.7

Mean group

50 0.427 0.463 0.421 0.405 0.545 0.529 0.509 0.489 0.554 0.572 0.531 0.513 0.566 0.600 0.576 0.597

100 0.595 0.596 0.577 0.570 0.715 0.656 0.650 0.645 0.743 0.693 0.700 0.672 0.708 0.694 0.710 0.764

200 0.727 0.728 0.739 0.699 0.789 0.793 0.795 0.774 0.804 0.808 0.813 0.786 0.792 0.796 0.823 0.808

500 0.848 0.858 0.852 0.828 0.906 0.891 0.908 0.883 0.895 0.894 0.933 0.910 0.879 0.906 0.890 0.900

Pooled

50 0.369 0.412 0.389 0.348 0.506 0.480 0.469 0.419 0.535 0.547 0.511 0.463 0.543 0.597 0.572 0.574

100 0.533 0.529 0.523 0.493 0.647 0.604 0.602 0.585 0.679 0.656 0.649 0.627 0.685 0.673 0.686 0.736

200 0.661 0.672 0.668 0.644 0.759 0.738 0.742 0.716 0.764 0.769 0.769 0.741 0.776 0.790 0.794 0.801

500 0.806 0.830 0.818 0.790 0.870 0.859 0.879 0.862 0.865 0.876 0.900 0.885 0.864 0.887 0.874 0.881

Note: V̂H in the Hausman test statistic (2.23) is computed as in footnote 2. The bandwidth parameters are set to H = L.

Table 2.4: Size and power of time-varying Hausman H test for exogeneity



74

Appendix A: Statement and proof of Lemmas

In the proof, we shall write b jt = b j,t(H) and

Kt =

T∑
j=1

b jt, K2,t =

T∑
j=1

b2
jt.

We will use repeatedly the following property of the weights [see Giraitis et al., 2014]: for t = [τT ]
(0 < τ < 1), as H → ∞,

Kt = O(H), K2,t = O(H).

Moreover, we use H for the bandwidth for simplicity of notation and only introduce L when two bandwidth
parameters interact.

Appendix A.1: Auxiliary results

Let (ξt) be an univariate strong-mixing sequence with mixing coefficient αξk satisfying

α
ξ
k 6 cξφk, k > 1 (2.27)

for some 0 < φ < 1 and cξ > 0. Assume that

max
t=1,2,··· ,T

E|ξt|
θ 6 C < ∞ (2.28)

for some 0 < θ < 4. The condition above implies that ξt has a fat tailH(θ),

P(|ξt| > ω) 6 c|ω|−θ, ω > 0,

for some c > 0 which does not depend on t. We shall write (νt) ∈ E(α), α > 0 to denote that

P(|νt| > ω) 6 c0 exp
(
− c1|ω|

α), ω > 0,

for some c0, c1 > 0 do not depend on t.

Lemma A1. Let (ξt) be an univariate strong-mixing sequence satisfying (2.28) and mixing coefficient
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satisfying (2.27). Consider the sums

S T,t B
1
√

Kt

T∑
j=1

b jt(ξ j − Eξ j)

v(1)
T,t B

1
Kt

T∑
j=1

b jtβ j(ξ j − Eξ j)

v(2)
T,t B

1
Kt

T∑
j=1

b jtβ
2
j(ξ j − Eξ j)

∆T,t B
1
Kt

T∑
j=1

b jt(β j − βt)ξ j,

where (β j) is such that
∣∣∣β j − βt

∣∣∣ 6 (
| j−t|

T

)γ
ν jt, 0 < γ < 1, 1 6 t, j 6 T and βt ∈ E(α), ν jt ∈ E(α) for some

α > 0. Assume that the bandwidth parameter H satisfies

cT 1/(θ/4−1) 6 H 6 T

for some c > 0 and δ > 0. Then, for any ε > 0

max
t=1,2,··· ,T

∣∣∣S T,t

∣∣∣ = Op

(
log1/2 T + (T H)1/θHε−1/2

)
(2.29)

max
t=1,2,··· ,T

∣∣∣v(1)
T,t

∣∣∣ = Op

((
log T

)1/α((H
T

)γ
+ H−1/2 log1/2 T

))
(2.30)

max
t=1,2,··· ,T

∣∣∣v(2)
T,t

∣∣∣ = Op

((
log T

)1/α((H
T

)γ
+ H−1/2 log1/2 T

))
(2.31)

max
t=1,2,··· ,T

∣∣∣∆T,t

∣∣∣ = Op

(
(H/T )γ(log T )1/α

)
. (2.32)

Moreover, for gt ∈ E(α), we have
max

t=1,2,··· ,T
|gt| = Op(log1/α T ). (2.33)

Furthermore, if we assume that

E
∣∣∣ξt − ξ j

∣∣∣ 6 | j − t|
T

, 1 6 t, j 6 T,

1
√

Kt
S T,t obeys the weak law of large numbers (WLLN):

1
Kt

T∑
j=1

b jtξ j
p
−→ E

(
ξt
)
. (2.34)

Proof. (2.29), (2.32) and (2.33) are shown in Dendramis et al. [2020]. (2.29) is shown in (51), (2.33) is
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shown in (C.3) and (2.32) is shown in (70) of that paper. (2.30) is shown in (91) in Giraitis et al. [2020a].
We replace ( H

T )1/2 with ( H
T )γ because we have a slightly different smoothness condition. We first show

(2.31). Let us write:

ν(2)
T,t =

1
Kt

T∑
j=1

b jtβ
2
j(ξ j − Eξ j)

=
1
Kt

T∑
j=1

b jt(β2
j − β

2
t )(ξ j − Eξ j) + β2

t
1
Kt

T∑
j=1

b jt(ξ j − Eξ j).

Recall that β2
j − β

2
t = (β j − βt)(β j + βt) = Op

((H
T

)γ), because by (2.4)
∣∣∣β j − βt

∣∣∣ = Op

((H
T

)γ) and |βt| = Op(1)

for j = 1, 2, ...,T . In addition, we can always make ε in (2.29) small enough to have (T H)1/θHε−1 6 H−
1
2 ;

then by (2.29), (2.32) and (2.33), we obtain:

max
t=1,2,··· ,T

∣∣∣v(2)
T,t

∣∣∣ 6 max
t=1,2,··· ,T

∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

b jt(β2
j − β

2
t )(ξ j − Eξ j)

∣∣∣∣∣∣∣ + max
t=1,2,··· ,T

∣∣∣β2
t

∣∣∣ max
t=1,2,··· ,T

∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

b jt(ξ j − Eξ j)

∣∣∣∣∣∣∣
= Op

((
log T

)1/α((H
T

)γ
+ H−1/2 log1/2 T

))
.

We now show (2.34). Write

1
Kt

T∑
j=1

b jtξ j − E
(
ξt
)

=
1
Kt

T∑
j=1

b jtξ j −
1
Kt

T∑
j=1

b jtE
(
ξ j

)
+

1
Kt

T∑
j=1

b jtE
(
ξ j

)
− E

(
ξt
)

By triangular inequality, we have∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

b jtξ j − E
(
ξt
)∣∣∣∣∣∣∣ 6

∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

b jtξ j −
1
Kt

T∑
j=1

b jtE
(
ξ j
)∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

b jtE
(
ξ j

)
− E

(
ξt
)∣∣∣∣∣∣∣.

It is shown in (48) in Dendramis et al. [2020] that∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

b jtξ j −
1
Kt

T∑
j=1

b jtE
(
ξ j
)∣∣∣∣∣∣∣ = Op

( 1
√

H

)
.

In addition, we have ∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

b jtE
(
ξ j

)
− E

(
ξt
)∣∣∣∣∣∣∣ 6 1

Kt

T∑
j=1

b jt E
∣∣∣ξt − ξ j

∣∣∣ = O
(H

T

)
= o(1),

which completes the proof. �
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Appendix A.2: Useful lemmas

Lemma A2. Consider model (2.1) and the following sums

S xx,t =
1
Kt

T∑
j=1

b jtxi jx′i j

∆x,t =
1
Kt

T∑
j=1

b jtxi jx′i j(β j − βt)

S xu,t =
1
Kt

T∑
j=1

b jtxi jui j

S xe,t =
1
Kt

T∑
j=1

b jtxi jx′i jei j

Then under Assumptions 2.1-2.4,∥∥∥S xx,t

∥∥∥
sp

= Op(1), max
t=1,2,··· ,T

∥∥∥S xx,t

∥∥∥
sp

= Op(1); (2.35)∥∥∥∆x,t

∥∥∥ = Op

((
H/T

)γ1
)
, max

t=1,2,··· ,T

∥∥∥∆x,t

∥∥∥ = Op

((
H/T

)γ1( log T
)1/α

)
; (2.36)∥∥∥S xu,t

∥∥∥ = Op

( 1
√

H

)
, max

t=1,2,··· ,T

∥∥∥S xu,t

∥∥∥ = Op

(
H−

1
2 log1/2 T

)
; (2.37)∥∥∥S xe,t

∥∥∥ = Op(1), max
t=1,2,··· ,T

∥∥∥S xe,t

∥∥∥ = Op

(
log1/α T

(
1 + (H/T )γ1

))
. (2.38)

Proof. Proof of (2.35). Notice that Assumption 2.4(i) implies that maxt=1,2,··· ,T

∥∥∥xitx′it
∥∥∥

sp
= Op(1), ∀i.

Therefore,

∥∥∥S xx,t

∥∥∥
sp
6

1
Kt

T∑
j=1

b jt

∥∥∥xi jx′i j

∥∥∥
sp

6 max
t=1,2,··· ,T

∥∥∥xitx′it
∥∥∥

sp
·

1
Kt

T∑
j=1

b jt = Op(1).

For the second part, write

S xx,t =
1
H

T∑
j=1

b jtE(xi jx′i j) +
1
H

T∑
j=1

b jt(xi jx′i j − E(xi jx′i j))

= S (1)
xx,it + S (2)

xx,it = S (1)
xx,it(1 + ∆̃t), (2.39)
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where ∆̃t = (S (1)
xx,t)−1(S xx,t − S (1)

xx,t). For S (1)
xx,t, by Assumption 2.4(i),

max
t=1,2,··· ,T

∥∥∥S (1)
xx,t

∥∥∥
sp
6 max

t=1,2,··· ,T

∥∥∥Σxx,t

∥∥∥
sp
·

1
Kt

T∑
j=1

b jt = Op(1).

Next, consider

max
t=1,2,··· ,T

∥∥∥S xx,t − S (1)
xx,t

∥∥∥
sp

= max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
H

T∑
j=1

b jt(xi jx′i j − E(xi jx′i j))

∥∥∥∥∥∥∥
sp

.

By Assumption 2.1(i)–(ii), the (`, k)-th component ω`k,i j = x`,i jxk,i j−Ex`,i jxk,i j is strong-mixing. Moreover,
let θ′ = θ/2, E

∣∣∣x`,i jxk,i j

∣∣∣θ′ 6 C < ∞. Together with the assumption of bandwidth in (2.8), we apply (2.29)
to obtain

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
H

T∑
j=1

b jt(xi jx′i j − E(xi jx′i j))

∥∥∥∥∥∥∥
sp

= Op
(
H−

1
2 log

1
2 T + (T H)

1
θ Hε−1)

for any ε > 0. We can always make ε small enough to have (T H)
1
θ Hε−1 6 H−

1
2 . This then implies that

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
H

T∑
j=1

b jt(xi jx′i j − E(xi jx′i j))

∥∥∥∥∥∥∥
sp

= Op
(
H−

1
2 log1/2 T

)
= op(1).

From (2.39), we have

max
t=1,2,··· ,T

∥∥∥S xx,t

∥∥∥
sp
6 max

t=1,2,··· ,T

∥∥∥S (1)
xx,t

∥∥∥
sp

max
t=1,2,··· ,T

∥∥∥I + ∆̃t

∥∥∥
sp

6 max
t=1,2,··· ,T

∥∥∥S (1)
xx,t

∥∥∥
sp

(1 + max
t=1,2,··· ,T

∥∥∥∆̃t

∥∥∥
sp

) = Op(1).

Proof of (2.36). Notice that, (2.4) implies that
∥∥∥β j − βt

∥∥∥ = Op

((
H/T

)γ1
)
. Then,

∥∥∥∆x,t

∥∥∥ 6 1
Kt

T∑
j=1

b jt

∥∥∥xi jx′i j(β j − βt)
∥∥∥ 6 1

Kt

T∑
j=1

b jt

∥∥∥xi jx′i j

∥∥∥
sp

∥∥∥β j − βt

∥∥∥ = Op

((
H/T

)γ1
)
.

For the second part, elements in ∆x,it involve a finite number of linear combinations of sums

st B
1
H

T∑
j=1

b jtω`k,it(βm, j − βm,t),

where ω`k,i j = x`,i jxk,i j −Ex`,i jxk,i j is strong-mixing and E
∣∣∣x`,i jxk,i j

∣∣∣θ′ 6 C < ∞. By Assumption 2.3, we can
apply (2.32) to obtain maxt=1,2,··· ,T |st| = Op

(
(H/T )γ1(log T )1/α

)
, which implies that

max
t=1,2,··· ,T

∥∥∥∆x,t

∥∥∥ = Op

(
(H/T )γ1(log T )1/α

)
.
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Proof of (2.37). By the arguments used in Lemma A.4 in Giraitis et al. [2014] or Lemma 6.2 in
Giraitis et al. [2018], we could show that

1

K1/2
2,t

T∑
j=1

b jtxi jui j
d
−→ N ,

with additional mixing or martingale difference type of assumptions on the process (xituit), where N
denotes Normal distribution. This implies that

Kt

K1/2
2,t

S xu,t = Op(1) =⇒ S xu,t = Op

( 1
√

H

)
,

since Kt

K1/2
2,t

= O(
√

H). For the second part, elements in S xu,t involve finite a number of linear combinations

of sums

st B
1
Kt

T∑
j=1

b jtx`,i jui j.

Because Ex`,i jui j = 0, (x`,i jui j) is strong-mixing with E
∣∣∣x`,i jui j

∣∣∣θ′ 6 C. We can then apply (2.29) to obtain
maxt=1,2,··· ,T |st| = Op

(
H−

1
2 log

1
2 T + (T H)

1
θ Hε−1) = Op

(
H−

1
2 log

1
2 T

)
, by the same reasoning used in the

second part of (2.35), which implies that

max
t=1,2,··· ,T

∥∥∥S xu,t

∥∥∥ = Op
(
H−

1
2 log

1
2 T

)
.

Proof of (2.38). Write

S xe,t =
1
Kt

T∑
j=1

b jtxi jx′i jei j

=
1
Kt

T∑
j=1

b jtxi jx′i j(ei j − eit) +
1
Kt

T∑
j=1

b jtxi jx′i jeit

= S xe1,t + S xe2,t. (2.40)

From (2.4), same assumptions are imposed on (eit) and (βt). By similar arguments as in the proof of (2.36),
we obtain ∥∥∥S xe1,t

∥∥∥ = Op

((H
T

)γ1
)

= op(1)

and
max

t=1,2,··· ,T

∥∥∥S xe1,t

∥∥∥ = Op

(
(H/T )γ1(log T )1/α

)
.
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For S xe2,t, notice that

∥∥∥S xe2,t

∥∥∥ 6 ‖eit‖
1
Kt

T∑
j=1

b jt

∥∥∥xi jx′i j

∥∥∥ 6 ‖eit‖ max
t=1,2,··· ,T

∥∥∥xitx′it
∥∥∥

sp

1
Kt

T∑
j=1

b jt = Op(1),

since ‖eit‖ = Op(1) by Assumption 2.3. Moreover, elements in S xe2,it involve linear combinations of
elements in eit multiplying the sums 1

H

∑T
j=1 b jtx`,i jxk,i j, by (2.33), maxt=1,2,··· ,T |eit| = Op

(
log1/α T

)
and by

(2.35), maxt=1,2,··· ,T

∣∣∣ 1
H

∑T
j=1 b jtx`,i jxk,i j

∣∣∣ = Op(1). Then, we obtain

max
t=1,2,··· ,T

∥∥∥S xe2,t

∥∥∥ = Op

(
log1/α T

)
.

So, by continuing from (2.40), we have∥∥∥S xe,t

∥∥∥ 6 ∥∥∥S xe1,t

∥∥∥ +
∥∥∥S xe2,t

∥∥∥ = Op(1)

max
t=1,2,··· ,T

∥∥∥S xe,t

∥∥∥ 6 max
t=1,2,··· ,T

∥∥∥S xe1,t

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S xe2,t

∥∥∥ = Op

(
log1/α T

(
1 + (H/T )γ1

))
.

�

Lemma A3. Define

rN,T,H,γ,α =
(H

T
)γ log1/α T +

log1/α T
√

N
+

√
log T
NH

.

Consider model (2.11) and the following sums

S zψ,t =
1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

∆z,t =
1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i j(β j − βt)

S zu,t =
1
Kt

T∑
j=1

b jtΨ̂
′
jzi jui j

S ze,t =
1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j

Then under Assumptions 2.1–2.3 (except Assumption 2.2(iii)), Assumptions 3.1-3.4, and L = o
(
L/ log

γ2
α T

)
,
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log1/α T = o(N−1/2),∥∥∥S zψ,t

∥∥∥
sp

= Op(1), max
t=1,2,··· ,T

∥∥∥S zψ,t

∥∥∥
sp

= Op
(
1
)
; (2.41)∥∥∥∆z,t

∥∥∥ = Op

((H
T

)γ1
)
, max

t=1,2,··· ,T

∥∥∥∆z,t

∥∥∥ = Op

((H
T

)γ1 log2/α T
)
; (2.42)∥∥∥S zu,t

∥∥∥ = Op

( 1
√

H

)
, max

t=1,2,··· ,T

∥∥∥S zu,t

∥∥∥ = Op

((
log T

)1/α
r1,T,H,γ1,α + rN,T,L,γ2,α

)
; (2.43)

∥∥∥S ze,t

∥∥∥ = Op(1), max
t=1,2,··· ,T

∥∥∥S ze,t

∥∥∥ = Op

((
log T

)2/α(
1 + (

H
T

)min(γ1,γ2)
))

; (2.44)

Proof. Proof of (2.41). Write

1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

=
1
Kt

T∑
j=1

b jt(Ψ̂′j − Ψ′j + Ψ′j − Ψ′t + Ψ′t)zi jz′i j(Ψ̂ j − Ψ j + Ψ j − Ψt + Ψt)

=
1
Kt

T∑
j=1

b jt(Ψ̂′j − Ψ′j)zi jz′i j(Ψ̂ j − Ψ j) +
1
Kt

T∑
j=1

b jt(Ψ′j − Ψ′t)zi jz′i j(Ψ̂ j − Ψ j) +
1
Kt

T∑
j=1

b jt(Ψ̂′j − Ψ′j)zi jz′i j(Ψ j − Ψt)

+
1
Kt

T∑
j=1

b jt(Ψ′j − Ψ′t)zi jz′i j(Ψ j − Ψt) +
( 1
Kt

T∑
j=1

b jt(Ψ′j − Ψ′t)zi jz′i j

)
Ψt + Ψ′t

( 1
Kt

T∑
j=1

b jtzi jz′i j(Ψ j − Ψt)
)

+ Ψ′t

( 1
Kt

T∑
j=1

b jtzi jz′i j

)
Ψt

From Lemma 1, maxt=1,2,··· ,T

∥∥∥Ψ̂′t − Ψ′t

∥∥∥
sp

= op(1). Consider∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt(Ψ̂′j − Ψ′j)zi jz′i j(Ψ̂ j − Ψ j)

∥∥∥∥∥∥∥
sp

6

(
max

t=1,2,··· ,T

∥∥∥Ψ̂′t − Ψ′t

∥∥∥
sp

)2 1
Kt

T∑
j=1

b jt max
t=1,2,··· ,T

∥∥∥zitz′it
∥∥∥

sp
= op(1).

Similarly, terms above involving Ψ̂′j − Ψ′j are also oP(1). Next, consider∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt(Ψ′j − Ψ′t)zi jz′i j(Ψ j − Ψt)

∥∥∥∥∥∥∥
sp

6
1
Kt

T∑
j=1

b jt

∥∥∥Ψ′j − Ψ′t

∥∥∥ max
t=1,2,··· ,T

∥∥∥zitz′it
∥∥∥

sp
= Op

((H
T

)γ2
)

= op(1).

Similarly, terms above involving Ψ′j − Ψ′t are also oP(1). Then,

1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j = Ψ′t

( 1
Kt

T∑
j=1

b jtzi jz′i j

)
Ψt + op(1) = Ψ′tΣzz,i,tΨt + op(1)
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which implies that ∥∥∥S zψ,t

∥∥∥
sp

= Op(1),

since by Assumption 3.4(i), Ψ′tΣzz,i,tΨt is positive definite. For the second part, since by Assumption
3.1(iii), maxt=1,2,··· ,T

∥∥∥ΣΨzzΨ,it

∥∥∥
sp
< ∞, ∀i. Then, it follows from the expansion above and similar derivation

of S (1)
xx,t in (2.35) that

max
t=1,2,··· ,T

∥∥∥S zψ,t

∥∥∥
sp

= max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ
′
jzi jz′i jΨ j

∥∥∥∥∥∥∥
sp

+ op(1) = Op(1).

Proof of (2.42). Write

∥∥∥∆z,t

∥∥∥ 6 ∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt(Ψ̂′j − Ψ′j)zi jx′i j(β j − βt)

∥∥∥∥∥∥∥ +

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ
′
jzi jx′i j(β j − βt)

∥∥∥∥∥∥∥
6 max

t=1,2,··· ,T

∥∥∥Ψ̂′t − Ψ′t

∥∥∥
sp

1
Kt

T∑
j=1

b jt

∥∥∥zi jx′i j

∥∥∥
sp

∥∥∥β j − βt

∥∥∥ +
1
Kt

T∑
j=1

b jt

∥∥∥Ψ′j∥∥∥sp

∥∥∥zi jx′i j

∥∥∥
sp

∥∥∥β j − βt

∥∥∥
6 max

t=1,2,··· ,T

∥∥∥Ψ̂′t − Ψ′t

∥∥∥
sp

max
t=1,2,··· ,T

∥∥∥zitx′it
∥∥∥

sp

1
Kt

T∑
j=1

b jt

∥∥∥β j − βt

∥∥∥ + max
t=1,2,··· ,T

∥∥∥zitx′it
∥∥∥

sp

1
Kt

T∑
j=1

b jt

∥∥∥Ψ′j∥∥∥sp

∥∥∥β j − βt

∥∥∥
By (2.4),

∥∥∥β j − βt

∥∥∥ = Op

(
( H

T )γ1
)
. Together with Lemma 1, Assumptions 3.1(iii) and 3.3, we have∥∥∥∥∥∥∥ 1

H

T∑
j=1

b jtΨ̂
′
jzi jx′i j(β j − βt)

∥∥∥∥∥∥∥ = Op

(
(
H
T

)γ1
)
.

Second part follows directly from (57) in Giraitis et al. [2020a]:

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
H

T∑
j=1

b jtΨ̂
′
jzi jx′i j(β j − βt)

∥∥∥∥∥∥∥ = Op

(
(
H
T

)γ1 log2/α T
)
.

Proof of (2.43). (26) in Giraitis et al. [2020a] implies that

1

K1/2
2,t

T∑
j=1

b jtzi jui j = Op(1) =⇒
1
Kt

T∑
j=1

b jtzi jui j = Op

( 1
√

H

)
,
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since Kt

K1/2
2,t

= O(
√

H). Write

S zu,t =
1
Kt

T∑
j=1

b j,tΨ̂
′
jzi jui j

=
1
Kt

T∑
j=1

b j,t(Ψ̂′j − Ψ′j + Ψ′j − Ψ′t + Ψ′t)zi jui j

=
1
Kt

T∑
j=1

b j,t(Ψ̂′j − Ψ′j)zi jui j +
1
Kt

T∑
j=1

b j,t(Ψ′j − Ψ′t)zi jui j + Ψ′t
1
Kt

T∑
j=1

b j,tzi jui j

= S zu,t,1 + S zu,t,2 + S zu,t,3.

Since S zu,t,1 involves Ψ̂′j −Ψ′j, Ψ̂t is uniformly consistent, S zu,t,1 is asymptotically negligible. For S zu,t,2, we
have ∥∥∥S zu,t,2

∥∥∥ 6 1
Kt

T∑
j=1

b j,t

∥∥∥Ψ′j − Ψ′t

∥∥∥
sp

∥∥∥zi jui j

∥∥∥ = Op

((H
T

)γ2
)

= op(1).

For S zu,t,3, we have ∥∥∥S zu,t,3

∥∥∥ 6 ∥∥∥Ψ′t∥∥∥sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b j,tzi jui j

∥∥∥∥∥∥∥ = Op

( 1
√

H

)
.

It follows immediately from triangular inequality that

∥∥∥S zu,t

∥∥∥ 6 ∥∥∥S zu,t,1

∥∥∥ +
∥∥∥S zu,t,2

∥∥∥ +
∥∥∥S zu,t,3

∥∥∥ = Op

( 1
√

H

)
.

Second part follows similarly from (58) in Giraitis et al. [2020a]:

max
t=1,2,··· ,T

∥∥∥S zu,t

∥∥∥ = Op

((
log T

)1/α
r1,T,H,γ1,α + rN,T,L,γ2,α

)
,

where L is the bandwidth parameter used to obtain Ψ̂t and H is used to obtain β̂t. Notice that, there are
two differences from (58) in Giraitis et al. [2020a]. First, both terms have possibly different smoothness
parameters: γ1, γ2. Second, rN,T,L,γ2,α involves N, since first stage estimates are obtained from the panels.



84

Proof of (2.44). Write

S ze,t =
1
Kt

T∑
j=1

b jt
(
Ψ̂′j − Ψ′j + Ψ′j − Ψ′t + Ψ′t

)
zi jx′i j

(
ei j − eit + eit

)
=

1
Kt

T∑
j=1

b jt
(
Ψ̂′j − Ψ′j

)
zi jx′i j

(
ei j − eit

)
+

( 1
Kt

T∑
j=1

b jt
(
Ψ̂′j − Ψ′j

)
zi jx′i j

)
eit

+
1
Kt

T∑
j=1

b jt
(
Ψ′j − Ψ′t

)
zi jx′i j

(
ei j − eit

)
+

( 1
Kt

T∑
j=1

b jt
(
Ψ′j − Ψ′t

)
zi jx′i j

)
eit

+ Ψ′t

( 1
Kt

T∑
j=1

b jtzi jx′i j
(
ei j − eit

))
+ Ψ′t

( 1
Kt

T∑
j=1

b jtzi jx′i j

)
eit.

Consider the first term:∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt
(
Ψ̂′j − Ψ′j

)
zi jx′i j

(
ei j − eit

)∥∥∥∥∥∥∥ 6 max
t=1,2,··· ,T

∥∥∥Ψ̂′t − Ψ′t

∥∥∥
sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtzi jx′i j
(
ei j − eit

)∥∥∥∥∥∥∥
6 max

t=1,2,··· ,T

∥∥∥Ψ̂′t − Ψ′t

∥∥∥
sp

max
t=1,2,··· ,T

∥∥∥zitx′it
∥∥∥

sp

1
Kt

T∑
j=1

b jt

∥∥∥ei j − eit

∥∥∥
= op(1).

Thus, terms involving Ψ̂′j − Ψ′j are also op(1). Consider the third term:∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt
(
Ψ′j − Ψ′t

)
zi jx′i j

(
ei j − eit

)∥∥∥∥∥∥∥ 6 max
t=1,2,··· ,T

∥∥∥zitx′it
∥∥∥

sp

1
Kt

T∑
j=1

b jt

∥∥∥Ψ′j − Ψ′t

∥∥∥
sp

∥∥∥ei j − eit

∥∥∥
= Op

((H
T

)2γ2
)

= op(1).

Thus, terms involving Ψ′j − Ψ′t are also op(1). The dominating term is the last one. Then, we have

∥∥∥S ze,t

∥∥∥ =

∥∥∥∥∥∥∥Ψ′t( 1
Kt

T∑
j=1

b j,tzi jx′i j

)
eit

∥∥∥∥∥∥∥ + op(1)

=
∥∥∥Ψ′t∥∥∥sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b j,tzi jx′i j

∥∥∥∥∥∥∥
sp

‖eit‖ + op(1)

= Op(1).

To derive the uniform rate, it follows the similar reasoning as above, except the fact that we have to use
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(2.32) and (2.33). Since by Assumption imposed in Lemma 1, Ψ̂t is uniformly consistent, we have

max
t=1,2,··· ,T

∥∥∥S ze,t

∥∥∥ 6 max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt
(
Ψ′j − Ψ′t

)
zi jx′i j

(
ei j − eit

)∥∥∥∥∥∥∥ + max
t=1,2,··· ,T

∥∥∥∥∥∥∥( 1
Kt

T∑
j=1

b jt
(
Ψ′j − Ψ′t

)
zi jx′i j

)
eit

∥∥∥∥∥∥∥
+ max

t=1,2,··· ,T

∥∥∥∥∥∥∥Ψ′t( 1
Kt

T∑
j=1

b jtzi jx′i j
(
ei j − eit

))∥∥∥∥∥∥∥ + max
t=1,2,··· ,T

∥∥∥∥∥∥∥Ψ′t( 1
Kt

T∑
j=1

b jtzi jx′i j

)
eit

∥∥∥∥∥∥∥
= Op

((
log T

)2/α(
1 + (

H
T

)min(γ1,γ2)
))
.

�

Appendix B: Mathematical proofs

Appendix B.1: Proof of Theorem 1

Under (2.1) and (2.3), the TVP-OLS-MG estimator defined in (2.6) can be written as:

β̂MG,t =
1
N

N∑
i=1

β̂i,t

=
1
N

N∑
i=1

[( T∑
j=1

b jtxi jx′i j

)−1
T∑

j=1

b jtxi jyi j

]

=
1
N

N∑
i=1

[( T∑
j=1

b jtxi jx′i j

)−1
T∑

j=1

b jtxi j(x′i jβi j + ui j)
]

=
1
N

N∑
i=1

[( T∑
j=1

b jtxi jx′i j

)−1
T∑

j=1

b jtxi j(x′i j(β j − βt + βt + ei j) + ui j)
]
.

Then, we have
β̂MG,t − βt = ∆x,it + S xu,it + S xe,it, (2.45)

where:

∆x,it =
1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtxi jx′i j
)−1( 1

Kt

T∑
j=1

b jtxi jx′i j(β j − βt)
)]

S xu,it =
1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtxi jx′i j
)−1( 1

Kt

T∑
j=1

b jtxi jui j
)]

S xe,it =
1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtxi jx′i j
)−1( 1

Kt

T∑
j=1

b jtxi jx′i jei j
)]
.
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We will show that∥∥∥∆x,it

∥∥∥ = Op

((H
T

)γ1
)
, max

t=1,2,··· ,T

∥∥∥∆x,it

∥∥∥ = Op

((H
T

)γ1 log1/α T
)
; (2.46)∥∥∥S xu,it

∥∥∥ = Op

( 1
√

NH

)
, max

t=1,2,··· ,T

∥∥∥S xu,it

∥∥∥ = Op

((
NH

)−1/2 log1/2 T
)
; (2.47)∥∥∥S xe,it

∥∥∥ = Op

( 1
√

N

)
, max

t=1,2,··· ,T

∥∥∥S xe,it

∥∥∥ = Op

( 1
√

N
log1/α T (1 + (

H
T

)γ1)
)
; (2.48)

These together establish (1) and (2)(i) in Theorem 1.
Proof of (2.46). Notice that

∥∥∥∆x,it

∥∥∥ 6 1
N

N∑
i=1

∥∥∥∥∥∥∥( 1
Kt

T∑
j=1

b jtxi jx′i j
)−1( 1

Kt

T∑
j=1

b jtxi jx′i j(β j − βt)
)∥∥∥∥∥∥∥

6
1
N

N∑
i=1

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
−1

sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j(β j − βt)

∥∥∥∥∥∥∥
= Op

((H
T

)γ1
)
.

Similarly, we have

max
t=1,2,··· ,T

∥∥∥∆x,it

∥∥∥ 6 1
N

N∑
i=1

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
−1

sp

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j(β j − βt)

∥∥∥∥∥∥∥
= Op

((H
T

)γ1 log1/α T
)
.

The final inequalities above all follow from (2.35) and (2.36) in Lemma A2, and the fact that all terms are
i.i.d. across i (Assumption 2.2(i)).

Proof of (2.47). Let us define

Zxu
i =

( 1
Kt

T∑
j=1

b jtxi jx′i j
)−1( 1

Kt

T∑
j=1

b jtxi jui j
)
.

By (2.35) and (2.37), we have

∥∥∥Zxu
i

∥∥∥ 6 ∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
−1

sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jui j

∥∥∥∥∥∥∥ = Op

( 1
√

H

)
.
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Then, we have

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

Zxu
i

∥∥∥∥∥∥∥
2

=
1

N2

N∑
i=1

E
∥∥∥Zxu

i

∥∥∥2
= O

( 1
NH

)
,

where the first equality follows from the fact that (Zxu
i ) is i.i.d. over i. This implies that

∥∥∥S xu,it

∥∥∥ = O
( 1
√

NH

)
.

To derive the uniform rate, it follows a similar reasoning as above, except for the fact that we have to use
the uniform rate of (2.35) and (2.37) in Lemma A2. This implies that

max
t=1,2,··· ,T

∥∥∥S xu,it

∥∥∥ = Op

((
NH

)−1/2 log1/2 T
)

Proof of (2.48). Let us define

Zxe
i =

( 1
Kt

T∑
j=1

b jtxi jx′i j
)−1( 1

Kt

T∑
j=1

b jtxi jx′i jei j
)
.

By (2.35) and (2.38), we have

∥∥∥Zxe
i

∥∥∥ 6 ∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
−1

sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i jei j

∥∥∥∥∥∥∥ = Op(1).

Then, we have

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

Zxe
i

∥∥∥∥∥∥∥
2

=
1

N2

N∑
i=1

E
∥∥∥Zxe

i

∥∥∥2
= O

( 1
N

)
,

where the first line follows from the fact that (Zxe
i ) is i.i.d. over i. This implies that

∥∥∥S xe,it

∥∥∥ = O
( 1
√

N

)
.

To derive the uniform rate, it follows a similar reasoning as above, except for the fact that we have to use
the uniform rate of (2.35) and (2.38) in Lemma A2. This implies that

max
t=1,2,··· ,T

∥∥∥S xe,it

∥∥∥ = Op

( 1
√

N
log1/α T (1 + (

H
T

)γ1)
)
.
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Now by combining (2.46), (2.47) and (2.48), we have

√
N(β̂MG,t − βt) =

1
√

N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtxi jx′i j

)−1( 1
Kt

T∑
j=1

b jtxi jx′i jei j

)]
+ Op

( 1
√

H

)
+ Op

(√
N
(H

T
)γ1

)
=

1
√

N

N∑
i=1

eit + op(1),

since it is assumed that
(H

T

)γ1 = o(N−1/2) as (N,T )→ ∞ and according to (2.38)

1
Kt

T∑
j=1

b jtxi jx′i jei j =
( 1
Kt

T∑
j=1

b jtxi jx′i j

)
eit + op(1).

By Assumption 2.2(i), we can apply CLT for i.i.d. sequences to obtain

√
N

(
Ωe,t

)−1/2 (
β̂MG,t − βt

) d
−→ N

(
0, Ik

)
,

where

Ωe,t = lim
N→∞

Var
( 1
√

N

N∑
i=1

eit

)
,

and by Assumption 2.2(iv) it is positive definite.
We now show that ΣMG,t can be consistently estimated by

1
N

N∑
i=1

(
β̂it − β̂MG,t

)(
β̂it − β̂MG,t

)′
. (2.49)

Because

β̂it − βt =
( 1
H

T∑
j=1

b jtxi jx′i j
)−1( 1

H

T∑
j=1

b jtxi jx′i jei j
)

+ Op

( 1
√

H

)
+ Op

(
(
H
T

)γ1
)

= eit + op(1)

and

β̂MG,t − βt =
1
N

N∑
i=1

eit + op(1)

we have

β̂it − β̂MG,t = eit −
1
N

N∑
i=1

eit + op(1)
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Then, as (N,T )→ ∞,
1
N

N∑
i=1

(β̂i,t − β̂MG,t)(β̂i,t − β̂MG,t)′
p
−→ ΣMG,t,

which implies that (2.49) is a consistent estimator for Ωe,t.
By (2.45), we see that

max
t=1,2,··· ,T

∥∥∥β̂MG,t − βt

∥∥∥ 6 max
t=1,2,··· ,T

∥∥∥∆x,it

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S xu,it

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S xe,it

∥∥∥
= Op

((H
T

)γ1 log1/α T +
log1/α T
√

N
+

√
log T
NH

)
,

which completes the proof of Theorem 1(1) for β̂MG,t and Theorem 1(2)(i).
We now explore the pooled estimator (2.7). Notice that

β̂P,t − βt =
( N∑

i=1

T∑
j=1

b jtxi jx′i j

)−1
N∑

i=1

T∑
j=1

b jtxi jyi j − βt

=
( N∑

i=1

T∑
j=1

b jtxi jx′i j

)−1
N∑

i=1

T∑
j=1

b jtxi j(x′i jβi j + ui j) − βt

=
( N∑

i=1

T∑
j=1

b jtxi jx′i j

)−1
N∑

i=1

T∑
j=1

b jtxi j(x′i j
(
β j − βt + βt + ei j) + ui j

)
− βt

=
( N∑

i=1

T∑
j=1

b jtxi jx′i j

)−1
N∑

i=1

T∑
j=1

b jtxi jui j +
( N∑

i=1

T∑
j=1

b jtxi jx′i j

)−1
N∑

i=1

T∑
j=1

b jtxi jx′i jei j

+
( N∑

i=1

T∑
j=1

b jtxi jx′i j

)−1
N∑

i=1

T∑
j=1

b jtxi jx′i j(β j − βt)

= S −1
xx,p,t

(
S xu,p,t + S xe,p,t + ∆x,p,t

)
, (2.50)
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where

S xx,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j

∆x,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j(β j − βt)

S xu,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtxi jui j

S xe,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtxi jx′i jei j

We will show that∥∥∥S xx,p,t

∥∥∥
sp

= Op(1), max
t=1,2,··· ,T

∥∥∥S xx,p,t

∥∥∥
sp

= Op(1); (2.51)∥∥∥∆x,p,t

∥∥∥ = Op

((H
T

)γ1
)
, max

t=1,2,··· ,T

∥∥∥∆x,p,t

∥∥∥ = Op

((H
T

)γ1 log1/α T
)
; (2.52)∥∥∥S xu,p,t

∥∥∥ = Op

( 1
√

NH

)
, max

t=1,2,··· ,T

∥∥∥S xu,p,t

∥∥∥ = Op

((
NH

)−1/2 log1/2 T
)
; (2.53)∥∥∥S xe,p,t

∥∥∥ = Op

( 1
√

N

)
, max

t=1,2,··· ,T

∥∥∥S xe,p,t

∥∥∥ = Op

( 1
√

N
log1/α T (1 + (

H
T

)γ1)
)
; (2.54)

These together establish (1) and (2)(ii) in Theorem 1.
Proof of (2.51). This follows immediately from (2.35), since by Assumption 2.2(i), all are i.i.d. across

i: ∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
sp

6
1
N

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
sp

= Op(1)

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
sp

6
1
N

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j

∥∥∥∥∥∥∥
sp

= Op(1)

Proof of (2.52). By Assumption 2.2(i) and (2.36), we have∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j(β j − βt)

∥∥∥∥∥∥∥ 6 1
N

N∑
i=1

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j(β j − βt)

∥∥∥∥∥∥∥ = Op

((H
T

)γ1
)

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j(β j − βt)

∥∥∥∥∥∥∥ 6 1
N

N∑
i=1

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtxi jx′i j(β j − βt)

∥∥∥∥∥∥∥ = Op

((H
T

)γ1 log1/α T
)
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Proof of (2.53). Define

Zxu
i,p,t =

1
Kt

T∑
j=1

b jtxi jui j.

By Assumption 2.2(i) and (2.37), we have

E
∥∥∥S xu,p,t

∥∥∥2
=

1
N2

N∑
i=1

E
∥∥∥Zxu

i,p,t

∥∥∥2
= O

( 1
NH

)
.

This establishes the first part of (2.53). To derive uniform rate, it follows same reasoning as above, except
that we need to use uniform rate in (2.37). Then, we have

max
t=1,2,··· ,T

∥∥∥S xu,p,t

∥∥∥ = Op

((
NH

)−1/2 log1/2 T
)
.

Proof of (2.54). Define

Zxe
i,p,t =

1
Kt

T∑
j=1

b jtxi jx′i jei j.

By Assumption 2.2(i) and (2.38), we have

E
∥∥∥S xe,p,t

∥∥∥2
=

1
N2

N∑
i=1

E
∥∥∥Zxe

i,p,t

∥∥∥2
= O

( 1
N

)
.

This establishes the first part of (2.54). To derive uniform rate, it follows same reasoning as above, except
that we need to use uniform rate in (2.38). Then, we have

max
t=1,2,··· ,T

∥∥∥S xu,p,t

∥∥∥ = Op

( 1
√

N
log1/α T (1 + (

H
T

)γ1)
)
.

Now by combining (2.51), (2.52), (2.53), and (2.54), we have

√
N(β̂P,t − βt) =

( 1
NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j

)−1( 1
√

NKt

N∑
i=1

T∑
j=1

b jtxi jx′i jei j

)
+ Op

( 1
√

H

)
+ Op

(√
N(

H
T

)γ1
)

=

(
1

NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j

)−1( 1
√

N

N∑
i=1

( 1
Kt

T∑
j=1

b jtxi jx′i j

)
eit

)
+ op(1)

Because it is assumed that
(H

T

)γ1 = o(N−1/2) as (N,T ) → ∞, the last two terms in the first line are op(1)
and the dominating term is the first one. As in the case of Mean group estimator, we can apply CLT for
i.i.d. sequences to obtain

1
√

N

N∑
i=1

( 1
Kt

T∑
j=1

b jtxi jx′i j

)
eit

d
−→ N

(
0,Rt

)
,
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where

Rt = lim
N→∞

Var
(

1
√

N

N∑
i=1

Σxx,iteit

)
,

since by (2.34), for each i, we have
1
Kt

T∑
j=1

b jtx′i jxi j
p
−→ Σxx,it.

Then, since

lim
(N,T )→∞

1
NKt

N∑
i=1

T∑
j=1

b jtxi jx′i j = Σxx,t = O(1),

it follows from Slutsky’s theorem that

√
N Σxx,t R−1/2

t

(
β̂P,t − βt

) d
−→ N(0, Ik).

Consider

R̂t =
1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtxi jx′i j

)
(β̂i,t − β̂MG,t)(β̂i,t − β̂MG,t)′

( 1
Kt

T∑
j=1

b jtxi jx′i j

)]
.

We now show that R̂t is a consistent estimator of Rt. Write

1
Kt

T∑
j=1

b jtxi jx′i j(β̂i,t − β̂MG,t) =
1
Kt

T∑
j=1

b jtxi jx′i j

(
eit −

1
N

N∑
i=1

eit

)
Then, as (N,T )→ ∞,

R̂t
p
−→ Rt

which establishes the claim.
By (2.50), together with (2.51), (2.52), (2.53), and (2.54), we have

max
t=1,2,··· ,T

∥∥∥β̂P,t − βt

∥∥∥ 6 max
t=1,2,··· ,T

∥∥∥S xx,p,t

∥∥∥−1

sp

(
max

t=1,2,··· ,T

∥∥∥∆x,p,t

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S xu,p,t

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S xe,p,t

∥∥∥)
= Op

((H
T

)γ1 log1/α T +
log1/α T
√

N
+

√
log T
NH

)
.
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Appendix B.2: Proof of Theorem 2

Let us first consider the TVP-IV-MG estimator,

β̂IV
MG,t =

1
N

N∑
i=1

β̂IV
i,t

=
1
N

N∑
i=1

[
(

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j)−1(

T∑
j=1

b jtΨ̂
′
jzi jyi j)

]
.

A similar expansion to the TVP-OLS-MG case gives

β̂IV
MG,t − βt = ∆z,t + S zu,t + S ze,t,

where

∆z,t =
1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i j(β j − βt)

)]
S zu,t =

1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jui j

)]
S ze,t =

1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j

)]
.

We will show that∥∥∥∆z,t

∥∥∥ = Op

((H
T

)γ1
)
, max

t=1,2,··· ,T

∥∥∥∆z,t

∥∥∥ = Op

((H
T

)γ1 log2/α T
)

(2.55)∥∥∥S zu,t

∥∥∥ = Op

( 1
√

NH

)
, max

t=1,2,··· ,T

∥∥∥S zu,t

∥∥∥ = Op

(
1
√

N

((
log T

)1/αr1,T,H,γ1,α + rN,T,L,γ2,α

))
(2.56)

∥∥∥S ze,t

∥∥∥ = Op

( 1
√

N

)
, max

t=1,2,··· ,T

∥∥∥S ze,t

∥∥∥ = Op

((
log T

)2/α

√
N

(
1 +

(H
T

)min(γ1,γ2)
))
. (2.57)

These together establishes Theorem 2(i) and Theorem 2(ii).
Proof of (2.55). Observe that

∥∥∥∆z,t

∥∥∥ 6 1
N

N∑
i=1

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

∥∥∥∥∥∥∥
−1

sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i j(β j − βt)

∥∥∥∥∥∥∥
= Op

((H
T

)γ1
)
,

where the second line follows from (2.41) and (2.42) and the fact that by Assumption 3.2(i) all terms are
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i.i.d. accross i. Again, by uniform rates derived in (2.41) and (2.42), we have

max
t=1,2,··· ,T

∥∥∥∆z,t

∥∥∥ 6 1
N

N∑
i=1

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

∥∥∥∥∥∥∥
−1

sp

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i j(β j − βt)

∥∥∥∥∥∥∥ = Op

((H
T

)γ1 log2/α T
)
.

Proof of (2.56). Let

Zzu
i =

( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jui j

)
.

Clearly, by (2.41) and (2.43):

∥∥∥Zzu
i

∥∥∥ 6 ∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

∥∥∥∥∥∥∥
−1

sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jui j

∥∥∥∥∥∥∥ = Op

( 1
√

H

)
.

Thus, we have

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

Zzu
i

∥∥∥∥∥∥∥
2

=
1

HN2

N∑
i=1

HE
∥∥∥Zzu

i

∥∥∥2
= O

( 1
NH

)
,

which implies that ∥∥∥S zu,t

∥∥∥ = Op

( 1
√

NH

)
.

To derive the uniform rate, it follows similar reasoning as above, except for the fact that we have to use
uniform rates derived in (2.41) and (2.43) to obtain

max
t=1,2,··· ,T

∥∥∥S zu,t

∥∥∥ = Op

(
1
√

N

((
log T

)1/αr1,T,H,γ1,α + rN,T,L,γ2,α

))
.

Proof of (2.57). Let

Zze
i =

( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j

)
.

Clearly, by (2.41) and (2.44):

∥∥∥Zze
i

∥∥∥ 6 ∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

∥∥∥∥∥∥∥
−1

sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j

∥∥∥∥∥∥∥ = Op(1).

Thus, we have

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

Zze
i

∥∥∥∥∥∥∥
2

=
1

N2

N∑
i=1

E
∥∥∥Zze

i

∥∥∥2
= O

( 1
N

)
,
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which implies that ∥∥∥S ze,t

∥∥∥ = Op

( 1
√

N

)
.

To derive the uniform rate, it follows again similar reasoning as above, except for the fact that we have to
use uniform rates derived in (2.41) and (2.44) to obtain

max
t=1,2,··· ,T

∥∥∥S ze,t

∥∥∥ = Op

((
log T

)2/α

√
N

(
1 +

(H
T

)min(γ1,γ2)
))
.

Now, we sum them up. By (2.55), (2.56) and (2.57), we first obtain the uniform consistency rate

max
t=1,2,··· ,T

∥∥∥β̂IV
MG,t − βt

∥∥∥ 6 max
t=1,2,··· ,T

‖∆xt‖ + max
t=1,2,··· ,T

∥∥∥S xu,t

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S xe,t

∥∥∥
= Op

(
1
√

N

((
log T

)1/αr1,T,H,γ1,α + rN,T,L,γ2,α

))
.

Then, we obtain the expansion of the estimator

√
N(β̂IV

MG,t − βt) =
1
√

N

N∑
i=1

[
(

1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j)−1(

1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j)

]
+ Op

(√
N(

H
T

)γ1
)

+ Op

( 1
√

H

)
.

Because we assume that ( H
T )γ1 = o(N−1/2) as (N,T ) → ∞, the last two terms above are op(1) and the

dominating term is the first one. Recall from the derivation of (2.41) and (2.44), together with (2.34), we
have that

1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j = Ψ′tΣzz,itΨt + op(1)

1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j = Ψ′tΣzx,iteit + op(1).

If k = p and Ψt is invertible, we have

√
N Ψt (β̂IV

MG,t − βt) =
1
√

N

N∑
i=1

Σ−1
zz,itΣze,iteit + op(1).

By Assumptions 3.4(i) and 3.4(ii), Σ−1
zz,it and Σze,it are all positive definite. Since (eit) is i.i.d. across i, we

can apply CLT for i.i.d. sequence to obtain

√
N Ψt

(
ΩIV

e,t
)−1/2 (β̂IV

MG,t − βt)
d
−→ N(0, Ik),
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where ΩIV
e,t is given by

ΩIV
e,t = lim

N→∞
Var

( 1
√

N

N∑
i=1

Σ−1
zz,itΣze,iteit

)
.

Consider

β̂IV
it − βt =

( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j

)
+ op(1).

Similar expansion as in TVP-OLS case gives

Ψt (β̂IV
it − βt) = Σ−1

zz,itΣze,iteit + op(1).

Then, it follows similarly as in the proof of TVP-OLS-MG case that

Ψt

( N∑
i=1

(β̂IV
it − βt)(β̂IV

it − βt)′
)
Ψ′t

is a consistent estimator for ΩIV
MG,t, by replacing Ψt with its estimated counterpart.

In the next step, we consider the pooled estimator

β̂IV
P,t =

( N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jyi, j

)
.

Similarly to the TVP-OLS-P case, we have

β̂IV
P,t − βt = S −1

zΨ,p,t

(
∆z,p,t + S zu,p,t + S ze,p,t

)
,

where

S zΨ,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jz′i, jΨ̂ j

∆z,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jx′i, j(β j − βt)

S zu,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jui, j

S ze,p,t =
1

NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jx′i, jei, j.
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We will show that∥∥∥S zΨ,p,t

∥∥∥
sp

= Op(1), max
t=1,2,··· ,T

∥∥∥S zΨ,p,t

∥∥∥
sp

= Op(1) (2.58)∥∥∥∆z,p,t

∥∥∥ = Op

((H
T

)γ1
)
, max

t=1,2,··· ,T

∥∥∥∆z,p,t

∥∥∥ = Op

((H
T

)γ1 log2/α T
)

(2.59)∥∥∥S zu,p,t

∥∥∥ = Op

( 1
√

NH

)
, max

t=1,2,··· ,T

∥∥∥S zu,p,t

∥∥∥ = Op

(
1
√

N

((
log T

)1/αr1,T,H,γ1,α + rN,T,L,γ2,α

))
(2.60)

∥∥∥S ze,p,t

∥∥∥ = Op

( 1
√

N

)
, max

t=1,2,··· ,T

∥∥∥S ze,p,t

∥∥∥ = Op

((
log T

)2/α

√
N

(
1 +

(H
T

)min(γ1,γ2)
))
. (2.61)

These together establishes uniform consistency and asymptotic normality for the pooled estimator.
Proof of (2.58). This follows immediately from (2.41) and Assumption 3.2(i):∥∥∥∥∥∥∥ 1

NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jz′i, jΨ̂ j

∥∥∥∥∥∥∥
sp

6
1
N

N∑
i=1

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi, jz′i, jΨ̂ j

∥∥∥∥∥∥∥
sp

= Op(1)

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jz′i, jΨ̂ j

∥∥∥∥∥∥∥
sp

6
1
N

N∑
i=1

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi, jz′i, jΨ̂ j

∥∥∥∥∥∥∥
sp

= Op(1)

Proof of (2.59). By Assumption 3.2(1) and (2.42), we have∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jx′i, j(β j − βt)

∥∥∥∥∥∥∥ 6 1
N

N∑
i=1

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jtΨ̂
′
jzi, jx′i, j(β j − βt)

∥∥∥∥∥∥∥ = Op

((H
T

)γ1
)

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jx′i, j(β j − βt)

∥∥∥∥∥∥∥ 6 1
N

N∑
i=1

max
t=1,2,··· ,T

∥∥∥∥∥∥∥ 1
NKt

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi, jx′i, j(β j − βt)

∥∥∥∥∥∥∥
= Op

((H
T

)γ1 log2/α T
)
.

Proof of (2.60). Define

Zzu
i,p,t =

1
Kt

T∑
j=1

b jtΨ̂
′
jzi, jui, j.

By Assumption 3.2(i) and (2.43), we have

E
∥∥∥S zu,p,t

∥∥∥2
=

1
N2

N∑
i=1

E
∥∥∥Zzu

i,p,t

∥∥∥2
= O

( 1
NH

)
,

which establishes the first part of (2.60). To derive uniform rate, it follows a similar reasoning as above,
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except that we need to use uniform rate in (2.43). Then, we have

max
t=1,2,··· ,T

∥∥∥S zu,p,t

∥∥∥ = Op

(
1
√

N

((
log T

)1/αr1,T,H,γ1,α + rN,T,L,γ2,α

))
.

Proof of (2.61). Define

Zze
i,p,t =

1
Kt

T∑
j=1

b jtΨ̂
′
jzi, jx′i, jei j.

By Assumption 3.2(1) and (2.44), we have

E
∥∥∥S ze,p,t

∥∥∥2
=

1
N2

N∑
i=1

E
∥∥∥Zze

i,p,t

∥∥∥2
= O

( 1
N

)
,

which establishes the first part of (2.61). To derive uniform rate, it follows a similar reasoning as above,
except that we need to use uniform rate in (2.44). Then, we have

max
t=1,2,··· ,T

∥∥∥S ze,p,t

∥∥∥ = Op

((
log T

)2/α

√
N

(
1 +

(H
T

)min(γ1,γ2)
))
.

Now we combine the equations. First, by (2.58), (2.59), (2.60), and (2.61), we have

max
t=1,2,··· ,T

∥∥∥β̂IV
P,t − βt

∥∥∥ max
t=1,2,··· ,T

∥∥∥S zΨ,p,t

∥∥∥−1

sp

(
max

t=1,2,··· ,T

∥∥∥∆z,p,t

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S zu,p,t

∥∥∥ + max
t=1,2,··· ,T

∥∥∥S ze,p,t

∥∥∥)
= Op

(
1
√

N

((
log T

)1/αr1,T,H,γ1,α + rN,T,L,γ2,α

))
.

Then, we obtain the following expansion for the pooled estimator

√
N(β̂IV

P,t − βt) =
( 1
NH

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j

)−1( 1
√

NH

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j

)
+ Op

(√
N(

H
T

)γ1
)

+ Op

( 1
√

H

)
.

Because it is assumed that ( H
T )γ1 = o(N−1/2) as (N,T )→ ∞, the last two terms are op(1) and the dominating

term is the first one. Recall from the derivations of (2.41) and (2.44), together with (2.34) and the fact that
ΣΨzzΨ,t = plim(N,T )→∞

1
N

∑N
i=1

∑T
j=1 b jtΨ

′
jzi jz′i jΨ j = Op(1), we have that

1
NH

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi jz′i jΨ̂ j = ΣΨzzΨ,t + op(1)

1
√

NH

N∑
i=1

T∑
j=1

b jtΨ̂
′
jzi jx′i jei j = Ψt

1
√

N

N∑
i=1

Σzx,iteit + op(1).
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Since both ΣΨzzΨ,t and Σzx,it are positive definite and the fact that (eit) are i.i.d. across i, we apply CLT for
i.i.d. sequence to obtain:

1
√

NH

N∑
i=1

T∑
j=1

b jtΣzx,iteit
d
−→ N

(
0,RIV

P,t

)
,

where RIV
P,t is given by

RIV
t = lim

N→∞
Var

( 1
√

N

N∑
i=1

Σzx,iteit

)
.

By Slutsky’s theorem, we have

√
N ΣΨzzΨ,t Ψ−1

t

(
RIV

P,t

)−1/2(
β̂IV

P,t − βt

) d
−→ N(0, Ik).

Consider ( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i j

)(
β̂IV

i,t − β̂
IV
MG,t

)
= Ψt

( 1
Kt

T∑
j=1

b jtzi jx′i j

)(
eit −

1
N

N∑
i=1

eit
)

+ op(1).

Then, we have

1
N

N∑
i=1

[( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i j

)(
β̂IV

i,t − β̂
IV
MG,t

)(
β̂IV

i,t − β̂
IV
MG,t

)′( 1
Kt

T∑
j=1

b jtΨ̂
′
jzi jx′i j

)′]
= ΨtRIV

p,tΨt + op(1),

which shows that above is a consistent estimator for ΨtRIV
p,tΨt.

Appendix C: Additional empirical results
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Figure 2.1: Empirical results for backward-looking Phillips curve. The solid blue lines show the point TVP-OLS estimates
and the blue shaded areas show the 95% pointwise confidence intervals. The red solid lines show the point TVP-IV estimates
and the red shaded areas show the 95% pointwise confidence intervals.

Figure 2.2: Empirical results for forward-looking Phillips curve. The solid blue lines show the point TVP-OLS estimates and
the blue shaded areas show the 95% pointwise confidence intervals. The red solid lines show the point TVP-IV estimates and
the red shaded areas show the 95% pointwise confidence intervals.
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Figure 2.3: p-values of time-varying Hausman test for backward-looking Phillips curve.

Figure 2.4: p-values of time-varying Hausman test for forward-looking Phillips curve.
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Chapter 3

Time-Varying GMM Estimation

3.1 Introduction

Since the seminal work by Hansen [1982], the Generalized Method of Moments (GMM) has been widely
used to analyze economic and finance data, see Hall et al. [2005], Hansen and West [2002] and Jagannathan
et al. [2002] for an early review of the applications. Unlike likelihood-based inference, GMM only requires
to specify a vector of moment conditions which often comes from economic and finance theory, without
the need to specify the joint probability distribution of the data.

As parameter instability is pervasive (Stock and Watson [1996]), attempts have been made to handle
structural change in the GMM framework. Most of the existing literature focuses on testing hypotheses
about structural stability where under the alternative hypothesis, parameters are assumed to have break-
points, possibly at unknown dates. However, as Hansen [2001] points out, “it may seem unlikely that a
structural break could be immediate and might seem more reasonable to allow a structural change to take a
period of time to take effect.” Indeed, all leading driving forces of structural change, such as technological
improvements, climate change, and modifications in the institutional context, may take time to manifest
their effects and thus change the parameters of econometric relationships. Moreover, the effects of the
structural changes are hardly deterministic and much more likely stochastic due to the complex interac-
tions in the economic system, so that the parameter changes in the econometric models are also better
modeled as stochastic.

In this paper, I develop time-varying continuously updated GMM (TV CU-GMM) estimation and
inferential theory for models whose parameters change smoothly and stochastically over time. The method
extends the previous literature in various directions:

1. It extends the original CU-GMM estimator, which is first introduced in Hansen et al. [1996], to the
setting in which there is time variation in model parameters.

2. The literature on nonparametric modeling of stochastic time-varying parameters is mostly on linear
models in which estimators are available in closed form. Giraitis et al. [2016] develop quasi-maximum
likelihood estimators which can handle nonlinear models, but the theory is restricted to the static Tobit
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model. The estimator developed in this paper is fairly general to handle a broader class of models. In
addition, the existing literature generally relies on martingale difference (MDS) or strictly stationarity as-
sumptions to establish asymptotic normality for the estimator. These assumptions can be restrictive since
many economic and financial series exhibit general unknown dependence and conditional heteroskedastic-
ity patterns. The asymptotic theory developed in this paper is developed under weak dependence assump-
tion of the data. Stationarity assumptions are also not needed. The assumptions required for consistency
and asymptotic normality are fairly primitive. Standard α-mixing conditions are required with polynomial
decay rate for mixing coefficients, but stationarity is not needed. The only required assumptions on the true
process of time-varying parameters are smoothness and persistence. Moment conditions are also allowed
to change over time, with a smoothness condition for time-varying moment functions.

3. I extend the Heteroskedasticity and Autocorrelation Consistent (HAC) covariance matrix estimation
in the constant coefficient setting to models with time-varying parameters. I prove that the time-varying
HAC estimator is consistent. The bandwidth required is similar to the constant coefficient setting, except it
is now of smaller order than quantity related to the bandwidth parameter used to construct sample average
of moment functions, rather than the total number of time series observations.

4. I propose two new test statistics for the null of structural stability in this context. As in the structural
break context, it can be shown that the null of structural stability can be decomposed into stability for
identifying and overidentifying restrictions. The tests developed for the null of stability for identifying re-
strictions in the structural break context can be easily extended, but the test for stability for overidentifying
restrictions is fairly new to the literature. I also derive the asymptotic distributions for these test statistics.

The finite-sample performance of the estimators and structural stability tests is evaluated by an exten-
sive Monte-Carlo study. For the estimators, I assess the biases of point estimates and coverage probabilities
of the true parameters. I also compute both the size and power of the proposed tests. Using a linear IV
model with time-varying parameters as data generating process, I find that the time-varying CU-GMM es-
timates have satisfactory finite sample performance. They deliver higher coverage probabilities but since
optimization is required, they are slightly less accurate than the linear time-varying IV estimates proposed
in Giraitis et al. [2020b]. Both tests for structural stability are slightly oversized, but they have reasonable
power. The strategy to identify the source of instability proposed by Hall and Sen [1999] in structural
break context remains valid here. The Monte-Carlo results also provide some guidance on the choice of
bandwidth. Overall, the choice of the bandwidth parameter for constructing sample averages of moment
functions is far more important than the choice of the bandwidth parameter for the time-varying HAC
covariance matrix. Setting the bandwidth parameter (for constructing sample averages of moment func-
tions) equal to the square root of the number of observations leads to best performance in terms of bias
and coverage probability considerations and the size and power of structural stability tests.

Finally, to illustrate in practice the use of time-varying CU-GMM estimator and structural stability
tests, I provide an empirical application on dynamic asset pricing models with Stochastic Discount Factor
(SDF) representation. I focus on the problem of joint pricing on the cross-section of equity and treasury
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portfolio returns. Using the 3-factor specification as in Adrian et al. [2015], I find that allowing time
variation in conditional asset pricing models leads to substantial improvement in pricing performance.
Time-varying CU-GMM estimation has the overall best pricing performance. Misspecification of price of
risk dynamics may lead to large pricing errors. There is strong evidence of time variation in the price of
risk estimates. The null of structural stability is also strongly rejected.

The paper is organized as follows. The rest of this section discusses related literature. Section 2
describes the framework and the time-varying CU-GMM estimators and presents the main theoretical
results. Section 3 introduces two tests for structural stability and derives the limiting distributions of these
tests. Section 4 evaluates the proposed estimators and tests in an extensive Monte Carlo study. Section
5 presents an empirical application on conditional asset pricing models with SDF representation. Section
6 summarizes the main results and concludes the paper. The proofs of all results are presented in the
appendices.

NOTATION: The letter C stands for a generic finite positive constant, ‖A‖sp =
√
λmax(A′A) is the

spectrum norm of matrix A, where λmax(·) is the maximum eigenvalue of ·. ‖·‖p denotes the Lp norm, ‖·‖
is the Euclidean norm. |·|p and |·| denote the associated norm when · is one dimensional. an = O(bn) states
that the deterministic sequence {an} is at most of order bn. an = o(bn) states that the deterministic sequence
{an} is of smaller order than bn. xn = Op(yn) states that the vector of random variables xn is at most of
order yn in probability, and xn = op(yn) is of smaller order than yn in probability. The operator

p
→ denotes

convergence in probability, and
d
→ denotes convergence in distribution.

Related literature

This paper naturally builds on research on continuously updated GMM estimation, which is first intro-
duced in Hansen et al. [1996]. The estimator has exactly the same asymptotic distribution as two-step
GMM but has better finite sample properties. Donald and Newey [2000] provide a Jackknife interpreta-
tion on why CU-GMM estimator performs better than two-step GMM. Smith [2011] provides a general
treatment of generalized empirical likelihood (GEL) methods for moment condition models and shows that
CU-GMM estimator is a special case of GEL methods. Peñaranda and Sentana [2015] show that, unlike
two-step GMM estimator, CU-GMM estimator provides a unifying approach to the empirical evaluation
of linear factor pricing models. The estimator developed in this paper is also related to, but different from
kernel-weighted GMM estimators in Smith [2011], Gospodinov and Otsu [2012] and Kuersteiner [2012],
since they all focus on models with stable moment conditions and stable parameters.

This paper also builds on a series of papers on how to handle structural instability in GMM frame-
work. Ghysels and Hall [1990] propose the predictive test for stability of GMM estimates with one known
breakpoint, which has been extended to the case of unknown breakpoints in Ghysels et al. [1998]. An-
drews [1993] develops a supremum version of Wald, LM, and LR-type test for parameter stability with
unknown breakpoints. Sowell [1996] presents optimal parameter stability tests for both one-sided and
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two-sided alternatives. Hall and Sen [1999] show that the null hypothesis of structural stability can be de-
composed into one of parameter constancy and the other one for the validity of overidentifying restrictions
in each sub-sample, and propose tests for both components. While the work mentioned above relies on
conventional two-step GMM estimator, an extension for the test with one possibly unknown breakpoint
to CU-GMM estimates has been provided in Hall et al. [2015]. Juhl and Xiao [2013] propose tests for
stability of moment conditions, but parameters are assumed to be stable over time. Li and Müller [2009]
develop time-varying two-step GMM estimation where a subset of the parameters are time-varying. Their
focus is on deterministic and moderately large instabilities, in the sense that instability decreases as sam-
ple size increases. Creal et al. [2018] develop an observation-driven filtering approach of time-varying
parameters with unknown dynamics based on moment conditions.

This paper also contributes to the literature on nonparametric modeling of smooth structural change in
parameters. In linear models, Cai [2007] studies trending time-varying coefficient time series models with
serially correlated errors. Chen and Hong [2012] develop testing procedures for smooth structural change
in time series models. Chen [2015] provides inference procedures and tests for parameter stability in linear
models with endogenous regressors. Both assume that parameter evolution is deterministic. Giraitis et al.
[2014], Giraitis et al. [2018] and Giraitis et al. [2020b] develop a new framework for modeling smooth
structural change in which time variation is assumed to be stochastic and smooth. Giraitis et al. [2014]
and Giraitis et al. [2018] study autoregressive type models in which theory is developed under MDS
assumption. Giraitis et al. [2020b] focus on linear IV models and consistency is established under weak
dependent assumption. In the MLE framework, Chen and Hong [2016] propose an inference procedure
and a test for parameter stability in Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
models under deterministic time variation. Giraitis et al. [2016] provide a simple theoretical analysis on
time-varying MLE estimation for static Tobit models under stochastic time variation.

This paper is closely related to Li et al. [2021] but differs in several important directions. First, they
consider estimation and testing for deterministic smooth structural changes in conventional two-step GMM
framework. As explained above, two-step GMM estimator has received some criticism in recent years,
both theoretically and empirically1. Second, they assume that deterministic time-varying parameters are
smooth functions of scaled time that can be approximated by a constant and develop a local constant
estimator, which is more restrictive than the local linear estimator commonly employed in the literature.
Finally, they only consider the test of parameter stability. As we shall see, the instability may not only
come from parameters, and tests developed here can identify the source of instability.

1Hall et al. [2005] provides some surveys on finite sample issues related to two-step GMM estimators. Empirically, Hansen
and Jagannathan [1997] argue that two-step GMM estimates cannot be used to evaluate asset pricing models.
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3.2 Theoretical considerations

3.2.1 Model and the estimator

Suppose we have observed data for a sample of size T , {xt}
T
t=1, xt = (y′t , z

′
t)
′ ∈ Xt, where Xt denotes sample

space which is the subset of Euclidian space. θ0,t ∈ Θ is a k × 1 vector of parameters of interests and Θ is
the parameter space. All random elements are defined on a common probability space (Ω,F , P). Consider
the population conditional moment restrictions at time t implied by economic or finance theory,

E[gc
t (wt; θ0,t)|F t

−∞] = 0,

where gc
t : Xt × Θ → Rq is a vector-valued function which can be either linear or nonlinear in θ0,t,

wt = (yt−τT , · · · , yt+τT ), where τT = o(T ) as T → ∞, and F t
−∞ = σ(xs, θs, s 6 t) is the information set.

Note that, as in many rational expectation models (Fuhrer and Rudebusch [2004]), the framework allows
both leads and lags of data to enter the model. gc

t also has the subscript t, indicating that instability of
moment conditions is allowed, as in Juhl and Xiao [2013]. The conditional moment restriction model
defined above is typically estimated by the GMM estimator based on unconditional moment restrictions:

E[gt(θ0,t)] = 0, (3.1)

where gt(θ0,t) = zt ⊗ gc
t (wt; θ0,t) : Xt × Θ→ Rq.

As in constant coefficient GMM setting, the time-varying GMM estimator of θ0,t is formed by choosing
θt such that the sample average of gt(θt) is close to its zero population value. Thus, we need an estimator
for E[gt(θ0,t)]. Consider the kernel- weighted average of sample moment functions:

gt(θt) =
1
Kt

T∑
j=1

b jt,Hg j(θt), (3.2)

where Kt =
∑T

j=1 b jt,H. The kernel weights b jt,H = b
(

j−t
H

)
are computed with a kernel function b(·) and H is

a bandwidth parameter. The corresponding GMM criterion function is given by

Qt,T = g′t(θt)W̃−1
t (θt)gt(θt), (3.3)

where W̃t(θt) is a consistent estimator of the asymptotic long-run covariance matrix:

Wt(θt) = plim
T→∞

Var
(

1

K1/2
2,t

T∑
j=1

b jt,Hg j(θt)
)
. (3.4)

Then, the time-varying parameter continuous updated GMM (TVP CU-GMM) estimator is defined as the
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minimizer of (3.3):
θ̂t = arg min

θt∈Θ
Qt,T . (3.5)

I now provide three examples for the model (3.1) and their associated kernel- weighted average of
sample moment functions.

Example 1. Asset pricing
Consider the dynamic asset pricing model

E[mt+1(θ0,t)rt+1,i|Ft] = 0,

where i = 1, 2, · · · ,N and Ft is the investors’ information set. rt+1,i = Rt+1,i − Rt+1, f is the excess return
of asset (portfolio) i. mt+1 is a nonnegative stochastic discount factor implied by the absence of arbitrage
opportunities, which is characterised by a k × 1 vector of parameters θ0,t. mt+1 is commonly approximated
by a linear function of candidate pricing factors ft+1: mt+1 = θ00,t + θ′01,t ft+1.

As explained in Peñaranda and Sentana [2015], if k = 1, − θ01,t

θ00,t
has a price of risk interpretation. Several

papers have documented the fact that price of risk may be time-varying, see, for instance, Adrian et al.
[2015] and Barroso et al. [2021].

Let Rt+1 be a N × 1 vector of stacked asset (portfolio) excess returns and select zt ∈ F
t
−∞, where F t

−∞ is
the investors’ information set, we obtain the unconditional moment restrictions:

E
[
zt ⊗

(
(θ00,t + θ′01,t ft+1)Rt+1

)]
= 0.

If the Gaussian kernel is used, (3.2) becomes

gt(θt) =
1
Kt

T∑
j=1

(1/
√

2π)e−( j−t
H )2(

z j ⊗
(
(θ0,t + θ′1,t f j+1)R j+1

))
.

Example 2. New Keynesian Phillips curve (NKPC)
The NKPC is a rational expectation model capturing the trade-off between the rate of inflation and

the level of real economic activity. A theoretical justification of the NKPC comes from the Calvo model.
Consider the hybrid specification proposed by Galı and Gertler [1999]:

πt = γ f ,0tEtπt+1 + γb,0tπt−1 + λ0txt + et,

where πt is the inflation rate, Etπt+1 is the inflation expectation, πt−1 is the lagged inflation and xt is a
measure of real marginal cost. The GMM estimation is obtained by forming the moment conditions:

E
[
zt
(
πt − γ f ,0tEtπt+1 − γb,0tπt−1 − λ0txt

)]
= 0,
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where zt are any variables dated at t and earlier, which should satisfy both relevance and orthogonality
conditions to be valid. Then, (3.2) becomes (with Gaussian kernel)

gt(θt) =
1
Kt

T∑
j=1

(1/
√

2π)e−( j−t
H )2(

z j
(
π j − γ f ,tπ j+1 − γb,tπ j−1 − λtx j

))
.

If we further assume that πt+1, πt−1, xt are linearly related to zt, we are back to time-varying linear IV
models as in Chen [2015] and Giraitis et al. [2020b].

The original specification in Galı and Gertler [1999] assumes that parameters are constant over time.
Several issues may arise which could make parameters unstable2.

Example 3. Consumption-based Asset Pricing
The consumption-based asset pricing model relates real asset returns to consumption risk. Hansen and

Singleton [1982] are first to exploit GMM estimation in this type of models. Consider a representative
agent who maximizes her expected discounted utility

E
[ ∞∑

i=0

βi
0U(ct+i)|Ft

]
,

subject to her budget constraint, where ct is consumption in period t and Ft is her information set. If the
utility function is specified to have constant relative risk aversion (CRRA)

U(ct) =
c1−γ0

t − 1
1 − γ0

,

it can be shown that the Euler equation takes the form

E
[
β0

(ct+1

ct

)−γ0Rt+1|Ft

]
= 1,

where Rt+1 is a N × 1 vector of real gross returns and γ is the risk aversion parameter.
The original specification in Hansen and Singleton [1982] assumes that both β and γ are constant

over time. Malmendier and Nagel [2011], Cohn et al. [2015] and Guiso et al. [2018] all provide strong
empirical and experimental evidence showing that risk aversion is time-varying among households, finance
professionals, and investors respectively. If β0 and γ0 are all time varying, select zt ∈ Ft and assume that
the Gaussian kernel is used, (3.2) becomes

gt(θt) =
1
Kt

T∑
j=1

(1/
√

2π)e−( j−t
H )2(

z j ⊗
(
βt
(c j+1

c j

)−γtR j+1
))
.

2Benati [2008] and Cogley et al. [2010] provide evidence of changing inflation persistence. With U.S. data, Galı́ and
Gambetti [2019] find that Phillips curve is flattening over time. Bai et al. [2021] develop panel estimation method for NKPC
model and also find instability with Eurozone data.
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To make the approach operational, we need to specify W̃t(θt). I propose the time-varying heteroskedas-
ticity and autocorrelation consistent (HAC) estimates:

W̃t(θt) =

T∑
s=−T

k
( j
L

)
Γ̂(s), (3.6)

where k(·) is another kernel function with bandwidth L which is different from b(·) and H for (3.2). Γ̂(s)
is given by

Γ̂(s) =
1

K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g j(θt) −

1
T

T∑
s=1

gs(θt)
)(

g′j+s(θt) −
1
T

T∑
s=1

gs(θt)
)
, (3.7)

where K2,t =
∑T

j=1 b2
jt,H and Γ̂(s) = Γ̂(−s) for s < 0.

3.2.2 Asymptotic theory

To establish the consistency and derive asymptotic distribution of (3.5), I impose the following regularity
conditions.

Assumption 3.2.1. xt = xT,t is a triangular array of vectors whose elements x`,t is α-mixing, and its mixing
coefficient,

αx(h) = sup
j

sup
A∈F j

−∞,B∈F
∞
j+h

|P(A ∩ B) − P(A)P(B)|

satisfy αx(h) = O(h−γ) for sone γ > 1.

Assumption 3.2.2. gt(·) : Xt × Θ → Rq, Θ is compact, gt(·) = gT,t(·) is a triangular array of functions
whose elements g`,t(·) satisfy the following conditions

(i) Given θt, {g`,t(θt)}t is a mixing process with mixing coefficient defined by

α
g
T (h) = sup

j
sup

A∈F j
−∞,B∈F

∞
j+h

|P(A ∩ B) − P(A)P(B)|,

which may depend on sample size T . gt(θt) = gt(wt; θt) is a measurable function with respect to
F t
−∞ and has twice continuously differentiable derivatives, wt = (yt−τT , · · · , yt+τT ), τT = O(T κ) for

some κ ∈ [0, ν∗

4(1+ν∗) ) and 0 < ν∗ 6 2. Further more, the mixing coefficient defined in Assumption 2.1
satisfies

∞∑
h=1

hr∗αx(h)ν
∗/(2+ν∗) < ∞,

for some 2κ(1+ν∗)
ν∗−2κ(1+ν∗) < r∗ < γν∗

1+ν∗
;
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(ii) For some r ∈ (2, 4] and for some p > r, the following hold for all t:

sup
t>1

sup
j>1

∣∣∣g`, j(θt)
∣∣∣
p
< ∞

∀(`, `2), sup
t>1

sup
j>1

∣∣∣∣∣∣∂g`, j(θt)
∂θ`2

∣∣∣∣∣∣
p

< ∞, sup
t>1

sup
j>1

∣∣∣∣∣∣∣∂
2g`, j(θt)
∂θ2

`2

∣∣∣∣∣∣∣
p

< ∞;

(iii) Let gd
t (θt) =

∂gt(θt)
∂θ′

be the derivative matrix, g`,t(θt) and elements in gd
t (θt) satisfy the following smooth-

ness condition:

∀`,
∣∣∣g`,t(θt) − g`,s(θs)

∣∣∣ 6 C1

∣∣∣θ`,t − θ`,s∣∣∣
∀(`, k),

∣∣∣gd
`k,t(θt) − gd

`k,t(θs)
∣∣∣ 6 C2

∣∣∣θ`,t − θ`,s∣∣∣,
for some fixed constants C1, C2 which do not depend on `, k, t, s.

Assumption 3.2.3. (i) Identification: ∀t, the matrix of derivatives:

∂E
(
gt(θt)

)
∂θ′

has full column rank at θ0,t;

(ii) Given θ0,t, the asymptotic long-run covariance matrix defined in (3.4) and the following matrix Wt,d,1

exist and are positive-definite:

Wt,d1 = plim
T→∞

1
K2,t

T∑
i=1

T∑
j=1

bit,Hb jt,HE
[
gi(θ0,t)

(∂g j(θ0,t)
∂θ`1

)]
,

for `1 = 1, 2, · · · , k, where K2,t =
∑T

j=1 b2
jt,H.

Assumption 3.2.4. Define θt = θT,t is a triangular array of vectors whose elements (θ`,t) are random
processes that satisfy the smoothness condition

∣∣∣θ`,t − θ`,s∣∣∣ 6 ( |t − s|
T

)γ̄r`,ts, t, s = 1, 2, · · · ,T (3.8)

for some 0 < γ̄ 6 1 and the distribution of variables Ξ = θ`,t, r`,ts has a thin tail

P (|Ξ| > ω) 6 exp(−c|ω|α), ω > 0

for some c > 0, α > 0 that do not depend on `, t, s and T .

Assumption 3.2.5. (i) The kernel weights b jt,H are computed with a kernel function b(·) : R −→ R+,
with b jt,H := b

(
j−t
H

)
; (ii)

∫ ∞
−∞

b(a)da = 1,
∫ ∞
−∞

b
j
2 (a)da < ∞ for 2 < j 6 4; (iii) b(0) < ∞ and b(·)
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is continuous at 0 and almost everywhere; (iv) H is a bandwidth parameter such that H = o(T ) as
T → ∞; (iv) |b(x)| 6 b̄(x), where b̄(x) is nonincreasing function such that

∫ ∞
−∞
|x|−γ

∣∣∣b̄(x)
∣∣∣dx < ∞, where

γ > 1 is the size of the mixing coefficient defined in Assumption 2.1; (v) Define b2 =
∫ ∞
−∞

b2(a)da and let
b∗(d) = 1

b2

∫ ∞
−∞

b(c)b(c + d)dc,
∫ ∞
−∞

b∗(d) < ∞.

Assumption 3.2.6. (i) The kernel weights k(·) are computed with a kernel function k(·) : R −→ [−1, 1],
k(0) = 1, k(x) = k(−x), ∀x ∈ R; (ii)

∫ ∞
−∞

k(x)dx < ∞, k(·) is continuous at zero and for almost all x ∈ R;
(iii) |k(x)| 6 k̄(x), where k̄(x) is a nonincreasing function such that

∫ ∞
−∞
|x|

∣∣∣k̄(x)
∣∣∣dx < ∞; (iv) L is another

bandwidth parameter which may be different from but depend on H, such that L = o(H1/2−1/r) as T → ∞
for some r ∈ (2, 4].

Assumption 2.1 is a standard mixing condition to control the temporal dependence. The mixing coeffi-
cient is required to decay at a polynomial rate. Unlike Creal et al. [2018] and Li et al. [2021], {xt}t are not
required to be stationary or approximately stationary. Assumption 2.2 is a set of regularity conditions for
the moment functions. As shown in Lemma B2, {g`,t(θt)}t is also a α-mixing process. The dependence of
{g`,t(θt)}t is allowed to be possibly depend on sample size. Restrictions on τT also imply that the number of
leads and lags in wt has to be very small relative to sample size. As stated in the final piece of Assumption
2.2(i), some further restrictions are also needed for the mixing coefficients for {xt}t. Assumption 2.2(ii) is a
standard condition to put some uniform bounds on the moments of gt(·) and its associated first and second
order derivatives. However, Assumption 2.2(iii) is high level and nonstandard. Although instability of
moment conditions is allowed, the amount of time variation of both moment function and its associated
derivatives has to be bounded. Assumption 2.3(i) is a standard condition to ensure that parameters in θ0,t

are locally identified at each t. Assumption 2.3(ii) is another high level condition to establish consistency
of (3.6).

Assumption 2.4 is the one used in Giraitis et al. [2020b], which imposes conditions on time-varying
structural parameters of interests. It implies that elements in θt are smoothly varying persistent stochastic
processes. For example, one can specify an array of random processes as θ`,t = 1

√
T

u`,t, t = 1, 2, · · · ,T ,
where u`,t are random walk process such that u`,t − u`,t−1 = ν`,t, where ν`,t follows a weakly station-
ary ARMA(p, q) process. As explained in Giraitis et al. [2014], θ`,t can include both deterministic and
stochastic components, θ`,t = 1

√
T

u`,t + m`(t/T ), where m`(t/T ) is a deterministic function of scaled time
t/T . r`,ts is a thin tailed component to introduce randomness in the time variation. More discussions and
examples are provided in Giraitis et al. [2014], Giraitis et al. [2018] and Dendramis et al. [2021].

It is of some interest to compare Assumption 2.4 with local linear methods used in the literature on
nonparametric modeling of deterministic time variation. Suppose that θ`,t = β`(t/T ), β`(·) is a deterministic
function of scaled time with continuous bounded first and second order derivative. First order Taylor
expansion gives β`(t/T ) ≈ β`(u) + β′`(u) (t/T − u), ` = 1, 2, · · · , k,, where u ∈ [0, 1] and β′(·) is the
derivative of β(·)3. By setting u = s/T , we obtain β`(t/T ) ≈ β`(s/T ) + β′`(s′/T ) (t/T − s/T ), with s′

3In Li et al. [2021], local constant estimator is proposed, which implies that they assume β`(t/T ) ≈ β`(u), which is a
restrictive case of local linear methods.
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between s and t, which implies that
∣∣∣θ`,t − θ`,s∣∣∣ 6 C

(
|t−s|

T

)
, ∀C > 0. This implies that local linear method

is a special case of Assumption 2.4 obtained by setting γ̄ = 1 and r`,ts = C, which is the upper bound of
the derivative.

Assumptions 2.5 and 2.6 introduce conditions for kernel weights and bandwidth parameters used to
construct (3.2) and time-varying HAC estimator (3.6). Assumption 2.5(ii) is similar to the one used in
Giraitis et al. [2014], in which they require the integral to exist with order one and two. Assumptions
2.5(iv) and 2.5(v) are nonstandard. They are used in Lemma 1 to establish uniform weak law of large
numbers and consistency of time-varying HAC estimator. Examples of b(·) satisfying Assumption 2.1
include the commonly used Gaussian kernel: b(x) = (1/

√
2π)e−x2

. Assumption 2.6 is essentially the one
used in De Jong [2000] to establish weak consistency and ensure that the estimator is positive definite.
Examples of allowable kernel functions include the commonly used Bartlett Kernel: k(x) = 1 − |x| I|x|61.
However, unlike De Jong [2000], since (3.7) is constructed by kernel-weighted average, L goes to infinite
with a rate slower than H1/2−1/r, rather than T 1/2−1/r, for some 2 < r 6 4.

The large sample properties of consistency and asymptotic normality of TV CU-GMM estimator de-
fined in (3.5) rely on a uniform law of large numbers (UWLLN) and central limit theorem (CLT) defined in
terms of kernel weighted sample average gt(θt), as well as the consistency of time-varying HAC estimator
defined in (3.6). These are provided in the following lemma.

Lemma 3.2.1. Under Assumptions 2.1-2.6, for each t = bτT c, 0 < τ < 1, as T → ∞,

(i) UWLLN:

sup
θt∈Θ

∥∥∥gt(θt) − E
(
gt(θt)

)∥∥∥ = Op

(
H−1/2 +

(H
T

)γ̄)
(ii) CLT:

Kt

K1/2
2,t

(
gt(θt) − E

(
gt(θt)

)) d
−→ N(0,Wt(θt)),

where Wt(θt) is defined in (3.4).

(iii)
W̃t

p
−→ Wt(θt).

In Smith [2011], UWLLN and CLT are established for a similar kernel-weighted average of moment
functions in the case of constant coefficients and stable moment conditions. He assumes that {xt}t are
stationary but Lemma 1 above shows that results still hold without the stationarity assumption. However,
more conditions on memory (in terms of rate of decay of mixing coefficients) of {xt}t and on processes
{g`,t(θt)}t are required, see Assumptions 2.1 and 2.2(i). Since moment conditions may not be stable, another
condition is needed to control for time variation for both moment function and its associated derivatives,
see Assumption 2.2(iv). The proof of CLT in Lemma 1(ii) requires to verify a series of technical assump-
tions in Francq and Zakoı̈an [2005], which are mostly summarized in Assumption 2.2(i). These conditions
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are more intuitive and easier to verify than existing literature on CLT for mixing processes. To prove con-
sistency of time-varying HAC estimator, as stated in Lemma 1(iii), we first need to extend the bounds
provided in Hansen [1991] and Hansen [1992]. Then, the strategy employed in De Jong [2000] can be
used to prove the results. The assumption of existence of only slightly more than second moments of
{gt(·)}t is weaker than Smith [2011],which requires the restrictive assumption of moments of order higher
than four. Unlike the constant coefficient case, as stated in Assumption 2.6(iv), consistency requires L to
be scalable to H: L = o(H1/2−1/r), for some 2 < r 6 4. As we shall see in Theorem 1, CLT requires that(H

T

)γ
= o(H−

1
2 ), which implies that we need to choose a relatively small value of L in practice.

Theorem 1 establishes the consistency and asymptotic normality for the TVP CU-GMM estimator θ̂t.

Theorem 3.2.2. Suppose Assumptions 2.1-2.6 are satisfied, for each t = bτT c, 0 < τ < 1, the TVP
CU-GMM estimator defined in (3.5) has the following properties

(i) Consistency: ∥∥∥θ̂t − θ0,t

∥∥∥ = Op

((H
T

)γ̄
+ H−1/2

)
(ii) Asymptotic normality: if

(H
T

)γ̄
= o(H−

1
2 ), then

Kt

K1/2
2,t

(
G′tW

−1
t Gt

)1/2(
θ̂t − θ0,t

) d
−→ N(0, Ik).

where Kt =
∑T

j=1 b jt,H, K2,t =
∑T

j=1 b2
jt,H and

Gt = E
[
∂gt(θ0,t)
∂θ′

]
, Wt = plim

T→∞
Var

( 1

K1/2
2,t

T∑
j=1

b jt,Hg j(θ0,t)
)
.

By Lemma B1, Kt = O(H), K2,t = O(H). Theorem 1(ii) implies that the convergence rate of the
TVP CU-GMM estimator is proportional to

√
H. However, the exact rate depends on the choice of kernel,

bandwidth and also on t. As explained in Giraitis et al. [2014], consistency is guaranteed by the persistency
of the process θ0,t. If γ̄ is close to 0, the consistency rate in Theorem 1(i) deteriorates. While consistency
holds under minimal restrictions on H, asymptotic normality requires that

(H
T

)γ̄
= o(H−

1
2 ). If γ = 1, the

condition implies that H = o(T 2/3), which is the maximum allowable value for H.
In the following corollary, we show that both Gt and Wt can be consistently estimated. This result can

be used to construct pointwise confidence intervals for θ̂t.

Corollary 1. Under Assumptions 2.1-2.6, let

Ĝt =
1
Kt

T∑
j=1

∂g j(θ̂t)
∂θ′

, Ŵt = W̃t(θ̂t),
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where Kt =
∑T

j=1 b jt,H and W̃t is defined in (3.6). Then, suppose that
(H

T

)γ̄
= o(H−

1
2 ), we have

Ĝt
p
−→ Gt, Ŵt

p
−→ Wt

3.3 Tests of structural stability

In this section, I propose two tests of structural stability for models given in (3.1). The null hypothesis
of structural stability states that (3.1) holds for same θ0 throughout the sample. In the GMM literature,
attention has focused almost exclusively on the case where the instability involves discreet changes at
some possibly unknown points in the sample known as the ”break points”. The only exception is Li et al.
[2021], who propose a test for smooth structural change. They focus on the hypothesis of stability of
parameters:

H0 : θ0,t = θ0, ∀t, for some θ ∈ Rk,

and the alternative hypothesis is that H0 is false. However, in models with conditional moment restrictions
as in (3.1), it is more interesting to discriminate different sources of instability.

As in Ghysels and Hall [1990], write the null hypothesis of structural stability as

HSS
0 : E

[
gt(θ0)

]
= 0, ∀t, for some unique θ0 ∈ R

k.

In view of Sowell [1996] and Hall and Sen [1999], define Gw,t = W−1/2
t Gt, where Gt and Wt are given in

Theorem 1(ii), and rewrite (3.1) as
G′w,tW

−1/2
t E

[
gt(θ0,t)

]
= 0. (3.9)

(3.9) can be interpreted as the least square projection of W−1/2
t E

[
gt(θ0,t)

]
onto the column space of Gw,t is

zero. Then, by multiplying both sides in (3.9) with Gw,t

(
G′w,tGw,t

)−1
, we obtain an alternative representa-

tion:
Gw,t

(
G′w,tGw,t

)−1
G′w,tW

−1/2
t E

[
gt(θ0,t)

]
= 0. (3.10)

By Assumption 2.3(i), we know that rank
(
Gw,t

(
G′w,tGw,t

)−1
G′w,t

)
= rank

(
Gw,t

)
= k. Thus, the inde-

pendent k moment conditions in (3.10) are used to identify the parameters θ0,t. Since the identifying
restrictions are imposed in estimation, there are always parameter values which satisfy them in each t.
Therefore, the identifying restrictions are said to be stable if they are satisfied by same θ0, ∀t, which is
formally stated as

HI
0 : Gw,t

(
G′w,tGw,t

)−1
G′w,tW

−1/2
t E

[
gt(θ0)

]
= 0, for some θ0 ∈ R

k.

It can now be recognised that HI
0 is equivalent to the null hypothesis of parameter stability. I consider
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to compare the differences between the following sample averages of moment conditions:

DT =
1
√

T

T∑
t=1

gt(θ̂t) −
1
√

T

T∑
t=1

gt(θ̂), (3.11)

where θ̂t is obtained from (3.5) and θ̂ is obtained from standard constant coefficient CU-GMM estimation:

θ̂ = arg min
θ∈Θ

( 1
T

T∑
t=1

gt(θ)
)′

W̃−1
T (θ)

( 1
T

T∑
t=1

gt(θ)
)
,

where W̃T (θ) is a consistent estimator of

WT (θ) = plim
T→∞

Var
(

1
√

T

T∑
t=1

g j(θ)
)
.

Define

Ω1,T = plim
T→∞

Var
(

1
√

T

T∑
t=1

gt(θ̂t) −
1
√

T

T∑
t=1

gt(θ̂)
)

and let Ω̂1,T be a consistent estimator of Ω1,T
4, I propose the following Q test statistic

QT =
(
Ω̂
−1/2
1,T DT

)′(
Ω̂
−1/2
1,T DT

)
. (3.12)

Let us move to the stability of overidentifying restrictions. It follows immediately from (3.10) that the
moment conditions not used in estimation are given by(

Iq −Gw,t

(
G′w,tGw,t

)−1
G′w,t

)
W−1/2

t E
[
gt(θ0,t)

]
= 0. (3.13)

As rank
(
Iq −Gw,t(G′w,tGw,t)−1G′w,t

)
= q − k, the independent q − k moment conditions are often labeled as

overidentifying restrictions. The stability of overidentifying restrictions implies that they hold for all t,
which is formally stated as

HO
0 :

(
Iq −Gw,t

(
G′w,tGw,t

)−1
G′w,t

)
W−1/2

t E
[
gt(θ0,t)

]
= 0, ∀t.

Then, the alternative hypothesis HO
1 implies that overidentifying restrictions are invalid for some t. Define

VT,t = Ŵ−1/2
t

1

K1/2
2,t

T∑
j=1

b jt,Hg j(θ̂t),

4Detailed formulas of Ω1,T and Ω̂1,T are given in the proof of Theorem 2.
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it is clear that VT,t will be very close to zero underHO
0 . Consider to construct the test statistic by the squared

version of the scaled average of VT,t for t = 1, 2, · · · ,T :

JT =
(
Ω̂
−1/2
2

1
√

T

T∑
t=1

VT,t

)′(
Ω̂
−1/2
2

1
√

T

T∑
t=1

VT,t

)
(3.14)

where Ω̂2 is a consistent estimate of Ω2
5:

Ω2 = plim
T→∞

Var
( 1
√

T

T∑
t=1

VT,t

)
.

Therefore, the above analysis implies that any instability must be referred to as the violation of one of
the null hypotheses HI

0 and HI
0. It follows that

HSS
0 = HI

0 & HO
0 .

Both (3.12) and (3.14) can be used to identify the source of instability6. The asymptotic distributions of
the two test statistics under the associated null hypothesis are presented in next theorem.

Theorem 3.3.1. Under Assumptions 2.1-2.6

(i) Given HO
0 , under HI

0, suppose

• θ̂ is root T consistent:
√

T (θ̂ − θ) = Op(1)

• {gt(θ)}t is a martingale difference sequence (MDS),

we have that
QT

d
−→ χ2

q

(ii) Given HI
1, under HO

0 , suppose

• {gt(θt)}t is a martingale difference sequence (MDS),

we have that
JT

d
−→ χ2

q−k.

5Detailed formulas of Ω2,T and Ω̂2,T are given in the proof of Theorem 2.
6The evaluation of the ability of the two test statistics to identify the source of instability requires to assess their power

against alternatives. In the current version of the paper, this is done by Monte-Carlo simulations, which are presented in the
next section
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3.4 Monte Carlo study

In this section, I evaluate the finite sample performance of the time-varying CU-GMM estimator, and size
and power of both Q-test and J-test. I consider the linear IV model with time-varying parameters as the
data generating process (DGP):

yt = xtβt + bz1,t + ut, xt = ψ′tZt + vt, t = 1, 2, · · · ,T + R, (3.15)

where Zt = (z1,t, z2,t, z3,t)′ is a 3 × 1 vector of candidate instruments with associated parameters ψt =

(ψ1, ψ2t, ψ3t)′. R = 200 is the number of observations used as burn-in. There is one endogenous variable xt

with 3 candidate instruments so the model is over identified. Instruments are generated according to

z j,t = ρ jz j,t−1 +

√
1 − ρ̄2

je
z
j,t, j = 1, 2, 3, (3.16)

where ρ̄ j are obtained from uniform distribution: ρ̄ j
i.i.d.
∼ U[−1, 1] and ez

j,t
i.i.d.
∼ N(0, 1). I introduce time-

varying correlation between ut and vt by specifying them asut

vt

 i.i.d.
∼ N

00
 , 1 ρt

ρt 1


where ρt = ρ ξt

max16 j6t|ξ j|
, t = 1, 2, · · · ,T +R is a bounded random walk process, such that ξt−ξt−1

i.i.d.
∼ N(0, 1).

The parameters ψ`,t = T−1/2ξ(`)
t , t = 1, 2, · · · ,T + R, ` = 1, 2, 3 are generated as three independent

scaled random walk processes, where ξ(`)
t − ξ

(`)
t−1

i.i.d.
∼ N(0, 1), ` = 1, 2, 3. The parameters βt are generated

either according to βt = T−1/2ξt, where ξt − ξt−1
i.i.d.
∼ N(0, 1), or βt = 1, t = 1, 2, · · · ,T + R. For b, I set

b = 0 (under HO
0 ) or b = 1 + N(0, 1), for t = bT/3c + 1 + R, · · · , b2T/3c + R. Then, based on different

generating mechanisms of βt and b, there are four different DGPs:

• DGP 1: βt = T−1/2ξt, b = 0;

• DGP 2: βt = 1, b = 0;

• DGP 3: βt = T−1/2ξt, b = 1 +N(0, 1);

• DGP 4: βt = 1, b = 1 +N(0, 1).

DGP 1 is used to assess finite sample performance of the estimator. DGPs 1–4 are used to evaluate size
and power of both Q-test and J-test in order to identify the source of possible instability.

The estimators are computed using the Gaussian kernel b(x) = exp(−x2/2) with a variety of bandwidth
values H = Tα for α = 0.4, 0.5, 0.7. As explained in Giraitis et al. [2014], the DGP design of βt implies
that γ̄ = 0.5 and H = o(T 1/2) is required for CLT, but a higher bandwidth value may increase the efficiency,
and it is interesting to evaluate the trade-off. For time-varying HAC estimator, since consistency requires
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a very small value of the bandwidth, following Assumption 2.6, I set L = H0.3 and use the Bartlett kernel:
k(x) = 1 − |x|, |x| 6 1. I consider four sample sizes: T = 750, 1000, 2000, 3000. To compare the finite
sample properties of the estimators, both the TV-OLS estimator in Giraitis et al. [2014] and the TV-IV
estimator in Giraitis et al. [2020b] are used as competitors. The Monte Carlo analysis is based on 1,000
replications. An example of realized βt, together with the estimates from TV-OLS, TV-IV and TV CU-
GMM and the associated 95% confidence interval, with T = 750, are provided in Figure 17.

The performance of the estimators is evaluated by the root mean squared error (RMSE)

RMSFE =

√√
1

T − 2H

T−H∑
t=H+1

(β̂t − βt)2,

the mean absolute deviation (MAD):

MAD =
1

T − 2H

T−H∑
t=H+1

∣∣∣β̂t − βt

∣∣∣,
and the 95% coverage rate, which is the estimated probability that the true βt lies in the interval (β̂t −

1.96sd(β̂t), β̂t + 1.96sd(β̂t)), where sd(β̂t) is the estimated variance of the estimator obtained from the
associated asymptotic distributions.

Table 1 reports RMSE, MAD, and coverage rate of all estimators. Since xt is endogenous, TV-OLS
estimator is clearly not preferable. It delivers larger bias and lower coverage rates. For TV-IV and TV-CU
GMM, both RMSE and MAD decrease with the increase of sample size. TV-IV estimator has smaller
RMSE and MAD in all cases, particularly for smaller bandwidth value H = T 0.4, but has a lower coverage
rate compared to TV CU-GMM. One explanation is that IV estimator has closed-form solutions, but
numerical optimization is required for TV CU-GMM. Since all elements in Zt follow an AR(1) process,
moment conditions are serially correlated, so TV CU-GMM delivers a higher coverage rate. H = T 0.5

yields the lowest values of criteria (RMSE and MAD) but also has a slightly lower coverage rate compared
to the case of H = T 0.4. Setting H = T 0.7 reduces the accuracy of the estimators. Coverage rate is also
much lower since the condition for CLT (see, Theorem 1) is not satisfied.

Table 2 reports rejection frequencies for both Q-test and J-test under all four DGPs defined above.
Overall, both tests have good power, and it increases with T. Power is also higher when we use larger
bandwidth H = T 0.7, but differences compared to other choices of H are rather small. From DGP 2, it
turns out that both tests are slightly oversized. DGP 1 indicates that when identifying restrictions are not
stable, size distortion of J-test also gets larger for H = T 0.7. However, from DGP 4, we see that when
overidentification restrictions are not stable, size distortion of Q-test is very sizeable.

Results in Tables 1 and 2 also provide some guidance on the choice of bandwidth. In some unreported

7As all of the estimators have slower convergence rate at the boundary points, performances of the estimators are also worse
there compared to interior points.
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MC results, it is found that the choice of L generally has little impact, so choice of H plays a more
crucial role. Overall, setting H = T 0.5 leads to best performance in terms of bias and coverage probability
considerations as well as size and power considerations. The results also provide a strategy to diagnose
the source of instability. The strategy proposed by Hall and Sen [1999] in the structural change context
remains valid here. If all tests fail to reject, then this is evidence that all aspects of the model are stable. If
Q-test rejects but J-test fails to reject, then there is evidence of parameter variation. In all the other cases,
any rejection would imply that instability could involve more than parameter time variation.

3.5 Empirical application

In this section, I present an empirical application on asset pricing model for equity and treasury returns.
As example 1 in section 2.1, I consider the dynamic asset pricing model with stochastic discount factor
(SDF) representation:

E[mt+1(θ0,t)Rt+1|Ft] = 0,

where mt+1(θt) is the SDF and Rt+1 is a N×1 vector of excess returns. Following Cochrane [2009], I further
normalize the SDF by setting θ00,t = 1, ∀t:

mt+1(θ0,t) = 1 − θ′01,t ft,

where the time-varying parameters θ01,t are assumed to satisfy Assumption 2.4. According to Peñaranda
and Sentana [2015], θ01,t also has a price of risk interpretation.

With regard to testing portfolios and pricing factors, I follow Adrian et al. [2015] to obtain ten size-
sorted portfolios for US equities from Ken French’s online data library, combined with constant maturity
Treasury portfolios with maturities one, two, five, seven, ten, 20, and 30 years from the Center for Research
in Securities Prices(CRSP). Pricing factors used include the excess return on the value-weighted equity
market portfolio (Mkt) from CRSP and the small minus big(SMB) portfolio from Fama and French [1993],
and the ten-year Treasury yield(TSY10)8. I obtain the first two factors from French’s website and the third
from Federal Reserve Economic Data. The data is monthly and spans the period 1964:01-2020:12, for a
total of 684 observations. Note that, Adrian et al. [2015] use beta representation and Fama-MacBeth two-
pass procedure to obtain price of risk estimates and evaluate models by computing pricing errors. They
are agnostic to the asset-specific beta dynamics but impose some structure on the dynamics of price of
risk. Here, the estimates are obtained via SDF representation, and the approach is entirely agnostic since
no specification of dynamics is required even for price of risk.

To implement the time-varying GMM estimation, I choose Gaussian kernel with bandwidth H = T 0.5

and Bartlett kernel with bandwidth L = H0.3, as motivated by asymptotic theory and Monte-Carlo results.
I also report p-values obtained from both Q-test and J-test, at 5% significance level. To evaluate asset pric-

8Since these factors are also traded, I also include them in Rt+1 (in terms of excess returns).



120

ing models, I consider Hansen-Jagannathan (HJ) distance, pioneered in Hansen and Jagannathan [1997],
which is commonly used to evaluate SDF. HJ distance is computed as

HJ =

√√( 1
T

T∑
t=1

(1 − θ̂′1,t ft+1)rt+1

)′( 1
T

T∑
t=1

rt+1r′t+1

)−1( 1
T

T∑
t=1

(1 − θ̂′1,t ft+1)rt+1

)
,

where θ̂1,t is the time-varying estimates. Apart from continuously-updated time-varying GMM estimator,
I also consider linear time-varying GMM estimator, obtained by setting the weighting matrix equal to
1
Kt

∑T
j=1 b jt,Hrt+1r′t+1. In addition, I also follow Cochrane [1996] to consider θ̂1,t as an affine function of

k̄ × 1 vector of state variables zt: θ01,t = ztθ1. Then, I plug this into pricing equations to estimate θ1 by
standard constant coefficient CU-GMM method. As in Adrian et al. [2015], zt includes term spread, which
is measured by the differences between the yield on a ten-year Treasury note and the three-month Treasury
bill; log dividend yield on S&P 500 index and TSY10.

Figure 3.2 provides plots of price of risk estimates. It is clear that there is substantial time variation in
price of risk estimates, which is particularly evident for factors commonly used to price equity portfolios:
Mkt and SMB. The estimates are centered around zero but have been significantly different from zero over
various subperiods in the sample. The price of risk estimates from TSY10 factor, which is a good proxy of
the level of the term structure of Treasury yields (Adrian et al. [2013]), is different from other factors. The
estimates are smoother and significantly larger than zero in all cases. There is also an interesting pattern of
the estimates since they first decline until the 1980s but then increase afterward. Table 3.3 reports p-values
from both Q-test and J-test from time-varying parameter models. We see clearly that structural stability
for both identifying and overidentifying restrictions is strongly rejected in all cases at 5% significance
level.

Tables 3.4 reports HJ distance from different estimation methods. Gray shading indicates the best
performing estimator. As a robustness check, I also consider estimation in the original sample period:
1964/1–2012/12 as in Adrian et al. [2015]. Time-varying CU-GMM estimator has the best pricing perfor-
mance. Gains from time-varying parameters are substantial. HJ distance estimates obtained from constant
coefficient models are at least three times larger than time-varying parameter models. However, gains are
smaller from the extended sample period: 1964/1–2020/12. The pricing performance from time-varying
CU-GMM and linear GMM are roughly similar, and gains from CU-GMM are sightly larger again in the
original sample period. The pricing performance from the affine function approach is always the worst,
indicating that the price of risk dynamics is likely to be misspecified.

3.6 Conclusions

Although attempts have been made to handle structural change in GMM framework, little has been done
under smooth structural change, particularly for continuously updated GMM estimator. In this paper,
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I introduce time-varying continuously updated GMM estimator for models with stochastic time-varying
parameters and unstable moment conditions, taking a non-parametric approach to remain as agnostic as
possible regarding the type of parameter evolution and changes of moment conditions

I establish the asymptotic properties of the time-varying CU-GMM estimator. I also extend Het-
eroskedasticity and Autocorrelation Consistent (HAC) covariance matrix estimation in constant coeffi-
cient setting to models with time-varying parameters and prove the consistency results under conventional
increasing smoothing asymptotics. Then, I show that the null hypothesis of structural stability can be de-
composed into stability for identifying and overidentifying restrictions. I propose two structural stability
tests for these two components and derive the limiting distributions of these test statistics.

Next, I evaluate the finite sample properties of the estimator as well as the size and power of the
proposed tests in an extensive Monte-Carlo study. The results show that performance from time-varying
CU-GMM estimator, in terms of biases and coverage rates, is satisfactory. The proposed tests also have
reasonable size and power. They can be used to identify the source of structural instability and strategy
proposed in structural change literature can be directly applied. In terms of the choice of bandwidth, I
find that the choice of bandwidth parameter for constructing sample averages of moment functions is far
more important than the choice of bandwidth parameter for the time-varying HAC covariance matrix. By
setting the value (for constructing sample averages of moment functions) to T 0.5 leads to the overall best
performance for both estimators and the tests.

I illustrate the methods by an empirical application on dynamic asset pricing models with SDF repre-
sentation for the joint cross-section of equity and treasury portfolios. I find substantial time variation in
price of risk estimates. By allowing for time variation improves the pricing performance, but misspecifi-
cation of dynamics of price of risk can lead to large pricing errors. Time-varying CU-GMM estimator has
the overall best pricing performance.

The focus of this paper has been on consistent estimation and pointwise inference of the path coeffi-
cients βt, under the assumption that elements in βt are smoothly varying persistent stochastic processes.
However, deterministic time variation is still a dominating approach in the literature. Thus, it is of great
interest to develop tests for the null hypothesis of deterministic time variation, which is one of the current
research topics by the author. Another interesting extension of the current paper is to provide a formal
asymptotic power analysis of the two structural stability tests. In addition, I follow Chen and Hong [2012]
to develop averaging statistics for structural stability. An advantage of this type of test statistics is that
asymptotic distributions are standard, so there is no need to tabulate critical values. However, as Hoesch
et al. [2020] point out, this may have low power if the null of stability is false everywhere, but the degree
of instability is zero on average. It is also of great interest to develop a supremum version of the tests and
compare the performance with those averaging statistics, which is also under investigation by the author.
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Figures and Tables

Figure 3.1: Realization of βt, β̂t and 95% confidence intervals for θt from OLS, linear IV and CU-GMM with a two-sided
normal kernel and H = T 0.5 for T = 500. For TV CU-GMM estimator, Bartlett kernel is used to construct time-varying HAC
estimator with bandwidth L = H0.3. The solid black lines show the true realization of θt. The solid blue, green and line lines
show the point estimates and the associated shaded areas show the 95% pointwise confidence intervals for OLS, linear IV and
CU-GMM estimators, respectively.
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RMSFE MAD Coverage rate

α T OLS IV GMM OLS IV GMM OLS IV GMM

0.4 750 0.289 0.157 0.220 0.248 0.122 0.150 0.36 0.86 0.87

1000 0.287 0.150 0.217 0.245 0.116 0.143 0.34 0.86 0.88

2000 0.303 0.141 0.209 0.257 0.107 0.131 0.29 0.87 0.89

3000 0.309 0.137 0.196 0.262 0.102 0.124 0.26 0.88 0.90

0.5 750 0.283 0.140 0.178 0.245 0.110 0.130 0.28 0.80 0.82

1000 0.289 0.133 0.169 0.250 0.105 0.122 0.25 0.80 0.82

2000 0.299 0.120 0.150 0.257 0.093 0.106 0.20 0.80 0.83

3000 0.309 0.114 0.147 0.265 0.088 0.101 0.18 0.81 0.84

0.7 750 0.291 0.179 0.183 0.251 0.145 0.147 0.17 0.44 0.52

1000 0.291 0.174 0.178 0.250 0.141 0.142 0.16 0.42 0.50

2000 0.291 0.163 0.162 0.249 0.132 0.130 0.12 0.36 0.46

3000 0.300 0.156 0.157 0.258 0.125 0.125 0.10 0.35 0.44

Notes: The table reports RMSFE, MAD and 95% coverage rates from time-varying OLS, linear IV and CU-GMM estimators. Gray shading indicates the
best performing estimator. Data generating process is from DGP 1. Details of DGP design, estimators and evaluation criteria are given in Section 4.

Table 3.1: Performance of estimators: RMSFE, MAD and 95% coverage rate

DGP 1 DGP 2 DGP 3 DGP 4

α T J-test Q-test J-test Q-test J-test Q-test J-test Q-test

0.4 750 0.10 0.73 0.09 0.13 0.87 0.84 0.85 0.63

1000 0.12 0.79 0.09 0.12 0.91 0.89 0.89 0.69

2000 0.13 0.87 0.08 0.12 0.96 0.95 0.96 0.81

3000 0.12 0.92 0.09 0.11 0.98 0.96 0.99 0.85

0.5 750 0.12 0.75 0.12 0.11 0.88 0.87 0.87 0.64

1000 0.12 0.81 0.10 0.08 0.91 0.90 0.93 0.69

2000 0.13 0.89 0.10 0.08 0.97 0.97 0.96 0.84

3000 0.13 0.92 0.11 0.11 0.99 0.98 0.99 0.86

0.7 750 0.25 0.83 0.13 0.08 0.92 0.92 0.94 0.72

1000 0.24 0.86 0.13 0.07 0.96 0.94 0.96 0.79

2000 0.28 0.93 0.13 0.06 0.99 0.97 0.98 0.87

3000 0.27 0.95 0.12 0.06 0.99 0.98 0.99 0.90

Notes: The table reports rejection frequencies from both J-test and Q-test under DGPS 1–4. Formulas of both tests are given in (3.14) and (3.12). Details
of DGP designs are given in section 4.

Table 3.2: Rejection frequencies of structural stability tests

Sample period J-test Q-test

1/1964 - 12/2012 0.000 0.000

1/1964 - 12/2020 0.003 0.000

Notes: The table presents p-values from two structural stability test statistics presented in section 3. Test portfolios are joint cross section of size-sorted
equities and treasuries. Pricing factors are market factor, Small Minus Big portfolio and 10 year treasury yield.

Table 3.3: Structural stability test: p-values
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Figure 3.2: Time-varying price of risk estimates from 3 factor model. Testing portfolios are 10 size sorted equity portfolios
and 7 constant maturity treasury portfolios.

CU-GMM Linear GMM

1/1964 - 12/2012 1/1964 - 12/2020 1/1964 - 12/2012 1/1964 - 12/2020

0.018 0.031 0.023 0.032

Constant Affine

1/1964 - 12/2012 1/1964 - 12/2020 1/1964 - 12/2012 1/1964 - 12/2020

0.094 0.104 2.338 0.834

Notes: The table presents Hansen-Jagannathan distance from both TVP models (estimated by different methods) and constant coefficient model. Test
portfolios are joint cross section of size-sorted equities and treasuries. Pricing factors are market factor, Small Minus Big portfolio and 10 year treasury
yield. Gray shading indicates the best performing estimator.

Table 3.4: Hansen-Jagannathan distance
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Appendix A: Mathematical proofs

Appendix A.1: Proof of Lemma 1

By Triangular inequality,

sup
θt∈Θ

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,Hg j(θt) − E
(
gt(θt)

)∥∥∥∥∥∥∥ 6 sup
θt∈Θ

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,Hg j(θt) − E
( 1
Kt

T∑
j=1

b jt,Hg j(θt)
)∥∥∥∥∥∥∥

+ sup
θt∈Θ

∥∥∥∥∥∥∥E
( 1
Kt

T∑
j=1

b jt,Hg j(θt)
)
− E

(
gt(θt)

)∥∥∥∥∥∥∥
= sup

θt∈Θ

M1,t(θt) + sup
θt∈Θ

M2,t(θt).

We will show that

sup
θt∈Θ

M1,t(θt) = Op(H−1/2) (3.17)

sup
θt∈Θ

M2,t(θt) = O
((H

T
)γ̄)
. (3.18)

These bounds prove the first part of the Lemma 1.
Proof of (3.17). Define aT = H−1/2, τT = (aT )−

1
r−1 where 2 < r 6 4 and write

1
Kt

T∑
j=1

b jt,Hg j(θt) =
1
Kt

T∑
j=1

b jt,Hg j(θt)1{g j(θt) 6 τT } +
1
Kt

T∑
j=1

b jt,Hg j(θt)1{g j(θt) > τT }

For the second term, notice that

E

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,Hg j(θt)1{g j(θt) > τT }

∥∥∥∥∥∥∥ =
1
Kt

T∑
j=1

b jt,HE
∥∥∥g j(θt)1{g j(θt) > τT }

∥∥∥
=

1
Kt

T∑
j=1

b jt,HE
{∥∥∥g j(θt)

∥∥∥r∥∥∥g j(θt)
∥∥∥1−r

1{g j(θt) > τT }

}

6
1
Kt

T∑
j=1

b jt,H(τT )−(r−1)E
{∥∥∥g j(θt)

∥∥∥r
1{g j(θt) > τT }

}
6

1
Kt

T∑
j=1

b jt,H(τT )−(r−1)E
∥∥∥g j(θt)

∥∥∥r

6
1
Kt

T∑
j=1

b jt,H(τT )−(r−1) · sup
j>1

E
∥∥∥g j(θt)

∥∥∥r
= O(aT )
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This implies that
1
Kt

T∑
j=1

b jt,Hg j(θt)1{g j(θt) > τT } = Op(aT ) = op(1).

Then, we can focus on the first term. Let us move on to the first term. Write

Z j = b jt,Hg j(θt)1{g j(θt) 6 τT } − b jt,HE
[
g j(θt)1{g j(θt) 6 τT }

]
= b jt,Hg∗j(θt)

where g∗j(θt) = g j(θt)1{g j(θt) 6 τT } − E
[
g j(θt)1{g j(θt) 6 τT }

]
. By Lemma C2, ∀t, {g j(θt)} is α-mixing with

mixing coefficients satisfy αg
m 6 Cm−γ. We will show that

E

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

Z j

∥∥∥∥∥∥∥ = o(1).

For notation simplicity, we assume that k = q = 1. The case k > 1, q > 1 reduces to the analysis of a finite
number of similar sums of scalar variables.

Observe that, by Assumption 2.2(ii),
∣∣∣g j(θt)

∣∣∣ 6 2BT for some finite constant BT which may depend on
sample size and g∗j(θt) have zero mean. Then, we can apply Theorem A.5 in Hall and Heyde [1980] to
obtain ∣∣∣E(g∗k(θt)g∗j(θt))

∣∣∣ 6 16B2α
g
|k− j|.

By Jensen’s inequality,(
E

∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

Z j

∣∣∣∣∣∣∣
)2

=
1

K2
t

T∑
k=1

T∑
j=1

bkt,Hb jt,HE
∣∣∣g∗k(θt)g∗j(θt)

∣∣∣
6

1
K2

t

T∑
k=1

T∑
j=1

bkt,Hb jt,H

∣∣∣E[
g∗k(θt)g∗j(θt)

]∣∣∣
6

16B2

K2
t

( T∑
j=1

b2
jt,Hα

g
0 +

∑
k, j

∑
k, j

bkt,Hb jt,Hα
g
|k− j|

)
. (3.19)

Since αg
0 6

1
4 and we know from Lemma C1 that K2

t = O(H2),
∑T

j=1 b2
jt,H = O(H), we have

16B2

K2
t

T∑
j=1

b2
jt,Hα

g
0 6

16B2

4
·

1
K2

t

T∑
j=1

b2
jt,H = O(H−1) = o(1).
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For the second term, observe that

∑
k, j

∑
k, j

bkt,Hb jt,Hα
g
T,|k− j| = 2

T∑
j=1

b jt,H

T− j∑
m=1

b j+m,tα
g
m,

and the fact that K2
t = O(H2), we have (ignore the constant term for simplicity):∣∣∣∣∣∣∣ 1

K2
t

T∑
j=1

b jt,H

T− j∑
m=1

b j+m,t,Hα
g
m

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
T∑

j=1

1
H

b
( j − t

H

) T− j∑
m=1

1
H

b
( j + m − t

H

)
αg

m

∣∣∣∣∣∣∣
6

T∑
j=1

1
H

b
( j − t

H

)
·

∣∣∣∣∣∣∣
T∑

m=1

1
H

b
( j + m − t

H

)
αg

m

∣∣∣∣∣∣∣
6

T∑
j=1

1
H

b
( j − t

H

)
·

T∑
m=1

∣∣∣∣∣ 1
H

b
( j + m − t

H

)
αg

m

∣∣∣∣∣
6 C ·

T∑
j=1

1
H

b
( j − t

H

)
·

T∑
m=1

1
H

m−γb
( j + m − t

H

)
,

for some 0 < C, γ < ∞ and the final inequality follows by plugging the fact that αg
m 6 Cm−γ. Consider

now the second sums:∣∣∣∣∣∣∣
T∑

m=1

1
H

m−γb
( j + m − t

H

)∣∣∣∣∣∣∣ 6 1
Hγ
·

T∑
m=1

1
H1−γm−γ

∣∣∣∣∣b( j + m − t
H

)∣∣∣∣∣
6

1
Hγ
· lim

T→∞

1
H1−γm−γ

∣∣∣∣∣b( j + m − t
H

)∣∣∣∣∣
=

1
Hγ
·

( ∫ ∞

−∞

a−γb(a)da + o(1)
)

6
1

Hγ
·

∫ ∞

−∞

|a|−γ
∣∣∣b̄(a)

∣∣∣da = O(H−γ) = o(1),

provided that
∫ ∞
−∞
|a|−γ

∣∣∣b̄(a)
∣∣∣da < ∞, which is guaranteed by Assumption 2.5(iv) It follows from Lemma

C1 that ∣∣∣∣∣∣∣
T∑

j=1

1
H

b
( j − t

H

)∣∣∣∣∣∣∣ 6
∫ ∞

−∞

b(a)da + o(1) = 1 + o(1).

By combining all above, we have that

1
K2

t

∑
k, j

∑
k, j

bkt,Hb jt,Hα
g
|k− j| = o(1).
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Continuing from (3.19), we see that(
E

∣∣∣∣∣∣∣ 1
Kt

T∑
j=1

Z j

∣∣∣∣∣∣∣
)2

6
16B2

K2
t

( T∑
j=1

b2
jt,Hα

g
0 +

∑
k, j

∑
k, j

bkt,Hb jt,Hα
g
|k− j|

)
= o(1),

since B is finite. Then, for any M > 0, by Markov inequality, we see that

P
(∥∥∥∥∥∥∥ 1

Kt

T∑
j=1

ZT, j

∥∥∥∥∥∥∥ > MaT

)
6

E
∥∥∥∥ 1

Kt

∑T
j=1 ZT, j

∥∥∥∥2

(MaT )2 = O(aT ) = o(1),

which implies that, for a given θt,
M1,t(θt) = Op

(
H−1/2

)
.

Recall that, Θ is compact and by Assumption 2.4, ‖θt‖ = Op(1). Consider the set {θt : ‖θt‖ 6 C} for
some very large constant C, an open cover ∪kAk contains this set. By Heine–Borel theorem, every open
cover of a compact set has a finite subcover. Then, ∃M, we have

P
(

sup
θt∈Θ

∥∥∥∥∥∥∥
T∑

j=1

b jt,Hg j(θt) − E
[ T∑

j=1

b jt,Hg j(θt)
]∥∥∥∥∥∥∥ > MaT

)
= P

(
sup
‖θt‖6C

∥∥∥∥∥∥∥
T∑

j=1

b jt,Hg j(θt) − E
[ T∑

j=1

b jt,Hg j(θt)
]∥∥∥∥∥∥∥ > MaT

)
6 P

(
sup

16k6Kmax

sup
θt∈Ak

∥∥∥∥∥∥∥
T∑

j=1

b jt,Hg j(θt) − E
[ T∑

j=1

b jt,Hg j(θt)
]∥∥∥∥∥∥∥ > MaT

)
6

Kmax∑
k=1

P
(

sup
θt∈Ak

∥∥∥∥∥∥∥
T∑

j=1

b jt,Hg j(θt) − E
[ T∑

j=1

b jt,Hg j(θt)
]∥∥∥∥∥∥∥ > MaT

)
= o(1), (3.20)

since Kmax is finite. This completes the proof of (3.17).
Proof of (3.18). Observe that∥∥∥∥∥∥∥E

( 1
Kt

T∑
j=1

b jt,Hg j(θt)
)
− E

(
gt(θt)

)∥∥∥∥∥∥∥
6

∥∥∥∥∥∥∥E
( 1
Kt

T∑
j=1

b jt,Hg j(θt)
)
− E

( 1
Kt

T∑
j=1

b jt,Hg j(θ j)
)∥∥∥∥∥∥∥ +

∥∥∥∥∥∥∥E
( 1
Kt

T∑
j=1

b jt,Hg j(θ j)
)
− E(gt(θt))

∥∥∥∥∥∥∥
6

1
Kt

T∑
j=1

b jt,HE
∥∥∥g j(θt) − g j(θ j)

∥∥∥ +
1
Kt

T∑
j=1

b jt,HE
∥∥∥g j(θ j) − gt(θt)

∥∥∥
= M2,t,1 + M2,t,2.
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For M2,t,1, by Taylor expansion for g j(θt) and the Assumption 2.4, we have

∥∥∥M2,t,1

∥∥∥ 6 {
sup

j
E

∥∥∥∥∥∥∂g j(θ̄t)
∂θ′

∥∥∥∥∥∥2

sp

}1/2 1
Kt

T∑
j=1

b jt,H

{
E
∥∥∥θ j − θt

∥∥∥2
}1/2

= Op

((H
T

)γ̄)
,

where θ̄t lies between θt and θ j. Similar arguments, together with Assumption 2.2(iii) yields

∥∥∥M2,t,2

∥∥∥ = O
((H

T
)γ̄)
.

Since the above holds uniformly in θt, this concludes the proof of both (3.18) and UWLLN.
We now move to CLT, which states that

1

K1/2
2,t

T∑
j=1

b jt,H

(
g j(θt) − E

(
g j(θt)

)) d
−→ N(0,Wt),

where

Wt(θt) = plim
T→∞

Var
(

1

K1/2
2,t

T∑
j=1

b jt,Hg j(θt)
)
.

Define
z j = b jt,H

(
g j(θt) − E

(
g j(θt)

)
.

The proof relies on checking the conditions (1)-(5) in Francq and Zakoı̈an [2005]. For the first two condi-
tions, they require that

sup
16t6T

∥∥∥z j

∥∥∥
2+ν∗
6 ∞

for some ν∗ ∈ (0,∞] and Wt is positive definite. These are guaranteed by Assumption 2.2(ii) for 2 < ν∗ 6 4.
Note that, Assumption 2.2(i) also implies that

τT = O(T κ)

for some κ ∈ [0, 1
6 ]. This verifies the third condition. By applying Lemma B2, we verify the forth

condition:
α

g
T (h) 6 αx(h − τT ),

for all h > τT . For the fifth condition, notice that

∞∑
h=1

hr∗αx(h)ν
∗/(ν∗+2) 6

∞∑
h=1

hr∗− γν∗

ν∗+2 < ∞

is satisfied if r∗ < γν∗

ν∗+2 , which is guaranteed by Assumption 2.2(i). This completes the proof.
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We now prove the consistency of time-varying HAC estimator. Since both are evaluated at the true
parameter vector θ0,t, we drop it for notation simplicity. We also assume that {gt}t has been demeaned. Let
A(a,b) be the (a, b)th element of matrix A, by Minkowski’s inequality, for 2 < r 6 4,∥∥∥W̃ (a,b)

t −W (a,b)
t

∥∥∥ r
2

=
∥∥∥W̃ (a,b)

t − E(W̃ (a,b)
t ) + E(W̃ (a,b)

t ) −W (a,b)
t

∥∥∥ r
2

6
∥∥∥W̃ (a,b)

t − E(W̃ (a,b)
t )

∥∥∥ r
2

+
∥∥∥E(W̃ (a,b)

t ) −W (a,b)
t

∥∥∥ r
2

= W1,t + W2,t. (3.21)

Then, the proof is completed if we could provide bounds for W1,t and W2,t.
Bounds for W1,t. Consider

∥∥∥W̃ (a,b)
t − E(W̃ (a,b)

t )
∥∥∥ r

2
6 max

a,b

∥∥∥∥∥∥∥ 2
K2,t

T∑
s=1

∣∣∣∣∣k( s
L

)∣∣∣∣∣
∣∣∣∣∣∣∣
T−s∑
j=1

b jt,Hb j+s,t,H

(
ga

jg
b
j+s − E(ga

jg
b
j+s)

)∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

r
2

6 2 max
a,b

1
K2,t

T∑
s=1

∣∣∣∣∣k( s
L

)∣∣∣∣∣ ( T−s∑
j=1

b
r
2
jt,Hb

r
2
j+s,t,H

) 2
r
× 36

( r
r − 2

) 3
2 (A + 2s) sup

j

∥∥∥g j

∥∥∥2

p
, (3.22)

where the last inequality follows from Lemma B4 with 2 < r 6 4, p > r and A = 12
∑∞

m=0 α
2(1/r−1/p)
m .

Observe the fact that ∣∣∣∣∣∣∣ 1
L2

T∑
s=−T

sk
( s
L

)∣∣∣∣∣∣∣ 6 1
L2

T∑
s=−T

|s|
∣∣∣∣∣k( s

L

)∣∣∣∣∣
6 lim

T→∞

1
L2

T∑
s=−T

|s|
∣∣∣∣∣k( s

L

)∣∣∣∣∣
=

∫ ∞

−∞

|x|
∣∣∣∣k(x)

∣∣∣∣dx + o(1) = O(1),

since by Assumption 2.6,
∫ ∞
−∞
|x|

∣∣∣∣k(x)
∣∣∣∣dx < ∞. Then, we continue from (3.22):

∥∥∥W̃ (a,b)
t − E(W̃ (a,b)

t )
∥∥∥ r

2
6 C

∫ ∞

−∞

|x|
∣∣∣∣k(x)

∣∣∣∣dx 36A
( r
r − 2

) 3
2 L2

(∑T−s
j=1 b

r
2
jt,Hb

r
2
j+s,t,H

) 2
r

K2,t

6 C
∫ ∞

−∞

|x|
∣∣∣∣k(x)

∣∣∣∣dx 36A
( r
r − 2

) 3
2 L2

(∑T
j=1 b

r
2
jt,Hb

r
2
j+s,t,H

) 2
r

K2,t

where C = sup j

∥∥∥g j

∥∥∥2

p
. By Lemma B1, we know that K2,t = O(H) and

(∑T
j=1 b

r
2
jt,Hb

r
2
j+s,t,H

) 2
r

= O(H
2
r ).

Clearly, consistency requires that
L = o

(
H

1
2−

1
r
)
,

which is guaranteed by Assumption 2.6.
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Bounds for W2,t. We proceed as in Lemma 6.6 in Gallant and White [1988]. Notice that,

Wt = plim
T→∞

Var
(

1

K1/2
2,t

T∑
j=1

b jt,Hg j

)
= plim

T→∞

1
K2,t

T∑
i=1

T∑
j=1

bit,Hb jt,HE
(
gig′j

)
.

Let kτT = k
(
τ
L

)
, since

Wt − W̃t = (1 − k0T )
1

K2,t

T∑
j=1

b2
jt,HE(g jg′j) + 2

L∑
s=1

(1 − ksT )
1

K2,t

T−s∑
j=1

b jt,Hb j+s,t,HE(g jg′j+s)

+ 2
T∑

s=L+1

1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,HE(g jg′j+s)

= ∆w1,t + ∆w2,t + ∆w3,t,

we need to show that ∆w1,t,∆w2,t,∆w3,t vanish as T → ∞.
Bounds for ∆w1,t. Notice that∥∥∥∥∥∥∥ 1

K2,t

T∑
j=1

b2
jt,HE(g jg′j)

∥∥∥∥∥∥∥ 6 1
K2,t

T∑
j=1

b2
jt,H sup

j
E
∥∥∥g j

∥∥∥2
= O(1),

and the fact that k0T = 1. Then, ∆w1,t → 0 as T → ∞.
Bounds for ∆w2,t. Consider∥∥∥∥∥∥∥

L∑
s=1

(1 − ksT )
1

K2,t

T−s∑
j=1

b jt,Hb j+s,t,HE(g jg′j+s)

∥∥∥∥∥∥∥ 6
L∑

s=1

|1 − ksT |
1

K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

∥∥∥g jg′j+s

∥∥∥
6 4C2

L∑
s=1

|1 − ksT |
1

K2,t

T−s∑
j=1

b jt,Hb j+s,t,Hα
g
T (s)

6 4C2
L∑

s=1

|1 − ksT |b∗
( s
H

)
α

g
T (s),

where the second inequality follows from the mixing inequality in Theorem A.5 in Hall and Heyde [1980]
and the final equality follows from Lemma B1(iii). Define

fT (s) = 4C2 I(s 6 L)|1 − ksT |b∗
( s
H

)
α

g
T (s)

and µ(s) be the counting measure, we apply the dominant convergence theorem to show that
∫ ∞

0
fT (s)dµ(s)→

0. For each s, the requirement that ksT → 1 ensures that fT (s) → 0 as T → ∞. Further, because |ksT | 6 c
and | fT (S )| 6

∣∣∣ f̄ (s)
∣∣∣, where f̄ (s) = 4C2(1 + c)b̄∗

( s
H

)
α

g
T (s), since sups α

g
T (s) → 0 as s → ∞, and b̄∗

( s
H

)
,
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which implies that f̄ (s) is bounded and∫ ∞

0
f̄ (s)dµ(s) =

∞∑
s=1

4C2(1 + c)b̄∗
( s
H

)
α

g
T (s) < ∞,

which further implies that
∫ ∞

0
fT (s)dµ(s)→ 0 and we conclude that ∆w2,t → 0 as T → ∞.

Bounds for ∆w3,t. Consider∥∥∥∥∥∥∥
T∑

s=L+1

1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,HE(g jg′j+s)

∥∥∥∥∥∥∥ 6
T∑

s=L+1

1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

∥∥∥g jg′j+s

∥∥∥
1

6 4C2
T∑

s=L+1

b∗
( s
H

)
α

g
T (s)

= 4C2
( T∑

s=1

b∗
( s
H

)
α

g
T (s) −

L∑
s=1

b∗
( s
H

)
α

g
T (s)

)
.

Because the requirements of αg
T (s) ensure the convergence of the two sums in the parentheses to the same

limits provided that L→ ∞ as T → ∞. This guarantees that ∆w3,t → 0 as T → ∞.
Then, by combining all results above, we continue with (3.21):∥∥∥W̃ (a,b)

t −W (a,b)
t

∥∥∥ r
2
6 W1,t + W2,t = o(1),

which completes the proof.

Appendix A.2: Proof of Theorem 1

The estimator is defined by (3.3) and (3.5):

θ̂t = arg min
θt∈Θ

Qt,T ,

where the criteria function Qt,T is given by

Qt,T = g′t(θt)W̃−1
t (θt)gt(θt).

To establish consistency and asymptotic normality of the estimator, we rely on Taylor series expansion.
Write θ0,t as the true value and consider a first-order Taylor series expansion of ∂Qt,T (θ̂t)

∂θ
= 0 around θ0,t,

∂Qt,T (θ0,t)
∂θ

+
∂2Qt,T (θ̄t)
∂θ∂θ′

(θ̂t − θ0,t) = 0,
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where θ̄t lies between θ̂t and θ0,t. By rearranging terms, we have

θ̂t − θ0,t = −
(∂2Qt,T (θ̄t)

∂θ∂θ′

)−1∂Qt,T (θ0,t)
∂θ

= −
(∂2Qt,T (θ0,t)

∂θ∂θ′

)−1∂Qt,T (θ0,t)
∂θ

+

[(∂2Qt,T (θ0,t)
∂θ∂θ′

)−1
−

(∂2Qt,T (θ̄t)
∂θ∂θ′

)−1
]
∂Qt,T (θ0,t)

∂θ
. (3.23)

We need to show that ∥∥∥∥∥∥(∂2Qt,T (θ0,t)
∂θ∂θ′

)−1
−

(∂2Qt,T (θ̄t)
∂θ∂θ′

)−1
∥∥∥∥∥∥

sp

= op(1) (3.24)∥∥∥∥∥∥∂2Qt,T (θ0,t)
∂θ∂θ′

∥∥∥∥∥∥
sp

= Op(1), (3.25)

Then, consistency and asymptotic normality are obtained from the first term in (3.23). Thus, we need a
detailed expansion for the first and second order derivatives for Qt,T (θt).

Let us first compute the score:

∂Qt,T (θ0,t)
∂θ

= 2
[

1
Kt

T∑
j=1

b jt,H
∂g j(θ0,t)
∂θ′

]′
W̃−1

t (θ0,t)
[

1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]

+
(
A2,1(θ0,t), · · · , A2,k(θ0,t)

)′
= A1(θ0,t) + A2(θ0,t).

The `1th elements in A2(θ0,t) is given by

A2,`1(θ0,t) =

[
1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]′
∂W̃−1

t (θ0,t)
∂θ`1

[
1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]
,

where
∂W̃−1

t (θ0,t)
∂θ`1

= −W̃−1
t (θ0,t)

∂W̃t(θ0,t)
∂θ`1

W̃−1
t (θ0,t).

We need to show that ∥∥∥A1(θ0,t)
∥∥∥ = Op

((H
T

)γ̄
+ H−1/2

)
(3.26)∣∣∣A2,`1(θ0,t)

∣∣∣ = op(1), for `1 = 1, 2, · · · , k. (3.27)

Proof of (3.27). First, notice that∥∥∥W̃−1
t (θ0,t) −W−1

t

∥∥∥
sp
6 ‖Wt‖

−1
sp

∥∥∥Wt − W̃t(θ0,t)
∥∥∥

sp

∥∥∥W̃t(θ0,t)
∥∥∥−1

sp
= Op(1),
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by the fact that Wt is positive definite and Lemma 1(iii). Then, consider

∂W̃t(θ0,t)
∂θ`1

=

T∑
s=−T

k
( s
L

) 1
K2,t

( T−s∑
j=1

b jt,Hb j+s,t,Hg j(θ0,t)
(∂g j+s(θ0,t)

∂θ`1

)′
+

T−s∑
j=1

b jt,Hb j+s,t,H
(∂g j+s(θ0,t)

∂θ`1

)
g′j+s(θ0,t)

)
.

By similar arguments used in the proof of Lemma 1(iii), we can show that

T∑
s=−T

k
( s
L

) 1
K2,t

( T−s∑
j=1

b jt,Hb j+s,t,Hg j(θ0,t)
(∂g j+s(θ0,t)

∂θ`1

)′) p
−→ Wt,d1 ,

where

Wt,d1 = plim
T→∞

1
K2,t

T∑
i=1

T∑
j=1

bit,Hb jt,HE
[
gi(θ0,t)

(∂g j(θ0,t)
∂θ`1

)]
is positive definite. Then, ∥∥∥∥∥∥∂W̃−1

t (θ0,t)
∂θ`1

∥∥∥∥∥∥
sp

6 ‖Wt‖
−2
sp

∥∥∥Wt,d1

∥∥∥ + op(1) = Op(1).

By Lemma 1(i), since E(gt(θ0,t)) = 0, we have∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)

∥∥∥∥∥∥∥ = Op

((H
T

)γ̄
+ H−1/2

)
= op(1),

which implies that

∣∣∣A2,`1(θ0,t)
∣∣∣ 6 ∥∥∥∥∥∥∥ 1

Kt

T∑
j=1

b jt,Hg j(θ0,t)

∥∥∥∥∥∥∥
2∥∥∥∥∥∥∂W̃−1

t (θ0,t)
∂θ`1

∥∥∥∥∥∥
sp

+ op(1) = op(1).

Proof of (3.26). First, by similar arguments as in the proof of Lemma 1(i), we can show that

sup
θt∈Θ

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,H
∂g j(θt)
∂θ′

−Gt(θt)

∥∥∥∥∥∥∥
sp

= Op

((H
T

)γ̄
+ H−1/2

)
.

Define

GD,t =
1
Kt

T∑
j=1

b jt,H
∂g j(θt)
∂θ′

−Gt

WD,t = W̃−1
t (θ0,t) −W−1

t ,
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and Gt, Wt are defined in Theorem 1. Let us rewrite A1(θ0,t):

A1(θ0,t) = G′tW
−1
t

( 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
)

+ G′D,tWD,t

( 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
)

+ G′D,tW
−1
t

( 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
)

+ G′tWD,t

( 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
)
.

Then, ∥∥∥A1(θ0,t)
∥∥∥ 6 ‖Gt‖sp‖Wt‖

−1
sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)

∥∥∥∥∥∥∥ + op(1) = Op

((H
T

)γ̄
+ H−1/2

)
.

Consider now the second order derivatives of the objective function:

∂2Qt,T (θ0,t)
∂θ∂θ′

=
[
∂A1(θ0,t)
∂θ1

· · ·
∂A1(θ0,t)
∂θk

]
k×k

+


∂A2,1(θ0,t)

∂θ′

...
∂A2,k(θ0,t)

∂θ′


k×k

= B1(θ0,t) + B2(θ0,t)

We will show that ∥∥∥∥∥∥∂A1(θ0,t)
∂θ`2

∥∥∥∥∥∥ = Op(1) (3.28)∥∥∥∥∥∂A2,`2(θ0,t)
∂θ′

∥∥∥∥∥ = op(1), (3.29)

for `2 = 1, · · · , k.
Proof of (3.28). Consider∥∥∥∥∥∥∂A1(θ0,t)

∂θ`2

∥∥∥∥∥∥ = 2
[

1
Kt

T∑
j=1

b jt,H
∂2g j(θ0,t)
∂θ`2∂θ

′

]′
W̃−1

t (θ0,t)
[

1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]

+ 2
[

1
Kt

T∑
j=1

b jt,H
∂2g j(θ0,t)
∂θ`2∂θ

′

]′
∂W̃−1

t (θ0,t)
∂θ`2

[
1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]

+ 2
[

1
Kt

T∑
j=1

b jt,H
∂2g j(θ0,t)
∂θ`2∂θ

′

]′
W̃−1

t (θ0,t)
[

1
Kt

T∑
j=1

b jt,H
∂2g j(θ0,t)
∂θ`2∂θ

′

]
= B11(θ0,t) + B12(θ0,t) + B13(θ0,t).

We need to find bounds for the above three terms.
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Bounds for B11(θ0,t). Notice that, by similar arguments as used in Lemma 1(i), we obtain

sup
θt∈Θ

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,H
∂2g j(θ0,t)
∂θ`2∂θ

′
− E

[∂2gt(θt)
∂θ`2∂θ

′

]∥∥∥∥∥∥∥
sp

= Op

((H
T

)γ̄
+ H−1/2

)
.

Then, ∥∥∥B11(θ0,t)
∥∥∥ 6 ∥∥∥∥∥∥E

[∂2gt(θ0,t)
∂θ`2∂θ

′

]∥∥∥∥∥∥
sp

‖Wt‖
−1
sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)

∥∥∥∥∥∥∥ + op(1) = op(1).

Bounds for B12(θ0,t). Again, by similar arguments as in Lemma 1(i), we obtain

∥∥∥B12(θ0,t)
∥∥∥ 6 ∥∥∥∥∥∥E

[∂2gt(θ0,t)
∂θ`2∂θ

′

]∥∥∥∥∥∥
sp

∥∥∥∥∥∥∂W̃−1
t (θ0,t)
∂θ`2

∥∥∥∥∥∥
sp

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,Hg j(θ0,t)

∥∥∥∥∥∥∥ + op(1) = op(1).

Bounds for B13(θ0,t):

∥∥∥B13(θ0,t)
∥∥∥ 6 ∥∥∥∥∥∥E

[∂2gt(θ0,t)
∂θ`2∂θ

′

]∥∥∥∥∥∥2

sp

‖Wt‖
−1
sp + op(1) = Op(1).

Summing up, by triangular inequality, we get:∥∥∥∥∥∥∂A1(θ0,t)
∂θ`2

∥∥∥∥∥∥ 6 ∥∥∥B11(θ0,t)
∥∥∥ +

∥∥∥B12(θ0,t)
∥∥∥ +

∥∥∥B13(θ0,t)
∥∥∥ = Op(1).

Proof of (3.29). Consider

∂A2,`2(θ0,t)
∂θ′

= 2
[

1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]′
∂W̃−1

t (θ0,t)
∂θ`2

[
1
Kt

T∑
j=1

b jt,H
∂g j(θ0,t)
∂θ′

]
+

[
A2,1,1(θ0,t) · · · A2,k,1(θ0,t)

]
1×k

,

where a typical element A2,`4,1(θ0,t), `4 = 1, 2, · · · , k is given by

A2,`4,1(θ0,t) =

[
1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]′
∂2W̃t(θ0,t)
∂θ`1∂θ`4

[
1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
]
.

Since both elements above involves 1
Kt

∑T
j=1 b jt,Hg j(θ0,t), which converges to 0 at the rate

(H
T

)γ̄
+ H−1/2.

Similar arguments as above leads to (3.29), which concludes the claim. Again, by triangular inequality,
we obtain ∥∥∥∥∥∥∂2Qt,T (θ0,t)

∂θ∂θ′

∥∥∥∥∥∥
sp

6
∥∥∥B1(θ0,t)

∥∥∥
sp

+
∥∥∥B2(θ0,t)

∥∥∥
sp

= Op(1)
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We have established (3.25), but we still need to show (3.24). Notice that∥∥∥∥∥∥(∂2Qt,T (θ0,t)
∂θ∂θ′

)−1
−

(∂2Qt,T (θ̄t)
∂θ∂θ′

)−1
∥∥∥∥∥∥

sp

6

∥∥∥∥∥∥∂2Qt,T (θ0,t)
∂θ∂θ′

∥∥∥∥∥∥−1

sp

∥∥∥∥∥∥∂2Qt,T (θ0,t)
∂θ∂θ′

−
∂2Qt,T (θ̄t)
∂θ∂θ′

∥∥∥∥∥∥
sp

∥∥∥∥∥∥∂2Qt,T (θ̄t)
∂θ∂θ′

∥∥∥∥∥∥−1

sp

.

Then, we need to show that∥∥∥∥∥∥∂2Qt,T (θ0,t)
∂θ∂θ′

−
∂2Qt,T (θ̄t)
∂θ∂θ′

∥∥∥∥∥∥
sp

= op(1),

∥∥∥∥∥∥∂2Qt,T (θ̄t)
∂θ∂θ′

∥∥∥∥∥∥−1

sp

= Op(1).

These are straightforward, since we could let θ̄t
p
−→ θ0,t. For example, by first order Taylor expansion,

1
Kt

T∑
j=1

b jt,Hg j(θ̄t) =
1
Kt

T∑
j=1

b jt,Hg j(θ0,t) +
1
Kt

T∑
j=1

b jt,H
∂g j(θ̃t)
∂θ′

(θ̄t − θ0,t).

Clearly, by the fact that 1
Kt

∑T
j=1 b jt,H

∂g j(θ̃t)
∂θ′

is bounded, letting θ̄t
p
−→ θ0,t we conclude that∥∥∥∥∥∥∥ 1

Kt

T∑
j=1

b jt,Hg j(θ̄t) −
1
Kt

T∑
j=1

b jt,Hg j(θ0,t)

∥∥∥∥∥∥∥ = op(1)

It follows similar, but lengthy arguments, we obtain same results for other terms involving derivatives.
By continuing from (3.23), we obtain the consistency results:

∥∥∥θ̂t − θ0,t

∥∥∥ 6 ∥∥∥∥∥∥∂2Qt,T (θ0,t)
∂θ∂θ′

∥∥∥∥∥∥−1

sp

∥∥∥∥∥∂Qt,T (θ0,t)
∂θ

∥∥∥∥∥ +

∥∥∥∥∥∥(∂2Qt,T (θ0,t)
∂θ∂θ′

)−1
−

(∂2Qt,T (θ̄t)
∂θ∂θ′

)−1
∥∥∥∥∥∥

sp

∥∥∥∥∥∂Qt,T (θ0,t)
∂θ

∥∥∥∥∥
= Op

((H
T

)γ̄
+ H−1/2

)
For CLT, we assume that q = k = 1, since for the case of q, k > 1 it follows immediately from

Cramer-Wold device theorem. Clearly, from (3.23), we can rewrite the estimator as

θ̂t − θ0,t = −

(
∂2Qt,T (θ0,t)

∂θ2

)−1
∂Qt,T (θ0,t)

∂θ
+ op(1)

= −(G′tW
−1
t Gt)−1G′tW

−1
t

1
Kt

T∑
j=1

b jt,Hg j(θ0,t) + op(1).
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By Lemma 1(ii), we have

Kt

K1/2
2,t

(θ̂t − θ0,t) = −(G′tW
−1
t Gt)−1G′tW

−1
t

1

K1/2
2,t

T∑
j=1

b jt,Hg j(θ0,t) + op(1)

d
−→ −(G′tW

−1
t Gt)−1G′tW

−1
t W1/2

t N(0, 1) + op(1),

since
1

K1/2
2,t

T∑
j=1

b jt,Hg j(θ0,t)
d
−→ N(0, 1).

Then, for the general case q, k > 1, we have

Kt

K1/2
2,t

(
G′tW

−1
t Gt

)1/2(
θ̂t − θ0,t

) d
−→ N(0, Ik),

which completes the proof.

Appendix A.3: Proof of Corollary 1

By triangular inequality,

∥∥∥Ĝt −Gt

∥∥∥
sp
6

∥∥∥∥∥∥∥Ĝt −
1
Kt

T∑
j=1

b jt,H
∂g j(θ0,t)
∂θ′

∥∥∥∥∥∥∥
sp

+

∥∥∥∥∥∥∥ 1
Kt

T∑
j=1

b jt,H
∂g j(θ0,t)
∂θ′

−Gt

∥∥∥∥∥∥∥
sp

= Gt,1 + Gt,2.

Again, we have stated that by similar arguments used in the proof of (3.18), Gt,2 = op(1). For Gt,1, notice
that

Gt,1 6
1
Kt

T∑
j=1

b jt,H

∥∥∥∥∥∥∂g j(θ̂t)
∂θ′

−
∂g j(θ0,t)
∂θ′

∥∥∥∥∥∥
sp

6
T∑

j=1

b jt,H

∥∥∥∥∥∥∂2g j(θ̄t)
∂θ`∂θ′

∥∥∥∥∥∥
sp

∥∥∥θ̂t − θ0,t

∥∥∥,
where the second inequality follows from first order Taylor expansion of ∂g j(θ̂t)

∂θ′
and it holds uniformly for

all θ`, ` = 1, 2, · · · , k. Since
∥∥∥∥∂2g j(θ̄t)
∂θ`∂θ′

∥∥∥∥
sp
< ∞ and by consistency we have that

∥∥∥θ̂t − θ0,t

∥∥∥
sp

= op(1), this
completes the proof.

Notice that

Ŵt =

T∑
s=−T

k
( j
L

) 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g∗j(θ̂t)

)(
g∗j+s(θ̂t)

)′
,

where g∗j+s(θ̂t) = g′j+s(θ̂t) − 1
T

∑T
s=1 gs(θ̂t). By triangular inequality,∥∥∥Ŵt −Wt

∥∥∥
sp
6

∥∥∥Ŵt − W̃t

∥∥∥
sp

+
∥∥∥W̃t −Wt

∥∥∥
sp

= We,t,1 + We,t,2.



139

In Lemma 1(iii), we have shown that We,t,2 = op(1). What remains is to show that We,t,1 = op(1). Consider

Kt

K1/2
2,t L

∥∥∥∥∥∥∥
T∑

s=−T

k
( j
L

) 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g∗j(θ̂t)

)(
g∗j+s(θ̂t)

)′
−

T∑
s=−T

k
( j
L

) 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g∗j(θ0,t)

)(
g∗j+s(θ0,t)

)′∥∥∥∥∥∥∥
sp

6
T∑

s=−T

1
L

k
( j
L

) Kt

K1/2
2,t

∥∥∥∥∥∥∥ 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g∗j(θ̂t)

)(
g∗j+s(θ̂t)

)′
−

1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g∗j(θ0,t)

)(
g∗j+s(θ0,t)

)′∥∥∥∥∥∥∥
sp

6
T∑

s=−T

1
L

k
( j
L

) 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H
Kt

K1/2
2,t

∥∥∥∥(g∗j(θ̂t)
)(

g∗j+s(θ̂t)
)′
−

(
g∗j(θ0,t)

)(
g∗j+s(θ0,t)

)′∥∥∥∥
sp

6
T∑

s=−T

1
L

k
( j
L

) 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

∥∥∥∥∥∥∥∂g∗j(θ̄t)

∂θ`

(
g∗j+s(θ̄t)

)′
+ g∗j+s(θ̄t)

(∂g∗j(θ̄t)

∂θ`

)′∥∥∥∥∥∥∥
sp

Kt

K1/2
2,t

∥∥∥θ̂t − θ0,t

∥∥∥, (3.30)

where the last line follows from a first order Taylor expansion of
(
g∗j(θ̂t)

)(
g∗j+s(θ̂t)

)′
around θ0,t. Observe

that

lim
T→∞

T∑
s=−T

1
L

k
( j
L

)
=

∫ ∞

−∞

k(a)da < ∞

lim
T→∞

1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H =
1

K2,t

∫ ∞

−∞

b(c)b(c + d)dc < ∞

∥∥∥∥∥∥∥∂g∗j(θ̄t)

∂θ`

(
g∗j+s(θ̄t)

)′∥∥∥∥∥∥∥
sp

<

{∥∥∥∥∥∥∥∂g∗j(θ̄t)

∂θ`

∥∥∥∥∥∥∥
2}1/2{∥∥∥g∗j+s(θ̄t)

∥∥∥2
}1/2

< ∞

Kt

K1/2
2,t

∥∥∥θ̂t − θ0,t

∥∥∥ = Op(1).

Then, continuing from (3.30), we have

Kt

K1/2
2,t L

∥∥∥∥∥∥∥
T∑

s=−T

k
( j
L

) 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g∗j(θ̂t)

)(
g∗j+s(θ̂t)

)′
−

T∑
s=−T

k
( j
L

) 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
g∗j(θ0,t)

)(
g∗j+s(θ0,t)

)′∥∥∥∥∥∥∥
sp

= Op(1),

which implies that

We,t,2 = Op

(
L

K1/2
2,t

Kt

)
= op(1).
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Appendix A.4: Proof of Theorem 2

To derive the limiting distribution of JT , consider again the decomposition of VT,t:

VT,t = Ŵ−1/2
t

1

K1/2
2,t

T∑
j=1

b jt,Hg j(θ̂t)

= W−1/2
t

1

K1/2
2,t

T∑
j=1

b jt,Hg j(θ0,t) + W−1/2
t Gt

Kt

K1/2
2,t

(
−

(
G′tW

−1
t Gt

)−1G′tW
−1
t

1
Kt

T∑
j=1

b jt,Hg j(θ0,t)
)

+ op(1)

= W−1/2
t

1

K1/2
2,t

(
Iq −Gt

(
G′tW

−1
t Gt

)−1G′tW
−1
t

) T∑
j=1

b jt,Hg j(θ0,t)

= W−1/2
t

1

K1/2
2,t

(
Iq −Gt

(
G′tW

−1
t Gt

)−1G′tW
−1
t

) T∑
j=1

b jt,H

(
g j(θ0, j) +

∂g j(θ̄t)
∂θ′

(θ0,t − θ0, j)
)

+ op(1)

= W−1/2
t

1

K1/2
2,t

(
Iq −Gt

(
G′tW

−1
t Gt

)−1G′tW
−1
t

) T∑
j=1

b jt,Hg j(θ0, j) + op(1),

where the final line follows from the fact that, ∀ j,

∥∥∥g j(θ0,t) − g j(θ0, j)
∥∥∥ 6 ∥∥∥∥∥∥∂g j(θ̄t)

∂θ′

∥∥∥∥∥∥
sp

∥∥∥θ0,t − θ0, j)
∥∥∥ = Op

(
(
H
T

)γ̄
)

= op(1).

Then, consider the scaled sum of VT,t:

1
√

T

T∑
t=1

VT,t =
1
√

T

T∑
t=1

(
W−1/2

t
1

K1/2
2,t

(
Iq −Gt

(
G′tW

−1
t Gt

)−1G′tW
−1
t

) T∑
j=1

b jt,Hg j(θ0, j)
)

+ op(1)

=
1
√

T

T∑
t=1

( T∑
j=1

bt j,H

K1/2
2,t

W−1/2
j (Iq −G j(G′jW

−1
j G j)−1G′jW

−1
j )

))
gt(θ0,t) + op(1)

=
1
√

T

T∑
t=1

Ξtgt(θ0,t) + op(1),

where Ξt =
∑T

j=1
bt j,H

K1/2
2,t

W−1/2
j (Iq − G j(G′jW

−1
j G j)−1G′jW

−1
j )

)
. In view of Cramer-Wold device, it is sufficient

to show that, for b ∈ Rq, where ‖b‖ = 1, the following holds

1
√

T

T∑
t=1

b′Ξtgt(θ0,t)
d
−→ N(0, b′Ω1b),

where

Ω2 = plim
T→∞

Var
( 1
√

T

T∑
t=1

Ξtgt(θ0,t)
)
< ∞
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is positive definite. It can be easily shown that, Ω̂2 is given by

Ω̂2 =
1
T

T∑
t=1

(( T∑
j=1

bt j,H

K1/2
2,t

Ŵ−1/2
j (Iq−Ĝ j(Ĝ′jŴ

−1
j Ĝ j)−1Ĝ′jŴ

−1
j )

)
gt(θ̂t)g′t(θ̂t)

( T∑
j=1

bt j,H

K1/2
2,t

Ŵ−1/2
j (Iq−Ĝ j(Ĝ′jŴ

−1
j Ĝ j)−1Ĝ′jŴ

−1
j )

)′)

By Theorem 3.2 in Hall and Heyde [1980], we need to verify the following two conditions:

1
T

T∑
t=1

b′Ξtgt(θ0,t)g′t(θ0,t)Ξ′tb
p
−→ b′Ω2b (3.31)

max
16t6T

∣∣∣∣∣∣ 1
√

T
b′Ξtgt(θ0,t)

∣∣∣∣∣∣ p
−→ 0. (3.32)

Proof of (3.31). Observe that

E
[ 1
T

T∑
t=1

b′Ξtgt(θ0,t)g′t(θ0,t)Ξ′tb
]

= b′
1
T

T∑
t=1

ΞtE
(
gt(θ0,t)g′t(θ0,t)

)
Ξ′tb −→ b′Ω1b

and

Var
( 1
T

T∑
t=1

b′Ξtgt(θ0,t)g′t(θ0,t)Ξ′tb
)

=
1

T 2

T∑
t=1

{ [
(
∑q

s=1 bsξs1)2 · · · (
∑q

s=1 bsξsq)2
] 

Var (g2
t1)

...

Var (g2
tq)


+ 2

∑
j1, j2, j1, j2

(
q∑

s=1

bsξs j1)
2(

q∑
s=1

bsξs j2)
2Var (gt j1gt j2)

}
.

Since q is finite, ∀ j, Iq − G j(G′jW
−1
j G j)−1G′jW

−1
j is idempotent and Wt is positive definite, we have

(
∑q

s=1 bsξs j)2 6
∑q

s=1 b2
sξ

2
s j < ∞. In addition, since sup16t6T

∥∥∥Var
(
gt(θ0,t)g′t(θ0,t)

)∥∥∥ < ∞, we have, ∀( j1, j2),
sup16t6T Var (gt j1g

′
t j2) < ∞. This implies that

{ [
(
∑q

s=1 bsξs1)2 · · · (
∑q

s=1 bsξsq)2
] 

Var (g2
t1)

...

Var (g2
tq)

 + 2
∑

j1, j2, j1, j2

(
q∑

s=1

bsξs j1)
2(

q∑
s=1

bsξs j2)
2Var (gt j1gt j2)

}
= O(1),

which further implies that

Var
( 1
T

T∑
t=1

b′Ξtgt(θ0,t)g′t(θ0,t)Ξ′tb
)

= O
( 1
T

)
= o(1).

(3.31) follows from Markov’s inequality.



142

Proof of (3.32). Observe that, for any ε > 0,

E
[ 1
T

b′Ξtgt(θ0,t)g′t(θ0,t)Ξ′tbI
(∥∥∥gt(θ0,t)

∥∥∥ > √T ε
)]

=
1
T

b′ΞtE
[
gt(θ0,t)g′t(θ0,t)I

(∥∥∥gt(θ0,t)
∥∥∥ > √T ε

)]
Ξ′tb.

By Theorem 12.10 in Davidson [1994], since E
[
gt(θ0,t)g′t(θ0,t)

]
< ∞, we have

E
[
gt(θ0,t)g′t(θ0,t)I

(∥∥∥gt(θ0,t)
∥∥∥ > √T ε

)]
−→ 0.

Thus,

P
(

max
16t6T

∣∣∣∣∣∣ 1
√

T
b′Ξtgt(θ0,t)

∣∣∣∣∣∣ > ε) 6 1
ε2

T∑
t=1

E
[ 1
T

b′Ξtgt(θ0,t)g′t(θ0,t)Ξ′tbI
(∥∥∥gt(θ0,t)

∥∥∥ > √T ε
)]

= o(1),

which completes the proof.
To derive the limiting distribution of QT , first order Taylor series expansion gives

1
√

T

T∑
t=1

gt(θ̂t) =
1
√

T

T∑
t=1

gt(θ0) +
1
√

T

T∑
t=1

∂gt(θ̄1)
∂θ′

(θ̂t − θ)

and
1
√

T

T∑
t=1

gt(θ̂) =
1
√

T

T∑
t=1

gt(θ0) +
1
√

T

T∑
t=1

∂gt(θ̄2)
∂θ′

(θ̂ − θ),

where θ1 lies between θ̂t and θ0, θ2 lies between θ̂ and θ0. Following similar procedure as in (3.23), we
could expand both θ̂t − θ and θ̂ − θ:

θ̂t − θ = −
(
Ḡ′tW̄

−1
t Ḡt

)−1Ḡ′tW̄
−1
t ×

1
Kt

T∑
j=1

b jt,Hg j(θ)

θ̂ − θ = −
(
G′T W−1

T GT
)−1G′T W−1

T ×
1
T

T∑
j=1

g j(θ),

where Ḡt and W̄t are defined similar as in Theorem 1, except for the fact that these quantities are evaluated
at θ for all t, instead of θ0,t for each t. GT and WT are standard score and covariance matrix in the case of
fixed coefficients. Notice that

1
√

T

T∑
t=1

∂gt(θ̄2)
∂θ′

(θ̂ − θ) =
( 1
T

T∑
t=1

∂gt(θ̄2)
∂θ′

)
×
√

T (θ̂ − θ) = −GT
(
G′T W−1

T GT
)−1G′T W−1

T ×
1
T

T∑
j=1

g j(θ) + op(1).
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Then, we can write

1
√

T

T∑
t=1

gt(θ̂t) −
1
√

T

T∑
t=1

gt(θ̂) =
1
√

T

T∑
t=1

∂gt(θ̄1)
∂θ′

(
−

(
Ḡ′tW̄

−1
t Ḡt

)−1Ḡ′tW̄
−1
t ×

1
Kt

T∑
j=1

b jt,Hg j(θ)
)

+ GT
(
G′T W−1

T GT
)−1G′T W−1

T ×
1
T

T∑
j=1

g j(θ) + op(1)

=
1
√

T

T∑
t=1

(
GT

(
G′T W−1

T GT
)−1G′T W−1

T −

T∑
j=1

(bt j,H

K j

)∂g j(θ)
∂θ′

(
Ḡ′jW̄

−1
j Ḡ j

)−1Ḡ′jW̄
−1
j

)
gt(θ) + op(1)

=
1
√

T

T∑
t=1

Ξt,3gt(θ) + op(1).

By similar procedures as used in deriving limiting distribution of JT , we could show that

1
√

T

T∑
t=1

gt(θ̂t) −
1
√

T

T∑
t=1

gt(θ̂)
d
−→ N(0,Ω1),

which completes the proof. Ω1 is given by

Ω1 = plim
T→∞

Var
(

1
√

T

T∑
t=1

(
GT (G′T W−1

T GT )−1G′T W−1
t −

T∑
j=1

bt j,H

Kt
∂g j(θ)
∂θ′

(
Ḡ′jW̄

−1
j Ḡ j)−1(Ḡ′jW̄−1

j
))

gt(θ)
)
. (3.33)

Both Ḡt and W̄t are defined similar as in Theorem 1, except for the fact that these quantities are evaluated
at θ for all t, instead of θ0,t for each t. GT and WT are similarly defined as in the fixed coefficient case. It
can be easily shown that, Ω̂1 is given by

Ω̂1 =
1
T

T∑
t=1

(
ĜT (Ĝ′T Ŵ−1

T ĜT )−1Ĝ′T Ŵ−1
t −

( T∑
j=1

(bt j,H

Kt

) ˆ̄G j
( ˆ̄G′j ˆ̄W−1

j
ˆ̄G j)−1( ˆ̄G′j ˆ̄W−1

j
))

gt(θ̂)g′t(θ̂)
(
ĜT (Ĝ′T Ŵ−1

T ĜT )−1Ĝ′T Ŵ−1
t −

( T∑
j=1

(bt j,H

Kt

) ˆ̄G j
( ˆ̄G′j ˆ̄W−1

j
ˆ̄G j)−1

)′)
,

where ˆ̄G j and ˆ̄W−1
j are defined similarly as in Corollary 1, except that θ̂t is replaced by θ̂. ĜT and ŴT are

obtained from standard constant coefficient CU-GMM estimation.
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Appendix B: Auxiliary results

Lemma B1. Consider the class of kernel weights b jt,H = b
(

j−t
H

)
computed with a kernel function b(·) and

bandwidth H, both satisfying Assumption 2.5, we have that

(i)
T∑

j=1

b jt,H = O(H),
T∑

j=1

bt j,H = O(H),
T∑

j=1

bk
jt,H = O(H), 1 < k 6 2;

(ii) ( T−s∑
j=1

b
r
2
jt,Hb

r
2
j+s,t,H

) 2
r

= O(H
2
r )

for some 2 < r 6 4, uniformly in s;

(iii) ∑T
j=1 b

(
j−t
H b

(
j+s−t

H

)
∑T

j=1 b2
(

j−t
H

) = b∗
( s
H

)
+ o(1),

uniformly in s, b∗(·) is the induced kernel b∗(d) = 1
b2

∫ ∞
−∞

b(c)b(c + d)dc and b2 =
∫ ∞
−∞

b2(a)da.

Proof. Proof of (i). Notice that

1
H

T∑
j=1

b jt,H =
1
H

T∑
j=1

b
( j − t

H

)
=

1
H

T−t∑
s=1−t

b
( s
H

)
.

Observe that ∣∣∣∣∣∣∣ 1
H

T−t∑
s=1−t

b
( s
H

)∣∣∣∣∣∣∣ 6 1
H

T−1∑
s=1−T

∣∣∣∣∣b( s
H

)∣∣∣∣∣
Using the change of variable s = bHac, we have

1
H

T−1∑
s=1−T

∣∣∣∣∣b( s
H

)∣∣∣∣∣ 6 lim
T→∞

1
H

T−1∑
s=1−T

∣∣∣∣∣b( s
H

)∣∣∣∣∣
= lim

T→∞

∫ (T−1)/H

(1−T )/H
b(a)da + lim

T→∞

1
H

b(0)

=

∫ ∞

−∞

b(a)da + o(1) = 1 + o(1).

Thus,
∑T

j=1 b jt,H = O(H). Similarly, we obtain
∑T

j=1 bt j,H = O(H) and
∑T

j=1 bk
jt,H = O(H) for 1 < k 6 2.
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Proof of (ii). Notice that

T−s∑
j=1

b
r
2
jt,Hb

r
2
j+s,t,H =

T−s∑
j=1

b
r
2
( j − t

H

)
b

r
2
( j + s − t

H

)
=

T−s−t∑
m=1−t

b
r
2
(m
H

)
b

r
2
(m + s

H

)
6 sup

a
b(a)

T−s−t∑
m=1−t

b
r
2
(m
H

)
.

Then, ∣∣∣∣∣∣∣ 1
H

T−s∑
j=1

b
r
2
jt,Hb

r
2
j+s,t,H

∣∣∣∣∣∣∣ 6 sup
a

b(a)
1
H

T−1∑
m=1−T

b
r
2
(m
H

)
6 sup

a
b(a)

∫ ∞

−∞

b
r
2 (a)da + o(1),

which implies (ii), provided that
∫ ∞
−∞

b
r
2 (a)da < ∞. �

Proof of (iii). Notice that from (ii), it is straightforward to see that

1
H

T∑
j=1

b
( j − t

H

)
b
( j + s − t

H

)
=

1
H

∞∑
m=−∞

b
(m
H

)
b
(m + s

H

)
+ o(1)

Using the change of variables m = bHcc and s = bHdc,

1
H

∞∑
m=−∞

b
(m
H

)
b
(m + s

H

)
= lim

T→∞

1
H

T−1∑
m=1−T

b
(m
H

)
b
(m + s

H

)
= lim

T→∞

∫ (T−1)/H

(1−T )/H
b(c)b(c + d)dc +

1
H

(
b(0)b(−

s
H

) + b(
s
H

)b(0)
)

=

∫ ∞

−∞

b(c)b(c + d)dc + o(1).

From (1), we see that
1
H

T∑
j=1

b2
jt,H =

∫ ∞

−∞

b2(a)da + o(1).

Then, we obtain ∑T
j=1 b

(
j−t
H

)
b
(

j+s−t
H

)
∑T

j=1 b2
(

j−t
H

) =

1
H

∑T
j=1 b

(
j−t
H

)
b
(

j+s−t
H

)
1
H

∑T
j=1 b2

(
j−t
H

) = b∗(d) + o(1).

Lemma B2. Consider a triangular sequence {gT,t}t of the form

gT,t = fT (xt−τT , · · · , xt+τT ),
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where fT (·) is some measurable function with respect to the natural filtration F t
−∞ = σ(xs, s 6 t). xt = xT,t

is a α-mixing process with mixing coefficient satisfying αx
h = O(h−γ) for some γ > 1. τT = o(T ) as T → ∞.

Let αg
T (h) be the mixing coefficient of {gT,t}t, which may depend on sample size, αg

T (h) = 1
4 for h 6 0 and

α
g
T (h) = 0 for h > T. We have supT α

g
T (h)→ 0 as h→ ∞, which implies that {gT,t} is also α-mixing.

Proof. Define GT,t = σ(· · · , gT,t−1, gT,t), GT,t+h = σ(gT,t+h, gT,t+h+1, · · · ) and the α-mixing coefficient

α
g
T (h) = sup

t
sup

A∈GT,t ,B∈GT,t+h

|P(A ∩ B) − P(A)P(b)|.

Observe that

GT,t = σ(· · · , gT,t−1, gT,t) ⊆ σ(· · · , xt, xt+1, · · · , xt+hT ) = F
t+hT
−∞

GT,t+h = σ(gT,t+h, gT,t+h+1, · · · ) ⊆ σ(xt+h−hT , xt+h−hT +1, · · · ) = F ∞t+h−hT
,

which implies that
α

g
T (h) 6 αx(h − 2τT ) 6 C(h − 2τT )−γ,

for some C > 0 and γ > 1. This concludes that {gT,t} is also α-mixing. �

Lemma B3. For a sequence of random variables {Vt}t, set F t
−∞ = σ(Vs, s 6 t). If for some r > 1, and all

m > 1, ‖E(Vt|Ft−m)‖r 6 ctψm, ct > 0 and Ψ =
∑∞

m=1 ψm, then∥∥∥∥∥∥∥
T∑

j=1

b2
jt,HV j

∥∥∥∥∥∥∥
r

6 36
( r
r − 1

) 3
2
Ψ
( T∑

j=1

b2r′
jt,Hcr′

j

) 1
r′
,

where r′ = min(r, 2) and b jt,H are kernel weights computed with a kernel function b(·) and bandwidth
which satisfy Assumption 2.5.

Proof. First, assumptions in this lemma imply that the sequence {Vt,F
t
−∞} is an Lr mixingale. Then,

following McLeish [1975], we have the following representation for Vt:

Vt =

∞∑
k=−∞

Vkt, Vkt = Et−kVt − Et−k−1Vt.

Note that, according to Lemma 1 in Hansen [1991], {Vkt,F
t−k
−∞ } is a martingale difference sequence (MDS),
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for all k. Now, following the proof of Lemma 1 in Hansen [1991], for r > 1, we have∥∥∥∥∥∥∥
T∑

j=1

b2
jt,HV j

∥∥∥∥∥∥∥
r

=

∥∥∥∥∥∥∥
T∑

j=1

b2
jt,H

∞∑
k=−∞

Vk j

∥∥∥∥∥∥∥
r

=

∥∥∥∥∥∥∥∑k

T∑
j=1

b2
jt,HVk j

∥∥∥∥∥∥∥
r

6
∑

k

∥∥∥∥∥∥∥
T∑

j=1

b2
jt,HVk j

∥∥∥∥∥∥∥
r

6
∑

k

r
r − 1

∥∥∥∥∥∥∥
T∑

j=1

b2
jt,HVk j

∥∥∥∥∥∥∥
r

6 18
( r
r − 1

) 3
2
∑

k

(
E
[ T∑

j=1

b4
jt,HV2

k j

] r
2

) 1
r

, (3.34)

where the final three inequalities are triangular inequality, Doob’s inequality and Burkholder’s inequality.
Following the proof of Lemma 2 in Hansen [1991], we know that

‖Vkt‖r 6 2ctψt.

Then, we proceed by separately considering two cases: 1 < r 6 2 and r > 2. For 1 < r 6 2, observe that,
for x > 0, y > 0, (x + y)r/2 6 xr/2 + yr/2. Then, by continuing from (3.34), we have∥∥∥∥∥∥∥

T∑
j=1

b2
jt,HV j

∥∥∥∥∥∥∥
r

6 18
( r
r − 1

) 3
2
∑

k

( T∑
j=1

b2r
jt,H

∥∥∥Vk j

∥∥∥r

r

) 1
r

6 18
( r
r − 1

) 3
2
∑

k

( T∑
j=1

b2r
jt,H(2c jψk)r

) 1
r

= 36
( r
r − 1

) 3
2
∑

k

ψk

( T∑
j=1

b2r
jt,H(c j)r

) 1
r

.

For r > 2, we continue from (3.34) by applying Minkowski’s inequality:∥∥∥∥∥∥∥
T∑

j=1

b2
jt,HV j

∥∥∥∥∥∥∥
r

6 18
( r
r − 1

) 3
2
∑

k

(( T∑
j=1

∥∥∥b4
jt,HV2

k j

∥∥∥
r/2

)r/2
)1/r

= 36
( r
r − 1

) 3
2
∑

k

ψk

( T∑
j=1

b4
jt,H(c j)2

) 1
2

.

�

Lemma B4. For a sequence of (possibly vector valued) random variables {Vt}t, set F t
−∞ = σ(Vs, s 6 t).

αm is the associated α-mixing coefficient for this process. Assume that for some r ∈ (2, 4] such that
r > 2 + 1/q and p > r, A = 12

∑∞
m=0 α

2(1/r−1/p)
m < ∞ and supt‖Vt‖p = C < ∞. Suppose that b jt,H are kernel

weights computed with a kernel function b(·) and bandwidth which satisfy Assumption 2.4, let Va
t be the
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ath elements in Vt, then we have

max
a,b

∥∥∥∥∥∥∥ 1
K2,t

T−s∑
j=1

b jt,Hb j+s,t,H

(
Va

j V
b
j+s − E(Va

j V
b
j+s)

)∥∥∥∥∥∥∥
r/2

6 36(A+2s)
( r
r − 2

)3/2 sup
16 j6T−s

∥∥∥V j

∥∥∥2

p

(∑T−s
j=1 b

r
2
jt,Hb

r
2
j+s,t,H

) 2
r

K2,t
,

where K2,t =
∑T

j=1 b2
jt,H.

Proof. We proceed as in De Jong [2000]. Consider the adapted mixingale {VtVt+ j,Ft+ j}, for some γ > β >
1, and j < m, Lemma 1 in Hansen [1992] can be directly applied:

∥∥∥E(Va
t Vb

t+ j|Ft+ j−m) − E(Va
t Vb

t+ j)
∥∥∥
β
6 12α

1
β−

1
γ

m− j I(m > j) ‖Vt‖2γ

∥∥∥Vt+ j

∥∥∥
2γ
.

For j > m, we have∥∥∥E(Va
t Vb

t+ j|Ft+ j−m) − E(Va
t Vb

t+ j)
∥∥∥
β

=
∥∥∥E(Va

t Vb
t+ j|Ft+ j−m) − Va

t Vb
t+ j + Va

t Vb
t+ j − E(Va

t Vb
t+ j)

∥∥∥
β

6
∥∥∥E(Va

t Vb
t+ j|Ft+ j−m) − Va

t Vb
t+ j

∥∥∥
γ

+
∥∥∥Va

t Vb
t+ j − E(Va

t Vb
t+ j)

∥∥∥
γ

6
∥∥∥Va

t Vb
t+ j

∥∥∥
γ

+
∥∥∥E(Va

t Vb
t+ j)

∥∥∥
γ

6 2‖Vt‖2γ

∥∥∥Vt+ j

∥∥∥
2γ
I(m 6 j),

where the final two inequalities follow from the fact that Va
t Vb

t+ j is adaptive to Ft+ j−m and the Blackwell’s
Theorem. Then, over all, we have∥∥∥E(Va

t Vb
t+ j|Ft+ j−m) − E(Va

t Vb
t+ j)

∥∥∥
β
6

(
12α

1
β−

1
γ

m− j I(m > j) + 2I(m 6 j)
)
‖Vt‖2γ

∥∥∥Vt+ j

∥∥∥
2γ
.

This also implies that, for 2 < r 6 4, we have

∥∥∥E(b jt,Hb j+s,t,HVa
j V
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∥∥∥
p

∥∥∥V j+s

∥∥∥
p
.

Then, by combining the above and Lemma B3, for 2 < r 6 4 such that r > 2 + 1/q and p > r, we obtain
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where A = 12
∑∞

m=0 α
2(1/r−1/p)
m . �
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Summary of the future work

In Chapter 1, we propose a hierarchical shrinkage approach to high-dimensional VARs and show em-
pirically that it is successful to improve macroeconomic forecast accuracy in the multi-country context.
Currently, we are investigating on how to extend this approach to the model with censored data. In Giraitis
et al. [2016], they estimate a dynamic bivariate Tobit-type model for large financial networks subject to
sparsity and persistency. They solve the problem of curse of dimensionality by constructing a few proxy
variables to reduce dimensionality a priori. We believe that it would be possible to impose priors on
unrestricted model parameters and estimate the model by Bayesian MCMC method.

The direct extension of Chapter 2 is to extend section 2 in this paper to dynamic context. It is well
known that, in dynamic panel data model with heterogenous coefficients, pooled estimator is biased but
mean group estimator remains consistent. We have obtained some MC results and found that in our setting
MG estimator is indeed better than pooled estimator but unlike fixed coefficient case, the differences are
rather small. We are currently investigating this theoretically.

There are many possible extensions of Chapter 3. A more detailed extension of Chapter 3 itself in-
cludes bootstrap version of the global tests and construct simultaneous confidence bands for estimated
path coefficients. A more broader extension includes to relax the identification and correct specification
assumptions and provide robust inference procedures. All these extensions are interesting but technically
challenging, which certainly demand future studies.
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