There is increasing interest in learning how human brain networks vary as a function of a continuous trait, but flexible and efficient procedures to accomplish this goal are limited. We develop a Bayesian semiparametric model, which combines low-rank factorizations and flexible Gaussian process priors to learn changes in the conditional expectation of a network-valued random variable across the values of a continuous predictor, while including subject-specific random effects. The formulation leads to a general framework for inference on changes in brain network structures across human traits, facilitating borrowing of information and coherently characterizing uncertainty. We provide an efficient Gibbs sampler for posterior computation along with simple procedures for inference, prediction and goodness-of-fit assessments. The model is applied to learn how human brain networks vary across individuals with different intelligence scores. Results provide interesting insights on the association between intelligence and brain connectivity, while demonstrating good predictive performance.

Bayesian network-response regression

DURANTE, DANIELE;
2017

Abstract

There is increasing interest in learning how human brain networks vary as a function of a continuous trait, but flexible and efficient procedures to accomplish this goal are limited. We develop a Bayesian semiparametric model, which combines low-rank factorizations and flexible Gaussian process priors to learn changes in the conditional expectation of a network-valued random variable across the values of a continuous predictor, while including subject-specific random effects. The formulation leads to a general framework for inference on changes in brain network structures across human traits, facilitating borrowing of information and coherently characterizing uncertainty. We provide an efficient Gibbs sampler for posterior computation along with simple procedures for inference, prediction and goodness-of-fit assessments. The model is applied to learn how human brain networks vary across individuals with different intelligence scores. Results provide interesting insights on the association between intelligence and brain connectivity, while demonstrating good predictive performance.
2017
2017
Wang, Lu; Durante, Daniele; Jung, Rex E.; Dunson, David B.
File in questo prodotto:
File Dimensione Formato  
BIOINF_Durante2017.pdf

non disponibili

Tipologia: Documento in Post-print (Post-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 805.45 kB
Formato Adobe PDF
805.45 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3998965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact