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Reliable estimates of volatility and correlation are fundamental in eco-
nomics and finance for understanding the impact of macroeconomics events
on the market and guiding future investments and policies. Dependence
across financial returns is likely to be subject to sudden structural changes,
especially in correspondence with major global events, such as the COVID-
19 pandemic. In this work we are interested in capturing abrupt changes over
time in the conditional dependence across U.S. industry stock portfolios, over
a time horizon that covers the COVID-19 pandemic. The selected stocks give
a comprehensive picture of the U.S. stock market. To this end, we develop
a Bayesian multivariate stochastic volatility model based on a time-varying
sequence of graphs capturing the evolution of the dependence structure. The
model builds on the Gaussian graphical models and the random change points
literature. In particular, we treat the number, the position of change points,
and the graphs as object of posterior inference, allowing for sparsity in graph
recovery and change point detection. The high dimension of the parameter
space poses complex computational challenges. However, the model admits
a hidden Markov model formulation. This leads to the development of an ef-
ficient computational strategy, based on a combination of sequential Monte-
Carlo and Markov chain Monte-Carlo techniques. Model and computational
development are widely applicable, beyond the scope of the application of
interest in this work.

1. Introduction. Understanding the temporal evolution of the dependence structure
among time series is a fundamental topic in many fields, such as psychology (Williams
(2021)), speech recognition (Bilmes (2004)), genomics (Yin and Li (2011)), and, in par-
ticular, finance (Hlávka, Hušková and Meintanis (2020)). In this latter context, estimates of
volatility and correlation of different financial instruments are largely used for portfolio al-
location, option-pricing, and to draw conclusions about the impact of macroeconomic events
on the markets with the goal of guiding future investments and policies. In particular, esti-
mates of correlation are key to minimise the risk of investment portfolios and define hedging
strategies (see, among others, Lien, Tse and Tsui (2002), Lee (2010), Thampanya, Nasir and
Huynh (2020), Dutta, Bouri and Noor (2021)). Changes in correlation modify the return/risk
profile of the investments and are of interest to both investors and policy makers. To under-
stand how to better prepare for and deal with future major global events, it is important to
estimate the impact of the COVID-19 pandemic on the volatility and the dependence structure
of financial instruments (Alqaralleh and Canepa (2021), Guidolin, La Cara and Marcellino
(2021), Just and Echaust (2020), Sakurai and Kurosaki (2020), Yousfi et al. (2021), Derbali
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et al. (2022), Dey et al. (2022)). Global “catastrophic” events, such as financial crises, often
lead to sudden changes in the dependence structure across investments. Financial markets’
reaction to the pandemic appears to be no exception: around the end of February 2020 the
Dow Jones and S&P 500 fell by 11% and 12%, respectively, marking the biggest weekly
decline since the financial crisis of 2008, to the point that the Financial Times described
such decline as the “quickest correction since the Great Depression.” Standard statistical ap-
proaches assume time-varying dependence to change smoothly over time, which appears to
be an unrealistic assumption when investigating financial shocks. In this manuscript we de-
velop statistical machinery to detect abrupt changes in the correlation structure among time
series. Such machinery is employed to detect the impact of the COVID-19 pandemic on the
U.S. stock market and, in particular, on cross-industry relationships.

There exists a vast literature on models for time-varying second moments. More specifi-
cally, there are two main approaches: conditional volatility models, as the well-known ARCH
and GARCH (Bauwens, Laurent and Rombouts (2006), Engle (1982), Bollerslev, Engle and
Nelson (1994), Bollerslev (1986), Engle and Bollerslev (1986), Silvennoinen and Teräsvirta
(2009), Boudt et al. (2019)), and stochastic volatility models (e.g., Taylor (1982), Wiggins
(1987), Hull and White (1987), Asai, McAleer and Yu (2006)). The former class specifies
second moments at a certain time t as a deterministic function of past values of observa-
tions, volatility, and possibly covariance, given model parameters. The latter assumes sec-
ond moments to follow a latent stochastic process, typically of Markovian structure, so that,
even conditionally on all past information, volatility and correlations are unobservable ran-
dom variables evolving over time. While stochastic volatility models are often more flexible
and may achieve better inferential performances, when compared to conditional volatility
approaches (Chan (2013), Clark and Ravazzolo (2015)), they are more difficult to estimate
since the likelihood is typically intractable; see, for example, Nilsson (2016).

Within both classes a further distinction may be made between models that explicitly target
the covariance matrix �t and those focusing on the precision matrix �t = �−1

t , specifically
allowing for zero entries in �t to favour parsimony. In this work we develop a Bayesian
stochastic volatility model for the precision matrix. Specifically, the precision matrix at time
t is modelled conditionally on a graph at time t , which describes the dependence structure
among time series. As such, our work lies within the literature on Gaussian graphical models
(GGMs) (see, e.g., Carvalho and West (2007), Prado and West (2010), Wang (2010), Wang
and West (2009), Chandra, Mueller and Sarkar (2021)). This approach presents an important
advantage: GGMs target conditional independence instead of marginal, leading to possible
identification of macro-components (represented, for instance, by hubs and cliques in the
graph) and safeguarding against spurious relationships, in the sense that GGMs aid under-
standing if pairwise correlations between variables can be fully or partially explained by their
relationship with one or more additional variables. The identification of graph substructures is
of particular interest in finance, where hubs may be interpreted as risk factors driving the mar-
ket, while cliques represent financial instruments exposed to the same unobserved risk factor;
see Figure 1 for a toy example clarifying the role of graph substructures in financial markets
and, in particular, the interpretation of hubs as risk factors. Moreover, marginal dependence
and Pearson correlation simply measure the pairwise comovement between two investments
but do not provide any indication on whether a risk factor generating the comovement is spe-
cific to the two investments or it is common also to other financial instruments of interest.
On the contrary, entries of the precision matrix represent comovements conditionally on the
effect of all the other instruments considered in the model (Michis (2022)) so that an entry is
nonzero if and only if the two returns are dependent conditionally on all other investments.

Changes over time of second moments can be smooth or abrupt. The focus of this work is
on changes of the second type. Standard versions of the models cited so far assume variances
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FIG. 1. Toy example of graphs substructures in a financial market with three assets. Market n.1: Yhe asset Z

acts as common risk factor in the market driving the dependence and is a hub. Market n.2: The return of all three
assets X, Y , and Z are driven by an unobservable risk factor W , and the tree assets form a clique. Market n.3: X

and Y are driven by a common risk factor, not affecting the asset Z. Market n.4: The three assets are independent
and the graph does not include any edge. Here εz, εx , εy are white noises.

and covariances changing smoothly over time and, in particular, between any two consecutive
time points. For instance, Carvalho and West (2007) propose a Bayesian dynamic stochas-
tic volatility model based on GGMs and conditional independence. In their construction the
graph structure is kept constant over time, while the covariance matrix changes smoothly be-
tween any two consecutive time points. However, this feature is often in contrast with what is
observed in financial markets, where volatility clusters (i.e., periods with a persistent value of
volatility, that are interrupted by sudden changes) and correlation breakdowns (i.e., substan-
tial changes in correlations during stressed times and financial crises) are well documented
(see, e.g., Von Furstenberg et al. (1989), Contessi, De Pace and Guidolin (2014)).

To detect the possible effect of COVID-19 pandemic on the U.S. stock market, we analyse
the correlation structure between nine industry portfolios, considering logarithmic weekly re-
turns in the years 2019, 2020, and 2021. Weekly returns are computed starting from the daily
returns available at Kenneth R. French’s Data Library. The Kenneth R. French Data Library
also provides portfolio returns corresponding to more fragmented definitions of industries.
However, our goal is to detect possible macro effects of the pandemic in the market, and for
this reason, we focus on the industry portfolios described in Table 1. Thanks to diversification
within the same portfolio, the corresponding returns are less volatile and appropriately rep-
resent the tendency of a whole industry. More details about the construction of the portfolios
can be found in Section 5.

TABLE 1
Industry portfolios descriptions. SIC codes for each portfolio are available at

https://mba.tuck.dartmouth.edu/pages/ faculty/ken.french/Data_Library/det_10_ind_port.html

Portfolio
name Industry Description

NoDur Consumer Nondurables Food, Tobacco, Textiles, Apparel, Leather, Toys
Durbl Consumer Durables Cars, TVs, Furniture, Household Appliances
Manuf Manufacturing Machinery, Trucks, Planes, Chemicals, Off Furn, Paper
Enrgy Energy Oil, Gas, and Coal Extraction and Products
HiTec Business Equipment Computers, Software, and Electronic Equipment
Telcm Telecommunications Telephone and Television Transmission
Shops Shops Wholesale, Retail, and Some Services
Hlth Health Healthcare, Medical Equipment, and Drugs
Utils Utilities Utilities

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_10_ind_port.html
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FIG. 2. Moving window: Graph estimated with the R package GGMselect (Bouvier et al. (2022)). The four
central graphs are computed on 80 time points, while the first and the last graphs refer, respectively, to the the
first 70 and last 68 weeks. The window is moved by 20 time points at the time from one graph to the next.

Figure 2 shows empirical estimates of a graph describing the conditional dependence struc-
ture over time. The estimates are obtained using a moving window of 80 weeks, shifting in
steps of 20 weeks from one graph to the next. Graph estimates are obtained using an adaptive
lasso approach, as implemented in the R package GGMselect (Bouvier et al. (2022)). From
this preliminary analysis, changes in dependence are already evident as well as the role of
hub of the manufacturing and consumer nondurables industries. However, it is difficult to
determine whether the pandemic had an effect on the overall structure and when. Moreover,
it is well-known that edge estimation in GGMs is sensitive to sample size and this empirical
approach is highly dependent on the arbitrary choice of the window size (and corresponding
sample size). To achieve our inferential goals, a sound modelling strategy is needed to be able
to effectively infer the existence and location of change points, due to sudden changes, still
borrowing information across the entire time horizon.

Sudden changes in volatility and dependence have been modelled generalizing either con-
ditional or stochastic volatility models with the introduction of Markov switching regimes
(see, among others, So, Lam and Li (1998), Haas, Mittnik and Paolella (2004), Bianchi et al.
(2019), Caporale and Zekokh (2019)). However, in a frequentist framework, Markov switch-
ing approaches require an arbitrary choice of the number of different regimes and, conse-
quently, ad hoc criteria for model choice (see also Cribben and Yu (2017)). A full Bayesian
model for evolving graphs has been introduced by Warnick et al. (2018); similarly to Markov
switching models, here the graph evolves assuming one possible state out of a finite num-
ber of exchangeable (not consecutive) states. Still in a Bayesian framework, Schwaller and
Robin (2017) develop a strategy for change point detection in graphical models, which, in
order to preserve computational tractability, assumes independent consecutive graphs. Their
method has the often unrealistic implication that the graphs are estimated independently with-
out borrowing information across the entire time horizon. Recently, Keshavarz, Michailidis
and Atchadé (2020) have proposed an accurate algorithmic procedure, which employs multi-
ple frequentist tests to detect abrupt changes in the precision matrix of a GGM; however, the
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procedure does not provide estimates of the graph’s structure. Alternatively, penalised like-
lihood techniques have been successfully employed for estimating dynamic GGMs (Bybee
and Atchadé (2018), Cribben (2019), Danaher, Wang and Witten (2014), Gibberd and Nelson
(2017), Hallac et al. (2017), Kolar and Xing (2012), Roy, Atchadé and Michailidis (2017),
Yang and Peng (2020), Yang et al. (2015), Zhou, Lafferty and Wasserman (2010), Liu, Zhang
and Liu (2021)); however, such approaches do not allow for uncertainty quantification on the
number and temporal location of the abrupt changes and the graph topology. Similar limita-
tions are shared also by algorithmic approaches, as the one proposed by Anastasiou, Cribben
and Fryzlewicz (2022). A detailed comparison between our contribution and penalised like-
lihood approaches is provided in Sections 4 and 5.

In this work we introduce a Bayesian dynamic GGM to detect abrupt changes in the
conditional dependence structure between time series. Our proposal is a piecewise constant
stochastic volatility model. It favours sparsity at three levels by explicitly penalizing: (i) the
number of change points, (ii) the number of edges within each graph, and (iii) the number
of edges which are activated (appear) and deactivated (disappear) at each change point. In a
Bayesian framework, it is straightforward, at least in principle, to perform posterior inference
also on the number of change points and on their location. Finally, we note that our model
does not assume global Gaussianity, which would imply the existence of a single Gaussian
distribution for the entire temporal span. The assumption of global Gaussianity poses chal-
lenges in the analysis of financial returns, which are typically characterised by heavy tails
and changes of behaviour. In our setup we assume local Gaussianity between two consecutive
change points. Our assumption on the return distribution possibly accommodates the excess
of kurtosis typically observed in financial returns’ empirical distributions. More precisely,
the introduction of change points allows the multivariate Gaussian distribution to change
along the overall time horizon so that the observed empirical distribution can be thought of
as having been drawn from a mixture of Gaussians, which can accommodate heavy tails (Cui
(2012)).

The paper is structured as follows. In Section 2 the dynamic GGM is presented. Section 3
contains a discussion of the computational challenges, the proposed algorithm, and a simu-
lation study to assess the performance of the sequential Monte-Carlo procedure. Results on
simulated data and on the U.S. stock market data can be found in Sections 4 and 5, respec-
tively. Section 6 concludes the paper with a discussion about future directions and extensions.
In Supplementary Material we provide the dataset, R codes to reproduce all the results in this
work, and additional results on the algorithm, simulation studies, and the application.

2. The dynamic Gaussian graphical model. We first introduce some definitions and
notation. Let G = (V ,E) represent an undirected, simple, and unweighted graph, where V =
{1, . . . , p}, p ≥ 1, corresponds to the set of labelled nodes and E ⊆ {(h, k) ∈ V × V : h < k}
the set of edges linking pairs of nodes. There is a one-to-one correspondence between G and
its p × p adjacency binary matrix A, which is defined as follows. The element A[h, k] on
the hth row and kth column is equal to 1, when an edge exists between nodes h and k, and
to 0 otherwise. Note that A is symmetric with zeros on the main diagonal, since G is simple.
When each node corresponds to a random variable, the graph structure can be used to encode
conditional independence so that an edge is present between vertices h and k if and only if
the hth and kth random variables are dependent conditionally on all other variables in the
graph (Lauritzen (1996)).

A powerful modelling tool is offered by GGMs, which assume that the distribution of the
random variables represented by the nodes in V is multivariate Gaussian. Then the precision
matrix � can be modelled conditionally on the graph so that the presence of an edge between
two nodes in G implies a nonzero entry in the precision matrix between the corresponding
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random variables, while the absence of an edge implies a zero entry. Let the cone M+ be the
space of symmetric positive-definite matrices on R

p×p . For graph G and adjacency matrix A,
M+(G) ⊂ M+ denotes the set of the matrices, M , with M[h, k] = 0 if and only if A[h, k] =
0, for any h �= k, so that � ∈ M+(G).

In a time series setting, let Gt = (V ,Et) describe the (conditional) dependence structure
at time t between p time series, each corresponding to one node in V . We propose a prior
distribution for the process {Gt, t ≥ 1}, obtained by letting t vary, which lies in the class of
stochastic volatility models.

Data are collected at common discrete time points t = 1,2, . . . , T . We denote with Yt the
vector of observations at time t on the p variables (i.e., returns at week t for the considered
industry portfolios) and with Y1:T = [Yt ]Tt=1 the T × p data matrix. We assume that, condi-
tionally on a time-indexed collection of precision matrices {�t, t = 1, . . . , T }, the vectors of
observations are normally distributed and independent over time, that is,

(1) Yt |�t
ind∼ Np

(
0,�−1

t

)
for t = 1, . . . , T ,

where Np(μ,�) denotes a p-variate Gaussian distribution with mean μ and covariance ma-
trix �.

We model �t conditionally on a graph at time t , Gt . Then, to allow for time-varying
dependence structure among the p variables, we introduce a sequence of random change
points. A time point t is said to be a change point if the dependence structure among the p

observable variables changes between t − 1 and t , that is, if Gt �= Gt−1 and, consequently,
�t �= �t−1. Let c1:κ = (c1, c2, . . . , cκ) be the (possibly empty) vector of ordered change
points, which, similarly to the precision matrices and the graphs, are unobserved. Here κ ≥ 0
denotes the (random) number of change points. In what follows, we use the conventions
c1:0 = ∅, c0 = 1, and cκ+1 = T + 1. Note that between consecutive change points the graph
and the corresponding precision matrix are kept constant. Given the sequence of graphs,
G1:T = {Gt, t = 1, . . . , T }, and change points, we assume that

(2) �1|G1 ∼ WG1(d,D)

and, for t ≥ 2,

(3) �t |�t−1,Gt , c1:κ ∼
{
WGt (d,D) if t ∈ {c1, . . . , cκ},
δ�t−1 otherwise,

where, δx denotes the Dirac delta distribution at x and WG(d,D) the G-Wishart distribution
(see Dobra, Lenkoski and Rodriguez (2011), Roverato (2002)), with shape parameter d >

2 and inverse scale matrix parameter D ∈ M+. Its density w.r.t. the Lebesgue measure of
dimension equal to the free elements of a matrix in M+(G) is

P(�|G) = 1

IG(d,D)
|�|(d−2)/2 exp

{
−1

2
tr(D�)

}
, � ∈ M+(G).

The stated constraints for hyperparameters d and D suffice to ensure the integrability of the
above density (Diaconis and Ylvisaker (1979)). The normalizing constant is equal to

IG(d,D) =
∫
M+(G)

|�|(d−2)/2 exp
{
−1

2
tr(D�)

}
d�

and will be used later to compute the marginal likelihood of the data conditionally only on
the graph structure.
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To complete the model, we next describe the graph dynamics. Denote with At the adja-
cency matrix corresponding to Gt , then, for all h, k ∈ {1, . . . , p} with h < k, we specify the
prior distributions

(4) A1[h, k]|ω iid∼ Bernoulli
(

2ω

p − 1

)

and, for t ≥ 2,

(5)

At [h, k]|At−1[h, k], c1:κ, z

ind∼
⎧⎪⎨
⎪⎩

∣∣∣∣At−1[h, k] − Bernoulli
(

2z

p − 1

)∣∣∣∣ if t ∈ {c1, . . . , ck},
δAt−1[h,k] otherwise.

Notice that the hyperparameter ω ∈ [0, (p − 1)/2] controls the graph sparsity so that the
expected number of edges for the initial graph a priori equals pω, while the hyperparameter
z ∈ [0, (p − 1)/2] controls the impact of an event on graph structure when a change point is
reached, in particular, the (a priori) expected number of edges that will change is equal to pz.
Our prior choice is reminiscent of the one proposed in Jones et al. (2005), who recommend
setting a prior edge inclusion probability equal to 2/(p − 1) so that the expected number of
edges is p. Alternatively, we suggest to tune ω via a data-driven tuning technique so that a
priori the expected number of edges for the graphs is equal to the number of edges detected
by estimating one unique graph using all the time points; more details on this procedure are
provided later in Section 4.1. Moreover, z controls the a priori abruptness of the changes in
the graphs. As a general rule, we suggest to perform sensitivity analysis on this parameter.
Nonetheless, in our analysis change point detection does not appear to be sensitive to the
choice of the hyperparameters, and the graph recovery performance is limitedly affected by
the choice of z (see Section C.5 in the Supplementary Material).

We note that alternative priors can be employed to model the precision matrix and the
graph as, for instance, the graphical horseshoe (Li, Craig and Bhadra (2019)) and the prior
proposed by Banerjee and Ghosal (2015). The former is a prior used directly on the precision
matrix, which, contrarily to our approach, requires (arbitrary) thresholding of its entries in
order to recover a sparse graph representation. The latter is more similar to our modelling
strategy and consists of three elements: (i) Bernoulli priors for the entries of the adjacency
matrix, conditionally on a maximum number of edges, (ii) a Laplace prior on the nonzero
off-diagonal elements of the precision matrix, and (iii) an exponential prior for the diago-
nal elements, still imposing the positive definiteness of the matrix. This construction is still
computationally intensive.

Equations (1) and (2)–(5) can be viewed as observation and state dynamics, respectively, of
a hidden Markov model with the unobserved signal corresponding to the pair {(Gci

,�ci
), i =

0,1, . . . , κ} (see Figure 3 for a graphical representation). For more details, see, for example,
West and Harrison (2006).

Finally, the prior distribution for c1:κ is chosen as

(6)
c1:κ |κ ∼ Uniform(Tκ�),

κ|p0 ∼ Truncated-Geometric(p0) for κ = 0,1, . . . ,KT �

for hyperparameter p0 ∈ (0,1) so that the (a priori) number of expected change points is

(7) E[κ] = 1 − p0

p0

1 − (1 − p0)
KT �(p0KT � + 1)

1 − (1 − p0)KT �+1 .
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FIG. 3. Graphical representation of the model conditionally on change points. Both graph and precision matrix
are constant between change points. Observations (Yt ) are independent conditionally on the model parameters
over time, while are i.i.d. between change points. Moreover, the precision matrices {�ci , i = 1, . . . , κ} are condi-
tionally independent, given the sequence {Gci , i = 1, . . . , κ}.

Through appropriate choice of p0 in (6), we are able to enforce the a priori desired level
of sparsity on the number of change points. Nonetheless, in our sensitivity analysis, poste-
rior inference is not sensitive to the choice of p0. Here Tκ� is the space of ordered κ-tuples
c1 < · · · < cκ , with cj in {2, . . . , T }, under the minimum-span constraint that cj+1 − cj ≥ �,
for any j = 0,1, . . . , κ , with the convention c0 = 1 and cκ+1 = T + 1. Moreover, KT � is the
maximum number of change points compatible with the minimum-span constraint. Notice
that for KT � of moderate size, the second term in the product in (7) is negligible and the Trun-
cated Geometric in (6) approximates a standard Geometric distribution on N0 = {0,1, . . . , }.
The imposition of the minimum-span constraint, defined by �, ensures likelihood identifiabil-
ity between change points, leading to more stable computations and robust inference. Notice
that, between any two change points, the sample covariance/precision matrix has p(p + 1)/2
entries. To guarantee likelihood identifiability of the model, we need the number of data
points between any two change points, that is, (cj+1 − cj ), to be greater than p. This poses a
trade-off: the lower �, the more flexible the change-point detection procedure, and the higher
�, the more stable the estimates of the precision matrices. In the simulation study and in the
application, we set � equal to p + 2. When p = 9, this means that each precision matrix
containing 45 entries is estimated with at least 99 single data points.

3. Bayesian inference via sequential Monte-Carlo. The dynamic GGM, proposed
herein, is a hierarchical model, with the first layer represented by the change points, c1:κ ,
the second by graphs and precision matrices (Gcj

,�cj
), and the third by the observations.

Markov chain Monte-Carlo (MCMC) methods developed directly on such space of unob-
served variables would face major challenges. We ignore the precision matrices in this dis-
cussion, as they are later integrated out. Gibbs-type approaches would involve reversible-
jump MCMC (Green (1995)), thus requiring the design of a joint update on the “model”
space (as determined by the change-points) and model “parameters” of varying dimension
(corresponding to the graphs). This joint space is entangled, with very limited space for ma-
neuvering, as updates on the graph space would be heavily constrained by the strong prior
Markovian dependencies amongst graphs.

Instead, we perform computationally effective posterior inference for the dynamic GGM
through a tailored sequential Monte-Carlo (SMC) algorithm. The proposed Particle MCMC
(PMCMC) method is quite appropriate for exploiting the hidden Markov model structure
conditionally on the change points, and naturally disentangles the updates on the change
points and the latent Markovian signal; see, for example, Karagiannis and Andrieu (2013)
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and Persing et al. (2015) for related ideas. The proposed PMCMC algorithm is better un-
derstood as comprised of an “outer” cycle and an “inner” cycle. In the former, the change
points are updated via a reversible jump Metropolis–Hasting (M–H) algorithm. In the latter,
a particle filter of enhanced performance, due to a combination of adaptive tempering, dy-
namic resampling, and mutation steps, is employed to sample the sequence of graphs and
compute the acceptance probability of the outer algorithm. In particular, for each M–H step
the inner component provides an unbiased estimate of the conditional likelihood, given the
proposed change point sequence together with a corresponding proposed graph sequence.
Adaptive tempering and resampling steps are used to improve the robustness of such esti-
mate, while the mutation step is used both to bring particles closer to the modal region of the
likelihood and to avoid depletion of the number of unique particles, which can otherwise be
a consequence of successive resampling and tempering.

The overall PMCMC algorithm is well-understood as an “exact-approximate” one, in the
sense that it targets the correct posterior on the space of graphs and change points, thanks to
the unbiasedness (and positivity) of the estimator provided by the inner particle filter.

3.1. Outer component. The key component in the development of the M–H step is the
choice of proposal distribution, q(c′

1:κ ′ |c1:κ), where c1:κ and c′
1:κ ′ are the current and proposed

collections of ordered change points, respectively. Starting from c1:κ , one of four alternative
events (namely, a birth, a death, a global move, or a local move) generates the proposed new
value. With probabilities equal to P(B|c1:κ), P(D|c1:κ), P(Mglob|c1:κ), and P(Mloc|c1:κ),
one of the following four events takes place, respectively: a new change point is added to the
current set (birth); a change point is removed from the current set (death); one of the existing
change points is moved to another position (global move); one of the existing change points
is moved to another position in-between its neighbours (local move). When a new change
point, c∗, is created, c∗ is chosen uniformly over the set B(c1:κ , �) ⊂ {2, . . . , T } of allowed
positions (i.e., satisfying the minimum-span constraint), of size |B(c1:κ , �)| =: n(c1:κ , �) ≥ 0.
Thus, in the birth scenario

(8) q
(
c′

1:κ ′ |c1:κ
) = P(B|c1:κ)

n(c1:κ , �)
, κ ′ = κ + 1, c′

1:κ ′ = c1:κ ∪ c∗, c∗ ∈ B(c1:κ , �).

When a change point, c′, is removed, the change point is chosen uniformly among the current
change points, that is, in the death scenario

(9) q
(
c′

1:κ ′ |c1:κ
) = P(D|c1:κ)

κ
, κ ′ = κ − 1, c′

1:κ ′ = c1:κ \ c′, c′ ∈ c1:κ .

To improve mixing and posterior exploration, we also introduce two move steps. When a
change point is moved, first, a change point c′ ∈ c1:κ is selected uniformly among the current
change points and removed. Then, if the step is a global move, a new change point is selected
uniformly in B(c1:κ \ c′, �). If instead the step is a local move, a new change point c∗ is
selected with probability proportional to

exp
{−λ

∣∣c∗ − c′∣∣}1{c∗∈[c̄l ,c̄r ]}(10)

for algorithmic parameter λ > 0, with

c̄l = cl + �, c̄r = cr − �,

where cl and cr denote the left-side and right-side neighbours of c′ in c0:κ+1. Thus, the
proposal kernel for a move step is

(11)
q
(
c′

1:κ ′ |c1:κ
) = P(Mglob|c1:κ)

κn(c1:κ \ c′, �)
+ P(Mloc|c1:κ)e−λ|c∗−c′|

κ
∑c̄r

χ=c̄l
e−λ|c∗−χ | 1{c∗∈[c̄l ,c̄r ]},

κ ′ = κ, c′
1:κ ′ = c1:κ \ c′ ∪ c∗, c′ ∈ c1:κ , c∗ ∈ B

(
c1:κ \ c′, �

)
.
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Note that we prefer to write the joint kernel for both the global and local move, as the same
configuration c′

1:κ might be reached by both type of moves. This needs to be accounted for
when computing the M–H acceptance probability to ensure detailed balance.

Finally, we choose the event probabilities as

P(B|c1:κ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if κ = 0

0, if n(c1:κ , �) = 0

qB, otherwise

P(D|c1:κ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if κ = 0

q ′
D, if n(c1:κ , �) = 0

qD, otherwise

and P(Mglob|c1:κ) = P(Mloc|c1:κ) = [
1 − P(B|c1:κ) − P(D|c1:κ)

]
/2.

(12)

The Metropolis–Hastings acceptance probability is equal to

1 ∧ P(Y1:T |c′
1:κ ′)P (c′

1:κ ′)q(c1:κ |c′
1:κ ′)

P (Y1:T |c1:κ)P (c1:κ)q(c′
1:κ ′ |c1:κ)

where P(Y1:T |c1:κ) is the marginal likelihood of the data given the change points, that is,

P(Y1:T |c1:κ) =
∫

P(Y1:T |G1:T )P (G1:T |c1:κ) dG1:T

with

P(Y1:T |G1:T ) =
∫

P(Y1:T |G1:T ,�1:T )P (�1:T |G1:T ) d�1:T .

Since P(Y1:T |c1:κ) is not available in closed form, it needs to be estimated. Algorithm 1
contains the pseudo-code for the outer part of the algorithm described in this section. In the
next section, we describe the SMC algorithm to approximate the marginal likelihood.

3.2. Inner component: Particle filter. As already mentioned, the inner component of the
algorithm is used to compute P(Y |c1:κ), that is, the likelihood values required in the accep-
tance probability of the outer M–H and to provide proposed samples of the graphs to be
accepted or rejected by the outer algorithm.

To compute the marginal likelihood given the change point sequence, a standard bootstrap
particle filter with multinomial resampling carried out at each change point, samples N ≥ 1
particles {G(n)

cj }Nn=1, for 0 ≤ j ≤ κ , from the joint distribution

N∏
n=1

P
(
G(n)

c0

) ×
κ∏

j=1

{
N∏

n=1

(
N∑

l=1

w
(l)
j−1∑N

m=1 w
(m)
j−1

P
(
G(n)

cj
|G(l)

cj−1

))}
,

where the unnormalised weights are defined as

w
(n)
j = P

(
Ycj :cj+1−1|G(n)

cj

)
, 1 ≤ n ≤ N,0 ≤ j ≤ κ.

The unbiased estimate P̂ (Y |c1:κ) of P(Y |c1:κ) could then be obtained as

(13) P̂ (Y1:T |c1:κ) =
κ∏

j=0

(
1

N

N∑
n=1

w
(n)
j

)
.

However, it is often the case that further algorithmic advances must complement the standard
particle filter to control the variance of the estimate (13). It is well-understood that such
variability is critically linked to the performance of the overall PMCMC algorithm; see, for
example, Doucet et al. (2015), Pitt et al. (2012), Sherlock et al. (2015), where in various
model settings, standard deviations centred around 1 are proposed for the estimate of the
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Algorithm 1 Outer algorithm—reversible jump M-H

Input: change point sequence c1:κ ; B(c1:κ , �); likelihood value P(Y1:T |c1:κ);
prior value P(c1:κ).

Output: new change point sequence c̃1:κ̃ ; B(c̃1:κ̃ , �); likelihood value P(Y1:T |c̃1:κ̃ );
prior value P(c̃1:κ̃ ).

Sample event E from {B,D,Mglob,Mloc} according to (12);
if E = B then

Sample a new change point uniformly from B(c1:κ , �) and propose c′
1:κ ′ = c1:κ ∪ c′;

Compute q(c′
1:κ ′ |c1:κ) according to (8);

else
Sample uniformly and remove a change point c′ from c1:κ ;
if E = Mglob or Mloc then

if E = Mglob then
Sample a new change point c∗ uniformly from B(c1:κ \ c′, �);

else
Sample a new change point c∗ from the interval [c̄l , c̄r ] according to (10);

Propose c′
1:κ ′ = c1:κ \ c′ ∪ c∗ and compute q(c′

1:κ ′ |c1:κ) according to (11);
else

Propose c′
1:κ ′ = c1:κ \ c′ and compute q(c′

1:κ ′ |c1:κ) according to (9);

Determine B(c′
1:κ ′, �) and compute q(c1:κ |c′

1:κ ′) according to (8), (9), or (11), respectively;
Compute prior P(c′

1:κ ′) and likelihood P(Y1:T |c′
1:κ ′) for proposed configuration;

Sample u from a Uniform(0,1);

if u ≤ P(Y1:T |c′
1:κ′ )P (c′

1:κ′ )q(c1:κ |c′
1:κ′ )

P (Y1:T |c1:κ )P (c1:κ )q(c1:κ |c′
1:κ′ )

then

Return c′
1:κ ′ , B(c′

1:κ ′, �), P(Y1:T |c′
1:κ ′), P(c′

1:κ ′).
else

Return c1:κ , B(c1:κ , �), P(Y1:T |c1:κ), P(c1:κ).

logarithm of the normalising constant, with exponential decay in performance for PMCMC
reported when the standard deviation exceeds a (not too high) threshold.

A standard approach to reduce standard deviation for given number of particles is via the
application of tempering, that is, introduction of a sequence of temperatures together with
corresponding mutation steps. Such an approach has been shown, in cases, to reduce the re-
quired number of particles for a target error from exponential to quadratic in the number T

of log-likelihood terms; see, for example, Beskos, Crisan and Jasra (2014), Ruzayqat et al.
(2022). Application of tempering will indeed be critical for the class of models we are con-
sidering in this work, as shown in Section 3.2.4. The temperatures are determined on-the-fly,
thus avoiding the introduction of additional tuning parameters in the algorithm. The complete
algorithm can be understood as a particle filter applied on a Feynman–Kac model (Del Moral
(2004)) that we extend to include additional Markov iterations and potentials. The overall
approach is summarised in Algorithm 2. We stress that the particle filter that includes the
tempering and mutation steps will still provide unbiased estimates of p(Y1:T |c1:κ), and the
induced overall PMCMC method will still target the exact posterior P(c1:κ ,Gc0:cκ |Y1:T ); see,
for example, the original paper on PMCMC (Andrieu, Doucet and Holenstein (2010)) for a
detailed justification.

3.2.1. Preliminary run—determination of temperatures. Within Algorithm 2 the se-
quence of temperatures is treated as given. In practice, at each iteration of the outer algorithm,
the temperatures are determined by a separate preliminary and independent execution of the



566 B. FRANZOLINI ET AL.

Algorithm 2 Inner algorithm—particle filter with tempering

Input: Data Y1:T ; change points c1:κ ; number of particles N ; ESS threshold ε;
number Sj of temperatures for graph j , φ0,j ≡ 0, φ0,Sj+1 ≡ 1, 0 ≤ j ≤ κ;
number of mutation steps M ≥ 1; temperatures {φ1,j , . . . , φSj ,j };
M-H kernel P̄j,s(Gcj

|Gcj
,Gcj−1), 0 ≤ j ≤ κ , 1 ≤ s ≤ Sj + 1;

P̄ M
j,s denotes M iterations of such a kernel;

hyper-parameters ω, z, d, D.
Output: Unbiased estimate P̂ (Y1:T |c1:κ) > 0 and proposed sequence (Gc0, . . . ,Gcκ ).

(Actions over n are understood to be repeated for 1 ≤ n ≤ N .)

Set P̂ = 1;
for j in 0 : κ do

if j = 0 then

Sample G0,n
c0

iid∼ P(Gc0) and set w
0,n
0 = 1;

else
Initialise particles G0,n

cj

ind.∼ P(Gcj
|GSj−1,n

cj−1 );

Initialise weights w
0,n
j = w

Sj−1+1,n

j−1 ;

for s in 1 : Sj + 1 do
Calculate weights w

s,n
j = w

s−1,n
j · [P(Ycj :cj+1−1|Gs−1,n

cj
)]φj,s−φj,s−1 ;

if ESS(w
s,1:N
j ) < εN then

P̂ ← P̂ · 1
N

∑N
n=1 w

s,n
j ;

Resample {Gs−1,n
cj

,G
Sj−1,n

cj−1 } according to the weights {ws,n
j };

Mutate particles, that is, sample Gs,n
cj

ind.∼ P̄ M
j,s(Gcj

|Gs−1,n
cj

,G
Sj−1,n
cj−1 );

Set w
s,n
j = 1;

else
set Gs,n

cj
= Gs−1,n

cj
;

Sample a graph Gcκ from {GSκ+1,n
cκ ,w

Sκ+1,n
κ }n and retrieve its genealogy, (Gc0, . . . ,Gcκ ),

amongst particles {GS0+1,n
c0 }n, . . . , {GSκ−1+1,n

cκ−1 }n.
Return P̂ (Y1:T |G1:T ) = P̂ and the proposed sequence (Gc0, . . . ,Gcκ ).

particle filter that identifies and stores the temperatures that are later used within Algorithm 2.
Similar ideas have been used in the SMC literature; see, for example, Jasra et al. (2011). That
is, we first determine the temperatures according to a target effective sample size (ESS) and
then apply the particle filter in Algorithm 2, with the obtained temperatures, to produce a
robust unbiased estimator of the likelihood needed to compute the acceptance probability in
Algorithm 1.

We describe here how to compute the temperatures {φ1,j , . . . , φSj ,j } used in Algorithm 2,
for Sj ≥ 0, where φ0,j ≡ 0, φ0,Sj+1 ≡ 1, and 0 ≤ j ≤ κ . Note that Sj , the number of tem-
peratures, can vary across graphs at different change points; that is, it depends on j . Within
this subsection particles and weights Gs,n

cj
, w

s,n
j refer to such a preliminary execution of the

particle filter. The temperatures are selected on-the-fly, based on the target ESS, denoted by
ESS0, with ESS0 = εN , ε ∈ (0,1). Consider the current collection of particles and weights,
Gs−1,n

cj
and w

s−1,n
j , generated while filtering data points Ycj :cj+1−1, and the corresponding
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likelihood factor [P(Ycj :cj+1−1|Gcj
)]φs−1,j up to the present step. Then the next temperature

φs is determined so that the ESS equals the target, that is, ESS(φs) = ESS0. More precisely,
define the next set of weights as function of the next temperature

w
s,n
j (φ) = [

P
(
Ycj :cj+1−1|Gs−1,n

cj

)]φ−φs−1,j ,

and consider

ESS(φ) := (
∑N

n=1 wn
s,j (φ))2∑N

n=1(w
n
s,j (φ))2

= εN

whose solution—assuming it exists within (φs−1,j ,1]—provides the next temperature φs,j .
The solution is obtained with a simple fast bisection method. If ESS(1) ≥ εN , we simply
select φ = 1. With this procedure we obtain all temperatures related to data Ycj :cj+1−1, and
we can then proceed to the next filtering step. We set ε to 1/2 to obtain a minimum ESS of
N/2, which is a common choice (see, e.g., Chopin and Papaspiliopoulos (2020), p.133); see
Algorithm 3 for a detailed description.

Algorithm 3 Inner algorithm—temperature tuning (preliminary particle filter)

Input: Data Y1:T ; change points c1:k; number of particles N ;
hyper-parameters w, z, d, D; ESS threshold ε; mutation steps M ≥ 1;
M-H kernel P̄j,s(Gcj

|Gcj
,Gcj−1) that preserves the law

[P(Ycj :cj+1−1|Gcj
)]φj,s · P(Gcj

|Gcj−1),
P̄ M

j,s denotes M iterations of such a kernel.
Output: Temperatures {φ1,j , . . . , φSj ,j }, Sj ≥ 0, φ0,j ≡ 0, φ0,Sj+1 ≡ 1, 0 ≤ j ≤ κ .

(Actions over n are understood to be repeated for 1 ≤ n ≤ N .)

for j in 0 : κ do
if j = 0 then

Sample G0,n
c0

iid∼ P(Gc0) and set w
0,n
0 = 1;

else
Initialise particles G0,n

cj

ind.∼ P(Gcj
|GSj−1,n

cj−1 );

Initialise weights w
0,n
j = w

Sj−1+1,n

j−1 ;

s ← 1; φ0,j ← 0; φs,j ← 1;
while φs,j �= ∅ do

Find φs,j ∈ (φs−1,j ,1] so that ESS(φs,j ) ≥ εN ;
if φs,j = ∅ then

Sj = s − 1;
else

Set w
s,n
j = [P(Ycj :cj+1−1|Gs−1,n

cj
)]φs,j−φs−1,j ;

Resample {Gs−1,n
cj :cj+1−1,G

Sj−1,n

cj−1 } according to the weights {ws,n
j };

Set w
s,n
j = 1;

Mutate particles, that is, sample Gs,n
cj

ind.∼ P̄ M
j,s(Gcj

|Gs−1,n
cj

,G
Sj−1,n
cj−1 );

s ← s + 1
Set w

Sj+1,n

j = [P(Ycj :cj+1−1|Gs−1,n
cj

)]1−φs−1,j ;

Return {φ1,j , . . . , φSj ,j }, Sj ≥ 0, 0 ≤ j ≤ κ .
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3.2.2. Determination of mutation kernel P̄ . The mutation kernel P̄ is used within the
algorithm to jitter particles and move them toward the centre of the support of each filtering
distribution under consideration during a full application of the particle filter. The addition of
mutation steps has been shown to be, in many cases, critical, both in theoretical and experi-
mental works; see, for example, Beskos, Crisan and Jasra (2014), Ruzayqat et al. (2022) and
Llopis et al. (2018), van Leeuwen et al. (2021), respectively. In Section 3.2.4 we illustrate
such impact for the specific model at hand through a simulation study.

For the overall algorithm to ensure a correct particle filter on an extended space, the user-
specified mutation kernel P̄j,s(Gcj

|Gcj
,Gcj

) must have invariant distribution

Gcj
�→ [

P(Ycj :cj+1−1|Gcj
)
]φj,s × P(Gcj

|Gcj−1),

where we use the convention that Gc0−1 = ∅ in which case the rightmost term becomes the
prior defined by (4). This is readily achieved via a M–H step. That is, for each current segment
cj : cj+1 − 1, temperature φj,s , graph Gcj

, with adjacency matrix Acj
= Acj

[h, k], and given
Gcj−1, we define a proposed graph G′

cj
, with adjacency matrix A′

cj
= A′

cj
[h, k], using the

symmetric transition

(14) Acj
[h, k]′|Acj

[h, k] ind∼
∣∣∣∣Acj

[h, k] − Bernoulli
(

2s0

p − 1

)∣∣∣∣
for algorithmic tuning parameter s0 ∈ (0, (p − 1)/2). Thus, under the proposal in (14), the
expected number of flips in the edges in s0 · p. The acceptance probability for the mutation
step is

1 ∧ [P(Ycj :cj+1−1|G′
cj

)]φj,s × P(G′
cj

|Gcj−1)

[P(Ycj :cj+1−1|Gcj
)]φj,s × P(Gcj

|Gcj−1)
.

3.2.3. Likelihood given the graph structure. An important quantity required within the
particle filter is the marginal likelihood

P(Ycj :cj+1−1|Gcj
) =

∫
M+(Gcj

)
P (Ycj :cj+1−1|�cj

)P (�cj
|Gcj

) d�cj .

Since the G-Wishart law is conjugate, we can integrate out the precision matrices �1:T . That
is, we have (Atay-Kayis and Massam (2005))

P(Ycj :cj+1−1|Gcj
) = 1

(2π)(cj+1−cj )p/2

IGcj
(d + (cj+1 − cj ),D + Hj)

IGcj
(d,D)

,

where, for j = 0, . . . , κ ,

Hj =
cj+1−1∑
i=cj

YiY
�
i .

Notice that, while computing the likelihood of the graphs, we marginalize over �t , and thus,
the particles (from the inner algorithm) consist of only the graphs. However, after running
the particle filter and thanks to the conjugacy properties of the G-Wishart law, a straight-
forward independent sampler can be used to get both marginal and conditional posterior of
the precision matrices, where with conditional posterior distribution we mean the posterior
distribution conditional on the point estimates of the graphs. The normalising constant of the
G-Wishart prior can be factorised (Roverato (2002), Uhler, Lenkoski and Richards (2018)),
that is, for a given graph G,

IG(d,D) =
∏r

m=1 IGPm
(d,DPm)∏r

m=2 IGSm
(d,DLm)

,(15)
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where P1;L2,P2; . . . ;Pr,Lr , is a perfect sequence of prime components and corresponding
minimal separators of G (see, e.g., Chapter 2 of Lauritzen (1996), for details), and DPm is the
submatrix of D corresponding to the rows and columns in Pm. In the case of a decomposable
graph G, all prime components are complete graphs. For complete graphs the G-Wishart
distribution coincides with the hyper-Wishart distribution (Dawid and Lauritzen (1993)), for
which an analytical expression for the normalising constant is available,

IGPm
(d,DPm) = 2(d+pm−1)pm/2pm(

d+pm−1
2 )

|DPm |(d+pm−1)
.

Here d(·) is the multivariate Gamma function of dimension d , and pm is the dimension
of DPm . Note that, by construction, the minimal separators are complete subgraphs of G;
thus, the terms in the denominator in (15) are analytically computable. For a general, nonde-
composable graph G, Atay-Kayis and Massam (2005), Carvalho, Massam and West (2007),
Dellaportas, Giudici and Roberts (2003), Roverato (2002) propose Monte-Carlo methods for
the approximation of IG(d,D). Herein to compute the normalizing constant, we employ
the method of Atay-Kayis and Massam (2005) implemented in the function gnorm of the R
package BDgraph (Mohammadi, Wit and Dobra (2022)). When dealing with large number of
nodes, the implementation of more sophisticated algorithms, such as the exchange algorithm
by Murray, Ghahramani and MacKay (2006), is advisable (see, e.g., Cheng and Lenkoski
(2012), van den Boom et al. (2022), for an application to GGMs).

3.2.4. Evaluation of SMC approximation. The inner SMC algorithm provides unbiased
estimates of the marginal likelihood conditionally on the change points. The variability of
such estimates depends on the number of particles, N , and the effect of the tempering and
mutation steps, with the number of the latter, M , specified by the user. Thus, a trade-off is
posed between accuracy of estimates and computational time.

To assess the effect of the number of particles and the mutation step and, in general, ob-
tain insights into the performance of the SMC component, we perform a series of simulation
studies. We simulate data for p = 10 nodes and T = 200 observation instances. We then
fix the change point sequence to its known true value and carry out 30 independent exe-
cutions of the SMC algorithm, for each different combination of N ∈ {200,500,750} and
M ∈ {0,5,10,20}. Recall that the mutation steps are performed only when the ESS falls be-
low the threshold εN , where ε is here fixed to be N/2. We consider two data generating
mechanisms. The first (Scenario A) has no change points, and the p variates are mutually in-
dependent (see Figure B.1.1 (a) in the Supplementary Material for the corresponding graph,
Franzolini et al. (2024)). In Scenario B we set a change point at t = 70, and the two graphs
(before and after the change point) encode some nontrivial dependence. The full graph struc-
ture of Scenario B is described later in Section 4.1 and displayed in Figure B.1.2 of the
Supplementary Material. Figure A.1 of the Supplementary Material (Franzolini et al. (2024))
and Figure 4 show the box plots of the estimates of the log-likelihood, the standard deviation,
and the running time of the inner SMC algorithm, coded in R (and run with an Intel Xeon
W-1250 processor), under scenarios A and B, respectively.

Under Scenario A the variability of the estimates is limited, as expected, for all pairs
(N,M) since data are simulated under the assumption of independence with no change
points. However, in real scenarios, as the analysis of financial markets, this is highly un-
likely to be the case, and the computational machinery here developed is essential. Figure 4
shows similar box plots obtained under the more realistic and challenging Scenario B. Here
we obtain higher variability with values of standard deviation ranging from 2.986 to 29.297.
These results highlight the importance of the tempering and mutation steps for the overall



570 B. FRANZOLINI ET AL.

FIG. 4. Log-likelihood estimates for Scenario B obtained with the particle filter by fixing the change points to
the truth. Distinct box plots correspond to different numbers of particles N and/or mutations steps M . For each
pair (N,M), we run the algorithm 30 times and obtain the log-likelihood estimates. Each box plot shows the
distribution of such estimates. The variability of the estimates is rather limited for all pairs (N,M), provided that
M ≥ 5.

algorithmic performance (even accounting for the increased computational time) and, in par-
ticular, for recovering the complex dependence structures. Their role is essential in reducing
variability of the estimates of the normalising constant. Lastly, notice that computational time
is increased compared to Scenario A as a consequence of: (i) the presence of a change point,
(ii) the computational complexity of the Monte Carlo iterations used to compute IG(d,D),
which increases when particles concentrate on less sparse graphs, and (iii) the increased num-
ber of times the ESS threshold is reached.

4. Model performance on simulated data. We investigate model performance through
a simulation study considering different scenarios. For each scenario we simulate data for
T = 200 observation times. There is one change point in Scenario 1 and three change points
in Scenario 2. In Scenario 3 the dependence structure, as captured by the precision ma-
trix, presents smooth changes, and thus, our model is misspecified. The number of nodes
is p = 10 in Scenarios 1 and 3, and p = 20 in Scenario 2. In terms of the abruptness
of changes in the precision matrix, Scenario 2 presents highly-abrupt changes, Scenario 1
presents mildly-abrupt changes, and Scenario 3 presents smooth changes. For a detailed de-
scription of these three scenarios, see Sections 4.1, 4.2, and Section B.4 of the Supplementary
Material (Franzolini et al. (2024)).

Moreover, we also consider two additional scenarios (Scenarios A.0 and A.1) with p = 10
nodes and no change points to test the baseline performance of the method and perform a
sanity check in the case of no signal of the data.
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To carry out posterior inference, we run the algorithm to estimate the change point se-
quence, using N = 200 particles, M = 10 mutation steps, and performing 10,000 iterations
of the outer component, of which the first 2000 are discarded as burn-in. Then we re-run
only the inner SMC with N = 1000 particles and M = 20 mutation steps to obtain the graph
estimates conditionally on the maximum-a-posteriori (MAP) estimate of the change point
sequence obtained in the first step. When the true sequence of change points is the null set
(Scenarios A.0 and A.1), we initialise the MCMC chain at (c1 = 51, c2 = 101, c3 = 151);
whereas when the graph and/or the precision matrix changes (Scenarios 1, 2, and 3), we ini-
tialise the chain to the state of zero change points. In real applications, when the change points
are unknown, we suggest initialising the chain to no change points. The adopted initialization
for these simulations better tests the convergence speed of the algorithm.

The inference results for no change points show the expected good performance of the
model in terms of both identification of change points and recovery of the dependence struc-
ture. The posterior concentrates on the true state of no change points, with posterior proba-
bility of no-change points not falling below 0.98 in all replicates. The area under the curve
(AUC) for edge detection is approximately 1. We refer to section B of the Supplementary
Material (Franzolini et al. (2024)) for a more detailed presentation of the simulation studies
with no change points. The following sections describe in details results for Scenarios 1 and
2. Scenario 3 is in section B of the Supplementary Material (Franzolini et al. (2024)).

4.1. Simulation results for one change point. The first simulation scenario (Scenario 1)
is obtained by setting one change point at t = 70 and generating two precision matrices, as
in Peterson, Stingo and Vannucci (2015) and Molinari et al. (2022b). In particular, we first
define the �c0 and then derive �c1 as perturbation of �c0 , which defines a mildly-abrupt
change. First, �c0 is obtained by setting diagonal elements equal to 1, the first off-diagonal
elements to 0.5, that is, �c0[h,h+1] = �c0[h+1, h] = 0.5, for h = 1, . . . ,9, and the remain-
ing elements to 0. To construct �c1 , we randomly remove five edges among the active ones in
Gc0 and set to 0 the corresponding entries in the precision matrix. Then we add five randomly
selected edges drawn from the set of inactive edges in Gc0 . Finally, a precision entry equal
to 0.2 is assigned to the new edges. The obtained matrix is not necessarily positive-definite,
and to this end, we compute the nearest positive-definite approximation through the R func-
tion nearPD (Higham (2002)), available in the R package Matrix (Bates et al. (2022)). The
resulting graphs are shown in Figure B.1.2 of the Supplementary Material (Franzolini et al.
(2024)). We note that the computation of the nearest positive-definite matrix may result in a
strong shrinkage of the nonzero elements in the precision matrix, which may cause unrealis-
tic high values in the correspondent covariance matrix. However, this is not the case in our
simulation scenario (see Figure B.1.4 and B.1.5 in the Supplementary Material, where the
simulated covariance matrices and data are displayed, Franzolini et al. (2024)). We consider
20 replicates of Scenario 1.

The hyperparameter ω in (4) is determined using an approach inspired by empirical Bayes
techniques so that a priori the expected number of edges for the graphs is equal to the number
of edges detected by estimating one unique graph using all the time points. To this end, we
estimate the graph using an adaptive lasso approach, which is a modification of the estimation
procedure proposed by Meinshausen and Bühlmann (2006) inspired by the adaptive lasso of
(Zou (2006)), as implemented in the R package GGMselect (Bouvier et al. (2022)). For the
hyperparameter z in (5), we opt for z = 0.1 so that a priori we expect only one edge to change
at each change point, favouring graph similarity. This choice also allows us to better under-
stand model performance and hyperparameter sensitivity, as in our simulations we force 10
edges to change across the change point, an event to which our prior associates a probabil-
ity lower than 4 · 10−8. The hyperparameter p0, which controls the a priori number of the
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TABLE 2
Scenario 1: Posterior summaries for change points of the three best and three worst replicates in terms of MAP
estimate and MAP probability. MAP estimates, MAP probabilities (for the posterior over all configurations of

change points), posterior probability of the number of change points being 1, and credible intervals, mean, and
median of the position of the change point (conditionally on having one change point). Credible intervals are

obtained computing the smallest credible sets with 90% and 95% credibility, which are not necessary continuous
intervals, and then using the minimum and the maximum time points in the credible set as extremes of the

provided interval

True MAP MAP prob 90% 95%
change point est. prob. κ = 1 C.I. C.I. Mean Median

Scenario 1 (70)

Rep. 10 (70) 0.306 0.971 [70,74] [70,79] 72.21 71
Rep. 5 (70) 0.294 0.987 [70,80] [70,80] 73.34 72
Rep. 3 (70) 0.289 0.975 [69,79] [68,79] 71.17 70

Rep. 11 (68) 0.245 0.966 [68,76] [68,81] 70.60 70
Rep. 20 (73) 0.179 0.965 [67,75] [66,77] 71.19 71
Rep. 12 (74) 0.191 0.933 [67,83] [67,83] 73.53 73

change points, is set to p0 = 0.1 to favour sparsity. The hyperparameters of the G-Wishart
distribution are set to the common values of δ = 3 and D = Idp . In Section C.5 of the Supple-
mentary Material (Franzolini et al. (2024)), we provide hyperparameter sensitivity analysis
carried on the real dataset. The change point detection procedure appears to be unsensitive to
the choice of the hyperparameters, and the graph recovery performance is limitedly affected
by the choice of z.

Table 2 contains posterior summaries of the three best and three worst replicates based on
the accuracy in the recovery of the change point configuration. Summaries for all replicates
can be found in Section B.3 of the Supplementary Material (Franzolini et al. (2024)). In all
replicates the posterior distribution of the number of change points is concentrated around 1,
with a posterior probability greater or equal to 0.91. Moreover, though the space of sequences
that satisfy the minimum duration constraint of � = 12 for T = 200 includes more than 4 ·
1012 sequences, in eight of the 20 replicates the MAP estimate (which minimises the 0 − 1
loss function) coincides with the true state c� = 70, and in all replicates the MAP is contained
in the interval [68,74]. Moreover, Table 2 reports also the 90% and 95% credible intervals,
the mean, and the median for the position of the change point, confirming that the posterior
is concentrated around the true state in all replicates. Figure 5a shows the combined false
positive rate (FPR) of edge detection for the two graphs as a function of the threshold used

FIG. 5. Panel (a): FPR vs. PPI threshold for Scenario 1, computed via 20 replicates. Panel (b): ROC curve in
Scenario 1, computed via 20 replicates.
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for the posterior probability of inclusion (PPI). FPRs show a reasonable pattern, and for the
0.5 threshold, the FPR is 0.156. Figure 5b displays the combined ROC curve, with an AUC
approximately equal to 0.86. The graph estimates used to evaluate the FPRs are obtained
conditionally on the estimated change point sequence, even when it does not coincide with
the true one. Indeed, the MAP always identifies a single change point, so we compare the
estimated graphs before/after the estimated change point, with the true graph before/after the
true change point for fairness of results.

Lastly, we compare the results with those obtained by applying the group-fused graphical
lasso (GFGL), introduced by Gibberd and Nelson (2017) (see also Gibberd and Roy (2017)),
and the LOcal Group Graphical Lasso Estimation (loggle) of Yang et al. (2015). Similarly
to our proposal, GFGL consists of a piecewise constant graphical model. Differently from
our model, it is estimated employing a penalized likelihood approach, where two penalties
act favouring both sparsity of the graph structure (i.e., shrinkage penalty) and sparsity in the
number of change points (i.e., smoothing penalty). The loggle approach is also based on a
penalised likelihood approach, but it assumes that the graph topology is gradually changing
over time and thus cannot be used to detect change points. We compare our approach with an
“oracle version” of loggle, where we estimate the graphs knowing the position of the change
points.

From a theoretical point of view, both GFGL and loggle prohibit principled uncertainty
quantification on the number and location of change points and graph structure. Contrarily,
our strategy allows for straightforward uncertainty quantification, which is one of the main
advantages of the Bayesian framework. However, as it is well-known, Bayesian posterior
inference typically comes at the expense of the computational time needed to estimate the
model. So in this scenario, GFGL and loggle produce estimates in a few seconds or minutes,
and our dynamic Gaussian graphical model requires hours to be estimated (see D.2 in the
Supplementary Material for details on computational time, Franzolini et al. (2024)). Results
from the GFGL model are obtained for different values of the hyperparameters λ1 and λ2.
The hyperparameters λ1 and λ2 control, respectively, the shrinkage and the smoothness of the
solution; for more details, see Gibberd and Nelson (2017). Detailed output summaries for the
GFGL are presented in Section B.3 of the Supplementary Material (Franzolini et al. (2024)).
As already noticed by Gibberd and Nelson (2017), GFGL’s results can be highly sensitive
to the choice of the hyperparameters in terms of both detected change points and recovered
graph structure. In our experiment the number of change points estimated by GFGL varies
from one to seven, depending on the simulation replicate and on the choice of hyperparam-
eters λ1 and λ2. The location of the change points also varies largely across the different
simulation replicates. Contrarily, our model identifies the correct number of change points
and their approximate position in all replicates. To evaluate the graph recovery performance
of GFGL, we compute the FPR and the TPR at the two middle points t = 35 and t = 135.
For GFGL with λ1 = 0.25 and λ2 = 20, the FPR is 0.412 and the TPR is 0.550. For GFGL
with λ1 = 0.50 and λ2 = 60, the FPR is 0.175, and the TPR is 0.311. The “oracle version” of
the loggle model gives a FPR of 0.242 and a TPR of 0.825. Contrarily, with our approach, if
we fix the FPR to 0.242 the corresponding TPR is 0.895, fixing the TPR to 0.825 leads to a
FPR of 0.181. (see Table B.3.2 in the Supplementary Material, Franzolini et al. (2024)).

4.2. Simulation results for more changes points and nodes. The second simulation sce-
nario (Scenario 2) is obtained simulating data for T = 200 time points and p = 20 vari-
ables/nodes. The data generating mechanism presents three change points located at t = 60,
t = 100, and t = 150 and thus four different graph structures. The true graph structures are
displayed in Figure B.1.3 of the Supplementary Material (Franzolini et al. (2024)) and ob-
tained fixing the first graph G1, which presents 11 activated edges and, subsequently, ran-
domly changing the graph structure across change points. In each corresponding change
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FIG. 6. Panel (a): FPR vs. PPI threshold for Scenario 2. Panel (b): ROC curve in Scenario 2.

point, any active/nonactive edge is deactived/activated with probability 0.4. The four pre-
cision matrices are then generated sampling from a G-Wishart distribution, independently
conditional on graph structure. Note that the abruptness in the changes in the dependence
structure is higher in this scenario than in Scenario 1, since the precision matrix is generated
independently at each change point and not obtained as a perturbation of the previous preci-
sion matrix, as in the previous section. The hyperparameters are chosen as described in the
previous section.

The posterior distribution for the number of change points assigns probability one to the
correct value of 3 (see Figure B.4.1 in the Supplementary Material, Franzolini et al. (2024)).
The posterior expectation for the first change point location is 60.68, for the second change
point is 98.11, and for the third one is 149.94. More details on posterior inference results are
provided in Section B.4 of the Supplementary Material (Franzolini et al. (2024)). Figure 6a
shows the combined FPR of edge detection for the four graphs as function of the threshold
used for the PPI. Again, the FPRs appear reasonable for any PPI threshold, quickly decaying
to zero, and for the 0.5 threshold, the FPR is 0.035. Figure 6b displays the ROC curve,
with an AUC approximately equal to 0.89. In the Supplementary Material (Franzolini et al.
(2024)), we also report results obtained with the GFGL model of Gibberd and Nelson (2017),
which, similarly to what already observed in the previous section, shows high variability of
the estimates depending on the value of the hyperparameters. Moreover, in this scenario we
note that the GFGL model leads also to poor graph recovery, even when the correct change
points are detected (see Figures B.4.3 and B.4.4 of the Supplementary Material, Franzolini
et al. (2024)). In particular, for λ1 = 0.2 and λ2 = 60, GFGL detects the correct location of
the change points but has a FPR of 0.176 and TPR of 0.372. The “oracle version” of the
loggle model produces a FPR of 0.113 and a TPR of 0.426, presenting significantly worse
performance than our approach. For example, for a 0.5 PPI threshold we obtain a FPR of
0.035 and a TPR of 0.611, if we fix the FPR to 0.113 the corresponding TPR is 0.764, fixing
the TPR to 0.426 leads to a FPR of 0.021; see Table 3.

5. Industry returns during COVID-19 pandemic. We apply the model to detect
changes in the dependence structure of the nine industry portfolios’ weekly returns de-
scribed in Section 1. We consider weekly data over a time horizon of three years: from
January 2019 to December 2021 so that T = 157. When choosing which type of returns
to include in the analysis, that is, daily, weekly, or monthly, we are faced with a trade-
off: higher frequency data may show lower degree of dependence, making harder to de-
tect structure changes in the dependence structure (see, for instance, Ab Razak, Aminud-
din and Ismail (2018)); on the other hand, lower frequency data provide a less detailed
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TABLE 3
Scenario 2: Comparison on graph recovery between the results obtained with the “oracle version” of the loggle

model and our model

Bayesian dynamic GGM

loggle PPI thres. 0.5 PPI thres. 0.25 PPI thres. 0.78

FPR 0.113 0.035 0.113 0.021
TPR 0.426 0.611 0.764 0.426

representation of markets’ trends. For this reason we consider weekly returns to attain a
more detailed level of information, compared to monthly data, and a potentially stronger
signal on correlations compared to daily returns. Logarithmic weekly returns are com-
puted starting from the daily returns available from Kenneth R. French’s Data Library at
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, where the indus-
try classification used to associate each stock to one of the nine portfolios is defined as
follows. Stocks listed in the New York Stock Exchange (NYSE), the American Stock Ex-
change (AMEX), and National Association of Securities Dealers Automatic Quotation Sys-
tem (NASDAQ) are assigned to an industry at the end of June of year t based on their four-
digit standard industrial classification (SIC) code at that time. Then returns are computed
from July of year t to June of year t + 1. The corresponding standardized time series are
represented in Figure C.1 of the Supplementary Material (Franzolini et al. (2024)).

To estimate the dependence structure for the weekly returns, we first run the algorithm
to estimate the change point sequence, using 200 particles, 10 mutation steps, performing
32,000 iterations of the outer component, of which the first 2000 are discarded as burn-in,
and thinning every 10 iterations. Second, we rerun only the particle filter with 1000 particles
and 20 mutation steps to sample the graphs from their posterior distribution conditionally on
the MAP estimate of the change point configuration. The algorithm is initialised assuming no
change points, and hyperparameters are set as described in Section 4.1.

Figure 7 shows, for each time point, the marginal posterior probability of being a change
point, and Table 4 reports the joint posterior distribution of the configurations of change
points, which have been accepted by the algorithm. The posterior distribution on the number
of change points assigns probability 0.9984 to two change points and the remaining mass
0.0016 to three change points. The posterior distribution for the number and location of

FIG. 7. Marginal posterior probability of every time point to be a change point.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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TABLE 4
Posterior distribution of change point configuration. In bold we highlight probabilities greater than 0.05 and in

underline the MAP estimate

Change Post Change Post Change Post Change Post
points prob. points prob. points prob. points prob.

(57 79) 0.0010 (59 82) 0.0073 (60 99) 0.0003 (61 81) 0.0137
(57 82) 0.0010 (59 84) 0.0017 (61 116) 0.0010 (61 82) 0.1094
(57 84) 0.0007 (60 78) 0.0020 (61 73) 0.0007 (61 83) 0.0650
(57 85) 0.0003 (60 79) 0.0073 (61 74) 0.0033 (61 84) 0.0150
(58 79) 0.0003 (60 80) 0.1010 (61 75) 0.0103 (61 85) 0.0127
(58 82) 0.0033 (60 81) 0.0033 (61 76) 0.0133 (61 86) 0.0043
(59 77) 0.0013 (60 82) 0.0297 (61 77) 0.0447 (61 99) 0.0010
(59 78) 0.0007 (60 83) 0.0100 (61 78) 0.0737 (19 61 83) 0.0010
(59 79) 0.0010 (60 84) 0.0127 (61 79) 0.3735 (39 61 83) 0.0003
(59 81) 0.0003 (60 85) 0.0020 (61 80) 0.0694 (61 80 113) 0.0003

change points are highly concentrated around the posterior mode, showing a low level of
uncertainty. Our analysis highlights a first structural change at t = 61, that is, during the
week starting on February 24, 2020, in correspondence of what appears to be the market’s re-
action to the first significant world-wide increase in Coronavirus confirmed cases and deaths
outside China over the previous weekend. In particular, during the weekend February 21–23,
2020, Italy, the first and hardest-hit country in Europe in 2020, reported the first local cases
of COVID-19 (see, e.g., Just and Echaust (2020)). During the week of February 24, 2020,
the Dow Jones and S&P 500 fell by 11% and 12%, respectively, marking the biggest weekly
declines to occur since the financial crisis of 2008. The identification of a first change point in
correspondence of a major shock is coherent with the known stylized fact that, during crisis,
dependence among investments typically increases diminishing diversification benefits (see,
for instance, Kotkatvuori-Örnberg, Nikkinen and Äijö (2013)). A second change point is de-
tected at t = 79, that is, during the last week of June 2020, interpretable as a subsequent and
partial restabilization of the financial markets after the initial and most uncertain period of
the pandemic. The credible intervals, obtained computing the smallest credible sets with 95%
credibility and then using the minimum and the maximum time points in the set as extremes
of the interval, are [60,61] and [76,83] for the first and second change points, respectively.

Conditionally on the MAP change point configuration, estimates of the three graphs are
provided in Figure 8, while the estimated variance and covariance matrices are displayed in
Figure C.2.1 of the Supplementary Material (Franzolini et al. (2024)). The graphs are ob-
tained based on the marginal PPI of the edges in order to control the corresponding Bayesian
false discovery rate (Newton et al. (2004)). In particular, we set the threshold of inclusion,
based on the PPI, to 0.8 in order to guarantee an expected rate of false detection not higher
than 0.05, that is, a specificity of at least 0.95 (for more details, see, Leday and Richardson
(2019), Williams (2021)). In Section C.1 of the Supplementary Material (Franzolini et al.
(2024)), we report the values of degree centrality, betweenness centrality (Freeman (1977)),
local clustering and global clustering coefficients (Watts and Strogatz (1998)) for the esti-
mated graphs, which give insights into the role of each node.

A clearly noticeable feature from Figure 8 is the increase in the number of edges from the
first change point (eight edges) to the followings (11 and 12 edges, respectively), reflected
also in the global measures of clustering of the graphs, which varies from 0 in the pre COVID-
19 period, to 0.43 during the first COVID-19 outbreak, to 0.24 to the post COVID-19 outbreak
(see Table C.1.3 in the Supplementary Material, Franzolini et al. (2024)). Such increase in the
connectivity of the graph is coherent with the hypothesis of the COVID-19 outbreak acting as
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FIG. 8. Posterior estimates of the graphs and PPI for the selected edges. Threshold of inclusion is set to achieve
an expected posterior specificity of at least 95%.

a common nonmeasurable risk factor driving the returns in the market. As already noticed in
the preliminary analysis summarised by Figure 2, the role of hub of the manufacturing port-
folio (i.e., machinery, trucks, planes, chemicals, office furniture, paper) over the three years
is confirmed. The corresponding degree centrality (i.e., number of vertices in the neighbour-
hood of the manufacturing portfolio) is the highest in all three graphs (see Table C.1.1 of
the Supplementary Material for more details, Franzolini et al. (2024)). However, contrarily to
the conclusions of the initial exploratory analysis, consumer nondurable (i.e., food, tobacco,
textiles, apparel, leather, toys) returns appear to play a less central role before the COVID-
19 outbreak. Such evidence that was absent in the explanatory analysis is discovered, mainly
thanks to the automatic detection of the change points, that allow us to determine the most ap-
propriate time window to estimate the graph and capture differences in structure. Moreover,
we identify another hub in the Shops portfolio (i.e., wholesale, retail, and some services, as
laundries and repair shops) in the time-interval after the last change point.

In terms of volatility, in all three periods the consumer durables (i.e., cars, TVs, furni-
ture, household appliances) and energy (i.e, oil, gas, and coal extraction and products) are
characterised by the highest volatility. Moreover, the analysis confirms that the three periods
(pre COVID-19 outbreak, during first COVID-19 global outbreak, and after) coincide with
small, high, and medium volatility markets, as already evident from the time-series plot (see
Figure C.1 in the Supplementary Material, Franzolini et al. (2024)). In more detail we note
that health (i.e., healthcare, medical equipment, and drugs) is the only industry in the market
whose portfolio presents a similar volatility before and after the outbreak, while all other
portfolios’ returns are set to higher levels of variability as consequence of a long-run effect of
market uncertainty. Similar conclusions can be drawn also for the pairwise correlations (that
can be easily computed from the values in Figure C.2.1 and are reported in Section C.2 of
the Supplementary Material, Franzolini et al. (2024)); that is, correlations are higher during
COVID-19 outbreak.

Finally, we compare our results with those obtained by applying the group-fused graphical
lasso (GFGL) (Gibberd and Nelson (2017)). Output summaries for the GFGL are shown in
Table 5, and additional figures can be found in Section C.3 of the Supplementary Material
(Franzolini et al. (2024)). We estimate the GFGL model for different values of the hyperpa-
rameters λ1 and λ2. We recall that λ1 and λ2 control the shrinkage and the smoothness of the
solution of the GFGL model, respectively. As already noticed by Gibberd and Nelson (2017)
and in the simulation study in Section 4, for GFGL inference results are highly sensitive to the
hyperparameters in terms of both detected change points (see Table 5 and Figure C.3.1 in the
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TABLE 5
Results obtained using GFGL for different values of the hyperparameters

# of change
λ1 λ2 points Change points Global clustering coef.

0.25 60 0 () (0.72)
0.35 60 2 (61, 80) (0, 1, 0.33)
0.50 60 2 (61, 80) (0, 0, 0)
0.25 55 2 (61, 80) (0.72, 0.84, 0.81)
0.25 20 3 (61, 80, 98) (0, 1, 0.92, 0.92)
0.35 20 4 (61, 80, 98, 99) (0, 1, 0.33, 0.33, 0)
0.50 20 4 (61, 68, 77, 80) (0, 1, 0.88, 0.87, 0)
0.25 10 6 (57, 61, 80, 98, 99 ,116) (0, 0, 1, 0.89, 0.90, 0.33, 0.33)
0.35 10 4 (61, 80, 98, 116) (0, 1, 0.33, 0.33, 0)
0.50 10 6 (57, 61, 68, 69, 77, 80) (0, 0, 1, 0.88, 0.88, 0)

Supplementary Material, Franzolini et al. (2024)) and recovered graph structure (see Figure
C.3.2 in the Supplementary Material, Franzolini et al. (2024)). Here we consider values for
λ1 in {0.25, 0.35, 0.50} and λ2 in {10, 20, 55, 60}, which are in the range of those considered
by Gibberd and Nelson (2017) in their work. The number of identified change points ranges
widely from zero to six. However, we notice that in all estimated change point configurations,
but the one with no estimated change points, GFGL always includes t = 61 and at t = 80 as
change points, which is consistent with the change points identified by our approach. More-
over, even though the graph structure estimated by the GFGL largely varies depending on the
hyperparameters, in all settings where change points are detected, the graph structure connec-
tivity increases during the COVID-19 outbreak in February 2020 and diminishes after June
2020 (cf. the global clustering coefficients reported in Table 5 and Figure C.3.2 in the Sup-
plementary Material, Franzolini et al. (2024)). This result is again consistent with the results
obtained with our approach. Increased graph connectivity during the COVID-19 outbreak is
also found applying loggle; see Section C.3 of the Supplementary Material (Franzolini et al.
(2024)).

6. Discussion and conclusion. In this work we study the impact of the COVID-19 pan-
demic on the U.S. stock market, with a specific focus on changes in dependence structure
across stocks related to different industries. To do so, we consider weekly returns recorded
for three years starting in January 2019. We identify two structural changes. The first change
is in correspondence with the last week of February 2020, a date that for most countries co-
incided with the beginning of the pandemic. That same week financial markets recorded the
weekly biggest losses since the financial crisis of 2008. The second change point is detected
after approximately four months, when there is a reduction in market uncertainty, but the
dependence structure as well as the volatility are not back to pre COVID-19 levels. Com-
paring the dependence structure across the three periods (i.e., before February 24th, between
February 24th and June 26th, after June 26th) we provide many insights on the impact of the
pandemic on the stock market and highlight whose effects appear to be persistent up to the
end of 2021, the last year considered.

The main methodological contribution of this work is the development of a dynamic GGM,
which allows for abrupt changes in the dependence structure of the random variables repre-
sented by the nodes of the graph. Our model builds on existing literature on GGMs as well
as random change points. Our model construction allows us to control sparsity in the number
of change points and/or in the graph structure. We have designed a tailored SMC algorithm,
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arguing for its use in such a complex setup over other M-H based alternatives and demon-
strating its performance on simulated data and on our motivating application.

Our work opens up several avenues for future research:

(a) Scalability. We have not made use of the full SMC machinery. We briefly discuss two
directions for increase in model dimension, along the number of nodes, p, and along the
length of time instances for observations T . In terms of the size of the graph, recent works
have developed effective proposals, informed by the observations, for MCMC methods on
graph posteriors, instead of previously used random-walk-type blind moves; see, for exam-
ple, van den Boom, Beskos and De Iorio (2022) and the references therein, for approaches
based on Langevin-type analogues for discrete spaces, with parallelisation employed within
the specification of the proposal. Such approaches have been seen to be effective for node
sizes of p = O(102). In terms of the length T , recent advances on modelling involving
change points and accompanying SMC methodologies can permit for recasting models so
that change points also become part of the hidden Markov process (see, e.g., Yildirim, Singh
and Doucet (2013)). At the same time, SMC methods, based on state-of-art particle Gibbs
approaches that incorporate backward steps to improve mixing over the update of the un-
observed Markovian states, are shown to provide pseudomarginal methodologies of superior
mixing compared to standard PMCMC (Lindsten, Jordan and Schön (2014)). Such new al-
gorithms are supported by strong theoretical results. Indicatively, the number of particles can
now be allowed to remain constant, N = O(1), as a function of T , when PMCMC requires
N = O(T ). Thus, costs for the overall SMC algorithm can be brought down to O(NT ) from
the previous O(T 2), for big T —with O(NT ) not taking under consideration the option of
parallelisation across particles.

(b) Smooth changes. In this work we have considered abrupt changes in edge inclusion
probabilities. Alternatively, we could model edge inclusion probabilities as a function of time,
for example, using autoregressive-type models. In this setup shrinkage priors could be spec-
ified to link the probability of edge inclusion at time t to the same probability at time t − 1
(see, for instance, Molinari et al. (2022a)). This approach is amenable to many generaliza-
tions, such as the inclusion of covariates. Moreover, the probability of edge inclusion at time
t could be a function of the probabilities of edge inclusions at time t − 1 of a neighbourhood
of each node.

(c) Graph substructures. Here we have presented changes between graphs, as captured by
edge flips before and after a change point. Edge detection is very sensitive to the number of
nodes as well as sample size. It has been argued (van den Boom, De Iorio and Beskos (2022),
and references therein) that in many applications a more robust approach is to shift the focus
of inference to graph sub-structures, such as hubs and communities, with the goal of captur-
ing the evolution over time of such macro-structures, which better describe the underlying
phenomenon.

(d) More general response types. The model can be easily extended to accommodate dif-
ferent type of responses, such as binary and count data. An easy solution would be the repre-
sentation of such data in terms of latent variables (Albert and Chib (1993), Chib and Green-
berg (1998)). Moreover, it is straightforward to include time-homogeneous and time-varying
covariates to model the mean of the time series as well as a trend and seasonal component.
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Data and codes (DOI: 10.1214/23-AOAS1801SUPPB; .zip). Data and R codes to repro-
duce all results.
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