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Rabitti, Tommaso Rigon, are all excellent researchers and amazing human beings. I wish them nothing but

the best ahead.

Last but not least, I would like to pay my deepest respects to my family and close friends for the under-

standing, love and unconditional support.

I dedicate this work to my mother and father. I only hope that I have made you proud. To my brother, I

hope I have given you something to look up to.

Rada and Ivaila, I love you more than anything.



Abstract

In this work we propose a general class of stochastic processes with random reinforcement that are extensions

of the celebrated Pólya sequence by Blackwell and MacQueen [Ann. Stat. 1 (1973) 353–355]. The resulting

randomly reinforced Pólya sequence (RRPS) can be described as an urn scheme with countable number of

colors and a general replacement rule. Under assumptions of conditional independence between reinforce-

ment and observation, a RRPS becomes conditionally identically distributed (in the sense of [Ann. Probab.

32 (2004) 2029–2052]), and thus predictively convergent, in which case we show that it is asymptotically

equivalent in law to an exchangeable species sampling sequence. This result has important implications on

the generated random partition, which can be visualized as a weighted version of the Chinese Restaurant

Process. We then provide complete distributional characterization of the predictive limit for the model with

dichotomous reinforcements. Throughout the second part of the thesis, we consider an alternative spec-

ification of the replacement mechanism of a RRPS, whereby we deem some colors to be probabilistically

dominant. In this situation the predictive and empirical distributions evaluated near the set of dominant

colors both tend to 1. In fact, under some further restrictions on the reinforcement, the predictive and

empirical distributions converge in the sense of almost sure weak convergence to one and the same random

probability measure, whose mass is concentrated on the dominant set. As a consequence, the process becomes

asymptotically exchangeable and its law – directed by the above random measure, so that the data structure

gets relatively sparse with time. The predictive limit for both models is generally unknown, however, so

we derive central limit results, with which to approximate its distribution. The last chapter of the thesis is

addressed towards applications of the RRPS, with the dominant-color model being considered in the context

of clinical trials with response-adaptive design. Sections discussing uni- and multivariate extensions of the

RRPS complete our study.
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Chapter I

Introduction

1.1 Motivation

There are several, more or less overlapping ideas that underlie the study of the class of stochastic processes

that we propose. The most apparent reason for their development is that they act as non-trivial extensions

of already existing models, which are particularly well-established within Bayesian statistics. On the other

hand, different specifications of our basic model can be considered as relatively simple examples of some

broader classes of processes, whose probabilistic behavior goes beyond exchangeability. In fact, as the title

of the thesis suggests, we study stochastic processes with reinforcement (see Pemantle, 2007, for an insightful

review) and the latter is a powerful precondition for the system of predictive distributions to be convergent. In

turn, predictive convergence implies that the sequence of observations becomes asymptotically exchangeable

(Aldous, 1985); thus, we envision the use of our model for the purposes of Bayesian analysis, which has

actually inspired us to take an overall predictive approach to modeling.

The central tenet of Bayesian philosophy as set forth by Bruno de Finetti is the assessment of probability as

being subjective in nature, stemming from the individual’s incomplete information about observable events.

The fundamental probabilistic framework to work within in Bayesian statistics is that of exchangeability,

which amounts to an invariance judgement on the group of permutations. A famous result due to de Finetti

(1931) and Hewitt and Savage (1955) asserts that any exchangeable random sequence may be represented

by a unique prior probability distribution on some induced parameter space. Complete characterization

of the process requires the adoption of additional probabilistic assumptions, which would ideally involve

only observable quantities, instead of a prior guess, and there is already an extensive literature on various

characterizations of exchangeable random sequences through the system of predictive distributions (refer

to Fortini and Petrone, 2012b, for a review). In fact, predictive constructions of exchangeable processes

have played a crucial part in the development of nonparametric Bayesian theory as they characterize some

fundamental prior distributions (see Blackwell and MacQueen, 1973; Pitman and Yor, 1997, etc.) and are

closely related to the theory of exchangeable random partitions (Pitman, 1995, 1996). Moreover, de Finetti

(1937) himself emphasized the role of the prediction in the Bayesian statistical approach as its ultimate goal.
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Existing exchangeable predictive constructions have one core feature in common in that they give rise

to stochastic processes with reinforcement (and convergent predictive distributions). As a consequence,

the sampling mechanism that they describe can often be interpreted in terms of sequential draws with

replacement from an urn containing balls of different colors. The model, which we propose, exhibits a similar

behavior, yet we require the reinforcement to be further randomized, which in general fails to guarantee the

exchangeability of the process or even that the limit of the predictive distributions exists. At the same time,

however, the urn scheme implied by our process acts as an extension of some well-known urn models to

the case of infinite colors, for which there is already an established theory that leads to the existence of a

predictive limit.

In general, we envision the following two roles that non-exchangeable stochastic processes with convergent

predictive distributions would have in Bayesian statistics. On the one hand, these models could be adopted

in situations, where exchangeability is broken by asymmetries, forms of selection, competition, temporary

disequilibrium, or interactions with other concomitant processes (references include Bassetti et al., 2010;

Fortini et al., 2018), but the process at hand is assumed to have some stabilizing behavior with time. Indeed,

predictively convergent sequences are asymptotically exchangeable, which means, roughly speaking, that one

becomes progressively more probabilistically indifferent to the order in which observations arrive. Probability

laws with convergent predictive distributions could then be used as approximations of the exchangeable laws

that are directed by the former’s predictive limits since they become asymptotically indistinguishable. This

strategy can be of particular interest if the predictive distributions of the non-exchangeable process are

actually easier to handle because of the less structure imposed on them, thereby speeding up the estimation

process at the cost of some imprecision (see Fortini and Petrone, 2019, for an example).

A particular probabilistic framework that is consistent with predictive convergence is that of conditional

identity in distribution. A sequence of random variables is said to be conditionally identically distributed

(c.i.d.) if at any time of the observation process future observations have the same marginal distribution,

given all past information. Conditional identity in distribution is studied extensively by Berti et al. (2004),

although Kallenberg (1988) has shown earlier that it is equivalent to exchangeability under stationarity. Be-

sides being sufficient for predictive convergence, conditional identity in distribution implies that the empirical

process itself converges to the same random limit. The asymptotic agreement of frequency and prediction

constitutes one of the main pillars of Bayesian analysis as it provides a “frequentist basis of the subject’s

probabilistic learning”(Fortini et al., 2018), and hence c.i.d. sequences form an important subclass of predic-

tively convergent processes, which has only recently been used for the purposes of Bayesian inference (see,

e.g. Airoldi et al., 2014; Cassese et al., 2019).

In Chapter II of the thesis we propose a general family of stochastic processes with random reinforcement

that can simultaneously be regarded as a generalization of the predictive construction of the Dirichlet pro-

cess prior in the direction beyond exchangeability, and as an extension of some finite-color urn models to

broader sampling schemes that allow for a continuum of colors. We then investigate two specifications of

our basic model, the first of which is studied in Chapter III and is associated with a c.i.d. sequence of

random variables. In contrast, the model of Chapter IV is motivated by a concrete application that requires

reinforcement and observation to be contemporaneously dependent, which violates the conditional identity

in distribution assumption. Nonetheless, the stochastic processes from both chapters have convergent pre-
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dictive distributions, whose random limits are the main object of study in this thesis. Results will be mostly

probabilistic in nature, so in Chapter V we relate them to a wide-range of applied problems such as cluster

analysis, clinical trials with response-adaptive design, and Bayesian inference in multi-experiment setting.

Throughout the rest of this chapter we try to make some ideas more concrete by going through the relevant

literature and by providing some technical definitions and results that will be used later on.

1.2 Literature review

Consider the classical two-color Pólya urn scheme (Pólya, 1930; Freedman, 1965), which describes the com-

position of an urn containing balls of two different colors that are then sequentially sampled and reinforced

with an additional ball of the observed color. This represents arguably the simplest example of a (exchange-

able) stochastic process with reinforcement. Janson (2019) outlines the different ways, in which one might

generalize the two-color Pólya urn; namely, consider additional colors, reinforce with balls of any color, do

so with a non-negative real quantity (in that case number of balls becomes a misnomer), randomize the

reinforcement, remove balls, or conceptualize to the infinite-color case. The book of Mahmoud (2008) covers

many of the suggested modifications, with some notable extensions of the Pólya urn scheme to k colors being

the generalized Pólya urn (Athreya and Ney, 1972), the randomly reinforced urn (Muliere et al., 2006), and

the immigrated urn model (Zhang et al., 2011). Recent developments to k-color urn models include the

introduction of covariates (Aletti et al., 2018a) and thresholds (Aletti et al., 2018b) into the reinforcement.

The Pólya sequence of Blackwell and MacQueen (1973), which characterizes the predictive construction of

the Dirichlet process prior, is the conceptual extension of the two-color Pólya urn to the case of countable

colors. A proper urn model to explain the sampling procedure of a Pólya sequence is Hoppe’s urn (Hoppe,

1984; Fortini and Petrone, 2012a), which is another way of stating the famous Chinese Restaurant Process

(CRP) metaphor (Aldous, 1985) and can be described as follows. Imagine an urn containing initially only

black balls. The reinforcement rule then reads: each time a black ball is picked, it is returned together with

a ball, whose color is generated from some given distribution on colors; should a non-black ball be sampled,

it is returned with another ball of the same color. Strictly speaking, the CRP records just the ordering of

the drawn balls, regardless of the actual labels attached to them, whereas what we have described above is

a ”colored” version of the Hoppe’s urn/CRP.

The property of Pólya sequences to generate new colors only when the need occurs is a fundamental feature

of exchangeable species sampling sequences (Pitman, 1996) or more generally of generalized species sampling

sequences (Bassetti et al., 2010), which both treat the Pólya sequence as a basic example. On the other

hand, the urn composition of a Pólya sequence can be regarded as a measure-valued process, in which case

reinforcement amounts to a ”summation” of measures. The latter condition is defining for the measure-

valued Pólya urn processes of Janson (2019), which also emphasize the Markovianity of the process. Both of

these frames of reference will prove useful in the subsequent chapters.

Our main model, which is defined in Chapter II, is an extension of the Pólya sequence along the lines of

random reinforcement, hence the moniker, randomly reinforced Pólya sequence (RRPS). Under some con-

ditional independence assumptions (Chapter II, Section 2.2), a RRPS becomes a member of the class of
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c.i.d. generalized species sampling sequences. As such its system of predictive distributions constitutes a

measure-valued martingale and converges in the sense of amost sure weak convergence to a random prob-

ability measure. Chapter III is devoted to the study of that random limit, with our results showing, in

particular, that c.i.d. RRPSs become asymptotically equivalent to exchangeable species sampling sequences

that are directed by the former’s predictive limits. In Chapter V, we look at the random partition associated

to a c.i.d. RRPS in terms of a weighted version of the CRP.

Under quite different conditions (Chapter II, Section 2.3), the predictive distributions of a RRPS can be

regarded as a measure-valued Pólya urn process. Our study of these constructions is further motivated by

the introduction of a mechanism, through which some colors will be able to dominate the rest. The resulting

RRPS, which we call a dominant Pólya sequence (DPS), is an extension of the k-color randomly reinforced

urn model (see Muliere et al., 2006; Berti et al., 2010) towards a continuum of colors. It follows from results

in Chapter IV that in some situations the predictive distributions of a DPS converge to a random limit

measure with a sparse support, in the sense that the predictive distributions will tend to concentrate their

total mass on a small subset of colors, namely the dominant ones. This feature of the DPS will be discussed

in Chapter V in relation to response-adaptive desings of clinical trials.

The RRPS, overall, and the c.i.d. RRPS and the DPS, in particular, help fill the gap on Pólya urn models with

countable number of colors and random reinforcement. As such, they establish a general modelling framework

that, in addition to accomodating many of the existing finite-color urn schemes, provides important examples

of some extensive classes of models.

1.3 Preliminaries

Definitions and notation

Throughout the thesis, (X, d) will be a complete and separable metric space (c.s.m.s), τX the generated

topology, and X the associated Borel σ-algebra. All random quantities will be defined on the same probability

space (Ω,H,P). The following symbols

M(X ), Mb(X ), M+(X ), M0(X ), C(X), Lp(X ),

are used to denote the collections of all numerical functions, f : X → R̄, that are X -measurable, bounded

and X -measurable, non-negative and X -measurable, simple and X -measurable, continuous, and pth power

integrable with p ≥ 1, respectively. In general, F = (Fn)n≥0 will be a filtration on (Ω,H) with F0 =

{∅,Ω}. Whenever the filtration is associated to a stochastic process, say, X = (Xn)n≥1, then it will have

a corresponding superscript attached, e.g. FX = (FXn )n≥0 given by FXn = σ(X1, . . . , Xn), for n ≥ 1. The

σ-algebra F∞ :=
∨∞
n=1 Fn captures, loosely speaking, the total information in the random experiment. We

will also denote by

M(X), MF (X), M∗F (X), MP (X),

the collections of all measures on X, finite measures on X, finite non-null measures on X, and probability

measures on X, respectively. By Theorem 1.5 of Kallenberg (2017), MF (X) (and M∗F (X), MP (X)) is c.s.m.s.,

in which case the σ-algebra MF (X) (and M∗F (X), MP (X)) generated by the topology of weak convergence
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is the smallest one that makes the map µ 7→ µ(B) measurable, for each B ∈ X . Let ν ∈ MP (X). The

support of ν is defined as the set of points x ∈ X, whose every open neighborhood has a positive measure,

namely,

supp(ν) :=
{
x ∈ X : ν(U) > 0, for each U ∈ τX : x ∈ U

}
.

Let X be an X-valued random variable on (Ω,H,P), ν ∈ M(X), and f ∈ M(X ). By X ∼ ν we would mean

that P(X ∈ ·) = ν(·), whereas ν ◦ f−1(·) = ν(f−1(·)) = P(f(X) ∈ ·) is used to denote the measure induced

by f .

Let (Y,Y) be a measurable space. A transition kernel from Y to X is a function K : Y×X → R̄+ such that

the map y 7→ K(y,B) is Y-measurable, for every B ∈ X , and the map B 7→ K(y,B) is a measure on X, for

every y ∈ Y. The transition kernel K said to be finite if K(y,X) < ∞, for y ∈ Y. A transition probability

kernel from Y to X is a transition kernel K from Y to X such that K(y,X) = 1. The collections of all

transition kernels, finite transition kernels and transition probability kernels from Y to X are indicated by

K(Y,X), KF (Y,X), KP (Y,X),

respectively. We would denote by N (µ, σ2) the Gaussian transition probability kernel with (random) pa-

rameters (µ, σ2) ∈ R× R+.

Let ν ∈MP (Y) and K ∈ KP (Y,X). The set function K × ν, given by

K × ν(B) :=

∫
Y

∫
X
1B(x, y)K(y, dx)ν(dy), for B ∈ X ⊗ Y,

defines a probability measure on the product space X×Y, endowed with the σ-algebra X⊗Y that is generated

by the measurable rectangles. If K(y, ·) = µ(·), for all y ∈ Y and some µ ∈ MP (X), then K × ν coincides

with the product probability measure on X× Y, which we denote by µ⊗ ν.

Let K,L ∈ KP (Y,X). The product transition probability kernel between K and L is the transitional

probability kernel K ⊗ L from Y to X, defined by

(K ⊗ L)(y, ·) := K(y, ·)⊗ L(y, ·), for y ∈ Y.

A random probability measure on X is a transition probability kernel P̃ ∈ KP (Ω,X). It follows that P̃

can regarded on c.s.m.s. spaces as an H\MP (X)-measurable map P̃ : Ω → MP (X). An example of a

random probability measures P̃ is the Dirichlet process with parameters θ ∈ R+ and ν ∈ MP (X), denoted

P̃ ∼ DP(θ, ν), where
(
P̃ (B1), . . . , P̃ (Bn)

)
∼ Dir

(
θν(B1), . . . , θν(Bn)

)
is Dirichlet distributed, for any finite

partition {Bi}ni=1 of X in X .

Let X be an X-valued random variable on (Ω,H,P), and F ⊆ H be a sub-σ-algebra. The conditional

distribution of X given F is any random probability measure P̃ on X such that

P̃ (B) = P(X ∈ B|F) a.s.[P], for B ∈ X .

From the fundamental property of conditional distributions, E[f(X)|F ] =
∫
X f(x)P̃ (dx) a.s.[P], for every

f ∈ Mb(X ), where it is implied that
∫
X f(x)P̃ (dx) ∈ Mb(F). All conditional distributions both here and

throughout the thesis are meant as regular versions.
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Conditional identity in distribution and asymptotic exchangeability

A stochastic process X = (Xn)n≥1 that is adapted to a filtration F = (Fn)n≥0 is said to be conditionally

identically distributed w.r.t. F (or F-c.i.d.) if it holds, for each k, n ≥ 1 and any f ∈Mb(X ), that

E[f(Xn+k)|Fn−1] = E[f(Xn)|Fn−1].

If F ≡ FX , then X is said to be simply c.i.d. As the above condition is equivalent to requiring the sequence

of predictive distributions be a measure-valued martingale, then any F-c.i.d. process is also c.i.d.; in fact, it

is c.i.d. with respect to any coarser filtration, to which X is adapted. This kind of stochastic dependence is

hinted in Kallenberg (1988) and introduced and studied in a systematic way by Berti et al. (2004). It turns

out that any exchangeable sequence is conditionally identically distributed, whereas any stationary c.i.d.

sequence is exchangeable. An important property of c.i.d. processes is that their predictive distributions

converge in the sense of almost sure weak convergence to a random probability measure P̃ on X,

P(Xn+1 ∈ ·|Fn)
w−→ P̃ (·) a.s.[P].

On c.s.m.s. spaces Berti et al. (2006, Theorem 2.2) show that this is equivalent to

E[f(Xn+1)|Fn] −→
∫
X
f(x)P̃ (dx) a.s.[P], for each f ∈ Cb(X),

which is an instance of almost sure conditional convergence (see below). Moreover, P(Xn+1 ∈ B|Fn)
a.s.−→

P̃ (B), for each B ∈ X . On the other hand, c.i.d. processes satisfy a law of large numbers and have the

additional property that

1

n

n∑
i=1

δXi
w−→ P̃ a.s.[P],

which implies that P̃ is essentially σ(X1, X2, . . .)-measurable. Now P̃ , being a weak limit, is uniquely

determined by the empirical distributions, and hence we will refer to it as the directing measure of X,

similarly to the theory on exchangeable processes.

Note that P(Xn+1 ∈ ·|Fn) are not the actual predictive distributions, P(Xn+1 ∈ ·|X1, . . . , Xn), unless

F ≡ FX . However, a slightly generalized martingale convergence theorem (see Blackwell and Dubins, 1962,

Theorem 2) implies for any F-adapted process X, whose P(Xn+1 ∈ · |Fn) and 1
n

∑n
i=1 δXi converge to one

and the same P̃ ∈ KP (Ω,X), that

E[f(Xn+1)|X1, . . . , Xn] = E
[
E[f(Xn+1)|Fn]

∣∣X1, . . . , Xn

]
−→ E

[
P̃f |X1, X2, . . .

]
= P̃f a.s.[P],

where P̃f =
∫
X f(x)P̃ (dx) a.s.[P], for f ∈ Cb(X). As a consequence,

P(Xn+1 ∈ ·|X1, . . . , Xn)
w−→ P̃ (·), a.s.[P].

Moreover, predictive convergence implies that X is asymptotically exchangeable, in the sense that

(Xn+1, Xn+2, . . .)
d−→ (Z1, Z2, . . .),

for some exchangeable infinite sequence (Zn)n≥1 with directing measure P̃ (see Aldous, 1985, Lemma 8.2).
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Modes of convergence

Let F = (Fn)n≥0 be a filtration and Y = (Yn)n≥1 be an X-valued sequence that is non-necessarily adapted

to F . Then Y is said to converge in the sense of almost sure conditional convergence to some K ∈ KP (Ω,X)

w.r.t. F , denoted Yn
a.s.cond.−→ K, if

E[f(Yn)|Fn] −→
∫
X
f(x)K(dx) a.s.[P], for each f ∈ Cb(X).

The first systematic study of a.s conditional convergence dates to Crimaldi (2009). If the above convergence

is in probability, then Y is said to converge stably in the strong sense to K w.r.t. F , denoted Yn
s.stably−→ K

(see Crimaldi et al., 2007, for a reference). Stable convergence of Y w.r.t. some sub-σ-field G ⊆ H, denoted

Yn
G−stably−→ K, is a weaker form of convergence, which requires

E
[
V · E[f(Yn)|G]

]
−→

∫
Ω

V (ω)

∫
X
f(x)K(ω, dx)P(dω), for each f ∈ Cb(X) and V ∈ L1(H).

It can be shown that Yn
s.stably−→ K w.r.t. F implies Yn

F∞−stably−→ K. Moreover, if it holds Yn
G1−stably−→ K,

for any sub-σ-fields G1,G2 ⊆ H such that G2 ⊆ G1, then Yn
G2−stably−→ K. In the case Yn converges stably

to K w.r.t. H, we say simply that Yn
stably−→ K. The main application of stable convergence is in central

limit theorems that allow for mixing variables in the limit. In fact, stable convergence can be seen as an

intermediate form of convergence between convergence in distribution and convergence in probability as

Yn
stably−→ K implies Yn

d−→ Z, for some random variable Z ∼ E[K(·)], whereas it holds Yn
p−→ Y if and only

if Yn
stably−→ δY , for any random variable Y . In addition, stable convergence is transferrable in the sense that

Yn
stably−→ K and d(Xn, Yn)

p−→ 0 both imply Xn
stably−→ K. For more information on stable convergence refer

to Häusler and Luschgy (2015).

Note on measurability

A final point to make is that, whenever we have a sequence (Xn)n≥1 of X-valued random variables on (Ω,H,P)

that is adapted to a filtration F = (Fn)n≥0, and a P-a.s.-finite F-stopping time T , then by XT we would

mean the random variable, defined by XT (ω) := XT (ω)(ω), for ω ∈ {T < ∞}, and XT (ω) := ϑ otherwise,

for some element ϑ /∈ X. Then XT is a map from Ω into X∗ = X ∪ {ϑ} that is H\X ∗-measurable, where

X ∗ = σ(X ) on X∗. Ideally, we would then extend each f ∈M(X ) and ν ∈MP (X) to X∗ by taking f(ϑ) = 0,

in which case the extended function would be guaranteed to be X ∗-measurable, and ν(B) = ν(B\{ϑ}) with

ν({ϑ}) = 0. As T <∞ a.s.[P], as long as we work with identities and inequalities that hold P-a.s., all of the

above subtleties would be inconsequential, so we need not worry about ϑ, and we will consider XT to be for

all intents and purposes X-valued.
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Chapter II

Randomly reinforced Pólya sequence

2.1 Introduction

Random processes with reinforcement have long been a subject of interest to probabilists as surveyed by

Pemantle (2007). The quintessential example of a stochastic process with reinforcement is the two-color

Pólya urn (Pólya, 1930), which describes the composition of an urn containing balls of two different colors

that are then sequentially sampled and reinforced with an additional ball of the observed color. Denote by

Xn ∈ {0, 1} the color of the ball drawn at step n ≥ 1. The sampling procedure of a Pólya urn starts off with

a Bernoulli pick, X1 ∼ Ber( n1

n0+n1
), and then proceeds according to

P (Xn+1 = 1|X1, . . . , Xn) =
n1 +

∑n
i=1Xi

n0 + n1 + n
,

where n0, n1 ∈ N represent the initial number of balls of each color. The predictive rule above postulates

that the probability of picking a ball of color 1 is equal to the proportion of balls in the urn that have color

1. It follows that this system of predictive distributions characterizes an exchangeable sequence of random

variables with a Beta(n0, n1) prior distributions (see Freedman, 1965).

There has been an increasing interest from fields as diverse as design of clinical trials (Rosenberger, 2002),

economics (Beggs, 2005), information science (Martin and Ho, 2002), etc. in generalizing the classical Pólya

urn scheme along the lines of time-varying or random reinforcement. Examples include the time-dependent

Pólya urn of Pemantle (1990), Durham et al. (1998)’s randomized Pólya urn, and the general class of

immigrated urn models by Zhang et al. (2011). Most of these constructions suppose the existence of more

than two, but a finite number of colors. However, in many applications either the number of colors is

unknown, possibly infinite, or it may be that the set of colors varies from sample to sample.

The Pólya sequence of Blackwell and MacQueen (1973) is the conceptual extension of the above sampling

scheme to the case of countable colors. Fix θ > 0 and ν ∈MP (X). A sequence of X-valued random variables

(Xn)n≥1 is called a Pólya sequence with parameters (θ, ν) if X1 ∼ ν and the conditional distribution of
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Xn+1 given (X1, . . . , Xn) is the transition probability kernel

P(Xn+1 ∈ ·|X1, . . . , Xn) =

n∑
i=1

1

θ + n
δXi(·) +

θ

θ + n
ν(·), for n ≥ 1.

Blackwell and MacQueen (1973) show that the Pólya sequence is exchangeable and has a Dirichlet process

prior with parameters θ and ν. In addition, P (Xi = Xj) > 0, for i 6= j, so different observations may

coincide. The probability measure ν is called the base measure of the sequence and, according to the colored

Hoppe’s urn interpretation given in Chapter I, is used to “generate” new colors when the need occurs. It

follows from the form of the predictive distributions that a researcher would find at stage n + 1 of the

experiment a previously seen color X∗k with probability
∑n
i=1 δXi({X∗k})

/
(θ+n), where X∗1 , . . . , X

∗
Ln

denote

the distinct colors among the already collected sample (X1, . . . , Xn), or a new color (i.e. pick a black ball

from the corresponding Hoppe’s urn) with probability θ/(θ+ n). The above scheme represents the simplest

case of a reinforcement mechanism as the probability of picking a previously seen (non-black) color is just

the proportion of times that the same color has been observed in the past. Under this framework past

observations are weighted equally, and thus our intent is to study the properties of the model, for which this

condition is relaxed.

In this chaper of the thesis we define a large class of Pólya sequences with random reinforcement, called

randomly reinforced Pólya sequences (RRPSs), through the introduction of a weighting scheme to the obser-

vation process. We then infer general conditions on the sequence of weights, under which a RRPS can be

regarded as a generalized species sampling sequence (Bassetti et al., 2010) or as a measure-valued Pólya urn

process (Janson, 2019). A RRPS that is a member of the first class of models has predictive distributions that

form a measure-valued martingale, whereas as part of the latter they constitute a measure-valued Markov

process. Each of the two model specifications has a later chapter devoted to it.

2.1.1 Model

Definition 2.1.1. A sequence of X-valued random variables X = (Xn)n≥1 is called a randomly reinforced

Pólya sequence (RRPS) if there exist a probability measure ν on X such that X1 ∼ ν, a constant θ > 0, and a

sequence of non-negative random variables W = (Wn)n≥1 such that a version of the conditional distribution

of Xn+1 given Fn := FXn ∨ FWn is the transition probability kernel

P(Xn+1 ∈ · |Fn) =

n∑
i=1

Wi

θ +
∑n
j=1Wj

δXi(·) +
θ

θ +
∑n
j=1Wj

ν(·), for n ≥ 1. (II.1)

Remark. It should be noted that the triplet (ν, θ, (Wn)) characterizing a RRPS is not identifiable as any

transformation (ν, γθ, (γWn)), for some γ > 0, would lead to the same predictive rules. Therefore, one has

to fix either θ or W1 in a statistical application.

The dynamics of a RRPS can be interpreted through a weighted version of the colored Hoppe’s urn, with

the only difference being that non-black balls carry a weight (mass) of Wn. For simplicity, assume that the

base measure ν is diffuse. Then the probability of picking any of the existing non-black balls from the urn,
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labeled k = 1, . . . , Ln, is
∑
i:Xi=X∗k

Wi

/
(θ +

∑n
j=1Wj), whereas the probability of picking a black ball is

θ
/

(θ +
∑n
j=1Wj), in which case we would generate a new color X∗Ln+1

from ν.

As anticipated, if Wn = 1 one recovers the Pólya sequence. In case the state space X is finite, RRPSs

constitute a particular subclass of generalized Pólya urn models (refer to Pemantle (2007) for definition) and

as such have already garnered a lot of research interest (see Aletti et al., 2009; Berti et al., 2011; Crimaldi,

2009; May et al., 2005, among others). On the other hand, the current literature on RRPSs with infinite

colors is, to the best of our knowledge, contained in Berti et al. (2009), Bassetti et al. (2010) and Fortini et al.

(2018) and concerns only situations, in which the probabilistic model generates a conditionally identically

distributed (c.i.d.) sequence. In fact, a RRPS is c.i.d., whenever the future weighting of the observations is

done independently of what happens at the moment, conditionally given the past, that is

Assumption A.1. Xn+1 is independent of (Wn+j)j≥1 given Fn, for each n ≥ 0. (A.1)

In Chapter III we formalize this statement and study the properties of the resulting process. In Chapter

IV, in comparison, we examine a non-c.i.d. RRPS with convergent predictive distributions that can be

regarded as an extension of the particular k-color urn scheme in Berti et al. (2010) to the case of countable

colors. Before going into that direction, though, we investigate the relationship between RRPSs and two

other classes of processes.

2.2 Generalized Ottawa sequences

Most of the existing extensions of the Pólya sequence are constructed in such a way as to preserve exchange-

ability and these include the two-parameter Poisson-Dirichlet process (see Pitman and Yor, 1997) or, more

generally, the class of species sampling sequences of Pitman (1996) that are characterized by

P(Xn+1 ∈ ·|X1, . . . , Xn) =

n∑
i=1

pn,i(Πn)δXi(·) + rn(Πn)ν(·),

for some measurable functions pn,i and rn from Pn in [0, 1], where Pn denotes the set of all partitions on

{1, . . . , n} and Πn is the random partition on {1, . . . , n} that is generated by (X1, . . . , Xn). The fact that pn,i

and rn depend only on the partition is a necessary and sufficient condition for the sequence (Xn)n≥1 to be

exchangeable (see Hansen and Pitman, 2000, Theorem 1). However, this assumption may not be reasonable

in situations, where the actual labels of the Xn’s matter, in which case knowledge of the partition is not

enough. In addition, the clustering behavior of the generated sequence of observations cannot in general be

described in terms of an urn sampling scheme.1 Nonetheless, pn,i and rn can be interpreted within a species

sampling framework, with pn,i being the probability of observing at stage n+1 of the experiment the species

of the ith subject that had previously appeared, given all that has happened up to time n, and rn – the

probability of discovering a new species, all provided ν is diffuse.

1Regarding the Poisson-Dirichlet process with parameters (α, θ), for 0 ≤ α < 1 and θ > 0, we can imagine a modification of

Hoppe’s urn, where a black pick would result in the addition of a black ball of mass α and a non-black ball of mass 1− α, all

else being equal.
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In order to address some of the shortcomings of the basic model, Bassetti et al. (2010) define a notion of

a generalized species sampling sequence by allowing the predictive distributions to further depend on the

realizations of a latent process (Yn)n≥1, so that

P(Xn+1 ∈ ·|X1, Y1, . . . , Xn, Yn) =

n∑
i=1

pn,i(Πn, Y1, . . . , Yn)δXi(·) + rn(Πn, Y1, . . . , Yn)ν(·), (II.2)

for some measurable functions pn,i and rn from Pn × Rn+ in [0, 1]. Then, unless (Xn)n≥1 and (Yn)n≥1

are independent, the process is generally no longer exchangeable. In particular, Bassetti et al. (2010) call a

sequence of X-valued random variables (Xn)n≥1 with predictive distributions as in (II.2) a generalized Ottawa

sequence (GOS) if pn,i and rn depend only on (Y1, . . . , Yn) and are such that 1 = r0 ≥ r1 ≥ r2 ≥ · · · > 0,

pn,i(y(n)) =
rn(y(n))

rn−1(y(n− 1))
pn−1,i(y(n− 1)), for i = 1, . . . , n− 1,

pn,n(y(n)) = 1− rn(y(n))

rn−1(y(n− 1))
,

for each n ≥ 1 and every y(n) = (y1, . . . , yn) ∈ Rn+, and provided (Xn, Yn)n≥1 satisfies the condition that

Xn+1 is independent of (Yn+j)j≥1 given Gn, for each n ≥ 0,

where Gn := FXn ∨ FYn . It turns out that any GOS is determined by the sequence (rn)n≥0 as we have from

the above recursions that

P(Xn+1 ∈ ·|Gn) =

n∑
i=1

rn(Y1, . . . , Yn)

(
1

ri(Y1, . . . , Yi)
− 1

ri−1(Y1, . . . , Yi−1)

)
δXi(·) + rn(Y1, . . . , Yn)ν(·).

The next result investigates the connection between the generalized Ottawa and the randomly reinforced

Pólya sequences. It is immediate to see that the predictive distributions (II.1) of a RRPS with parameters

(θ, ν, (Wn)) have the same structure as that of a GOS with parameters (ν, (rn), (Wn)), where

rn(W1, . . . ,Wn) =
θ

θ +
∑n
j=1Wj

.

More interesting is the fact that any GOS can be reformulated into a RRPS, provided one fixes θ before-

hand. Such an equivalence relationship gives flexibility in modeling the probabilistic behavior of (Xn)n≥1;

for example, it may be more natural to make assumptions on the sequence of weights (Wn)n≥1 rather than

on (Yn)n≥1, which does not necessarily have any physical interpretation (Theorem 3.3.1 in Chapter III is

one such example). On the other hand, some models such as the one in Airoldi et al. (2014) are best de-

fined through the sequence (rn)n≥0, even though the GOS reparameterization loses the interpretation of a

weighted Hoppe’s urn.

Proposition 2.2.1. Let X = (Xn)n≥1 be a generalized Ottawa sequence with parameters ν and (rn)n≥0, and

latent process (Yn)n≥1. Fix θ > 0. Then there exists a sequence of non-negative random variables (Wn)n≥1

such that X is a randomly reinforced Pólya sequence with parameters θ, ν and (Wn)n≥1. Moreover, X

satisfies assumption (A.1).
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Proof. Define

Wn := θ
( 1

rn(Y1, . . . , Yn)
− 1

rn−1(Y1, . . . , Yn−1)

)
, and Fn := FXn ∨ FWn , for n ≥ 1.

It is immediate to see that Wn is FYn -measurable and non-negative as rn−1 ≥ rn from the definition of a

GOS. In addition, rn(Y1, . . . , Yn) = θ
/(
θ +

∑n
j=1Wj

)
, and thus

P(Xn+1 ∈ ·|Gn) =

n∑
i=1

Wi

θ +
∑n
j=1Wj

δXi(·) +
θ

θ +
∑n
j=1Wj

ν(·).

Let f ∈Mb(X ). As Fn ⊆ Gn, it follows P-a.s. that

E[f(Xn+1)|Fn] = E
[
E[f(Xn+1)|Gn]|Fn

]
=

= E
[ n∑
i=1

Wi

θ +
∑n
j=1Wj

f(Xi) +
θ

θ +
∑n
j=1Wj

E[f(X1)]
∣∣∣Fn] =

=

n∑
i=1

Wi

θ +
∑n
j=1Wj

f(Xi) +
θ

θ +
∑n
j=1Wj

E[f(X1)] = E[f(Xn+1)|Gn].

Therefore,

P(Xn+1 ∈ ·|Fn) =

n∑
i=1

Wi

θ +
∑n
j=1Wj

δXi(·) +
θ

θ +
∑n
j=1Wj

ν(·).

Regarding the last part of the proposition, denote FW,cn := σ(Wn+1,Wn+2, . . .) and GY,cn := σ(Yn+1, Yn+2, . . .),

for n ≥ 1. Let m ≥ 1, V ∈Mb(Fn) and h1, . . . , hm ∈Mb(B(R+)). Then

E
[
V · E[h1(Wn+1) · · ·hm(Wn+m)f(Xn+1)|Fn]

]
= E[V h1(Wn+1) · · ·hm(Wn+m)f(Xn+1)] =

= E
[
V h1(Wn+1) · · ·hm(Wn+m)E[f(Xn+1)|Fn ∨ FW,cn ]

]
=

= E
[
V h1(Wn+1) · · ·hm(Wn+m)E

[
E[f(Xn+1)|Gn ∨ GY,cn ]|Fn ∨ FW,cn

]]
=

= E
[
V h1(Wn+1) · · ·hm(Wn+m)E

[
E[f(Xn+1)|Gn]|Fn ∨ FW,cn

]]
=

= E
[
V h1(Wn+1) · · ·hm(Wn+m)E

[
E[f(Xn+1)|Fn]|Fn ∨ FW,cn

]]
=

= E
[
V h1(Wn+1) · · ·hm(Wn+m)E[f(Xn+1)|Fn]

]
=

= E
[
V · E[h1(Wn+1) · · ·hm(Wn+m)|Fn]E[f(Xn+1)|Fn]

]
,

where we have used conditional determinism and E[f(Xn+1)|Gn] = E[f(Xn+1)|Fn] from before. But m, V ,

f and h1, . . . , hm are arbitrary, so X satisfies (A.1).

Bassetti et al. (2010, Section 5) show that any GOS is c.i.d. with respect to (G∗n)n≥0, where G∗n := FXn ∨FY∞,

so it follows from Proposition 2.2.1 that a RRPS satisfying assumption (A.1) is c.i.d. with respect to (F∗n)n≥0,

for F∗n := FXn ∨FW∞ . In Chapter III we study the large n limiting behavior of the latter process and provide

results that either generalize the existing ones from Bassetti et al. (2010) or are completely new as regards

to the class of RRPSs/GOSs.
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2.3 Measure-valued Pólya urn processes

In this section we consider the predictive distributions (II.1) of a RRPS as measure-valued random variables

and establish a connection between the probabilistic behavior of the resulting measure-valued process and

the sequence (Wn)n≥1. To that end, define µ0 := θν and

µn := θν +

n∑
i=1

WiδXi , for n ≥ 1, (II.3)

which forms a sequence of finite random measures on X. In case ν is diffuse, µn(B) denotes the total mass

of the balls, whose colors lie in B, for B ∈ X , with respect to the weighted Hoppe’s urn interpretation. Note

that

µn = µn−1 +WnδXn ,

so µn is the sum of the last term in the sequence with another finite random measure that captures the re-

inforcement mechanism. The above structure is inherent in all urn schemes and species sampling sequences,

and yet Bandyopadhyay and Thacker (2014, 2016, 2017) and Mailler and Marckert (2017) are arguably the

first to concentrate their study on the measure-valued random sequence (µn)n≥0. In fact, their models are

instances of the general class of Pólya urn processes proposed by Janson (2018, 2019), for which we lay the

groundwork next.

Let µ ∈ M∗F (X). Denote by µ′ = µ/µ(X). As the composition of an urn is described by such a finite

measure µ, we consider a kernel R ∈ KF (X,X), which maps colors x 7→ Rx to finite measures, to model the

replacement rule of the corresponding urn scheme. Reinfocements will be in general random, so we assume

the existence of a probability kernel R ∈ KP (X,MF (X)) such that Rx ∼ Rx, for x ∈ X. The function

φµ : X→M∗F (X), defined by

φµ(x) := µ+Rx, for x ∈ X,

records the updated urn composition after µ has been reinforced with Rx, given that a ball of color x has

been drawn with distribution µ′. Moreover, φµ(x) ∼ Φµ(x) := Rx ◦ ψ−1
µ , where ψµ : MF (X) 7→ M∗F (X)

is the map ν 7→ ν + µ, and thus φµ(x) = ψµ(Rx). In fact, Φµ ∈ KP (X,M∗F (X)) (see Janson, 2019). The

unconditional distribution of the updated composition is the probability measure that results from averaging

Φµ out across possible observations,

R̂µ(·) :=

∫
X

Φµ(x)(·)µ′(dx).

It follows that the function R̂ that maps µ 7→ R̂(µ) = R̂µ is a probability kernel from M∗F (X) to M∗F (X)

(Janson, 2019, Lemma 3.3). In case R is deterministic, i.e. Rx = δRx , one has Φµ(x) = δφµ(x), and thus

R̂µ(·) = µ′ ◦ φ−1
µ (·).

Formally, Janson (2019) calls a sequence of finite random measures (µn)n≥0 a measure-valued Pólya urn

process with a random replacement rule R ∈ KP (X,MF (X)), provided

µn = µn−1 +RXn , for n ≥ 1,
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where

P(Xn ∈ ·|µ0, . . . , µn−1) = P(Xn ∈ ·|µn−1) = µ′n−1(·),

denotes the color of the ball that has been drawn at stage n, given the urn composition µn−1, and

P(RXn ∈ ·|µ0, . . . , µn−1, X1, . . . , Xn) = RXn .

The above equation implies, in particular, that the reinforcement RXn is independent of the accumulated

information (µ0, µ1, X1, . . . µn−1, Xn−1) given Xn. As a consequence,

P(µn ∈ ·|µ0, . . . , µn−1) = E
[
P(ψµn−1(RXn) ∈ ·|µ0, . . . , µn−1, Xn)

∣∣µ0, . . . , µn−1

]
=

= E
[
P(ψµn−1

(RXn) ∈ ·|µn−1, Xn)
∣∣µ0, . . . , µn−1

]
=

∫
X
Rx ◦ ψ−1

µn−1
(·)µ′n−1(dx) = R̂µn−1

(·);

thus, (µn)n≥0 is a Markov process with initial state µ0 and transition kernel R̂. The next result states that

each measure-valued Pólya urn process with random R can be represented as a measure-valued Pólya urn

process with a deterministic replacement rule that is defined on a larger color space.

Theorem 2.3.1 (Janson 2019, Theorem 1.3). Let X be c.s.m.s., and (µn)n≥0 be a measure-valued Pólya urn

process with initial state µ0 ∈ M∗F (X) and random replacement rule R ∈ KP (X,MF (X)). Then there exists

a measure-valued Pólya urn process (µ̄n)n≥0 on X× [0, 1] with deterministic replacement rule such that

µ̄n = µn ⊗ λ, for n ≥ 0,

where λ denotes the Lebesgue measure on [0, 1].

Let (µn)n≥0 be a measure-valued Pólya process. We will derive the predictive distributions of (Xn)n≥1 next.

Suppose first that (µn)n≥0 has a deterministic replacement rule R ∈ KP (X,X). Define µ̃0 := µ0 and

µ̃n(x1, . . . , xn;B) :=
µ0(B) +

∑n
i=1Rxi(B)

µ0(X) +
∑n
i=1Rxi(X)

, for x1, . . . , xn ∈ X, B ∈ X , n ≥ 1.

Then µ̃n ∈ KP (Xn,X), for n ≥ 1. As µ′n(·) = µ̃(X1, . . . , Xn; ·), it follows that

P(Xn+1 ∈ ·|X1, . . . , Xn) = µ′n(·).

Suppose (µn)n≥0 is a measure-valued Pólya urn process with random replacement rule R ∈ KP (X,MF (X)).

From Lemma 3.22 in Kallenberg (2002), there exists a measurable function f : X× [0, 1]→MF (X) such that

f(x, U) ∼ Rx, for x ∈ X. As a consequence, the function R̄ : X× [0, 1]→MF (X× [0, 1]), defined by

R̄x,u := f(x, u)⊗ λ, for x ∈ X, u ∈ [0, 1],

is a transition kernel from X× [0, 1] to X× [0, 1]. Let (µ̄n)n≥0 be a measure-valued Pólya process with initial

state µ̄0 = µ0 ⊗ λ and (deterministic) replacement rule R̄. Then

µ̄n = µ̄n−1 + R̄Xn,Un , for n ≥ 1,
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where (X1, U1) ∼ µ̄0 and

P
(
(Xn+1, Un+1) ∈ ·|µ̄0, . . . , µ̄n

)
= µ̄′n(·).

Suppose µ̄k = µk ⊗ λ, for some k ≥ 1. Then σ(µ̄0, . . . , µ̄k) ⊆ σ(µ0, . . . , µk) and

P
(
(Xk+1, Uk+1) ∈ ·|µ0, . . . , µk) = µ′k ⊗ λ(·).

It follows that Uk+1 ∼ Unif[0, 1] is independent of (µ0, X1, µ1, . . . , Xk, µk, Xk+1). By Lemma A.6 in the

Appendix,

P(f(Xk+1, Uk+1) ∈ ·|µ0, . . . , µk, X1, . . . , Xk+1) = P(f(Xk+1, Uk+1) ∈ ·|Xk+1) =

=

∫
[0,1]

f(Xk+1, u)λ(du) = P ◦
(
f(Xk+1, U)

)−1
(·) = RXk+1

(·).

As a result, we can couple the two measure-valued Pólya processes and take µk+1 = µk + f(Xk+1, Uk+1),

which implies

µ̄k+1 = µ̄k + R̄Xk,Uk =
(
µk + f(Xk, Uk)

)
⊗ λ = µk+1 ⊗ λ.

By induction, µ̄n = µn ⊗ λ, for n ≥ 1, so µn = µn−1 + f(Xn, Un) and

P(Xn+1 ∈ ·|X1, U1, . . . , Xn, Un) =
µ0(·) +

∑n
i=1 f(Xi, Ui)(·)

µ0(X) +
∑n
i=1 f(Xi, Ui)(X)

,

where (Un)n≥1 is a sequence of i.i.d.Unif[0, 1] random variables such that Un is independent of (X1, . . . , Xn).

The generalized Pólya urn model of Athreya and Ney (1972) studies the situation, where the state space

X is finite, in which case the urn composition µn becomes an atomic measure and R is best described in

terms of a matrix with random elements. When the matrix has zero off-diagonal elements, i.e. we add only

balls of the observed color, R collapses to a random atomic measure with just one atom and the resulting

urn scheme is better known as a randomly reinforced urn (see Muliere et al., 2006). On the other hand, the

Pólya sequence of Blackwell and MacQueen (1973) on general X corresponds to a measure-valued Pólya urn

process with the deterministic replacement rule Rx = δx. As a consequence, RRPSs can simultaneously be

regarded as extensions of both randomly reinforced urns and Pólya sequences through a weighted replace-

ment rule of the form Rx = W (x) · δx, where W (x) is a non-negative random variable, for x ∈ X, which

ensures that the observed color is reinforced with an additional random number of balls. We provide below

necessary and sufficient conditions for the composition measures (II.3) of a RRPS to be a measure-valued

Pólya process. In particular, this result concerns the specification of the weights (Wn)n≥1 and motivates our

modeling choices in Chapter IV. As a prerequisite, let ξx : R+ → MF (X) be the map w 7→ wδx. Then ξx is

B(R+)\MF (X)-measurable and such that ξx(R+) = {µ ∈MF (X) : µ = wδx, w ∈ R+}.

Proposition 2.3.2. Let X be c.s.m.s., and (µn)n≥0 be a measure-valued Pólya urn process with initial state

µ0 ∈ M∗F (X) and random replacement rule R ∈ KP
(
X,MF (X)

)
such that Rx = ηx ◦ ξ−1

x , for all x ∈ X and

some (ηx)x∈X ⊆ MP

(
B(R+)

)
. Then (µn)n≥0 generates the probability law of a randomly reinforced Pólya

sequence (Xn)n≥1, satisfying

P(Xn+1 ∈ ·|X1,W1, . . . , Xn,Wn) = µ′n(·),
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where Wn = h(Xn, Un), for some h ∈ M(X ⊗ B[0, 1]), and (Un)n≥1 is a sequence of i.i.d.Unif[0, 1] random

variables such that Un is independent of (X1, . . . , Xn).

Conversely, if (Xn)n≥1 is a randomly reinforced Pólya sequence with parameters θ, ν and (Wn)n≥1 such that

Wn = h(Xn, Un), for some h ∈ M+(X ⊗ B[0, 1]), where (Un)n≥1 are i.i.d.Unif[0, 1] and Un is independent

of (X1, . . . , Xn), then the sequence of random measures (µn)n≥0, defined by µ0 := θν and

µn := θν +

n∑
i=1

WiδXi , for n ≥ 1,

is a measure-valued Pólya urn process with random replacement rule Rx = ηx◦ξ−1
x , where ηx = P◦h(x, U)−1,

for x ∈ X and U ∼ Unif[0, 1].

Proof. Part I. Suppose (µn)n≥0 is the prescribed measure-valued Pólya urn process. From Lemma 3.22

in Kallenberg (2002), there exists a measurable function h : X × [0, 1] → R+ such that h(x, U) ∼ ηx, for

x ∈ X, where U ∼ Unif[0, 1]. Then h(x, U)δx ∼ Rx. Following the discussion prior to this proposition,

µ1 = µ0 + h(X1, U1) with (X1, U1) ∼ µ0 ⊗ λ and

µn+1 = µn + h(Xn+1, Un+1)δXn+1
, for n ≥ 1,

where

P((Xn+1, Un+1) ∈ ·|X1, U1, . . . , Xn, Un) = µn ⊗ λ,

with λ the Lebesgue measure on [0, 1]. Moreover, (Un)n≥1 is a sequence of i.i.d.Unif[0, 1] random variables

such that Un is independent of X1, . . . , Xn. Define Wn := h(Xn, Un), for n ≥ 1. Then Wn ∈M+(H). From

µn = µ0 +
∑n
i=1WiδXi , it follows that µn is measurable with respect to σ(X1,W1, . . . , Xn,Wn), and hence

P(Xn+1 ∈ ·|X1,W1, . . . , Xn,Wn) = µ′n(·) =
µ0(·) +

∑n
i=1WiδXi(·)

µ0(X) +
∑n
i=1Wi

.

As a result, (Xn)n≥1 is a RRPS with parameters θ = µ0(X), ν = µ′0 and (Wn)n≥1.

Part II. Let (Xn)n≥1 be a RRPS such that Wn = h(Xn, Un), for h ∈M+(X ⊗ B[0, 1]). Define µ0 := θν,

µn := θν +

n∑
i=1

WiδXi , and Rx :=
(
P ◦ h(x, U)−1

)
◦ ξ−1

x , for x ∈ X,

where U ∼ Unif[0, 1]. From Lemma 2.6 in Janson (2019), it holds R ∈ KP (X,MF

(
X)
)

if and only if, for

every h ∈Mb,+(X ), the map

x 7→
∫
MF (X)

e−
∫
X g(x)ν(dx)Rx(dν) =

∫
R+

e−cg(x)P ◦ h(x, U)−1(dc) =

∫
[0,1]

e−h(x,u)g(x)λ(du),

from X to R+ is measurable. In fact, the latter is true by Proposition 6.9 in (Cinlar, 2011, Chapter I). On

the other hand, (µn)n≥0 is a sequence of finite random measures such that µn = µn−1 + h(Xn, Un)δXn . It

follows that µn is σ(X1,W1, . . . , Xn,Wn)-measurable, so

P(Xn ∈ ·|µ0, . . . , µn−1) = E
[
P(Xn ∈ ·|X1,W1, . . . , Xn−1,Wn−1)

∣∣µ0, . . . , µn−1

]
= µ′n−1(·).
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Moreover, by Lemma A.6 in the Appendix,

P
(
h(Xn, Un)δXn ∈ ·|µ0, . . . , µn−1, X1, . . . , Xn

)
= P

(
h(Xn, Un)δXn ∈ ·|Xn

)
=

=

∫
[0,1]

h(Xn, u)δXnλ(du) = RXn(·);

therefore, (µn)n≥0 is a measure-valued Pólya urn process with initial state θν and replacement rule R.

Note that the RRPSs from the above proposition do not satisfy assumption (A.1) in general. However, the

particular model with Wn = h̄(Un), for some h̄ ∈ M(B[0, 1]), does, in which case the RRPS generates a

c.i.d. sequence of random variables and the urn composition forms a measure-valued Pólya urn process. A

necessary and sufficient condition is given by ηx = η, for some η ∈ MP (X). The RRPS studied by Berti

et al. (2009) and the one given by Bassetti et al. (2010) as an example of a GOS are such that Wn = h̄(Un),

though, in the latter paper the authors require (Un)n≥1 and (Xn)n≥1 to be completely independent.

A remark on measure-valued Pólya urn processes that we do not explore further in this thesis concerns the

fact that the representation

µn = µn−1 +RXn ,

could potentially allow one to develop novel prior distributions for Bayesian nonparametric inference such

that the random limit of the predictive distributions is P-a.s. absolutely continuous. Such constructions

would require that Rx is itself absolutely continuous, which is a step beyond what existing urn models imply.
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Chapter III

Conditionally identically distributed

randomly reinforced Pólya sequence

3.1 Introduction

In this chapter of the thesis we study a particular subclass of randomly reinforced Pólya sequences (RRPS),

whose predictive distributions form a measure-valued martingale, in which case the sequence of observations

becomes conditionally identically distributed (c.i.d.). The earliest examples of non-stationary c.i.d. RRPSs

date to Pemantle (1990) and Li et al. (1996), although they deal with the finite state space. Berti et al.

(2004, Example 1.3) are arguably the first to suggest a construction of this type and to state explicitly its

c.i.d. property. Further developments of their model can be found in May et al. (2005) and Crimaldi (2009).

On the other hand, Berti et al. (2009, Section 4) and Fortini et al. (2018, Example 3.8) cover some aspects of

the infinite-state case, whereas Bassetti et al. (2010, Example 5.3) consider a c.i.d. RRPS with independent

weights as part of a more general family of models, called generalized species sampling sequences, and in

particular as an example of the subfamily of generalized Ottawa sequences (GOSs). In Chapter II we showed

that c.i.d. RRPSs and GOSs are, in fact, different reparameterizations of the same model.

Our contributions to the study of these processes concern the properties of the random limit of the predictive

distributions (II.1). The main result of this chapter, which is proven in Theorem 3.2.1, states that any c.i.d.

RRPS behaves asymptotically as a species sampling sequence (Pitman, 1996) such that the number of

individuals from each species in the population is non-negligible (Proposition 3.3.3). In Theorem 3.3.1 we

provide central limit results for c.i.d. RRPSs in terms of stable and a.s. conditional convergence. As these

are centered on the random limit measure, we show in Section 3.4 how to use them for approximate posterior

inference, both when the reinforcement weights are observable and in the case when they are latent to the

model. In Theorem 3.2.3 we recover the exact distribution of the predictive limit for the particular RRPS

with binary weights.
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3.1.1 Model

Let (Xn)n≥1 be a RRPS with parameters θ, ν and (Wn)n≥1. In Chapter II we introduced the following

conditional independence assumption on the pair (Xn,Wn)n≥1, which was part of the definition of a GOS,

Assumption A.1. Xn+1 is independent of (Wn+j)j≥1 given Fn, for each n ≥ 0; (A.1)

where the filtration F = (Fn)n≥0 is defined by Fn := FXn ∨ FWn , for n ≥ 1, and F0 is the trivial σ-algebra.

It follows that any RRPS satisfying assumption (A.1) is c.i.d. with respect to the filtration F∗ = (F∗n)n≥0,

given by F∗n := FXn ∨ FW∞ , where FW∞ :=
∨
n∈N FWn . In some of the results, however, we would need the

weaker condition that

Assumption A.2. Xn+1 is independent of Wn+1 given Fn, for each n ≥ 0; (A.2)

thus, according to (A.2), weights and observations are contemporaneously independent conditionally on all

past information, in which case the RRPS becomes c.i.d. with respect to F . The two results are contained

in the proposition below, whose proof can be found by adapting Example 3.8 in Fortini et al. (2018) to the

univariate case.

Proposition 3.1.1. Let X = (Xn)n≥1 be a randomly reinforced Pólya sequence with parameters θ, ν and

(Wn)n≥1. If X satisfies assumption (A.1), then X is F∗-c.i.d. If X satisfies assumption (A.2), then X is

F-c.i.d.

3.2 Characterization of directing measure

Recall from Chapter I that the predictive distributions of any c.i.d. process X = (Xn)n≥1 converge in the

sense of a.s. weak convergence to some random probability measure P̃ on X,

P(Xn+1 ∈ ·|X1, . . . , Xn)
w−→ P̃ (·) a.s.[P],

implying that X is asymptotically exchangeable with directing measure P̃ . As a consequence, knowledge of

the distribution of P̃ would inform us on the eventual behavior of the sequence of observations and provide

a basis for Bayesian inference. In this section we give a general description of the random limit measure of a

c.i.d. RRPS and complete probabilistic characterization in the case Wn ∈ {0, 1}. We also state some known

facts about the random partition.

3.2.1 Almost sure discreteness

The following theorem describes the directing measure of any RRPS that satisfies assumption (A.1) as a

mixture of the base measure ν and a discrete measure with atoms at the distinct values of X, listed in order
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of appearence. Similar distributional results can be found in Pitman (1996) regarding species sampling

sequences and in Berti et al. (2019) for a class of c.i.d. models with a recursive structure. The proof of our

result uses arguments from Berti et al. (2013), Berti et al. (2019) and Krasker and Pratt (1986).

We will adopt the language of species sampling from Pitman (1996) (see also Chapter II, Section 2.2) in

orded to specify the sequence of distinct observations as they appear. For that purpose, define the sequence

of random variables (Tn)n≥1 by T1 := 1 and

Tn := inf
{
m ∈ N : m > Tn−1, Xm /∈ {X1, . . . , Xm−1}

}
, for n ≥ 2,

that mark the time, at which a new species has been discovered. The actual observations at the discovery

times are captured by the process (X∗k)k≥1, defined by

X∗k(ω) :=

{
XTk(ω)(ω), ω ∈ {Tk <∞};

ϑ, otherwise
, for ω ∈ Ω and k ≥ 1.

for some ϑ /∈ X. The sequence (Ln)n≥1, given by L1 := 1 and

Ln := max
{
k ∈ {1, . . . , n} : Xk /∈ {X1, . . . , Xk−1}

}
, for n ≥ 2,

is used to count the number of distinct species at each stage n of the experiment. Lastly, we denote by

Pn(·) := P(Xn+1 ∈ ·|Fn), for n ≥ 1.

Theorem 3.2.1. Let X = (Xn)n≥1 be a randomly reinforced Pólya sequence with parameters θ, ν and

(Wn)n≥1. Suppose X satisfies assumption (A.1). If ν is non-atomic, then

‖Pn − P̃‖ := sup
B∈X

∣∣Pn(B)− P̃ (B)
∣∣ −→ 0 a.s.[P], (III.1)

for some random probability measure P̃ on X that is of the form

P̃ =
∑
k

p∗kδX∗k +
(

1−
∑
k

p∗k

)
ν,

where

p∗k = lim
n→∞

1

n

n∑
i=1

δXi({X∗k}) a.s.[P],

and (X∗k)k≥1 are i.i.d.(ν) conditionally given (p∗k)k≥1.

Remark.

(a) Non-atomicity of ν ensures that already observed species are not reinforced further through

ν. Otherwise, the structure of the random partition becomes more involved and the form ot

P̃ is not necessarily the one from above (see Bassetti et al., 2018).
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(b) Predictive and empirical convergence both imply

1∑n
j=1Wj

n∑
i=1

WiδXi({X∗k}) ≈
1

n

n∑
i=1

δXi({X∗k}),

so that the relative frequency and the relative weighted frequency approach each other as

n→∞.

(c) If (Wn)n≥1 are i.i.d. with Wn ≤ β <∞, then one has from Proposition 3.3.3 that

P(p∗k = p) = 0, for all p ∈ [0, 1].

As a consequence, p∗k 6= p∗l a.s.[P], for k 6= l, and p∗k > 0 a.s.[P], i.e. all discovered species

survive in the end. The latter fact is not true in general and a counterexample is given

implicitly in Pitman (1996, Section 3).

Proof of Theorem 3.2.1.

Part I: Discreteness. The sequence (Ln)n≥1 is increasing, so the limit L∞ := limn→∞ Ln exists in R̄. Then

Tk < ∞ if and only if k ≤ L∞. Indeed, if Tk < ∞, then k ≤ LTk ≤ L∞. Conversely, for L∞ < ∞, one

has k ≤ L∞ < Ln + ε for some ε ∈ (0, 1) and n ≥ 1, whereas under L∞ = ∞, there exists n ≥ 1 such that

k ≤ Ln; in both cases Tk <∞. Define

p∗n,k :=

∑
i∈Πn,k

Wi

θ +
∑n
j=1Wj

· 1{k≤Ln}, and θn :=
θ

θ +
∑n
j=1Wj

, for n, k ≥ 1,

where the sets Πn,k =
{
j ∈ {1, . . . , n} : Xj = X∗k

}
, for n ≥ 1 and k = 1, . . . , Ln, denote the random partition

of the first n observations according to their species. It follows that

Pn(·) =

L∞∑
k=1

p∗n,kδX∗k (·) + θnν(·).

As X is F-c.i.d. from Proposition 3.1.1, then Pn(B)
a.s.−→ P̃ (B), for some P̃ ∈ KP (Ω,X) and all B ∈ X .

Furthermore, E[Pn(B)|X1, . . . , Xn] = E[P̃ (B)|X1, . . . , Xn] (see Chapter I). Define

Q(·) :=
1

1− θ∞
(
P̃ (·)− θ∞ν(·)

)
, and µ(·) := E[Q(·)],

where θ∞ = limn→∞ θn. Then Q(X) = 1, Q(∅) = 0 and ω 7→ Q(B)(ω) is H-measurable, for each B ∈ X .

In addition, Q(B1 ∪ B2) = Q(B1) + Q(B2), for disjoint B1, B2 ∈ X , and Q(B) ≥ 0 a.s.[P] from predictive

convergence. It follows that the map B 7→ µ(B) is a probability measure on X. Indeed, let {Bn}n∈N ⊆ X
be disjoint. Then

µ
( ∞⋃
n=1

Bn

)
= E

[
1

1− θ∞

∞∑
n=1

(
P̃ (Bn)− θ∞ν(Bn)

)]
=

∞∑
n=1

µ(Bn),

which is justified by dominated convergence. By a slight variant of Theorem 3.1 in Ghosal and van der

Vaart (2017), there exists Q̃ ∈ KP (Ω,X) such that Q̃(B) = Q(B) a.s.[P], for all B ∈ X . As X is separable,

then X = σ(D), for some countable π-class D ⊆ X . Let Ω0 ∈ X be such that P(Ω0) = 1 and P̃ (B)(ω) =
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(1 − θ∞(ω))Q̃(B)(ω) + θ∞(ω)ν(B), for B ∈ D and ω ∈ Ω0. From standard results in measure theory,

P̃ = Q̃+ θ∞ν a.s.[P]. Define

µ̃1,n(·) :=
(
δX1,...,Xn ⊗ δXn+1

)
(·), µ̃2,n(·) :=

(
δX1,...,Xn ⊗ P̃

)
(·),

µ1,n(·) := E[µ̃1,n(·)], µ2,n(·) := E[µ̃2,n(·)],

and

Hn :=
{

(x1, . . . , xn, xn+1) ∈ Xn+1 : xn+1 = xi, for some i ≤ n
}
,

for n ≥ 1. Then µ̃1,n, µ̃2,n ∈ KP
(
Ω,Xn+1

)
, µ1,n, µ2,n ∈MP

(
Xn+1

)
and Hn ∈ Xn+1, so that

µ̃1,n(Hn) = δXn+1
({X1, . . . , Xn}), µ̃2,n(Hn) = P̃ ({X1, . . . , Xn}).

Let A ∈ Xn and B ∈ X . It follows that

µ1,n(A×B) = P
(
(X1, . . . , Xn) ∈ A,Xn+1 ∈ B

)
= E

[
1A(X1, . . . , Xn)P(Xn+1 ∈ B|X1, . . . , Xn)

]
=

= E
[
1A(X1, . . . , Xn)P(P̃ (B)|X1, . . . , Xn)

]
= E

[
1A(X1, . . . , Xn)P̃ (B)

]
= µ2,n(A×B);

thus, µ1,n = µ2,n on Xn+1. Define Q̃∗(·) := (1 − θ∞)Q̃(·) and the random sets S :=
⋃∞
k=1{X∗k}

∖
{ϑ} and

Sn := {X1, . . . , Xn}, for n ≥ 1. Then Q̃∗ ∈ KF (Ω,X). As Sn(ω) ↑ S(ω), for ω ∈ Ω, one has from continuity

and monotone convergence that

E
[
Q̃∗(S)

]
= lim
n→∞

E
[
Q̃∗(Sn)

]
= lim
n→∞

µ2,n(Hn) =

= lim
n→∞

P
(
Xn+1 ∈ {X1, . . . , Xn}

)
= 1− lim

n→∞
E[θn] = 1− E[θ∞].

But Q̃∗(X) = 1 − θ∞, so E
[
Q̃∗(X) − Q̃∗(S)

]
= 0 and Q̃∗(X) = Q̃∗(S) a.s.[P]. Therefore, Q̃∗ =

∑L∞
k=1 p

∗
kδX∗k

a.s.[P], for some (p∗k)k ⊆M+(H) with 0 ≤ p∗k ≤ 1, and thus

P̃ =

L∞∑
k=1

p∗kδX∗k + θ∞ν a.s.[P],

say, on Ω1 ∈ X with P(Ω1) = 1. Denote by Pn,d(·) :=
∑L∞
k=1 p

∗
n,kδX∗k (·) and P̃d(·) :=

∑L∞
k=1 p

∗
kδX∗k (·), so that

Pn(·) = Pn,d(·) + θnν(·), and P̃ (·) = P̃d(·) + θ∞ν(·) a.s.[P].

Let ω ∈ Ω1. As ν is diffuse, one has P̃d
(
S(ω)

)
(ω) = P̃ (S(ω)

)
(ω) = 1 − θ∞(ω) and Pn,d(S(ω)

)
(ω) =

Pn(S(ω)
)
(ω) = 1− θn(ω), for n ≥ 1; thus,

Pn,d(X)(ω) = Pn,d(S(ω)
)
(ω) −→ P̃d(S(ω)

)
(ω) = P̃d(X)(ω).

Let k ≥ 1. By Lemma A.9 in the Appendix and as ν is diffuse,

P
(
p∗n,k = Pn({X∗k})→ P̃ ({X∗k}) = p∗k|{k ≤ L∞}

)
= 1. (III.2)

As a consequence,

P
({
ω ∈ Ω : Pn,d({x})(ω)→ P̃d({x})(ω), for all x ∈ X

})
=
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= P
({
ω ∈ Ω : Pn,d({x})(ω)→ P̃d({x})(ω), for all x ∈ S(ω)

})
=

= P
({
ω ∈ Ω : p∗n,k(ω)→ p∗k(ω), for all k ≤ L∞(ω)

})
=

= P
({
ω ∈ Ω : p∗n,k(ω) · 1{k≤L∞}(ω)→ p∗k(ω) · 1{k≤L∞}(ω), for all k ≥ 1

})
=

= P
( ∞⋂
k=1

{
p∗n,k1{k≤L∞} → p∗k1{k≤L∞}

})
≥

≥ 1−
∞∑
k=1

P(p∗n,k · 1{k≤L∞} 9 p∗k · 1{k≤L∞}) =

= 1−
∞∑
k=1

P(p∗n,k 9 p∗k|{k ≤ L∞})P(k ≤ L∞) = 1,

say, on Ω2 ∈ X with P(Ω2) = 1. Then P(Ω1 ∩ Ω2) = 1. Let ω ∈ Ω1 ∩ Ω2. It follows that∥∥Pn(ω)− P̃ (ω)
∥∥ ≤ sup

x∈S(ω)

∣∣Pn,d({x})(ω)− P̃d({x})(ω)
∣∣+ ‖θn(ω)ν − θ∞(ω)ν‖ −→ 0.

Finally, let k ≤ L∞. By Lemma A.9 in the Appendix, one has that

1

n

n∑
i=1

δXi({X∗k}) −→ P̃ ({X∗k}) = p∗k a.s.[P],

in the sense of (III.2).

Part II: Independence. Regarding the last part of the proof, let B ∈ X and k ≤ L∞. It follows that

P(X∗k ∈ B|X∗1 , . . . , X∗k−1) = E
[
P(X∗k ∈ B|FTk−1)|X∗1 , . . . , X∗k−1

]
=

= E
[ ∞∑
m=1

P(XTk ∈ B|FTk−1)1{Tk−1=m}

∣∣∣X∗1 , . . . , X∗k−1

]
=

= E
[ ∞∑
m=1

P(XTk ∈ B ∩ {X1, . . . , XTk−1}c|FTk−1)1{Tk−1=m}

∣∣∣X∗1 , . . . , X∗k−1

]
=

= E
[ ∞∑
m=1

P(Xm+1 ∈ B ∩ {X1, . . . , Xm}c|Fm)1{Tk−1=m}

∣∣∣X∗1 , . . . , X∗k−1

]
=

= E
[ ∞∑
m=1

θmν(B) · 1{Tk−1=m}

∣∣∣X∗1 , . . . , X∗k−1

]
=

= ν(B) · E
[ ∞∑
m=1

P(Xm+1 /∈ {X1, . . . , Xm}|Fm)1{Tk−1=m}

∣∣∣X∗1 , . . . , X∗k−1

]
= ν(B),

so (X∗k)L∞k=1 is a sequence of i.i.d.(ν) random variables such thatX∗k is independent of FTk−1. Let Π = (Πn)n≥1

be the random partition on N generated by X, where Πn =
{

Πn,1, . . . ,Πn,Ln

}
denotes the partition of

{1, . . . , n} by (X1, . . . , Xn) into Ln clusters and takes values in the set Pn. It follows that each p∗k, being a

weak limit, is a function of Π, so in order to have (X∗k)k≥1 and (p∗k)k≥1 independent it suffices to show that
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(X∗k)k≥1 and (Πn)n≥1 are independent, for which it is enough1 that

P(Πn = πn, X
∗
1 ∈ B1, . . . , X

∗
ln ∈ Bln) = P(Πn = πn)P(X∗1 ∈ B1, . . . , X

∗
ln ∈ Bln), (III.3)

for each n ≥ 1, B1, . . . , Bln ∈ X and πn = {πn,1, . . . , πn,ln} ∈ Pn, where ln denotes the length of πn. Let

c : N → N be the mapping that shows the cluster membership of each Xn, i.e. c(n) = k if and only if

Xn = X∗k . Denote by its ”inverse” function, c−1 : N → N, the first time that a particular distinct value

has been observed, that is c−1(k) = min
{
m ∈ {1, . . . , k} : Xm = X∗k

}
. The independence argument then

proceeds in the following way,

P(Πn =πn, X
∗
1 ∈ B1, . . . , X

∗
ln ∈ Bln) =

= P(X∗1 ∈ B1, . . . , X
∗
ln ∈ Bln , X1 = X∗c(1), . . . , Xc−1(2) = X∗2 , . . . , Xc−1(ln) = X∗ln , . . . , Xn = X∗c(n)) =

= E
[
1{X∗1∈B1,...,X∗ln∈Bln ,X1=X∗

c(1)
,...,Xn−1=X∗

c(n−1)
}P(Xn = X∗c(n)|Fn−1)

]
=

= E
[
1{X∗1∈B1,...,X∗ln∈Bln ,X1=X∗

c(1)
,...,Xn−1=X∗

c(n−1)
}

∑
i∈πn−1,c(n)

Wi

θ +
∑n−1
j=1 Wj

]
=

= E

[
1{X∗1∈B1,...,X∗ln∈Bln ,X1=X∗

c(1)
,...,Xn−2=X∗

c(n−2)
}E
[∑

i∈πn−1,c(n)
Wi

θ +
∑n−1
j=1 Wj

1{Xn−1=X∗
c(n−1)

}

∣∣∣Fn−2

]]
=

= E

[
1{X∗1∈B1,...,X∗ln∈Bln ,X1=X∗

c(1)
,...,Xn−2=X∗

c(n−2)
}E
[∑

i∈πn−1,c(n)
Wi

θ +
∑n−1
j=1 Wj

∣∣∣Fn−2

]
×

× P(Xn−1 = X∗c(n−1)|Fn−2)

]
=

= E

[
1{X∗1∈B1,...,X∗ln∈Bln ,X1=X∗

c(1)
,...,Xn−2=X∗

c(n−2)
}

∑
i∈πn−2,c(n−1)

Wi

θ +
∑n−2
j=1 Wj

×

× E
[∑

i∈πn−1,c(n)
Wi

θ +
∑n−1
j=1 Wj

∣∣∣Fn−2

]]
=

= E
[
1{X∗1∈B1,...,X∗ln∈Bln ,X1=X∗

c(1)
,...,Xn−2=X∗

c(n−2)
}

∑
i∈πn−2,c(n−1)

Wi

θ +
∑n−2
j=1 Wj

∑
i∈πn−1,c(n)

Wi

θ +
∑n−1
j=1 Wj

]
= · · · =

= E
[
1{X∗1∈B1,...,X∗ln∈Bln ,X1=X∗

c(1)
,...,Xc−1(ln)=X

∗
ln
}

∑
i∈πc−1(ln),c(c−1(ln)+1)

Wi

θ +
∑c−1(ln)
j=1 Wj

· · ·
∑
i∈πn−1,c(n)

Wi

θ +
∑n−1
j=1 Wj

]
=

1Independence between
⋃∞

n=1 σ(Π1, . . . ,Πn) and
⋃∞

n=1 σ(X∗1 , . . . , X
∗
n) follows from (III.3) since, for any j ≥ 1,

P(Πn = πn, X
∗
1 ∈ B1, . . . , X

∗
ln
∈ Bln ,X

∗
ln+1 ∈ Bln+1, . . . , X

∗
ln+j ∈ Bln+j) =

= P(Πn = πn, X
∗
1 ∈ B1, . . . , X

∗
ln
∈ Bln )P(X∗ln+1 ∈ Bln+1, . . . , X

∗
ln+j ∈ Bln+j),

from before, whereas it follows for i = 1, . . . , ln − 1 that

P(Πn = πn, X
∗
1 ∈ B1, . . . , X

∗
ln−i ∈ Bln−i) = P(Πn = πn, X

∗
1 ∈ B1, . . . , X

∗
ln−i ∈ Bln−i, X

∗
ln−i+1 ∈ X, . . . , X∗ln ∈ X).
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= E

[
1{X∗1∈B1,...,X∗ln−1∈Bln−1,X1=X∗

c(1)
,...,Xc−1(ln)−1=X∗

c(c−1(ln)−1)
}E
[∑

i∈πc−1(ln),c(c−1(ln)+1)
Wi

θ +
∑c−1(ln)
j=1 Wj

· · ·

· · ·
∑
i∈πn−1,c(n)

Wi

θ +
∑n−1
j=1 Wj

1{X∗ln∈Bln ,Xc−1(ln)=X
∗
ln
}

∣∣∣Fln−1

]]
=

= E

[
1{X∗1∈B1,...,X∗ln−1∈Bln−1,X1=X∗

c(1)
,...,Xc−1(ln)−1=X∗

c(c−1(ln)−1)
}E
[∑

i∈πc−1(ln),c(c−1(ln)+1)
Wi

θ +
∑c−1(ln)
j=1 Wj

· · ·

· · ·
∑
i∈πn−1,c(n)

Wi

θ +
∑n−1
j=1 Wj

∣∣∣Fln−1

]
P
(
Xc−1(ln) ∈ Bln ∩ {X1, . . . , Xc−1(ln)−1}c|Fln−1

)]
=

= E
[
1{X∗1∈B1,...,X∗ln−1∈Bln−1,X1=X∗

c(1)
,...,Xc−1(ln)−1=X∗

c(c−1(ln)−1)
}

θ

θ +
∑c−1(ln)−1
j=1 Wj

×

×

∑
i∈πc−1(ln),c(c−1(ln)+1)

Wi

θ +
∑c−1(ln)
j=1 Wj

· · ·
∑
i∈πn−1,c(n)

Wi

θ +
∑n−1
j=1 Wj

]
ν(Bln) = · · · =

= E
[
1 ·
∑
i∈π1,c(2)

Wi

θ +W1
· · · θ

θ +
∑c−1(2)−1
j=1 Wj

· · · θ

θ +
∑c−1(ln)−1
j=1 Wj

· · ·

· · ·
∑
i∈πn−1,c(n)

Wi

θ +
∑n−1
j=1 Wj

]
ν(B1) · · · ν(Bln) =

= P(Πn = πn)

ln∏
k=1

P(X∗k ∈ Bk),

where πm = πn ∩ {1, . . . ,m}, for m ≤ n, and we set
∑
i∈πl,kWi

/
(θ +

∑l
j=1Wj) ≡ 1, whenever k > l. Note

that we have used assumption (A.1) repeatedly to split conditional expectations along the lines of conditional

independence.

It follows that the RRPS from Theorem 3.2.1 is asymptotically exchangeable with directing measure the

random limit of its predictive distributions. What is more, any random probability measure P̃ that is

structured as in (III.1) defines a species sampling sequence through de Finetti’s representation theorem (see

Pitman, 1996, Section 3); therefore, any RRPS satisfying assumption (A.1) is asymptotically equivalent in

law to a species sampling model. This result is directly extendable to the larger class of generalized species

sampling sequences (see Chapter II for definition) that observe a condition similar to (A.1).

Denote by

θn :=
θ

θ +
∑n
j=1Wj

,

the conditional probability of observing a new species at stage n of the experiment. Following Pitman (1996),

we say that the model in Theorem 3.2.1 is proper if P̃ is P-a.s. discrete, i.e.
∑
k p
∗
k = 1 a.s.[P], which is

itself true if and only if θn
a.s.−→ 0. In that case, the a.s. discreteness of P̃ can be deduced from Theorem 17

in Berti et al. (2019) without the part on the independence between atoms and masses. On the other hand,
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it holds

P(Ln+1 = Ln + 1|Fn) = Pn({X1, . . . , Xn}c) = θn;

thus, we can derive discreteness conditions from the behavior of Ln.

Proposition 3.2.2. Under the conditions of Theorem 3.2.1,∑
k

p∗k = 1 a.s.[P], if and only if
Ln
n
−→ 0 a.s.[P].

Proof. Suppose
∑
k p
∗
k = 1 a.s.[P]. Define Un := Ln − Ln−1, for n ≥ 1, where L0 = 0. Then Ln =

∑n
i=1 Ui

and θn = E[Un+1|Fn] with θn
a.s.−→ 0 by hypothesis. As Un ∈ {0, 1}, one has

∑∞
n=1 E[U2

n]/n2 < ∞, so by

Lemma A.7 in the Appendix,

Ln
n

=
1

n

n∑
i=1

Ui −→ 0 a.s.[P].

Conversely, suppose Ln
n

a.s.−→ 0. Since Ln ≤ n, one has by the dominated convergence theorem that

1

n

n∑
i=1

E[θi−1] =
1

n

n∑
i=1

E[Ui] =
1

n
E[Ln] −→ 0 a.s.[P],

where θ0 = 1. On the other hand,

E[θn+1|Fn] = E
[

θ

θ +
∑n+1
j=1 Wj

∣∣∣Fn] ≤ θ

θ +
∑n
j=1Wj

= θn;

thus, (θn)n≥0 is a bounded positive F-supermartingale. From the martingale convergence theorem, θn → θ∞

a.s.[P] and in L1, for some non-negative integrable random variable θ∞. In particular,

E[θn] −→ E[θ∞].

Suppose, by contradiction, E[θ∞] > 0. By Lemma A.3 in the Appendix,

1

n

n∑
i=1

E[θi−1] =
1

n

n∑
i=1

E[θi] +
1

n
− E[θn]

n
−→ E[θ∞] > 0,

absurd. As a consequence, E[θ∞] = 0, which implies that θ∞ = θ
/(
θ +

∑∞
n=1Wn

)
= 0 a.s.[P], and hence∑L∞

k=1 p
∗
k = 1 a.s.[P].

If P(Ln+1 = Ln + 1|Fn) goes to zero at a fast enough rate that

∞∑
n=1

θ

θ +
∑n
j=1Wj

<∞ a.s.[P],

then one has from Proposition 2.1 in Bassetti et al. (2010) that

P(Ln+1 = Ln ult.) = 1,

so that the number of distinct species Ln converges almost surely to some random variable L∞ such that

P(L∞ < ∞) = 1. Therefore, it is possible to come up with models that characterize a.s. discrete random

probability measures having a finite number of atoms.
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3.2.2 Random partition

We make a slight detour in order to state some facts about the random partition, which are derived from

the existing theory on GOSs. To that end, let ν be diffuse. It follows from Airoldi et al. (2014, Appendix

B) that the moment-generating function of Ln+1 is given by

E
[
e−tLn+1

]
= e−t

n∑
m=0

(e−t − 1)mφn,m, for t ∈ R,

where φn,0 := 1 and φn,m :=
∑

1≤l1<l2<···<lm≤n E[θl1 · · · θlm ], for n ≥ 1. Next, suppose that there exist

(hn)n≥1 ⊆ R+ such that hn ↑ ∞,

∞∑
n=1

1

h2
n

E[θn(1− θn)] <∞, and
1

hn

n∑
i=1

θi−1 −→ L∞ a.s.[P],

for some L∞ ∈ M+(H), where θ0 = 1. Then Bassetti et al. (2010, Theorem 5.2 of technical report) show

that
Ln
hn
−→ L∞ a.s.[P];

thus, RRPSs have a wide range of clustering behavior, depending on the specification of the weights (see

Bassetti et al., 2010, Example 5.4 and 5.5). If (hn)n≥1 are in fact such that

Λn :=
1

hn

n∑
i=1

θi−1(1− θi−1) −→ Λ a.s.[P],

for some Λ ∈M+(H), then Theorem 5.1 in Bassetti et al. (2010) implies

Ln −
∑n
i=1 θi−1√
hn

stably−→ N (0,Λ).

3.2.3 C.i.d. RRPS with 0-1 weights

Complete probabilistic characterization of P̃ is difficult to attain, save for some notable exchangeable cases.

We make a first step in the direction of non-stationary c.i.d. models by investigating a RRPS that results

from delaying the reinforcement in the classical Pólya sequence. For that purpose, let the sequence of weights

(Wn)n≥1 be binary, thereby achiving the phenomenon of randomly discarding part of the observations. For

the model with |X| = 2, Aletti et al. (2007) have shown that the distribution of the limiting proportion of

balls of color 1 can be derived by considering only the non-zero part of the weights, in which case the model

collapses to the two-color Pólya urn scheme and the random limit – to a Beta random variable. We extend

this result to more general state spaces.

Proposition 3.2.3. Let X = (Xn)n≥1 be a randomly reinforced Pólya sequence with parameters θ, ν and

(Wn)n≥1 such that Wn ∈ {0, 1}, and directing measure P̃ ∈ KP (Ω,X). Suppose X satisfies assumption

(A.2). If P(Wn = 1 i.o.) = 1, then

P̃ ∼ DP(θ, ν).
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Proof. Define the sequence of random times (τn)n≥0 by τ0 := 0 and

τn := inf{m ∈ N : m > τn−1,Wm = 1}, for n ≥ 1,

that mark the time, at which reinforcement has taken place. It follows that {τn ≤ m} =
{∑m

i=1Wj ≥ n
}
∈

σ(W1, . . . ,Wm) ⊆ Fm, for m,n ≥ 1. By hypothesis,

P(τn <∞) = 1− P(τn =∞) ≥ 1− P(Wn = 0 ult.) = P(Wn = 1 i.o.) = 1,

so (τn)n≥0 forms a sequence of P-a.s. finite F-stopping times. Let Ω0 ∈ H with P(Ω0) = 1 be the set on

which all τn are real-valued simultaneously. Consider the infinite sequence (Xτn)n≥1, which is set equal to

some element not in X outside of Ω0 (see Section 1.3 of Chapter I for more information). Let B ∈ X . Then

P(Xτ1 ∈ B) =

∞∑
n=1

P(Xn ∈ B|τ1 = n)P(τ1 = n) =

∞∑
n=1

∫
{τ1=n}

P(Xn ∈ B|τ1 = n)P(dω) =

=

∞∑
n=1

∫
{τ1=n}

1{Xn∈B}(ω)P(dω) =

∞∑
n=1

∫
{τ1=n}

P
(
Xn ∈ B|Fn−1 ∨ σ(Wn)

)
(ω)P(dω) =

=

∞∑
n=1

∫
{τ1=n}

P(Xn ∈ B|Fn−1)(ω)P(dω) =

∞∑
n=1

∫
{τ1=n}

θ

θ +
∑n−1
j=1 Wj(ω)

ν(B)P(dω) = ν(B),

where we have used assumption (A.2), the fact that {τ1 = n} ∈ Fn−1 ∨ σ(Wn), and Wj = 0 on {τ1 = n},
for j = 1, . . . , n− 1. On the other hand, it holds P-a.s. for n ≥ 1 that

P(Xτn+1 ∈ B|Fτn+1−1) =

∞∑
m=1

Pm−1(B)1{τn+1=m} =

∞∑
m=1

θν(B) +
∑m−1
i=1 WiδXi(B)

θ +
∑m−1
j=1 Wj

1{τn+1=m} =

=
θν(B) +

∑τn+1−1
i=1 WiδXi(B)

θ +
∑τn+1−1
j=1 Wj

=
θν(B) +

∑τn
i=1WiδXi(B)

θ +
∑τn
j=1Wj

=
θν(B) +

∑n
k=1 δXτk (B)

θ + n
,

where the second to last equality follows by noting that Wj = 0 for j = τn + 1, . . . , τn+1 − 1, and the last

one holds as Wj = 1 for j = τ1, . . . , τn. Since σ(Xτ1 , . . . , Xτn) ⊆ Fτn+1−1, then

P(Xτn+1
∈ B|Xτ1 , . . . , Xτn) =

θν(B) +
∑n
k=1 δXτk (B)

θ + n
a.s.[P], for n ≥ 1 and B ∈ X ;

hence, (Xτn)n≥1 is a Pólya sequence with parameters θ and ν. As a result,

P(Xτn+1
∈ ·|Xτ1 , . . . , Xτn)

w−→ P̃ (·) ∼ DP(θ, ν) a.s.[P].

Let f ∈ Cb(X). By Proposition 3.1.1, X is F-c.i.d., so E[f(Xn+1)|Fn] =
θE[f(X1)]+

∑n
i=1Wif(Xi)

θ+
∑n
j=1Wj

converges

a.s.[P]. From above

θE[f(X1)] +
∑τn
i=1WiE[f(Xi)]

θ +
∑τn
j=1Wj

−→
∫
X
f(x)P̃ (dx) a.s.[P];

therefore, E[f(Xn+1)|Fn]
a.s.−→

∫
X f(x)P̃ (dx) and, ultimately,

P(Xn+1 ∈ ·|Fn)
w−→ P̃ a.s.[P].
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The RRPS with binary weights is conceptually equivalent to the Pólya sequence of Blackwell and MacQueen

(1973), provided one disregards the observations with a corresponding weight of zero, at which times the

composition of the urn remains the same. In case X is finite, the process coincides with the k-color Pólya

urn and, as a result, the random limit of the vector of predictive distributions is Dirichlet distributed.

The sufficiency assumption in Theorem 3.2.3 requires the weights to attain a non-zero value occasionally,

and a related condition can be derived from Lévy’s extension to the Borel-Cantelli lemmas (see Williams,

1991, Section 12.5). To that end, suppose

∞∑
n=1

P(Wn = 1|Fn−1) =∞ a.s.[P],

that is, learning on the sequence of weights does not inform us on it vanishing. The extended lemma then

implies
∑∞
n=1Wn =

∑∞
n=1 1{Wn=1} =∞ a.s.[P], so that P(Wn = 1 i.o.) = 1. We give two examples next.

Example 3.2.4 (I.I.D. Weights). Let (Wn)n≥1 be a sequence of independent and identically Bernoulli dis-

tributed random variables with parameter θ0 ∈ (0, 1). It follows that

∞∑
n=1

P(Wn = 1|Fn−1) =

∞∑
n=1

P(Wn = 1) =

∞∑
n=1

θ0 =∞ a.s.[P].

Example 3.2.5 (Pólya Urn Weights). Let (Wn)n≥1 be derived from a two-color Pólya urn scheme with initial

composition (θ0, θ1) ∈ N2. It follows that

∞∑
n=1

P(Wn = 1|Fn−1) =
θ0

θ0 + θ1
+

∞∑
n=1

θ0 +
∑n
i=1Wi

θ0 + θ1 + n
≥
∞∑
n=1

θ0

θ0 + θ1 + n
=∞ a.s.[P].

Each sequence (Wn)n≥1 from the previous two examples is a special case of an exchangeable, and hence c.i.d.

stochastic process. It turns out that there is a large class of c.i.d. sequences of weights such that Proposition

3.2.3 holds true without requiring explicitly that P(Wn = 1 i.o.) = 1. The crucual observation concerns the

role of P(Wn = 1 i.o.) = 1 in proving that the discovery times are P-a.s. finite.

Example 3.2.6 (C.I.D. Weights). Let (Wn)n≥1 be an {0, 1}-valued c.i.d. sequence of random variables such

that 1
n

∑n
i=1Wi

a.s.−→ θ∗ for some absolutely continuous random variable θ∗. As before, denote by (τn)n≥0

the times that mark each new species discovery. It follows for each j ≥ 1 that

P(τ1 <∞) = 1− lim
n→∞

P(τ1 > n+ j) =
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= 1− lim
n→∞

P(W1 = 0, . . . ,Wn+j = 0) ≥

≥ 1− lim
n→∞

P(Wn+1 = 0, . . . ,Wn+j = 0) = 1− E
[
(1− θ∗)j

]
,

where the last equality is true from asymptotic exchangeability. But θ∗ 6= 0 a.s.[P], so

lim
j→∞

E
[
(1− θ∗)j

]
= 0;

therefore, P(τ1 <∞) = 1. Consider the sequence (Wτ1+n)n≥1. Then

τ2 ≡ inf{m ∈ N : Wτ1+m = 1}.

It follows from Example 1.1 of Berti et al. (2004) that (Wτ1+n)n≥1 is c.i.d. Moreover, 1
n

∑n
i=1Wτ1+i

a.s.−→ θ∗,

so the above argument extends to the whole sequence (τn)n≥0.

If it actually holds that P(Wn = 1 i.o.) = 0, and thus P(Wn = 0 ult.) = 1, then there exists an N ≥ 1 such

that Wn = 0 a.s.[P], for all n ≥ N . In that case (XN+j)j≥1 is i.i.d. given FN . Indeed, one has for k ≥ 1 and

B ∈ X that

P(XN+k+1 ∈B|FN+k) =

N+k∑
i=1

Wi

θ +
∑N+k
l=1 Wl

δXi(B) +
θ

θ +
∑N+k
l=1 Wl

ν(B) =

=

N∑
i=1

Wi

θ +
∑N
l=1Wl

δXi(B) +
θ

θ +
∑N
l=1Wl

ν(B) = P(XN+k+1 ∈ B|FN ) = P(XN+1 ∈ B|FN ),

where the last equality follows from the c.i.d. property.

3.3 Central limit theorem

Even if the exact distribution of P̃ is generally unknown, we can try to approximate it through a central limit

theorem. In this subsection we provide two such distributional results with respect to different centerings of

the normal approximation. As a by-product, we give further details on the random masses p∗k from (III.1).

3.3.1 Central limit theorem

Recall from Chapter II that RRPSs satisfying assumption (A.1) and GOSs generate the same stochastic

processes. As a consequence, already existing results about the latter model could be rephrased in terms

of the former. However, in some cases it is more natural to make assumptions directly on the sequence of

weights (Wn)n≥1 in the RRPS representation instead of on the functions (rn)n≥0 from the GOS equations.

Finding sufficient conditions, under which

Cn,f :=
√
n

(
1

n

n∑
i=1

f(Xi)− E
[
f(Xn+1)|Fn

])
,
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and/or

Dn,f :=
√
n
(
E[f(Xn+1)|Fn]− P̃f

)
,

converge in distribution, is one such example, where P̃f :=
∫
X f(x)P̃ (dx), for any f ∈Mb(X ). With respect

to the GOS reparameterization, Bassetti et al. (2010, Theorem 5.2, Theorem 5.3, Corollary 5.2) prove

convergence under quite abstract conditions on the predictive and empirical means, whereas in the technical

report to that paper they use a c.i.d. RRPS as an example (Example 4.2, Example 4.5) and put explicit

distributional assumptions on the sequence (Wn)n≥1. The following theorem, which is based on results and

techniques derived from Crimaldi et al. (2007), Crimaldi (2009) and Berti et al. (2010), relaxes some of the

conditions imposed on (Wn)n≥1 and, in particular, dispenses with their restrictive Wn > 0 assumption.

The central limit result on Cn,f is concerned with the rate of convergence of the empirical distribution to

the predictive, and as such can be utilized for the estimation of E[f(Xn+1)|Fn] through 1
n

∑n
i=1 f(Xi) when

the sequence of weights is non-observable. On the other hand, convergence of Dn,f investigates the speed,

with which the predictive distribution approaches its random limit P̃f . The particular modes of convergence

are discussed in detail in Chapter I, Section 1.3.

Theorem 3.3.1. Let X = (Xn)n≥1 be a randomly reinforced Pólya sequence with parameters θ, ν and

(Wn)n≥1. Suppose X satisfies assumption (A.2). If (Wn)n≥1 are i.i.d. with Wn ≤ β <∞, then it holds for

every f ∈Mb(X ) that

Cn,f
stably−→ N (0, Uf ),

and

Dn,f
a.s.cond−→ N (0, Vf ) w.r.t. F ,

where

Vf =
E[W 2

1 ]

E[W1]2
(
P̃f2 − (P̃f )2

)
, and Uf = Vf −

(
P̃f2 − (P̃f )2

)
.

Remark. We make the implicit assumption that E[W1] > 0; else (Xn)n≥1 is an i.i.d.(ν) sequence of random

variables, in which case the classical central limit theorems apply.

Proof of Theorem 3.3.1. Let f ∈Mb(X ), say, |f | ≤ c <∞. Denote by

Pn(f) := E[f(Xn+1)|Fn], P̂n(f) :=
1

n

n∑
i=1

f(Xi), Nn(f) := θE[f(X1)] +

n∑
i=1

Wif(Xi),

Nn := θ +

n∑
i=1

Wi, and Qn := Wn+1

/
Nn+1,

for n ≥ 0, where
∑0
i=1 ai = 0. It follows that

Pn(f)− Pn+1(f) =
(
Pn(f)− f(Xn+1)

)
Qn.

As X is F-c.i.d., one has from Lemma 2.1 and Theorem 2.2 in Berti et al. (2004) that (Pn(f))n≥0 is a

bounded F-martingale such that Pn(f) −→ P̃f a.s.[P] and in L1, and P̂n(f) −→ P̃f a.s.[P] and in L1.

Define Hn :=
{

2Nn ≥ nE[W1]
}

, for n ≥ 1. By the strong law of large numbers, 1
nNn

a.s.−→ E[W1]; therefore,

P(Hc
n i.o.) = 0. Finally, set h := E[W 2

1 ]
/
E[W1]2.



32

Part I: Dn,f
a.s.cond.−→ N (0, Vf ). The first part of the proof is based on a variant of Theorem 2.2 by Crimaldi

(2009), whose proof can be found in the Appendix.

Theorem: Let (Mn)n≥1 be a real-valued martingale w.r.t. a filtration G = (Gn)n≥0 such that Mn →M

in L1, for some M ∈M(H), and Hn ∈ Gn such that P(Hc
n i.o.) = 0. If it holds

(i) E
[
supn∈N

√
n · 1Hn |Mn −Mn+1|

]
<∞;

(ii) n ·
∑
m≥n(Mm −Mm+1)2 a.s.−→ V , for some V ∈M+(H);

then √
n(Mn −M)

a.s.cond.−→ N (0, V ) w.r.t. G.

where in our case,

Mn = Pn(f), M = P̃f , V = Vf , Gn = Fn.

First note that
∣∣Pn(f)−Pn+1(f)

∣∣ ≤ 2cQn. Then supn∈N n
2 ·1Hn

∣∣Pn(f)−Pn+1(f)
∣∣4 ≤ 16c4

∑∞
n=1 n

2 ·1HnQ4
n,

which is integrable since

∞∑
n=1

n2E[1HnQ
4
n] =

∞∑
n=1

n2E
[
1Hn

(
Wn+1

Nn+1

)4]
≤ β4

∞∑
n=1

n2E
[
1Hn

(
1

Nn

)4]
≤ 16β4

E[W1]4

∞∑
n=1

1

n2
<∞,

where we have used that 1/Nn ≤ 2
/

(nE[W1]) on Hn. Moreover,

n ·
∑
m≥n

(
Pm(f)− Pm+1(f)

)2
= n ·

∑
m≥n

(
Pm(f)− f(Xm+1)

)2
Q2
m =

= n ·
∑
m≥n

(
(Pm(f))2 + f2(Xm+1)− 2Pm(f) · f(Xm+1)

)
Q2
m.

Define

Zn :=
W 2
n+1 − E[W 2

1 ]

n
, for n ≥ 1.

Then E[Zn] = 0 and
∑∞
n=1 Var(Zn) =

∑∞
n=1 n

−2Var(W 2
1 ) < ∞; hence,

∑∞
n=1 Zn < ∞ a.s.[P] by Theorem

7.5 in Cinlar (2011). From Lemma A.5 in the Appendix, one has
∑∞
n=1 n

−1Zn < ∞ a.s.[P], and thus

n·
∑
m≥nm

−1Zm
a.s.−→ 0. But n·

∑
m≥nm

−2 → 1, so n·
∑
m≥nm

−2W 2
m+1

a.s.−→ E[W 2
1 ]. As Q2

n

/
W 2
n+1

n2E[W1]2
a.s.−→ 1,

it follows that

lim
n→∞

n ·
∑
m≥n

Q2
m = lim

n→∞

1

E[W1]2
n ·
∑
m≥n

m−2W 2
m+1 = h a.s.[P];

therefore,

n ·
∑
m≥n

Pm(f)Q2
m −→ hP̃f a.s.[P], n ·

∑
m≥n

(Pm(f))2Q2
m −→ h · (P̃f )2 a.s.[P],

n ·
∑
m≥n

Pm(f2)Q2
m −→ hP̃f2 a.s.[P].

Define Yn :=
∑n−1
k=1 k · 1Hk

(
f(Xk+1)− Pk(f)

)
Q2
k, for n ≥ 1. Then (Yn)n≥1 is an F-martingale such that

E[Y 2
n ] =

n−1∑
k=1

k2E
[
1Hk

(
f(Xk+1)− Pk(f)

)2
Q4
k

]
≤ 4c2

∞∑
n=1

n2E
[
1HnQ

4
n

]
<∞;
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hence,
∑∞
n=1 n · 1Hn

(
f(Xn+1) − Pn(f)

)
Q2
n < ∞ a.s.[P]. It follows from Lemma A.5 in the Appendix that

n ·
∑
m≥n 1Hn

(
f(Xm+1)− Pm(f)

)
Q2
m

a.s.−→ 0. As a consequence,

n ·
∑
m≥n

1Hmf(Xm+1)Q2
m −→ hP̃f a.s.[P].

Similarly,

n ·
∑
m≥n

1Hmf
2(Xm+1)Q2

m −→ hP̃f2 a.s.[P], and n ·
∑
m≥n

1HmPm(f)f(Xm+1)Q2
m −→ h · (P̃f )2 a.s.[P];

therefore,

n ·
∑
m≥n

1Hm

(
Pm(f)− Pm+1(f)

)2 −→ h ·
(
P̃f2 − (P̃f )2

)
a.s.[P].

As 1Hn
a.s.−→ 1, then n ·

∑
m≥n

(
Pm(f)− Pm+1(f)

)2 a.s.−→ h ·
(
P̃f2 − (P̃f )2

)
and the result follows.

Part II: Cn,f
stably−→ N (0, Uf ). It follows that

Cn,f =
1√
n

n∑
k=1

{
f(Xk)− Pk−1(f) + k

(
Pk−1(f)− Pk(f)

)}
.

Define

C∗n,f :=
1√
n

n∑
k=1

1Hk−1

{
f(Xk)− Pk−1(f) + k

(
Pk−1(f)− Pk(f)

)}
.

As P(1Hn = 1 ult.) = 1, then Cn,f − C∗n,f
a.s.−→ 0, so from the properties of stable convergence, it is enough

that C∗n,f
stably−→ N (0, Uf ) for the general result to hold. To that end, we show that the following proposition,

which has been suggested by Berti et al. (2011) and is derived from Corollary 7 in Crimaldi et al. (2007), is

true for our model.

Proposition: Let (Gn)n≥0 be a filtration on (Ω,H), and Mn = (Mn,k)1≤k≤n be a martingale w.r.t.

(Gk)1≤k≤n such that Mn,0 = 0. Denote by U the completion of G∞ in H and

Yn,k := Mn,k −Mn,k−1.

If it holds

(i) E
[
max1≤k≤n |Yn,k|

]
−→ 0;

(ii)
∑n
k=1 Y

2
n,k

p−→ U , for some U ∈M+(U);

then
n∑
k=1

Yn,k
stably−→ N (0, U).

where in our case,

Yn,k =
1√
n
1Hk−1

{
f(Xk)− Pk−1(f) + k

(
Pk−1(f)− Pk(f)

)}
, U = Uf , Gn = Fn.
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First note that E[Yn,k|Fk−1] = 0. Regarding (i),

√
n max

1≤k≤n
|Yn,k| ≤ max

1≤k≤n
1Hk−1

∣∣f(Xk)− Pk−1(f)
∣∣+ max

1≤k≤n
k · 1Hk−1

∣∣Pk−1(f)− Pk(f)
∣∣.

As f is bounded, one has 1√
n
E
[
max1≤k≤n 1Hk−1

∣∣f(Xk)−Pk−1(f)
∣∣] −→ 0. On the other hand, one has from

the first part that
∣∣Pn−1(f)− Pn(f)

∣∣ ≤ 2cQn−1 ≤ 2cβ
/
Nn−1, and hence

1√
n
E
[

max
1≤k≤n

k · 1Hk−1

∣∣Pk−1(f)− Pk(f)
∣∣] ≤ 1√

n
E
[

max
1≤k≤n

k · 1Hk−1

2cβ

Nk−1

]
≤ b√

n
−→ 0,

for some suitable constant b ∈ R+. As a consequence, E
[
max1≤k≤n |Yn,k|

]
−→ 0. Regarding (ii),

n∑
k=1

Y 2
n,k =

1

n

n∑
k=1

1Hk−1

(
f(Xk)− Pk−1(f)

)2
+

1

n

n∑
k=1

k2 · 1Hk−1

(
Pk−1(f)− Pk(f)

)2
+

+
2

n

n∑
k=1

k · 1Hk−1

(
Pk−1(f)− Pk(f)

)(
f(Xk)− Pk−1(f)

)
.

From empirical convergence, P(1Hn = 1 ult.) = 1 and Lemma A.4 in the Appendix, it holds that

1

n

n∑
k=1

1Hk−1

(
f(Xk)− Pk−1(f)

)2 −→ P̃f2 − (P̃f )2 a.s.[P].

The same arguments as in the first part imply
∑∞
n=1 n

(
f2(Xn)−Pn−1(f2)

)
Q2
n−1 <∞ a.s.[P], so one has by

Kronecker’s lemma that

1

n

n∑
k=1

k2
(
f2(Xk)− Pk−1(f2)

)
Q2
k−1 −→ 0 a.s.[P].

But 1
n

∑n
k=1 k

2Pk−1(f2)Q2
k−1

a.s.−→ hP̃f2 from Lemma A.4 in the Appendix, so

1

n

n∑
k=1

k2 · 1Hk−1
f2(Xk)Q2

k−1 −→ hP̃f2 a.s.[P].

Similarly, 1
n

∑n
k=1 k

2 · 1Hk−1
f(Xk)Pk−1(f)Q2

k−1
a.s.−→ h · (P̃f )2 and 1

n

∑n
k=1 k

2 · 1Hk−1

(
Pk−1(f)

)2
Q2
k−1

a.s.−→
h · (P̃f )2; therefore,

1

n

n∑
k=1

k2 · 1Hk−1

(
Pk−1(f)− Pk(f)

)2
=

1

n

n∑
k=1

k2 · 1Hk−1

(
f(Xk)− Pk−1(f)

)2
Q2
k−1 −→ Vf a.s.[P].

Regarding the last term in
∑n
k=1 Y

2
n,k, note that(

Pn−1(f)− Pn(f)
)(
f(Xn)− Pn−1(f)

)
= −

(
f(Xn)− Pn−1(f)

)2
Qn−1.

Through the same reasoning as above we have that

2

n

n∑
k=1

k · 1Hk−1

(
Pk−1(f)− Pk(f)

)(
f(Xk)− Pk−1(f)

)
−→ −2

(
P̃f2 − (P̃f )2

)
a.s.[P].

As a consequence,
∑n
k=1 Y

2
n,k

a.s.−→ Uf and the conclusions of the proposition follow.
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It follows from Lemma 1 in Berti et al. (2011) that under the conditions of Theorem 3.3.1

(Cn,f , Dn,f )
stably−→ N (0, Uf )⊗N (0, Vf ),

which in turn implies that

√
n

(
1

n

n∑
i=1

f(Xi)− P̃f
)

= Cn,f +Dn,f
stably−→ N (0, Uf + Vf ) .

It should be noted that Berti et al. (2009, Section 4) study the stable limit of
√
n · supB∈D ‖P̂n(B)−Pn(B)‖

for the model with i.i.d. weights such that 0 < Wn < β and Wn is independent of (X1, . . . , Xn), where D
is a countable partition of X in X . Based on the techniques that were used in the proof of Theorem 3.3.1,

we conjecture that their results would continue to hold in case the weights are not bounded from below. In

fact, we hypothesize further that the convergence can be extended to
√
n · supB∈X ‖P̂n(B) − Pn(B)‖ since

the model uses effectively a countable (random) number of states.

3.3.2 Almost sure discreteness - revisited

Let (X∗k)k≥1 denote the distinct species of X in order of appearence. By Lemma A.9 in the Appendix and

Theorem 3.2.1, the sequence of predictive distributions Pn converges P-a.s. on each random set {X∗k} to p∗k.

It is natural to ask whether the conclusions of Theorem 3.3.1 continue to hold with respect to

D∗n,k :=
√
n
(
Pn({X∗k})− p∗k

)
.

In addition, such a result would provide additional information on the marginal distributions of the p∗k’s. The

proof of the next proposition follows closely that of Theorem 3.3.1, while taking into account the specifics

of working on random sets as we did in (III.2) and Lemma A.9 in the Appendix.

Proposition 3.3.2. Let X = (Xn)n≥1 be a randomly reinforced Pólya sequence with parameters θ, ν and

(Wn)n≥1. Suppose X satisfies assumption (A.2) and ν is diffuse. If (Wn)n≥1 are i.i.d. with Wn ≤ β <∞,

then it holds for each k ≤ L∞ that

D∗n,k
a.s.cond−→ N

(
0,

E[W 2
1 ]

E[W1]2
(
p∗k − (p∗k)2

))
w.r.t. F .

Note that the RRPS from Proposition 3.3.2 is proper, which follows from an appeal to the strong law of

large numbers with regards to the sequence (Wn)n≥1. The next result shows, in particular, that the p∗k’s are

P-a.s. distinct and non-zero. The proof itself is taken from Aletti et al. (2009, Theorem 3.2).
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Proposition 3.3.3. Under the conditions of Proposition 3.3.2, one has P(p∗k = p) = 0, for all p ∈ [0, 1].

Proof. Let k ≤ L∞. Denote by Kn the conditional distribution of
√
n
(
Pn({X∗k}) − p∗k

)
given Fn, and

define U := h
(
p∗k − (p∗k)2

)
, where h := E[W 2

1 ]/E[W1]2. From Proposition 3.3.2, Kn
w−→ N (0, U) a.s.[P] or,

equivalently,

dD
(
Kn,N (0, U)

)
:= sup

closed balls B

∣∣Kn(B)−N (0, U)(B)
∣∣ −→ 0 a.s.[P],

where dD is the discrepancy metric (see Gibbs and Su, 2002). Let Ω0 ∈ H be such that P(Ω0) = 1 and

limn→∞ Pn({X∗k(ω)})(ω) = p∗k(ω) and limn→∞ dD
(
Kn(ω),N (0, U(ω))

)
= 0, for any ω ∈ Ω0. Suppose,

by contradiction, that there exists p ∈ [0, 1] such that P(p∗k = p) > 0. As P̃ is F∞-measurable, then

limn→∞ P(p∗k = p|Fn) = 1{p}(p
∗
k) a.s.[P], so there is F ∈ H ∩ {p∗k = p} ∩ Ω0 such that P(F ) > 0 and

lim
n→∞

P(p∗k = p|Fn)(ω) = 1, for any ω ∈ F.

Fix ω ∈ F . Define pn :=
√
n
(
Pn({X∗k})− p

)
and Bn := {pn}, for n ≥ 1. Then

dD
(
Kn(ω),N (0, U(ω))

)
≥
∣∣Kn(ω)(Bn(ω))−N (0, U(ω))(Bn(ω))

∣∣ = Kn(ω)(Bn(ω)) = P(p∗k = p|Fn)(ω),

for n large enough, so lim infn→∞ dD
(
Kn(ω),N (0, U(ω))

)
≥ 1, absurd.

3.4 Inference

Let X = (Xn)n≥1 be a c.i.d. RRPS with directing measure P̃ ∈ KP (Ω,X). Fix f ∈ Mb(X ). It follows that

(E[f(Xn+1)|X1, . . . , Xn])n≥0 is an FX -martingale. In fact, under the conditions of Theorem 3.2.1,

E[f(Xn+1)|X1, . . . , Xn] = E
[∫

X
f(x)P̃ (dx)

∣∣X1, . . . , Xn

]
= E

[∑
k

p∗kf(X∗k)
∣∣X1, . . . , Xn

]
.

Therefore, if we truncate the series at some K ≥ 1, we can approximate the predictive distrubitions of X

for n large enough by

E[f(Xn+1)|X1, . . . , Xn] ≈
K∑
k=1

f(X∗k)E[p∗k|X1, . . . , Xn],

where the term on the right side is a weighted sum of posterior means. In this section we provide an

asymptotic approximation of the posterior distribution of each p∗k using Proposition 3.3.2. For that purpose,

we consider the two situations of observable and non-observable weights.

3.4.1 Case 1: W1, . . . ,Wn are observable

The rather strong form of convergence in Proposition 3.3.2 can be utilized in a novel way to approximate

the conditional distribution of p∗k given the data. This suggestion originates from a recent paper by Fortini

and Petrone (2019), even though a.s. conditional convergence has been around since at least the founding

paper by Crimaldi (2009). The proposed approach differs from Bernstein-von-Mises types of theorems (see
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Ghosal and van der Vaart, 2017, Chapter 12) as the approximation is given in terms of the model P instead

of some hypothetical ”true” probability distribution.

It follows (see Chapter I, Section 1.3) under the conditions of Proposition 3.3.2 that

P
(
D∗n,k ∈ ·|Fn

) w−→ N
(

0,
E[W 2

1 ]

E[W1]2
(
p∗k − (p∗k)2

))
(·) a.s.[P].

Define

V :=
E[W 2

1 ]

E[W1]2
(
p∗k − (p∗k)2

)
, and Vn :=

∑n
i=1W

2
i∑n

i=1Wi

(
Pn({X∗k})−

(
Pn({X∗k})

)2)
, for n ≥ 1.

From the strong law of large numbers and Theorem 3.2.1, one has Vn
a.s.−→ V . Then a variant of Theorem

4.2 in Fortini and Petrone (2019) implies

P
(
(D∗n,k, Vn) ∈ ·

∣∣Fn) w−→
(
N (0, V )⊗ δV

)
(·) a.s.[P].

Note that V > 0 a.s.[P] from Proposition 3.3.3, so Vn > 0 a.s.[P], for all but a finite number of n. As the

mapping (t, u) 7→ tu from R2
+ to R+ is continuous, we have that

E
[
f
(D∗n,k√

Vn

)∣∣∣Fn] −→ ∫
R2

+

f(tu)
(
N (0, V )⊗ δV

)
(dt, du) =

∫
R+

f
(
t · V −1

)
N (0, V )(dt) =

∫
R+

f(s)N (0, 1)(ds),

for each f ∈ Cb(R+). Since the cumulative distribution function of the Normal distribution is continuous, it

follows P-a.s. that

P
(√
n
(
Pn({X∗k})− p∗k

)
≤ t ·

√
Vn
∣∣Fn) −→ N (0, 1)((−∞, t]), for t ∈ R.

This result allows us to obtain asymptotic credible intervals around p∗k in the sense that

P
(
Pn({X∗k})− zα

√
Vn/n < p∗k < Pn({X∗k}) + zα

√
Vn/n

∣∣Fn) ≈ 1− α,

for n large enough, where zα is the appropriate critical value from the standard Normal distribution given

100(1− α)% confidence, with α ∈ (0, 1).

3.4.2 Case 2: W1, . . . ,Wn are non-observable

When the weights are not observable, one is interested in the posterior distribution of p∗k given a sample of

(X1, . . . , Xn). An asymptotic approximation of

P(p∗k ∈ ·|X1, . . . , Xn)

can be obtained by averaging out the conditional distributions from the previous subsection w.r.t. the

posterior distribution of (W1, . . . ,Wn) given (X1, . . . , Xn). To that end, suppose that the prior distribution

of the now latent (W1, . . . ,Wn) admits a density p(w1:n) with w1:n = (w1, . . . , wn) and that ν is absolutely

continuous w.r.t. the Lebesgue measure with density f0. It follows from Bayes’ theorem that

p(w1:n|x1:n) ∝ p(x1:n|w1:n)p(w1:n), (III.4)
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where we have used the same dominating measure as the one in Petrone and Raftery (1997) regarding p(x1:n).

Moreover, assumption (A.1) and Theorem 3.2.1 imply that

p(x1:n|w1:n) = p(xn|x1:n−1, w1:n)p(xn−1|x1:n−2, w1:n) · · · p(x2|x1, w1:n)p(x1|w1:n) =

= p(xn|x1:n−1, w1:n−1)p(xn−1|x1:n−2, w1:n−2) · · · p(x2|x1, w1)p(x1) =

=

∑
i∈π1,c(2)

wi

θ + w1
· · · θ

θ +
∑c−1(2)−1
j=1 wj

· · · θ

θ +
∑c−1(ln)−1
j=1 wj

· · ·
∑
i∈πn−1,c(n)

wi

θ +
∑n−1
j=1 wj

ln∏
k=1

f0(x∗k),

where πm = {πm,1, . . . , πm,lm} is the partition on {1, . . . ,m} with length lm that is generated by (x1:m),

for 1 ≤ m ≤ n, x∗1, . . . , x
∗
ln

are the distinct values of (x1:n), listed in order of appearance, c : N → N
is the mapping that shows the cluster membership of each xj , i.e. c(j) = k if and only if xj = x∗k,

c−1(k) := min{m ∈ {1, . . . , k} : xm = x∗k}, for k = 1, . . . , ln, and we have used the convention that if

πl,k = ∅, then the corresponding term on the right hand side drops out. One can then use a Metropolis

algorithm with (III.4) to draw samples from the probability distribution of (W1, . . . ,Wn), with which to

approximate the conditional distribution of p∗k given a sample from (X1, . . . , Xn).
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Chapter IV

Dominant Pólya sequence

4.1 Introduction

This chapter of the thesis discusses a randomly reinforced Pólya sequence (RRPS) that falls outside the

framework of conditional identity in distribution (c.i.d.), but continues to exhibit elements of predictive

convergence. On one hand, the suggested model is not constrained by the conditional independence assump-

tion (A.1) from Chapter III, but allows weights to be contemporaneously dependent on observations. As a

consequence, the properties implied by Proposition 3.1.1 are no longer guaranteed. On the other hand, the

probabilistic structure of the weights is such as to tackle the concrete problem of dominance among species.

For that purpose, we map dominance to larger average weight size, indicating, for example, higher species

resilience net of random environmental factors. The working hypothesis is that the sequence of observations

would be eventually comprised of exclusively dominant species, disturbed only by the occasional discovery

of a new dominated species that will die out with time.

Randomly reinforced processes with an inherent dominance structure have been studied within a diverse

range of scientific fields such as evolutionary biology, reinforcement learning, information science, operations

research and neural networks (see e.g. Beggs, 2005; Martin and Ho, 2002). The same constructions have been

considered in the development of urn models that describe randomized, response-adaptive designs of clinical

trials, with the potential treatments being depicted as balls of different colors (see Rosenberger (2002),

Rosenberger and Lachin (2002) and Hu and Rosenberger (2006) for a review on the topic). The protocol of

one such design proceeds with the sequential assignment of treatments to patients, based on uniform draws

from an urn containing an initial number balls, and the subsequent reinforcement of the contents of the

urn with a certain number of additional balls, depending on the response of the subjects to the assigned

treatment. In this context, the color that is associated to the treatment with the highest average response

is said to be dominant. The scheme, for which only the color corresponding to the administered treatment

is reinforced, has been called a randomly reinforced urn (RRU) by Muliere et al. (2006), with Li et al.

(1996) and Durham et al. (1998) being the first to study different aspects of the model with dichotomous

reinforcements. RRU’s most favorable feature, proven by Beggs (2005), Muliere et al. (2006) and Aletti et al.
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(2009), shows that the probability of picking the dominant color goes to 1, thereby demonstrating the urn’s

tendency to select the most favorable treatment as the experiment proceeds. In addition, May and Flournoy

(2009) show that the proportion of patients assigned to the dominant treatment tends to one, even though

the number of patients assigned to each treatment increases. The review paper by Flournoy et al. (2012)

on RRUs provides a summary of other known results, as well as a discussion on statistical inference and a

comparison with other urn models, used for response-adaptive designs.

One major shortcoming of the earlier studies on RRUs concerns the fact that they either assume a single

best treatment or, alternatively, suppose that all colors are dominant. To that end, Berti et al. (2010) have

proposed a k-color RRU scheme, with k finite, for which there could be more than one, but less than k

dominant colors, with dominance being specified in terms of asymptotic averages. In that case they are able

to show that treatment allocation is again asymptotically optimal. Moreover, Berti and coauthors provide

central limit results, with which they draw inference on the composition of the dominant set. In the same

setting, but under different specification of the reinforcement, Zhang et al. (2014) study the asymptotic

properties of the proportion of balls of each color and the proportion of patients assigned to each treatment.

In this chapter we explore the RRPS that is the conceptual extension of the RRU to infinite colors, in which

case we do not know the species/treatments/colors beforehand, but generate them when the need occurs.

Such a generalization is non-trivial as the set of treatments is random and depends on the partition of the

subjects. In fact, given that the cardinality of the sample space may be uncountable, a more suitable way

to describe the observation process is to think of it as the sequential administering of doses from a single

treatment (see Chapter V for more on the topic). We proceed by introducing the model first, which is a

RRPS with a discriminating weighting process, and then look at its optimality properties under different

specifications of the weights (Section 4.2). In Section 4.3 we derive central limit results, whereas in Section

4.4 we fit some of the aforementioned k-color RRUs to our framework. A section on statistical inference

closes the chapter.

4.1.1 Model

Let (Xn)n≥1 be a RRPS with parameters θ, ν and (Wn)n≥1. Within a dominance setting, observations

and weights can be no longer conditionally independent given the past. Instead, it makes sense to limit the

influence that previous draws have on the current by assuming that the variability of each weight depends

only on the particular dose it is attached to plus an exogenous factor. As a result, the weighting process of

the RRPS becomes

Wn = h(Xn, Un), (IV.1)

for n ≥ 1, where (Un)n≥1 is a sequence of independent real-valued random variables on (Ω,H,P) such that

Un is independent of (X1, . . . , Xn), and h is some measurable function from X × R into R+. It follows

under (IV.1) that reinforcement is a function of a dose-specific component and an idiosyncratic error Un (see

Section 2.3 of Chapter II for a discussion on this particular form of the weights). We also require that

Wn ≤ β <∞.
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Keeping in line with past research, we aim at expressing dominance through the conditional expectation of

the weights given their associated doses. To that end, Lemma A.6 in the Appendix implies that

E[Wn|Xn] = E[h(Xn, Un)|Xn] =

∫
Ω

h
(
Xn, Un(ω)

)
P(dω) = w(Xn),

for some X -measurable function w : X→ R+, which we call the dominance function of the model. In order

to induce a dominance structure through w, we ask for w to be a continuous function on X such that

{x ∈ X : w(x) ≥ w̄ − η} ⊆ K, (IV.2)

for some compact subset K ⊆ X and η > 0, with w̄ := supx∈X w(x). The last condition ensures the existence

of dominant observations as understood by their image under w. To see this define

D := {x ∈ X : w(x) = w̄}.

Under (IV.2), one has D ⊆ K. As w is bounded by β, then w̄ ∈ R+ from the completeness axiom on

the real numbers. But {w̄} is closed and w is continuous, so D = w−1({w̄}) is closed as well. It follows

that D is compact, which implies that w(D) is compact; therefore, there exists a point x0 ∈ D such that

w(x0) = maxx∈D w(x) = w̄. As a result, the set D is non-empty, so there is a family of so-called dominant

doses that has a higher weight on average. We call a RRPS having weights as in (IV.1) and a dominance

function satisfying (IV.2) a dominant Pólya sequence (DPS). Finally, we denote by

Pn(·) := P(Xn+1 ∈ ·|Fn), and P̂n(·) :=
1

n

n∑
i=1

WiδXi(·),

where Fn ≡ FXn ∨ FUn , for n ≥ 0.

4.2 First-order convergence results

The main research question concerning reinforcement schemes on a space with a dominant subset is on

determining the minimal conditions, under which the model tends to promote these observations to the

extend that they become prevalent in the system. After providing an answer in terms of both predictive

and empirical convergence, we investigate the structure that emerges in the limit within the subsequence of

dominant observations. Of particular interest are model specifications, for which the limit of the predictive

distributions is a random probability measure P̃ that is concentrated on D. In that case, the stochastic

process becomes asymptotically exchangeable with directing measure P̃ , which brings about a sparse struc-

ture in the limit. As a final result, we show that the number of clusters in the population approaches a

deterministic quantity.

4.2.1 DPS with strictly increasing w

Our first goal is to investigate whether the DPS tends to select the best doses with the accumulation of

knowledge. The main requirement for that to happen turns out to be the capacity to sample doses that are
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near-dominant with positive probability. In fact, since there is a continuum of doses, from which to select,

the probability of picking a particular dose should, in principle, be zero. In order to get to the general

optimality result, however, it is necessary to study first the particular family of models, for which w is

a strictly increasing function and the space of observations is the interval [0, 1]. Under this model speci-

fication, the dominant dose is just the one with tag “1” and we require that at least “1” is in the support of ν.

Theorem 4.2.1. Let X = (Xn)n≥1 be a [0, 1]-valued dominant Pólya sequence with parameters θ and ν,

and a strictly increasing dominance function w. Suppose 1 ∈ supp(ν). Then 1
n

∑n
i=1Wi

a.s.−→ w(1) and

Pn
w−→ δ1 a.s.[P], P̂n

w−→ δ1 a.s.[P],
1

n

n∑
i=1

WiδXi
w−→ w(1)δ1 a.s.[P].

Proof. Denote by Nn(·) := θν(·) +
∑n
i=1WiδXi(·) and Nn := θ +

∑n
i=1Wi, for n ≥ 1. We will omit the

parenthesis when working with intervals for the sake of clarity. The proof is divided into three parts. First,

we demonstrate that Pn
w−→ P̃ a.s.[P], for some P̃ ∈ KP (Ω,X). Next, we prove that P̃ = δZ a.s.[P], for some

Z ∈ M+(H), and then we show that Z = 1 a.s.[P]. In order to obtain these results, we need the following

three preliminary lemmas.

Lemma 1: Nn(t, 1] −→∞ a.s.[P], for each t ∈ (0, 1).

Proof. Let t ∈ (0, 1) and set A = (t, 1]. As it holds Pn(A) ≥ θν(A)
θ+nβ > 0 from {1} ∈ supp(ν),

then
∑∞
n=1 Pn(A) = ∞ a.s.[P], and hence

∑∞
n=1 δXn(A) = ∞ a.s.[P] by Levy’s extension to the

Borel-Cantelli lemmas. Define Gn := Fn−1 ∨ σ(Xn), for n ≥ 1. By Lemma A.6 in the Appendix,

∞∑
n=1

E[Wn|Gn]δXn(A) =

∞∑
n=1

w(Xn)δXn(A) ≥ w(t)

∞∑
n=1

δXn(A) =∞ a.s.[P].

Define

Ln :=
n∑
i=1

WiδXi(A)−
n∑
i=1

E[Wi|Gi]δXi(A) =

n∑
i=1

(
Wi − E[Wi|Gi]

)
δXi(A), for n ≥ 1.

Then (Ln)n≥1 is a martingale w.r.t. (Gn)n≥1, whose increments are bounded. By Theorem 5.3.1

in Durrett (2010), Ln either converges or oscillates between −∞ and +∞ a.s.[P]; in both cases∑∞
n=1WnδXn(A) =∞ a.s.[P], and thus Nn(A)

a.s.−→∞.

Lemma 2: lim infn→∞ Pn(t, 1] > 0 a.s.[P], for each t ∈ (0, 1).

Proof. Let t ∈ (0, 1). Suppose, without loss of geneneralization, that ν[0, t] > 0; else, Pn(t, 1] = 1

a.s.[P]. Fix ε ∈
(
0, w(1)−w(t)

2

)
. Take s ∈ (t, 1) such that w(t) + ε < w(s); such an s exists as w([0, 1]) is

connected. Define T := inf
{
n ∈ N : Nn(s,1]

Nn(s,1]+β > 1− ε
w(t)+ε

}
. By Lemma 1, T <∞ a.s.[P]. It follows

for each n ≥ 1 that

E
[
Nn+1[0, t]

Nn+1(s, 1]

∣∣∣Fn] = E
[
Nn[0, t] +Wn+11{Xn+1≤t}

Nn(s, 1] +Wn+11{Xn+1>s}

∣∣∣Fn] =
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= E
[
Nn[0, t] +Wn+1

Nn(s, 1]
· 1{Xn+1≤t}

∣∣∣Fn]+ E
[

Nn[0, t]

Nn(s, 1] +Wn+1
· 1{Xn+1>s}

∣∣∣Fn]+
+ E

[
Nn[0, t]

Nn(s, 1]
· 1{t<Xn+1≤s}

∣∣∣Fn] =

=
Nn[0, t]

Nn(s, 1]

(
Pn[0, t] + Pn(s, 1]+Pn(t, s]

)
+

1

Nn(s, 1]
E[Wn+1 · 1{Xn+1≤t}|Fn]−

− Nn[0, t]

Nn(s, 1]
E
[

Wn+1

Nn(s, 1] +Wn+1
· 1{Xn+1>s}

∣∣∣Fn] ≤
≤ Nn[0, t]

Nn(s, 1]
+ w(t)

1

Nn(s, 1]
Pn[0, t]− (w(t) + ε)

Nn[0, t]

Nn(s, 1]

1

Nn(s, 1] + β
Pn(s, 1] =

=
Nn[0, t]

Nn(s, 1]

(
1 + w(t)

1

Nn
− (w(t) + ε)

Nn(s, 1]

Nn(s, 1] + β

1

Nn

)
.

As a result, E
[
NT+n+1[0,t]
NT+n+1(s,1]

∣∣FT+n

]
≤ NT+n[0,t]

NT+n(s,1] , so
( NT+n[0,t]
NT+n(s,1]

)
n≥1

is a non-negative supermartingale

w.r.t. (FT+n)n≥1 and, by Doob’s martingale convergence theorem, NT+n[0,t]
NT+n(s,1] converges P-a.s. to a

finite limit. Since Pn[0,t]
Pn(t,1] ≤

Pn[0,t]
Pn(s,1] , one has

lim sup
n→∞

Pn[0, t]

Pn(t, 1]
≤ lim sup

n→∞

Pn[0, t]

Pn(s, 1]
= lim
n→∞

Nn[0, t]

Nn(s, 1]
= lim
n→∞

NT+n[0, t]

NT+n(s, 1]
<∞ a.s.[P].

Then lim infn→∞
Pn(t,1]

1−Pn(t,1] > 0 a.s.[P], which implies lim infn→∞ Pn(t, 1] > 0 a.s.[P].

Lemma 3: Pn(t, 1] converges a.s.[P], for each t ∈ (0, 1).

Proof. Let t ∈ (0, 1) and set A = (t, 1]. Recall
∑k
i=0(−1)ixi+1 ≤ x

1+x ≤
∑k−1
i=0 (−1)ixi+1, for

0 ≤ x ≤ 1 and k = 2j + 1 with j = 0, 1, 2, . . .. It follows that

E[Pn+1(A)|Fn] = Pn(A) + E
[

Wn+1

Nn +Wn+1

(
δXn+1

(A)− Pn(A)
)∣∣∣Fn] =

= Pn(A) +
(
1− Pn(A)

)
E
[

Wn+1

Nn +Wn+1
δXn+1

(A)
∣∣∣Fn]− Pn(A)E

[
Wn+1

Nn +Wn+1
δXn+1

(Ac)
∣∣∣Fn];

therefore,

E
[
Pn+1(A)− Pn(A)|Fn

]
=

= Pn(A)
(
1− Pn(A)

){ 1

Pn(A)
E
[

Wn+1δXn+1(A)

Nn +Wn+1δXn+1(A)

∣∣∣Fn]−
− 1

1− Pn(A)
E
[

Wn+1δXn+1
(Ac)

Nn +Wn+1δXn+1
(Ac)

∣∣∣Fn]} ≥
≥ Pn(A)

(
1− Pn(A)

){ 1

Pn(A)
E
[
Wn+1δXn+1

(A)

Nn
−
W 2
n+1δXn+1

(A)

N2
n

∣∣∣Fn]−
− 1

1− Pn(A)
E
[
Wn+1δXn+1

(Ac)

Nn

∣∣∣Fn]} ≥
≥
Pn(A)

(
1− Pn(A)

)
Nn

{
1

Pn(A)
E
[
Wn+1δXn+1

(A)|Fn
]
− w(t)− β2

Nn

}
.
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Denote by ŵ := lim infn→∞
1

Pn(A)E
[
Wn+1δXn+1

(A)|Fn
]
− w(t). Let t′ ∈ (t, 1). Then

1

Pn(A)
E
[
Wn+1δXn+1(A)|Fn

]
≥ 1

Pn(A)

[
w(t)Pn(t, t′] + w(t′)Pn(t′, 1]

]
= w(t) +

Pn(t′, 1]

Pn(A)

[
w(t′)− w(t)

]
.

Since Pn(t′, 1] ≤ Pn(A) ≤ 1, it holds from Lemma 2 that lim infn→∞
Pn(t′,1]
Pn(A) > 0 a.s.[P]. But w is

strictly increasing by hypothesis, so ŵ > 0. As Nn > β2/ŵ eventually, then (Pn(A))n≥1 becomes

eventually a bounded F-submartingale, and hence converges a.s.[P].

Part I. Let g = 1(t,1], for t ∈ [0, 1]. By Lemma 3, (E[g(Xn+1)|Fn])n≥1 converges a.s.[P]. This convergence

result extends immediately first to 1(s,t] = 1(t,1] − 1(s,1], for s, t ∈ [0, 1] with s < t, and then to any

g ∈M0(B[0, 1]). Let g ∈ Cb[0, 1]. By Lemma A.2 in the Appendix, there exist sequences of simple functions

(g1,m)m≥1, (g2,m)m≥1 ⊆M0(B[0, 1]) such that g1,m ≤ g ≤ g2,m and supx∈[0,1](g2,m(x)− g1,m(x)) < 1/m, for

each m ≥ 1. By monotonicity,

lim
n→∞

E[g1,m(Xn+1)|Fn] ≤ lim inf
n→∞

E[g(Xn+1)|Fn] ≤

≤ lim sup
n→∞

E[g(Xn+1)|Fn] ≤ lim
n→∞

E[g2,m(Xn+1)|Fn] a.s.[P], for m ≥ 1,

where the end limit terms exist from before. We have by construction that

0 ≤ lim
n→∞

E[g2,m(Xn+1)− g1,m(Xn+1)|Fn] ≤ 1

m
−→ 0;

therefore, E[g(Xn+1)|Fn] converges a.s.[P]. By Lemma 2.4 in Berti et al. (2004), there exists P̃ ∈ KP (Ω, [0, 1])

such that

Pn
w−→ P̃ a.s.[P].

Part II. We show next that P̃ = δZ a.s.[P], for some [0, 1]-valued random variable Z. Let ε ∈ (0, 1) and

t ∈ (0, 1) be such that E[P̃ ({t})] = 0. Then P̃ ({t}) = 0 a.s.[P]. Denote by A = (t, 1]. Define

T (1) := inf
{
n ∈ N : Pn(A)(1− Pn(A)) ≤ ε

}
, and T (1)

n := T (1) ∧ n, for n ≥ 1.

Then T (1) is an F-stopping time,
{
T (1) =∞

}
⊆
{
T

(1)
n ≥ k

}
∈ Fk−1, for k = 1, . . . , n, and

E[Pn(A)|Fn−1] = Pn−1(A) + E
[Wn

Nn

(
δXn(A)− Pn−1(A)

)∣∣Fn−1

]
.

It follows that

1 ≥ E
[
P
T

(1)
n

(A)
]

= E
[ n∑
k=1

Pk(A) · 1{T (1)
n =k}

]
≥

≥ E
[ n∑
k=1

(
Pk(A)− Pk−1(A)

)
· 1{T (1)

n ≥k}

]
=

= E
[ n∑
k=1

E[Pk(A)− Pk−1(A)|Fk−1] · 1{T (1)
n ≥k}

]
≥
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≥ E
[ n∑
k=1

E[Pk(A)− Pk−1(A)|Fk−1] · 1{T (1)=∞}

]
=

= E
[ n∑
k=1

E
[Wk

Nk

(
δXk(A)− Pk−1(A)

)∣∣Fk−1

]
· 1{T (1)=∞}

]
=

= E

[
n∑
k=1

{
E
[Wk

Nk

(
1− Pk−1(A)

)
· 1{Xk>t}

∣∣Fk−1

]
−

− E
[Wk

Nk
Pk−1(A) · 1{Xk≤t}

∣∣Fk−1

]}
· 1{T (1)=∞}

]
=

= E

[
n∑
k=1

Pk−1(A)
(
1− Pk−1(A)

){ 1

Pk−1(A)
E
[Wk

Nk
· 1{Xk>t}

∣∣Fk−1

]
−

− 1

1− Pk−1(A)
E
[Wk

Nk
· 1{Xk≤t}

∣∣Fk−1

]}
· 1{T (1)=∞}

]
≥

≥ ε · E

[
n∑
k=1

{
1

Pk−1(A)
E
[Wk

Nk
·1{Xk>t}

∣∣Fk−1

]
−

− 1

1− Pk−1(A)
E
[Wk

Nk
· 1{Xk≤t}

∣∣Fk−1

]}
· 1{T (1)=∞}

]
≥

≥ ε · E

[
n∑
k=1

1

Nk−1 + β

{
1

Pk−1(A)
E
[
w(Xk) · 1{Xk>t}

∣∣Fk−1

]
−

− 1

1− Pk−1(A)

Nk−1 + β

Nk−1
E
[
w(Xk) · 1{Xk≤t}

∣∣Fk−1

]}
· 1{T (1)=∞}

]
≥

≥ ε · E
[ n∑
k=1

1

Nk−1 + β

{ 1

Pk−1(A)
E
[
w(Xk) · 1{Xk>t}

∣∣Fk−1

]
− w(t)

Nk−1 + β

Nk−1

}
· 1{T (1)=∞}

]
,

where we have used that Pn(A)(1 − Pn(A)) > ε on
{
T (1) =∞

}
and E[Wn|Fn−1 ∨ σ(Xn)] = w(Xn) from

before. Let ξ > 0 and m ≥ 1. By continuity, there exists tm > t such that E
[
P̃ ((t, tm])

]
≤ ξ/22m; hence,

P
(
P̃ ((t, tm]) > ξ/2m

)
< 1/2m from Markov’s inequality. In other words,

for every δ, δ′ > 0, there exists t′ > t such that P
(
P̃ ((t, t′]) > δ′

)
< δ.

Let δ ∈ (0, 1) and take t′ ∈ (t, 1) such that P
(
P̃ ((t, t′]) > ε/2

)
< δ. Define Dδ :=

{
P̃ ((t, t′]) ≤ ε/2

}
. On

the other hand, Pn
w−→ P̃ a.s.[P] and P̃ (∂A) = P̃ ({t}) = 0 a.s.[P] both imply Pn(A)

a.s.−→ P̃ (A), so we take

Ω0 ∈ H with P(Ω0) = 1 and Pn(A)(ω) → P̃ (A)(ω), for ω ∈ Ω0. Let ω ∈ Dδ ∩ {T (1) = ∞} ∩ Ω0. Since w is

non-decreasing,

1

P̃ (A)(ω)

∫
A

w(x)P̃ (dx)(ω) ≥ 1

P̃ (A)(ω)

[
w(t)P̃ ((t, t′])(ω) + w(t′)P̃ ((t′, 1])(ω)

]
=

= w(t) +
P̃ ((t′, 1])(ω)

P̃ (A)(ω)

[
w(t′)− w(t)

]
=

= w(t) +
P̃ (A)(ω)− P̃ ((t, t′])(ω)

P̃ (A)(ω)
[w(t′)− w(t)] ≥
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≥ w(t) +
1

2
[w(t′)− w(t)],

where the last inequality comes from the fact that {T (1) = ∞} ∩ Ω0 ⊆
{
P̃ (A) ≥ ε

}
as T (1) = ∞ implies

Pn(A)(1 − Pn(A)) > ε, so that Pn(A) > ε, for each n ≥ 1, and hence P̃ (A) ≥ ε. Since w is continuous and

bounded, one has1 that

E[w(Xn) · 1{Xn>t}|Fn−1] −→
∫
A

w(x)P̃ (dx) a.s.[P],

say, on Ω1 ∈ H with P(Ω1) = 1. As a consequence,

lim inf
n→∞

1

Pn−1(A)
E
[
w(Xn) · 1{Xn>t}|Fn−1

]
· 1Dδ∩{T (1)=∞}∩Ω∗ ≥

(
w(t) +

1

2

[
w(t′)−w(t)

])
· 1Dδ∩{T (1)=∞}∩Ω∗ ,

where Ω∗ = Ω0 ∩ Ω1. On the other hand,

E[Wn+1|Fn] = E[w(Xn+1)|Fn] −→
∫

[0,1]

w(x)P̃ (dx) := w̃ a.s.[P].

As
∑∞
n=1 E[W 2

n ]/n2 ≤
∑∞
n=1 β

2/n2 <∞, it holds from Lemma A.7 in the Appendix that

1

n

n∑
i=1

Wi −→ w̃ a.s.[P],

say, on Ω2 ∈ H with P(Ω1) = 2. Denote by Ω̃ = Ω0 ∩ Ω1 ∩ Ω2. Then P(Ω̃) = 1. As P̃ (A) > 0 on {T (1) =

∞} ∩ Ω0 and w is strictly increasing, then w̃ > 0, and thus Nn/n → w̃ and Nn → ∞ on {T (1) = ∞} ∩ Ω̃.

From the generalized Fatou’s lemma,

lim inf
n→∞

E
[

n

Nn−1 + β

{ 1

Pn−1(A)
E
[
w(Xn) · 1{Xn>t}|Fn−1

]
−w(t)

Nn−1 + β

Nn−1

}
· 1Dδ∩{T (1)=∞}∩Ω̃

]
≥

≥ 1

2w̃
·
[
w(t′)− w(t)

]
P
(
Dδ ∩ {T (1) =∞} ∩ Ω̃

)
.

Suppose, by contradiction, that P
(
Dδ∩{T (1) =∞}∩Ω̃

)
> 0. As w is strictly increasing, one has w(t′)−w(t) >

0, so that

1 ≥ ε · E
[ n∑
k=1

1

Nk−1 + β

{ 1

Pk−1(A)
E
[
w(Xk) · 1{Xk>t}|Fk−1

]
− w(t)

Nk−1 + β

Nk−1

}
· 1{T (1)=∞}

]
≥

≥ ε ·
n∑
k=1

1

k
E
[

k

Nk−1 + β

{ 1

Pk−1(A)
E
[
w(Xk) · 1{Xk>t}|Fk−1

]
− w(t)

Nk−1 + β

Nk−1

}
· 1Dδ∩{T (1)=∞}∩Ω̃

]
−→∞,

absurd, and thus P
(
Dδ ∩ {T (1) = ∞} ∩ Ω̃

)
= 0. But P(Dc

δ) < δ, so it follows from Boole’s inequality that

P(T (1) = ∞) < δ, which holds for arbitrary δ > 0; therefore, P(T (1) = ∞) = 0, that is T (1) is an P-a.s.

1Define PA
n (·) := Pn(· ∩ A), for n ≥ 1, and P̃A(·) := P̃ (· ∩ A). Then PA

n
w−→ P̃A a.s.[P]. Indeed, let B ∈ B[0, 1] be open.

Denote by Ω0 ∈ H the P-a.s. set, on which Pn
w−→ P̃ and P̃ (∂A) = 0. Fix ω ∈ Ω0. As ∂A = {t} ⊆ [0, t] = Ac, then A is open

in [0, 1] and so is A ∩B; thus,

P̃A(B) = P̃ (A ∩B) ≤ lim inf
n→∞

Pn(A ∩B) = lim inf
n→∞

PA
n (B).
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finite F-stopping time. As (Xn, Pn−1, Un)n≥1 is a Markov process2, the strong Markov property implies that

(X
(1)
n , P

(1)
n−1, U

(1)
n ) := (XT (1)+n, PT (1)+n−1, UT (1)+n) is itself Markov with the same transition kernels, where

P
(1)
0 := PT (1)−1. Define

T (2) := inf
{
n ∈ N : P (1)

n (A)(1− P (1)
n (A)) ≤ ε

}
≡ inf

{
n > T (1) : Pn(A)(1− Pn(A)) ≤ ε

}
.

Repeating the same arguments shows that T (2) is finite a.s.[P]; thus, iterating the procedure implies

P
(
Pn(A)(1− Pn(A)) < ε i.o.

)
= 1.

As this is true for any ε > 0, one has Pn(A)(1 − Pn(A))
p−→ 0, and thus P̃ (A)(1 − P̃ (A)) = 0 a.s.[P] since

Pn(A)(1−Pn(A))
p−→ P̃ (A)(1−P̃ (A)) as well. But E[P̃ (·)] is a probability measure, so from standard results

in measure theory E[P̃ ({t})] = 0 and, consequently, P̃ ((t, 1]) ∈ {0, 1} a.s.[P], for all but countably many

t ∈ [0, 1]. As these form a dense subset of [0, 1], then P̃ (A) ∈ {0, 1} a.s.[P], for every A ∈ B[0, 1]. Therefore,

by Lemma A.1 in the Appendix, P̃ is P-a.s. a Dirac measure, with P̃ = δZ a.s.[P], for some Z ∈M+(H).

Part III. For the last part of the proof we show that Z = 1 a.s.[P]. Let t ∈ (0, 1) be such that E
[
P̃ ({t})

]
= 0.

Fix ε ∈ (0, w(t)−w(0)
2 ). Take s ∈ (0, t) such that3 E

[
P̃ ({s})

]
= 0 and w(s) < w(t) − ε. Then P̃ ({t}) =

P̃ ({s}) = 0 a.s.[P]. Define T := inf
{
n ∈ N : Nn[t,1]

Nn[t,1]+β > 1 − ε
w(s)+ε

}
. By Lemma 1, Nn[t, 1]

a.s.−→ ∞, so

T <∞ a.s.[P]. It follows for each n ≥ 1 that

E
[
Nn+1[0, s)

Nn+1[t, 1]

∣∣∣Fn] = E
[
Nn[0, s) +Wn+1δXn+1

[0, s)

Nn[t, 1] +Wn+1δXn+1
[t, 1]

∣∣∣Fn] =

= E
[
Nn[0, s) +Wn+1

Nn[t, 1]
· 1{Xn+1<s}

∣∣∣Fn]+ E
[

Nn[0, s)

Nn[t, 1] +Wn+1
· 1{Xn+1≥t}

∣∣∣Fn]+
+ E

[
Nn[0, s)

Nn[t, 1]
· 1{s≤Xn+1<t}

∣∣∣Fn] =

=
Nn[0, s)

Nn[t, 1]

(
Pn[0, s) + Pn[t, 1] + Pn[s, t)

)
+

1

Nn[t, 1]
E[Wn+1 · 1{Xn+1<s}|Fn]−

− Nn[0, s)

Nn[t, 1]
E
[

Wn+1

Nn[t, 1] +Wn+1
· 1{Xn+1≥t}

∣∣∣Fn] ≤
≤ Nn[0, s)

Nn[t, 1]
+ w(s)

1

Nn[t, 1]
Pn[0, s)− (w(s) + ε)

Nn[0, s)

Nn[t, 1]

1

Nn[t, 1] + β
Pn[t, 1] =

=
Nn[0, s)

Nn[t, 1]

(
1 + w(s)

1

Nn
− (w(s) + ε)

Nn[t, 1]

Nn[t, 1] + β

1

Nn

)
.

As a result, E
[
NT+n+1[0,s)
NT+n+1[t,1]

∣∣FT+n

]
≤ NT+n[0,s)

NT+n[t,1] , so
(NT+n[0,s)
NT+n[t,1]

)
n≥1

is a non-negative supermartingale with

respect to (FT+n)n≥1 and, by Doob’s martingale convergence theorem, there exists a finite non-negative

random variable Y such that NT+n[0,s)
NT+n[t,1]

a.s.−→ Y . In fact,

lim
n→∞

Pn[0, s)

Pn[t, 1]
= lim
n→∞

Nn[0, s)

Nn[t, 1]
= lim
n→∞

NT+n[0, s)

NT+n[t, 1]
= Y a.s.[P].

2This follows from the observation that (Un)n≥1 is an independent sequence such that Un is independent of (X1, . . . , Xn),

Pn is a function of (Pn−1, Xn, Un), and the conditional distribution of Xn given (X1, U1, . . . , Xn−1, Un−1) is Pn−1.
3Such an s indeed exists. It follows that w([0, 1]) is connected, so there is r ∈ (0, t) such that w(r) = w(t)− ε. On the other

hand, E[P̃ (·)] is a probability measure, and hence, E[P̃ ({t})] = 0 for all but countably many t ∈ [0, 1]. As a result, there exists

s ∈ (0, r) such that E[P̃ ({s})] = 0. As w is stricly increasing by assumption, then w(s) < w(r) = w(t)− ε.
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On the other hand, Pn[t, 1]
a.s.−→ δZ [t, 1] and Pn[0, s)

a.s.−→ δZ [0, s); therefore,

δZ [0, s) = lim
n→∞

Pn[0, s) = lim
n→∞

Pn[0, s)

Pn[t, 1]
lim
n→∞

Pn[t, 1] = Y · δZ [t, 1].

But [0, s) ∩ [t, 1] = ∅, so δZ [0, s) = 0. Take (rn)n≥1, (sn)n≥1 ⊆ (0, 1) such that w(rn) = w(t) − w(t)−w(0)
n ,

w(rn−1) ≤ w(sn) < w(rn) and E
[
P̃ ({sn})

]
= 0, for n ≥ 1. As w is strictly increasing, then [0, rn−1) ⊆

[0, sn) ⊆ [0, rn). Moreover,

∞⋃
n=1

[0, rn) =

∞⋃
n=1

w−1
(
[w(0), w(rn))

)
= w−1

( ∞⋃
n=1

[w(0), w(rn))
)

= w−1
(
[w(0), w(t))

)
= [0, t);

thus,

P(Z ≥ t) = δZ [t, 1] = 1− δZ [0, t) = 1− lim
n→∞

δZ [0, sn) = 1 a.s.[P],

and Nn[0,t)
Nn[t,1]

a.s.−→ δZ [0,t)
δZ [t,1] = 0. But E

[
P̃ ({t})

]
= 0 and, consequently, Nn[0,t)

Nn[t,1]

a.s.−→ 0 and P(Z ≥ t) = 1, for all

but countably many t ∈ (0, 1), which form a dense subset of [0, 1]. Therefore, for each t′ ∈ (0, 1), there is

t ∈ (0, 1) such that t′ < t, and it holds 0 ≤ Pn[0,t′)
Pn[t′,1] ≤

Pn[0,t)
Pn[t,1]

a.s.−→ 0 and 1 = P(Z ≥ t) ≤ P(Z ≥ t′) ≤ 1. As

a result, P(Z ≥ t) = 1, for all t ∈ (0, 1), so Z = 1 a.s.[P]. It follows that w̃ =
∫

[0,1]
w(x)P̃ (dx) = w(1), and

hence 1
n

∑n
i=1Wi

a.s.−→ w(1). Let t ∈ (0, 1). Then

Pn[t, 1] =
1

1 + Nn[0,t)
Nn[t,1]

−→ 1 = δ1[t, 1] a.s.[P], and Pn[0, t) −→ 0 = δ1[0, t) a.s.[P];

thus,

1

n

n∑
i=1

WiδXi [t, 1] =
θ +

∑n
i=1Wi

n

Nn[t, 1]

Nn[0, t) +Nn[t, 1]

∑n
i=1WiδXi [t, 1]

Nn[t, 1]
−→ w(1) = w(1)δ1[t, 1] a.s.[P],

and 1
n

∑n
i=1WiδXi [0, t)

a.s.−→ 0 = w(1)δ1[0, t). As these form a countable convergence-determining family of

subsets, it holds

1

n

n∑
i=1

WiδXi
w−→ w(1)δ1 a.s.[P].

Let g ∈ Cb[0, 1]. As E[g(Xn+1)|Fn]
a.s.−→ g(1), one has from Lemma A.7 in the Appendix that 1

n

∑n
i=1 g(Xi)

a.s.−→
g(1), and thus

1

n

n∑
i=1

δXi
w−→ δ1 a.s.[P].

In particular, Theorem 4.2.1 implies (see Chapter I, Section 1.3) that

Xn
p−→ 1.
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This convergence cannot be strengthen to hold P-a.s. as one is bound to pick dominated doses infinitely

often. Indeed, let t ∈ (0, 1) be such that ν((t, 1]) < 1. Unless ν({1}) = 1, such a t exists from the regularity

of probability measures on metric spaces. It follows that

Pn((0, t]) ≥ θν([0, t])

θ + nβ
> 0, for n ≥ 1;

thus,
∑∞
n=1 P(Xn+1 ≤ t|Fn) =∞. By Lévy’s extension to the Borel-Cantelli lemmas,

P(Xn+1 ≤ t i.o.) = 1;

therefore, there would be a non-dominant observation occasionally. Nevertheless, Theorem 4.2.1 shows that

the number of observed, near-dominant doses increases with rate n, which means that suboptimal doses will

be relatively rarely administered.

4.2.2 DPS with general w

Given the results in the previous subsection, we are ready to tackle the optimal allocation problem for the

DPS with an arbitrary dominance function. Under the same hypothesis as above, we show that the predictive

and empirical distributions concentrate asymptotically around the set of dominant doses. For that purpose,

define by

Dδ := {x ∈ X : d(x,D) < δ},

the δ-neighborhood of D, for δ > 0, where d(x,D) := inf{d(x, y) : y ∈ D} denotes the distance from the

dominant set and d is the inherent metric on X.

Theorem 4.2.2. Let X = (Xn)n≥1 be a dominant Pólya sequence with parameters θ, ν and w. Suppose

D ⊆ supp(ν). Then 1
n

∑n
i=1Wi

a.s.−→ w̄ and, for each δ > 0, it holds

Pn(Dδ) −→ 1 a.s.[P], P̂n(Dδ) −→ 1 a.s.[P],
1

n

n∑
i=1

WiδXi(Dδ) −→ w̄ a.s.[P].

Remark. As long as it holds D 6= ∅ and ν(D) > 0, the continuity of w is non-essential for proving the above

results. In that case, existence of K and η from (IV.2) is similarly unnecessary, whenever w̄ > supx∈Dc w(x).

In fact, under those stronger conditions, more can be said about the predictive and empirical convergence

of the process than what is stated in the theorem (see Section 4.2.4).

Proof of Theorem 4.2.2. Define

X∗n :=
w(Xn)

w̄
, W ∗n := Wn, P ∗n(B) := Pn

(
w−1(w̄B)

)
, ν∗(B) := ν(w−1(w̄B)),

for n ≥ 1 and B ∈ B[0, 1], where w−1(w̄B) =
{
x ∈ X : w(x)/w̄ ∈ B

}
. As w is continuous, then 1 ∈ supp(ν∗)

and

E[W ∗n |X∗n] = E
[
E[Wn|Xn]|X∗n

]
= w̄X∗n.
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Moreover,

P ∗n(B) =
θν
(
w−1(w̄B)

)
+
∑n
i=1WiδXi(w

−1(w̄B))

θ +
∑n
j=1Wj

=
θν∗(B) +

∑n
i=1W

∗
i δX∗i (B)

θ +
∑n
j=1W

∗
j

,

so X∗ = (X∗n)n≥1 is4 a [0, 1]-valued DPS with parameters θ and ν∗, and the continuous and strictly increasing

dominance function w∗ : [0, 1] → [0, w̄], given by w∗(t) := w̄t, for t ∈ [0, 1]. Let δ > 0. From standard

topological results, Dδ is open. Suppose, by contradiction, that supx∈Dcδ w(x) ≥ w̄. Then there exists

(xn)n≥1 ⊆ Dcδ such that w(xn) > w̄ − 1
n , for n ≥ 1. From (IV.2), it follows that the sequence should

be ultimately in K. But K is compact, so there exists by sequential compactness (nk) ⊆ (n) such that

xnk → x̄, for some x̄ ∈ K. In fact, as Dcδ is closed, it is x̄ ∈ Dcδ ⊆ Dc. On the other hand, it holds

w(x̄) = w̄ from the assumptions on (xn)n≥1, and thus, x̄ ∈ D, absurd. Let ε =
(
w̄− supx∈Dcδ w(x)

)
/2. Then

Dcδ ⊆ {x ∈ X : w(x) < w̄ − ε}. From monotonicity and by Theorem 4.2.1,

Pn(Dcδ) ≤ P
(
w(Xn+1) < w̄ − ε|Fn

)
= P ∗n

(
[0, 1− ε/w̄)

)
−→ 0 a.s.[P];

thus, Pn(Dδ)
a.s.−→ 1, for any δ > 0. Moreover,

1

n

n∑
i=1

δXi(Dδ) −→ 1 a.s.[P],

from Lemma A.7 in the Appendix. Finally,

1

n

n∑
i=1

Wi =
1

n

n∑
i=1

W ∗i −→ w∗(1) = w̄ a.s.[P];

therefore, using that 0 ≤ 1
n

∑n
i=1WiδXi(Dcδ) ≤ β 1

n

∑n
i=1 δXi(Dcδ)

a.s.−→ 0, one has

1

n

n∑
i=1

WiδXi(Dδ) =
1

n

n∑
i=1

Wi −
1

n

n∑
i=1

WiδXi(Dcδ) −→ w̄ a.s.[P].

An immediate consequence of Theorem 4.2.2 is a sort of convergence in probability towards the dominant

set. Let δ > 0. By the dominated convergence theorem,

P(d(Xn,D) ≥ δ) = P(Xn ∈ Dcδ) = E
[
P(Xn ∈ Dcδ|Fn−1)

]
−→ 0;

therefore,

d(Xn,D)
p−→ 0.

4Strictly speaking, X∗ differs from the definition of a DPS in that W ∗n is a function of (Xn, Un), but not of (X∗n, Un), and

P ∗n is the conditional distribution of X∗n+1 given Fn, instead of F∗n = FX∗
n ∨ FU

n . Nevertheless, the conclusions of Theorem

4.2.1 continue to hold for X∗ even after changing the filtration since

E[W ∗n |Fn−1 ∨ σ(Xn)] = w∗(X∗n),

and as (Xn, Pn−1, Un, X∗n, P
∗
n−1)n≥1 is a Markov process.
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Curiously, if the dominant dose is only one, i.e. D = {x̄} for some x̄ ∈ X, then

Xn
p−→ x̄.

In either case, one cannot extend the convergence in probability to almost sure. Indeed, under the stronger

assumption 0 < ν(D) < 1, one has
∑∞
n=1 Pn(Dc) = ∞ a.s.[P], and thus

∑∞
n=1 δXn(Dc) = ∞ a.s.[P] by

Lévy’s extension to the Borel-Cantelli lemmas, so one is certain to see infinitely many dominated doses. Yet,
1
n

∑n
i=1 δXi(Dcδ)

a.s.−→ 0; hence,
∑n
i=1 δXi(Dδ)

/∑n
i=1 δXi(Dcδ)

a.s.−→ ∞, for any δ > 0, so the rate with which

one discovers near-dominant relative to non-dominant doses increases.

In fact, the following result sheds some light on the rate of convergence. For that purpose, let w0 ∈ (w̄−η, w̄),

where η was introduced in (IV.2). Take x0 ∈ w−1({w0}) and define δ0 := d(x0,D), w̄0 := supx∈Dcδ0
w(x) and

D0 :=
{
x ∈ Dcδ0 : w(x) = w̄0

}
.

Then D0 6= ∅ collects the doses that are dominant within Dcδ0 and have average weight w̄0 < w̄. We show

next that
∑n
i=1 δXi(Dcδ0) is P-a.s. eventually greater than any power of n less than w̄0/w̄.

Proposition 4.2.3. Suppose D0 ⊆ supp
(
ν(· ∩ Dcδ0)

)
. Under the conditions of Theorem 4.2.2, one has

1

nγ

n∑
i=1

δXi(Dcδ0) −→
{

0 γ > w̄0/w̄,

∞ γ < w̄0/w̄
a.s.[P].

Proof. Denote by

Mn(·) :=

n∑
i=1

δXi(·) + 1, Nn(·) := θν(·) +

n∑
i=1

WiδXi(·), Nn = θ +

n∑
i=1

Wi,

for n ≥ 1. As
∑n
i=1 δXi(Dδ0) and

∑n
i=1 δXi(Dcδ0) both diverge, we can work with Mn(Dδ0) and Mn(Dcδ0)

instead. From Theorem 4.2.2,

Nn(Dδ0)

Mn(Dδ0)
=

n∑n
i=1 δXi(Dδ0) + 1

1

n

(
θν(Dδ0) +

n∑
i=1

WiδXi(Dδ0)
)
−→ w̄ a.s.[P].

On the other hand, Theorem 4.2.2 as applied to the subsequence of Dcδ0-valued observations, which is itself

a DPS, implies
Nn(Dcδ0)

Mn(Dcδ0)
−→ w̄0 a.s.[P].

Let ψ > w̄/w̄0. It follows for each n ≥ 1 that

E
[
Mn+1(Dδ0)

Mn+1(Dcδ0)ψ
− Mn(Dδ0)

Mn(Dcδ0)ψ

∣∣∣Fn] =
Pn(Dδ0)

Mn(Dcδ0)ψ
+

(
Mn(Dδ0)

(Mn(Dcδ0) + 1)ψ
− Mn(Dδ0)

Mn(Dcδ0)ψ

)
Pn(Dcδ0) ≤

≤ Pn(Dδ0)

Mn(Dcδ0)ψ
+ Pn(Dcδ0)Mn(Dδ0)

(
− ψ

Mn(Dcδ0)ψ+1
+

c

Mn(Dcδ0)ψ+2

)
=

=
Pn(Dδ0)

Mn(Dcδ0)ψ

(
1− ψMn(Dδ0)

Nn(Dδ0)

Nn(Dcδ0)

Mn(Dcδ0)
+ c

Mn(Dδ0)

Nn(Dδ0)

Nn(Dcδ0)

Mn(Dcδ0)2

)
,
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where the inequality is derived from Taylor’s expansion of the function f(x) = (a+ x)−ψ with a = Mn(Dcδ0)

and x = 1, for a suitable constant c ∈ R+. But

lim sup
n→∞

(
1− ψMn(Dδ0)

Nn(Dδ0)

Nn(Dcδ0)

Mn(Dcδ0)
+ c

Mn(Dδ0)

Nn(Dδ0)

Nn(Dcδ)
Mn(Dcδ0)2

)
< 0 a.s.[P];

therefore,
(
Mn(Dδ0)/Mn(Dcδ0)ψ

)
n≥1

is eventually a positive supermartingale and converges P-a.s. to a

finite limit. From Theorem 4.2.2, one has
Mn(Dδ0 )

n

a.s.−→ 1, and thus lim supn→∞
n1/ψ

Mn(Dcδ0 ) < ∞ a.s.[P], so

lim supn→∞
n1/(ψ+ε)

Mn(Dcδ0 ) = 0 a.s.[P], for any ε > 0. Repeating the same steps, one has lim supn→∞
n1/(ψ′+ε)

Mn(Dcδ0 ) = 0

a.s.[P], for any w̄/w̄0 < ψ′ < ψ and, in particular, with ε = ψ − ψ′ > 0. As a consequence,

1

n1/ψ

n∑
i=1

δXi(Dcδ0) −→∞ a.s.[P],

for any ψ > w̄/w̄0. Analogously,
(
Mn(Dcδ0)/Mn(Dδ0)1/ψ

)
n≥1

is eventually a positive supermartingale, for

any ψ < w̄/w̄0, and hence converges P-a.s. to a finite limit. Then lim supn→∞
Mn(Dcδ0 )

n1/ψ < ∞ a.s.[P], so

lim supn→∞
Mn(Dcδ0 )

n1/(ψ−ε) = 0 a.s.[P], for any 0 < ε < ψ. Repeating the same steps, one has lim supn→∞
Mn(Dcδ0 )

n1/(ψ′−ε) =

0 a.s.[P], for any ψ < ψ′ < w̄/w̄0 and, in particular, with ε = ψ′ − ψ > 0. As a result,

1

n1/ψ

n∑
i=1

δXi(Dcδ0) −→ 0 a.s.[P],

for any ψ < w̄/w̄0.

The behavior of 1
nγ

∑n
i=1 δXi(Dcδ), for γ = w̄0/w̄, remains an open question in the general case, with Zhang

et al. (2014) showing that the limit is random on (0,∞) for k colors. In fact, they derive its exact distribution

under additional assumptions. Unfortunately, the complexity of using an infinite state space prevents their

results to be immediately adapted to the whole class of DPSs.

4.2.3 Convergence on the dominant subsequence

As the DPS with an arbitrary dominance function concentrates all of its mass around the dominant set,

one could be interested in knowing the behavior of that part of the process, which is in D. A technical

prerequisite is the adoption of the stronger assumption of having non-zero probability of observing dominant

doses, ν(D) > 0, which may be unrealistic depending on the application. Under this condition, one can

prove the a.s. weak convergence of the predictive and empirical distributions of the dominant subsequence.

To that end, define the sequence of random variables (Tn)n≥0 by T0 := 0 and

Tn := inf{n ∈ N : n > Tn−1, Xn ∈ D}, for n ≥ 1,

that mark the time, at which a dominant dose has been administered. Then the sequence of dominant doses,

X̃ = (X̃n)n≥1, listed in order of delivery, and the corresponding weights, W̃ = (W̃n)n≥1, are given by

X̃n := XTn , and W̃n := WTn , for n ≥ 1,
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respectively. The accumulated information at those times is the filtration (F̃n)n≥0, where F̃0 := {∅,Ω} and

F̃n := F X̃n ∨ FW̃n , for n ≥ 1. The next theorem shows that the predictive and empirical distributions of X̃

converge to one and the same random probability measure, whose mass is distributed over D. In fact, one

can perceive these results as if the model is a DPS with X = D.

Theorem 4.2.4. Let X = (Xn)n≥1 be a dominant Pólya sequence with parameters θ, ν and w. Suppose

ν(D) > 0. Then 1
n

∑n
i=1 W̃i

a.s.−→ w̄ and there exists an P̃ ∈ KP (Ω,D) such that

P(X̃n+1 ∈ ·|F̃n)
w−→ P̃ (·) a.s[P],

1

n

n∑
i=1

δX̃i(·)
w−→ P̃ (·) a.s[P],

1

n

n∑
i=1

W̃iδX̃i(·)
w−→ w̄P̃ (·) a.s[P].

Proof. It follows that Pn(D) ≥ θν(D)
θ+nβ > 0 a.s.[P], so

∑∞
n=1 Pn(D) =∞ a.s.[P], and thus P(Xn ∈ D i.o.) = 1

by Lévy’s extension to the Borel-Cantelli lemmas. As a result, Tn <∞ a.s.[P], for n ≥ 1. Define

Pn(·|D) :=
Pn(· ∩ D)

Pn(D)
, and P̃n(·) := PTn+1−1(·|D), for n ≥ 1.

It follows P-a.s. set-wise that

P̃n(·) =
θν(· ∩ D) +

∑Tn+1−1
i=1 WiδXi(· ∩ D)

θν(D) +
∑Tn+1−1
i=1 WiδXi(D)

=

=
θν(· ∩ D) +

∑n
k=1WTkδXTk (· ∩ D)

θν(D) +
∑n
k=1WTkδXTk (D)

=

=
θν(D)ν(·|D) +

∑n
k=1 W̃kδX̃k(· ∩ D)

θν(D) +
∑n
k=1 W̃kδX̃k(D)

=
θ̃ν̃(·) +

∑n
k=1 W̃kδX̃k(·)

θ̃ +
∑n
k=1 W̃k

,

where θ̃ := θν(D) and ν̃(·) := ν(·|D). Define P̃ 0
n(·) :=

θ̃ν̃(·)+
∑n
k=1 W̃kδX̃k

(·)
θ̃+

∑n
k=1 W̃k

. Then P̃ 0
n(B) is F̃n-measurable

and P̃ 0
n(B) = P̃n(B) a.s.[P], for B ∈ X . Let A ∈ F̃n and B ∈ X . Since F̃n ⊆ FTn ⊆ FTn+1−1, one has

P
(
A ∩ {X̃n+1 ∈ B}

)
= E

[
1A · PTn+1−1(B)

]
=

= E
[
1A · PTn+1−1(B ∩ D)

]
=

= E
[
1A · P̃n(B)PTn+1−1(D)

]
=

= E
[
1A · P̃n(B) · 1{XTn+1

∈D}
]

= E
[
1A · P̃n(B)

]
= E

[
1A · P̃ 0

n(B)
]
;

thus, P̃ 0
n is a version of the conditional distribution of X̃n+1 given F̃n. Denote by Ñn := θ̃ +

∑n
i=1 W̃i, for

n ≥ 1. As E[W̃n+1|F̃n] = w̄, for each n ≥ 1, and
∑∞
n=1 E[W̃ 2

n ]/n2 <∞, then

1

n

n∑
i=1

W̃i −→ w̄ a.s.[P],

by Lemma A.7 in the Appendix; hence, Ñn/n
a.s.−→ w̄. Let A ∈ X ∩D. From x−x2 ≤ x

1+x ≤ x, for 0 ≤ x ≤ 1,

one has that

E
[
P̃ 0
n+1(A)− P̃ 0

n(A)|F̃n
]

= E
[
W̃n+1

Ñn+1

(
δX̃n+1

(A)− P̃ 0
n(A)

)∣∣∣F̃n] =
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= E
[
W̃n+1

Ñn+1

(
1− P̃ 0

n(A)
)
δX̃n+1

(A)
∣∣∣F̃n]+ E

[
W̃n+1

Ñn+1

(
−P̃ 0

n(A)
)
δX̃n+1

(Ac)
∣∣∣F̃n] =

= P̃ 0
n(Ac)E

[
W̃n+1δX̃n+1

(A)

Ñn + W̃n+1δX̃n+1
(A)

∣∣∣F̃n]− P̃ 0
n(A)E

[
W̃n+1δX̃n+1

(Ac)

Ñn + W̃n+1δX̃n+1
(Ac)

∣∣∣F̃n] =

= P̃ 0
n(A)P̃ 0

n(Ac)

{
1

P̃ 0
n(A)

E
[

W̃n+1δX̃n+1
(A)/Ñn

1 + W̃n+1δX̃n+1
(A)/Ñn

∣∣∣F̃n]−
− 1

P̃ 0
n(Ac)

E
[

W̃n+1δX̃n+1
(Ac)/Ñn

1 + W̃n+1δX̃n+1
(Ac)/Ñn

∣∣∣F̃n]} ≤
≤ P̃ 0

n(A)P̃ 0
n(Ac)

{
1

P̃ 0
n(A)

E
[
W̃n+1δX̃n+1

(A)

Ñn

∣∣∣F̃n]−
− 1

P̃ 0
n(Ac)

E
[
W̃n+1δX̃n+1

(Ac)

Ñn
−
W̃ 2
n+1δX̃n+1

(Ac)

Ñ2
n

∣∣∣F̃n]} =

= P̃ 0
n(A)P̃ 0

n(Ac)

{
w̄

P̃ 0
n(A)Ñn

P(X̃n+1 ∈ A|F̃n)− w̄

P̃ 0
n(Ac)Ñn

P(X̃n+1 ∈ Ac|F̃n)+

+
1

P̃ 0
n(Ac)

E
[
W̃ 2
n+1δX̃n+1

(Ac)

Ñ2
n

∣∣∣F̃n]} ≤
≤ P̃ 0

n(A)P̃ 0
n(Ac)

β2

Ñ2
n

≤ β2

4Ñ2
n

,

where

E[W̃n+1δX̃n+1
(A)|F̃n] = E

[
E[W̃n+1|F̃n ∨ σ(X̃n+1)]δX̃n+1

(A)
∣∣F̃n] = E[w(X̃n+1)δX̃n+1

(A)|F̃n] = w̄P̃ 0
n(A),

using that Ũn is independent of (X̃1, Ũ1, . . . , X̃n−1, Ũn−1, X̃n), and

E[W̃n+1δX̃n+1
(Ac)|F̃n] = E[w(X̃n+1)δX̃n+1

(Ac)|F̃n] = w̄P̃ 0
n(Ac).

As a result,
∞∑
n=1

E
[
P̃ 0
n+1(A)− P̃ 0

n(A)|F̃n
]
≤ β2

4

∞∑
n=1

1

n2

(
n

Ñn

)2

<∞ a.s.[P].

On the other hand, it holds P-a.s. that

∞∑
n=1

E
[(
P̃ 0
n+1(A)− P̃ 0

n(A)
)2∣∣F̃n] =

∞∑
n=1

E
[
W̃ 2
n+1

Ñ2
n+1

(
δX̃n+1

(A)− P̃ 0
n(A)

)2∣∣∣F̃n] ≤ 2β2
∞∑
n=1

1

n2

(
n

Ñn

)2

<∞;

thus, by Lemma A.8 in the Appendix, (P̃ 0
n(A))n≥1 converges a.s.[P]. As a consequence, (E[f(X̃n+1)|F̃n])n≥1

converges a.s.[P], for each f ∈ Cb(D) (see proof to Theorem 4.2.1). By Lemma 2.4 in Berti et al. (2004),

there exists an P̃ ∈ KP (Ω,D) such that P̃ 0
n

w−→ P̃ a.s.[P]. By Lemma A.7 in the Appendix, one has that
1
n

∑n
i=1 δX̃i

w−→ P̃ a.s.[P]. Let f ∈ Cb(D). It follows that

1

n

n∑
i=1

W̃if(X̃i) =
θ +

∑n
i=1 W̃i

n

∑n
i=1 W̃if(X̃i)

θE[f(X̃1)] +
∑n
i=1 W̃if(X̃i)

E[f(X̃n+1)|F̃n] −→ w̄

∫
X
f(x)P̃ (dx) a.s.[P];

therefore, 1
n

∑n
i=1 W̃iδX̃i

w−→ w̄P̃ a.s.[P].
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It follows from the results in Chapter I, Section 1.3 that

P(X̃n+1 ∈ ·|X̃1, . . . , X̃n)
w−→ P̃ (·) a.s.[P];

thus, X̃ is asymptotically exchangeable with directing measure P̃ . As X̃ is generally not conditionally

identically distributed (c.i.d.), we cannot apply the same reasoning as in Theorem 3.2.1 to show that P̃ is

a mixture between ν and a discrete measure. However, in the particular case that not only the mean but

the whole distribution of the W̃n’s coincides, the process X̃ becomes trivially a c.i.d. RRPS and satisfies

assumption (A.1) from Chapter III. Then θ̃
/(
θ̃ +

∑∞
n=1 W̃n

)
= 0 a.s.[P], so if one assumes further that ν

is diffuse, it follows P̃ =
∑
k p
∗
kδX̃∗k

a.s.[P] by Theorem 3.2.1, where the X̃∗k ’s are the distinct values of X̃ in

order of appearence and

p∗k = lim
n→∞

1

n

n∑
i=1

δX̃i({X̃
∗
k}) a.s.[P].

In the extreme case that the dominant weights are deterministic, i.e. W̃n = M , for some M ∈ R+, the

sequence (P(X̃n+1 ∈ ·|F̃n))n≥1 corresponds to the predictive distributions of a Pólya sequence up to a

multiplicative constant, and hence

P̃ ∼ DP
(
M−1θ̃, ν̃

)
.

4.2.4 DPS with a discontinuity at D

Predictive and empirical a.s. weak convergence for the original sequence can be realized at least when

Pn(D)
a.s.−→ 1, which is not granted under the most general conditions as P̃ might allocate some of its mass

on the boundary of D. Indeed, in the notation of Theorem 4.2.4,

E[f(Xn+1)|Fn] = Pn(D)

∫
X
f(x)Pn(dx|D) + Pn(Dc)

∫
X
f(x)Pn(dx|Dc) −→

∫
X
f(x)P̃ (dx) a.s.[P],

for each f ∈ Cb(X), provided Pn(D)
a.s.−→ 1, where the second term vanishes because f is bounded, and

limn→∞
∫
X f(x)Pn(dx|D) = limn→∞

∫
X f(x)P̃n(dx) a.s.[P] since (Pn(·|D))n≥1 is P-a.s. a sequence of the

form

PT1−1(·|D), . . . , PT1−1(·|D), PT2−1(·|D), . . . , PTn−1−1(·|D), PTn−1(·|D), . . . , PTn−1(·|D), PTn+1−1(·|D), . . . ,

where each PTn−1(·|D) term appears Tn − Tn−1 times, which is P-a.s. finite. One can then show that

Pn
w−→ P̃ a.s.[P], P̂n

w−→ P̃ a.s.[P],
1

n

n∑
i=1

WiδXi
w−→ w̄P̃ a.s.[P].

As a consequence, the sequence (Xn)n≥1 is directed by a random probability measure that is concentrated

on a small subset of all possible doses, thereby achieving a sparse structure in the limit.

A trivial example when that occurs is if X = D, so that Pn(D) = 1, for n ≥ 1. A not so trivial case involves

the violation of the continuity assumption on w at the dominant set D. Note that continuity of w was used

with (IV.2) to show that D is non-empty (and closed) and was needed by the auxillary process from the
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proof of Theorem 4.2.2, which could, nonetheless, be constructed with a continuous dominance function.

With these considerations in mind, we have the following result.

Proposition 4.2.5. Let X = (Xn)n≥1 be a dominant Pólya sequence with parameters θ and ν, dominant

set D 6= ∅, and dominance function w such that w̄ > w̄c := supx∈Dc w(x). Suppose ν(D) > 0. Then

Pn(D) −→ 1 a.s.[P].

Proof. Denote by Nn(·) := θν(·) +
∑n
i=1WiδXi(·) and Nn := θ +

∑n
i=1Wi, for n ≥ 1. As seen in the proof

of Theorem 4.2.2,

E[Pn+1(D)− Pn(D)|Fn] = E
[
Wn+1

Nn+1

(
δXn+1(D)− Pn(D)

)∣∣∣Fn] ≥
≥ Pn(D)Pn(Dc)

{
1

Pn(D)
E
[
Wn+1δXn+1

(D)

Nn

∣∣∣Fn]− 1

Pn(Dc)
E
[
Wn+1δXn+1

(Dc)
Nn

∣∣∣Fn]−
− 1

Pn(D)
E
[
W 2
n+1δXn+1

(D)

N2
n

∣∣∣Fn]} ≥
≥ Pn(D)Pn(Dc)

{
w̄ − w̄c

Nn
− β2

N2
n

}
;

therefore, (Pn(D))n≥1 is eventually a bounded F-submartingale and converges a.s.[P] and in L1 to some

finite random variable, say, p̃D. On the other hand,

E
[
Nn+1(Dc)
Nn+1(D)

∣∣∣Fn] = E
[
Nn(Dc) +Wn+1

Nn(D)
δXn+1(Dc)

∣∣∣Fn]+ E
[

Nn(Dc)
Nn(D) +Wn+1

δXn+1(D)
∣∣∣Fn] =

=
Nn(Dc)
Nn(D)

+
E[Wn+1δXn+1

(Dc)|Fn]

Nn(D)
− Nn(Dc)

Nn(D)
E
[

Wn+1

Nn(D) +Wn+1
δXn+1

(D)
∣∣Fn] ≤

≤ Nn(Dc)
Nn(D)

{
1 +

1

Nn

{
w̄c − w̄ Nn(D)

Nn(D) + β

}}
.

Since Pn(D) ≥ θν(D)
θ+nβ > 0, then

∑∞
n=1 Pn(D) =∞ a.s.[P], so

∑∞
n=1 δXn(D) =∞ a.s.[P] by Levy’s extension to

the Borel-Cantelli lemmas. It follows that Nn(D)
a.s.−→∞, and thus (Nn(Dc)

Nn(D) )n≥1 is eventually a non-negative

supermartingale with limn→∞
Nn(Dc)
Nn(D) <∞ a.s.[P]. As a result,

lim sup
n→∞

Pn(Dc)
Pn(D)

<∞ a.s.[P];

thus, lim infn→∞
Pn(D)
Pn(Dc) > 0 a.s.[P], so p̃D > 0 a.s.[P]. Let ε ∈ (0, 1). Define

T (1) := inf
{
n ∈ N : Pn(D)(1− Pn(D)) ≤ ε

}
, and T (1)

n := T (1) ∧ n, for n ≥ 1.

Then T (1) is an F-stopping time and {T (1) = ∞} ⊆ {T (1)
n ≥ k} ∈ Fk−1, for k = 1, . . . , n. It follows as in

the proof of Theorem 4.2.1 and from the above results that

1 ≥ E
[
P
T

(1)
n

(D)
]
≥ E

[ n∑
k=1

E
[
Pk(D)− Pk−1(D)|Fk−1

]
· 1{T (1)=∞}

]
≥
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≥ ε ·
n∑
k=1

1

k
E
[

k

Nk−1

{
w̄ − w̄c − β2

Nk−1

}
· 1{T (1)=∞}

]
.

But Nn
a.s.−→∞ and n

Nn−1
≥ 1

θ/n+β , so from the generalized Fatou’s lemma,

lim inf
n→∞

E
[

n

Nn−1

{
w̄ − w̄c − β2

Nn−1

}
· 1{T (1)=∞}

]
≥ w̄ − w̄c

β
· P(T (1) =∞).

Suppose, by contradiction, that P(T (1) =∞) > 0. Then

1 ≥ ε ·
n∑
k=1

1

k
E
[

k

Nk−1

{
w̄ − w̄c − β2

Nk−1

}
· 1{T (1)=∞}

]
−→∞,

absurd; hence, P(T (1) =∞) = 0. Arguing as in Theorem 4.2.1 through the strong Markov property, one has

P
(
Pn(D)(1− Pn(D)) < ε i.o.

)
= 1.

As this is true for any ε > 0, it follows that Pn(D)(1− Pn(D))
p−→ 0, and thus p̃D(1− p̃D) = 0 a.s.[P]. But

p̃D > 0 a.s.[P]; therefore, p̃D = 1 a.s.[P].

As the conclusions of Theorem 4.2.4 are true, irrespective of the continuity of w, it follows under the

conditions of Proposition 4.2.5 that

Pn
w−→ P̃ a.s.[P], P̂n

w−→ P̃ a.s.[P],
1

n

n∑
i=1

WiδXi
w−→ w̄P̃ a.s.[P].

From Lemma A.7 in the Appendix and Theorem 4.2.2, one has further that

1

n

n∑
i=1

δXi(D) −→ 1 a.s.[P],
1

n

n∑
i=1

Wi −→ w̄ a.s.[P],
1

n

n∑
i=1

WiδXi(D) −→ w̄ a.s.[P].

Denote by D(Dc) := {x ∈ Dc : w(x) = w̄c}. If D(Dc) 6= ∅ and ν
(
D(Dc)

)
> 0, then Theorem 4.2.2, as applied

to the subsequence in Dc, implies 1∑n
i=1 δXi (D

c)

∑n
i=1WiδXi(D

c)
a.s.−→ w̄c. As a consequence, the following

result, whose proof is identical to that of Proposition 4.2.3, is true

1

nγ

n∑
i=1

δXi(Dc) −→
{

0 γ > w̄c
/
w̄,

∞ γ < w̄c
/
w̄

a.s.[P].

4.2.5 Random partition

Given that non-dominant doses are administered less frequently over time, it would be informative to inves-

tigate the clustering behavior of the process as a whole. For that purpose, define the sequence (Ln)n≥1 by

L1 := 1 and

Ln := max
{
k ∈ {1, . . . , n} : Xk /∈ {X1, . . . , Xk−1}

}
, for n ≥ 2,
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that counts the number of distinct doses that have been already tried. In fact, (Ln)n≥1 denotes the length

of the random partition, induced by the observations at each stage n of the experiment. It follows that the

clustering structure implied by a DPS has the same behavior as that of the classical Pólya sequence.

Proposition 4.2.6. Let X = (Xn)n≥1 be a dominant Pólya sequence with parameters θ, ν and w. Suppose

D ⊆ supp(ν) and ν is diffuse. Then
Ln

log n
−→ θ

w̄
a.s.[P].

Proof. Define θ0 := 1, Z1 := L1 = 1 and

θn :=
θ

θ +
∑n
i=1Wi

, for n ≥ 1, and Zn := Ln − Ln−1, for n ≥ 2.

Then Ln =
∑n
i=1 Zi =

∑n
i=1 1{Zi=1} and θn = P(Ln+1 = Ln + 1|Fn) = P(Zn+1 = 1|Fn), for n ≥ 1. As

θn ≥ θ
/

(θ + βn), then
∑∞
n=1 P(Zn+1 = 1|Fn) =

∑∞
n=1 θn = ∞ a.s.[P], so from Lévy’s extension to the

Borel-Cantelli lemmas,

Ln∑n
k=1 θk−1

=

∑n
i=1 1{Zi=1}∑n

k=1 P(Zk = 1|Fk−1)
−→ 1 a.s.[P].

On the other hand, Lemma A.3 in the Appendix and Theorem 4.2.2 imply

1

log n

n∑
k=1

θk−1 =
1

log n
+

θ

log n

n−1∑
k=1

1

k

(
k

θ +
∑k
j=1Wj

)
−→ θ

w̄
a.s.[P],

where we have used that 1
logn

∑n
k=1

1
k → 1. Combining both results,

Ln
log n

−→ θ

w̄
a.s.[P].

It follows for large n that the number of clusters is approximately w̄−1θ log n; thus, regardless of the weighting

process, the clustering behavior of any DPS is ultimately governed by the parameters θ and w̄. Moreover,

we have from Lemma A.3 in the Appendix that

1

log n

n∑
k=1

θk−1(1− θk−1) =
θ

log n

n−1∑
k=1

∑k
i=1Wi(

θ +
∑k
i=1Wi

)2 =

=
θ

n

n−1∑
k=1

( ∑k
i=1Wi

θ +
∑k
i=1Wi

)2 k∑k
i=1Wi

1

k
−→ θ

w̄
a.s.[P].

In that case, if we assume further that Wn = h̄(Un), for some h ∈M+(B[0, 1]), then (Xn)n≥1 becomes c.i.d.,

and thus Theorem 5.1 in Bassetti et al. (2010) implies (see also the discussion in Section 3.2.2, Chapter III)

Ln −
∑n
k=1 θk−1

log n

stably−→ N
(

0,
θ

w̄

)
.
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4.3 Central limit theorems

In this section we present second-order convergence properties of DPSs in terms of stable and a.s. conditional

convergence (see Chapter I, Section 1.3), which would inform us on the set-wise rates of convergence of the

predictive and empirical distributions to the common random limit. The first theorem, which is based on the

findings in Section 4.2.3, discusses convergence with respect to the dominant subsequence, X̃ = (X̃n)n≥1,

and implies, in particular, that the random limit has a non-atomic distribution. Extending these results to

the original sequence of observations is shown to be generally not possible, save for some peculiar cases.

4.3.1 Central limit theorem for dominant subsequence

The proof of Theorem 4.2.4 contained within itself the fact that

P(X̃n+1 ∈ A|F̃n) −→ p̃A a.s.[P],

for each A ∈ X ∩ D and some p̃A ∈ M(H), where F̃ = (F̃n)n≥0 is the filtration generated by (X̃, W̃ ),

with W̃ = (W̃n)n≥1 the weighting process of the dominant subsequence. It follows from Lemma A.7 in the

Appendix that

1

n

n∑
i=1

δX̃i(A) −→ p̃A a.s.[P].

As the empirical and predictive distributions of X̃ converge to the same random limit, it makes sense to

investigate the rate, with which they approach each other; for that purpose, we study the asymptotic behavior

of

Cn(A) :=
√
n

(
1

n

n∑
i=1

δX̃i(A)− P(X̃n+1 ∈ A|F̃n)

)
,

and

Dn(A) :=
√
n
(
P(X̃n+1 ∈ A|F̃n)− p̃A

)
.

The next theorem, whose proof incorporates ideas and techniques from Berti et al. (2010), Berti et al. (2011),

Crimaldi et al. (2007) and Crimaldi (2009), requires the existence of second-order predictive weight limits in

order for Cn(A) and Dn(A) to converge. As a by-product, we show that (P(X̃n+1 ∈ A|F̃n))n≥1 is, in fact, a

uniformly integrable quasi-F̃-martingale.

Theorem 4.3.1. Let X = (Xn)n≥1 be a dominant Pólya sequence with parameters θ, ν and w. Suppose

ν(D) > 0. If limn→∞ E[W̃ 2
n+1δX̃n+1

(Aj)|F̃n] = qAj a.s.[P], for j = 1, 2 with A1 = A and A2 = Ac, then

Cn(A)
stably−→ N

(
0, U(A)

)
,

and

Dn(A)
a.s.cond.−→ N

(
0, V (A)

)
w.r.t. F̃ ,

where

V (A) =
1

w̄2

{
(p̃Ac)

2qA + (p̃A)2qAc
}
, and U(A) = V (A)− p̃A(1− p̃A).
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Proof. Denote by

P̃n(·) := P(X̃n+1 ∈ ·|F̃n), Ñn(·) := θ̃ν̃(·) +

n∑
i=1

W̃iδX̃i(·), Ñn := θ̃ +

n∑
i=1

W̃i Hn :=
{

2Ñn ≥ nw̄
}
,

for n ≥ 0, where
∑0
i=1 ai = 0. It follows from Theorem 4.2.4 that 1

nÑn
a.s.−→ w̄, and thus P(Hc

n i.o.) = 0.

Part I: Dn(A)
a.s.cond.−→ N (0, V (A)). The first part of the proof is based on a variant of Proposition 1 in (Berti

et al., 2011).

Proposition: Let (Yn)n≥1 be a sequence of real-valued integrable random variables on (Ω,H,P), F =

(Fn)n≥0 be a filtration on (Ω,H), and Hn ∈ Fn be such that P(Hc
n i.o.) = 0. Denote by Zn :=

E[Yn+1|Fn], for n ≥ 1. If (Zn)n≥1 is uniformly integrable,

(i)
∑∞
n=1

√
n · E

∣∣1Hn−1
E[Zn − Zn−1|Fn−1]

∣∣ <∞;

(ii) E
[
supn∈N

√
n · 1Hn−1

|Zn−1 − Zn|
]
<∞;

(iii) n ·
∑
k≥n(Zk−1 − Zk)2 a.s.−→ V , for some V ∈M+(H);

then Zn → Z a.s.[P] and in L1, for some Z ∈M(H), and

√
n(Zn − Z)

a.s.cond.−→ N (0, V ) w.r.t. F .

where in our case,

Yn = 1A(X̃n), Zn = P̃n(A), V = V (A), Fn = F̃n.

It was shown in the proof of Theorem 4.2.4 that

E[P̃n+1(A)− P̃n(A)|F̃n] = P̃n(A)P̃n(Ac)

{
1

P̃n(A)
E
[

W̃n+1δX̃n+1
(A)/Ñn

1 + W̃n+1δX̃n+1
(A)/Ñn

∣∣∣F̃n]−
− 1

P̃n(Ac)
E
[

W̃n+1δX̃n+1
(Ac)/Ñn

1 + W̃n+1δX̃n+1
(Ac)/Ñn

∣∣∣F̃n]}.
As x− x2 ≤ x

1+x ≤ x, for 0 ≤ x ≤ 1, one has
∣∣E[P̃n+1(A)− P̃n(A)|F̃n]

∣∣ ≤ β2

4Ñ2
n

. Then

∞∑
n=1

√
n · E

∣∣1Hn−1E[P̃n(A)− P̃n−1(A)|F̃n−1]
∣∣ ≤ β2

4

∞∑
n=1

1

n3/2
E
[
1Hn−1

( n

Ñn−1

)2
]
<∞,

since n/Ñn ≤ 2/w̄ on Hn. On the other hand,

∣∣P̃n(A)− P̃n−1(A)
∣∣ =

∣∣∣W̃n

Ñn

(
δX̃n(A)− P̃n−1(A)

)∣∣∣ ≤ 2β

Ñn
;

hence,

E
[
sup
n∈N

n2 · 1Hn−1

(
P̃n(A)− P̃n−1(A)

)4] ≤ 16β4
∞∑
n=1

1

n2
E
[
1Hn−1

( n

Ñn−1

)4
]
<∞,

by the same token. Since δXn(A) · δXn(Ac) = 0, it follows

E
[
(P̃n(A)− P̃n−1(A))2

∣∣F̃n−1

]
=
(
P̃n−1(Ac)

)2E[W̃ 2
nδX̃n(A)

Ñ2
n

∣∣∣F̃n−1

]
+
(
P̃n−1(A)

)2E[W̃ 2
nδX̃n(Ac)

Ñ2
n

∣∣∣F̃n−1

]
.
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As n2

(Ñn−1+β)2
E
[
W̃ 2
nδX̃n(Ai)|F̃n−1

]
≤ n2 ·E

[ W̃ 2
nδX̃n (Ai)

Ñ2
n

∣∣F̃n−1

]
≤ n2

Ñ2
n−1

E
[
W̃ 2
nδX̃n(Ai)|F̃n−1

]
, for i = 1, 2, then

n2 · E
[
(P̃n(A)− P̃n−1(A))2

∣∣F̃n−1

] a.s.−→ V (A).

Define Rn := n2 · 1Hn−1

(
P̃n(A)− P̃n−1(A)

)2
, for n ≥ 1. Given that Hn−1 ∈ F̃n−1 and P(1Hn = 1 ult.) = 1,

one has E[Rn|F̃n−1]
a.s.−→ V (A). Moreover,

E[R2
n]

n2
≤ n2 · E

[
1Hn−1

16β4

Ñ4
n−1

]
≤ 162β4n2

w̄4(n− 1)4
;

thus,
∑∞
n=1 E[R2

n]/n2 <∞, so n ·
∑
k≥nRk/k

2 a.s.−→ V (A) by Lemma A.7 in the Appendix. As a result,

n ·
∑
k≥n

1Hk−1

(
P̃k(A)− P̃k−1(A)

)2
= n ·

∑
k≥n

Rk
k2
−→ V (A) a.s.[P].

But P(1Hn = 1 ult.) = 1, so it holds

n ·
∑
k≥n

(
P̃k(A)− P̃k−1(A)

)2 −→ V (A) a.s.[P].

Part II: Cn(A)
stably−→ N (0, U(A)). It follows that

Cn(A) =
1√
n

n∑
k=1

{
δX̃k(A)− P̃k−1(A) + k

(
P̃k−1(A)− P̃k(A)

)}
.

Define

C∗n(A) :=
1√
n

n∑
k=1

1Hk−1

{
δX̃k(A)− P̃k−1(A) + k

(
P̃k−1(A)− P̃k(A)

)}
.

As P(1Hn = 1 ult.) = 1, then Cn(A) − C∗n(A)
a.s.−→ 0, so from the properties of stable convergence, it is

enough that C∗n(A)
stably−→ N (0, U(A)) for the general result to hold. Note that

C∗n(A) =
1√
n

n∑
k=1

1Hk−1

{
δX̃k(A)− P̃k−1(A) + k

(
E[P̃k(A)|F̃k−1]− P̃k(A)

)}
+Qn,

where

Qn :=
1√
n

n∑
k=1

k · 1Hk−1

(
P̃k−1(A)− E[P̃k(A)|F̃k−1]

)
.

Since
∣∣E[P̃n(A)|F̃n−1]− P̃n−1(A)

∣∣ ≤ β2

4Ñ2
n−1

, one has

E|Qn| ≤
1√
n

n∑
k=1

k · E
[
1Hk−1

∣∣E[P̃k(A)|F̃k−1]− P̃k−1(A)
∣∣] ≤

≤ 1√
n

n∑
k=1

k · E
[
1Hk−1

β2

4Ñ2
k−1

]
≤ β2

4
√
n

+
1√
n

n∑
k=2

β2k

w̄2(k − 1)2
≈ log n√

n
−→ 0.

Therefore, we need only to show that the following result, which has been suggested by Berti et al. (2011)

and is derived from Corollary 7 in Crimaldi et al. (2007), holds.



62

Proposition: Let (Gn)n≥0 be a filtration on (Ω,H), and Mn = (Mn,k)1≤k≤n be a martingale w.r.t.

(Gk)1≤k≤n such that Mn,0 = 0. Denote by U the completion of G∞ in H and

Yn,k = Mn,k −Mn,k−1.

If it holds

(i) E
[
max1≤k≤n |Yn,k|

]
−→ 0;

(ii)
∑n
k=1 Y

2
n,k

p−→ U , for some U ∈M+(U);

then
n∑
k=1

Yn,k
stably−→ N (0, U).

where in our case,

Yn,k =
1√
n
1Hk−1

{
δX̃k(A)− P̃k−1(A) + k

(
E[P̃k(A)|F̃k−1]− P̃k(A)

)}
, Gn = F̃n, U = U(A).

First note that E[Yn,k|F̃k−1] = 0. Regarding (i),

max
1≤k≤n

|Yn,k| ≤
1√
n
· max

1≤k≤n
1Hk−1

∣∣δX̃k(A)− P̃k−1(A)
∣∣+

1√
n
·
n∑
k=1

k · 1Hk−1

∣∣E[P̃k(A)|F̃k−1]− P̃k−1(A)
∣∣+

+
1√
n
· max

1≤k≤n
k · 1Hk−1

∣∣P̃k−1(A)− P̃k(A)
∣∣.

Then 1√
n
E[max1≤k≤n 1Hk−1

|δX̃k(A)−P̃k−1(A)|]→ 0 and 1√
n

∑n
k=1 kE[1Hk−1

|E[P̃k(A)|F̃k−1]−P̃k−1(A)|]→ 0

from above. In addition,

1√
n
· E
[

max
1≤k≤n

k · 1Hk−1

∣∣P̃k−1(A)− P̃k(A)
∣∣] ≤ 1√

n
· E
[

max
1≤k≤n

k · 1Hk−1

β

Ñk−1

]
≤ c√

n
−→ 0,

for some suitable constant c ∈ R+; therefore, E
[
max1≤k≤n |Yn,k|

]
−→ 0. Regarding (ii), write

n∑
k=1

Y 2
n,k = Fn +Gn +Kn,

where

Fn =
1

n

n∑
k=1

1Hk−1

{
δX̃k(A)− P̃k−1(A) + k

(
P̃k−1(A)− P̃k(A)

)}2

,

Gn =
1

n

n∑
k=1

k2 · 1Hk−1

(
E[P̃k(A)|F̃k−1]− P̃k−1(A)

)2
,

and

Kn =
2

n

n∑
k=1

k · 1Hk−1

{
δX̃k(A)− P̃k−1(A) + k

(
P̃k−1(A)− P̃k(A)

)}(
E[P̃k(A)|F̃k−1]− P̃k−1(A)

)
.

Now,

Fn =
1

n

n∑
k=1

1Hk−1

(
δX̃k(A)− P̃k−1(A)

)2
+

1

n

n∑
k=1

k2 · 1Hk−1

(
P̃k−1(A)− P̃k(A)

)2
+
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+
2

n

n∑
k=1

k · 1Hk−1

(
P̃k−1(A)− P̃k(A)

)(
δX̃k(A)− P̃k−1(A)

)
.

From Part I, n2 · 1Hn−1
E
[
(P̃n(A)− P̃n−1(A))2

∣∣F̃n−1

] a.s.−→ V (A), and thus, by Lemma A.7 in the Appendix,

1

n

n∑
k=1

k2 · 1Hk−1

(
P̃k−1(A)− P̃k(A)

)2 −→ V (A) a.s.[P].

In addition, P(1Hn = 1 ult.) = 1 implies that

1

n

n∑
k=1

1Hk−1

(
δX̃k(A)− P̃k−1(A)

)2 −→ p̃A(1− p̃A) a.s.[P].

On the other hand,

(P̃n−1(A)− P̃n(A))(δX̃n(A)− P̃n−1(A)) = −P̃n−1(A)
(
P̃n−1(A)− P̃n(A)

)
−
(Ñn(A)

Ñn
− Ñn−1(A)

Ñn−1

)
δX̃n(A) =

= −P̃n−1(A)
(
P̃n−1(A)− P̃n(A)

)
−
(
1− P̃n−1(A)

)W̃nδX̃n(A)

Ñn
.

As n
Ñn−1+β

E
[
W̃nδX̃n(A)|F̃n−1

]
≤ n ·E

[
W̃nδX̃n(A)/Ñn

∣∣F̃n−1

]
≤ n

Ñn−1
E
[
W̃nδX̃n(A)|F̃n−1

]
, it follows that n ·

E
[
W̃nδX̃n(A)/Ñn

∣∣F̃n−1

] a.s.−→ p̃A by Theorem 4.2.4. Moreover, n·P̃n−1(A)1Hn−1

∣∣E[P̃n(A)−P̃n−1(A)|F̃n−1]
∣∣ ≤

cn
(n−1)2

a.s.−→ 0 for some suitable constant c ∈ R+. As a result,

n · 1Hn−1
E
[
(P̃n−1(A)− P̃n(A))(δX̃n(A)− P̃n−1(A))

∣∣F̃n−1

]
−→ −p̃A(1− p̃A) a.s.[P];

hence, by Lemma A.7 in the Appendix,

2

n

n∑
k=1

k · 1Hk−1

(
P̃k−1(A)− P̃k(A)

)(
δX̃k(A)− P̃k−1(A)

)
−→ −2p̃A(1− p̃A) a.s.[P],

and, ultimately, Fn
a.s.−→ U(A). As for Gn and Kn, we have from before

E|Gn| =
1

n

n∑
k=1

k2 · E
[
1Hk−1

(
E[P̃k(A)|F̃k−1]− P̃k−1(A)

)2] ≤ 1

n

n∑
k=1

o(k−1) −→ 0,

that is Gn → 0 in L1, so Gn
p−→ 0, whereas K2

n/4 ≤ FnGn
p−→ 0, and thus Kn

p−→ 0. As a consequence,∑n
k=1 Y

2
n,k

p−→ U(A) and the conclusions of the proposition follow.

It follows from Lemma 1 in Berti et al. (2011) that under the conditions of Theorem 4.3.1(
Cn(A), Dn(A)

) stably−→ N
(
0, U(A)

)
⊗N

(
0, V (A)

)
,
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which in turn implies

√
n

(
1

n

n∑
i=1

δX̃i(A)− p̃A
)

= Cn(A) +Dn(A)
stably−→ N

(
0, U(A) + V (A)

)
.

If (W̃n)n≥1 are further i.i.d., then (X̃n)n≥1 is a c.i.d. RRPS that satisfies the assumptions in Theorem 3.3.1

of Chapter III, so we can recover a central limit result for the predictive and empirical means, evaluated at

any f ∈Mb(X ).

Another consequence of the a.s. conditional convergence in Theorem 4.3.1 is the following proposition, which

states that the distribution of p̃A has no point masses. In particular, this implies 0 < p̃A < 1 a.s.[P], so that

N (0, V (A)) and N (0, U(A)) are guaranteed to be non-degenerate kernels. The proof is identical to the one

that accompanies Proposition 3.3.3 of Chapter III, which is itself derived from Theorem 3.2 in Aletti et al.

(2009).

Proposition 4.3.2. Under the conditions of Theorem 4.3.1, one has P(p̃A = p) = 0, for all p ∈ [0, 1].

4.3.2 Central limit theorem for original sequence

It is more natural to have central limit results for the predictive and empirical distributions of the original

sequence (Xn)n≥1, yet convergence of, say,
√
n(Pn(A) − p̃A) is not always guaranteed (a counterexample

follows later). However, Proposition 4.2.3 and the discussion following Proposition 4.2.5 suggest at least one

case, for which the weak limit exists. To that end, define by D(Dc) := {x ∈ Dc : w(x) = w̄c} the dominant

subset within Dc, with w̄c := supx∈Dc w(x).

Corollary 4.3.3. Under the conditions of Proposition 4.2.5, if it holds further that w̄ > 2w̄c, D(Dc) 6= ∅
and ν

(
D(Dc)

)
> 0, then

√
n
(
P̂n(A)− Pn(A)

) stably−→ N
(
0, U(A)

)
,

and √
n
(
Pn(A)− p̃A

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F ,

where U(A) and V (A) are as in Theorem 4.3.1.

Remark. Note that U(A) and V (A) are evaluated as in Theorem 4.3.1, which means that qAc is the P-a.s.

limit of E[W̃ 2
n+1δX̃n+1

(Ac ∩ D)|F̃n] and p̃Ac is, in fact, p̃Ac∩D.

Proof of Corollary 4.3.3. Denote by

Nn(·) := θν(·) +

n∑
i=1

δXi(·), Nn := θ +

n∑
i=1

Wi, Mn(·) :=

n∑
i=1

δXi(·) + 1,

Pn(·|D) :=
Pn(· ∩ D)

Pn(D)
, and P̂n(·|D) = n

P̂n(· ∩ D)

Mn(D)
,
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for n ≥ 1. Without loss of generalization, we will use Mn instead of
∑n
i=1 δXi . Let A ∈ X ∩ D satisfy the

conditions of Theorem 4.3.1. It follows from Theorem 4.3.1 and the discussion prior to Proposition 4.2.5

that √
Mn(D)

(
Pn(A|D)− p̃A

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F̃∗,

where F̃∗ is a filtration of the form

F̃T1−1, . . . , F̃T1−1, F̃T2−1, . . . , F̃Tn−1−1, F̃Tn−1, . . . , F̃Tn−1, F̃Tn+1−1, . . . ,

where each F̃Tn term appears Tn − Tn−1 times, which is P-a.s. finite. Moreover, Mn(D)/n
a.s.−→ 1 by

Proposition 4.2.5 and Lemma A.7 in the Appendix, so from a variant of Theorem 4.2 in Fortini and Petrone

(2019), √
n
(
Pn(A|D)− p̃A

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F̃∗.

Using the results in the proof of Theorem 4.2.4, one can show that the dominant process is conditionally

independent of what happens at non-dominant times, that is

P(X̃n+m ∈ ·|FTn+1−1+k) = P(X̃n+m ∈ ·|FTn+1−1) = P(X̃n+m ∈ ·|F̃n),

for m ≥ 1 and k = 0, . . . , Tn+1 − Tn − 1. As it holds p̃A = limn→∞
1
n

∑n
i=1 δX̃i(A) a.s.[P] from Lemma A.7

in the Appendix, then √
n
(
Pn(A|D)− p̃A

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F .

On the other hand, Theorem 4.2.4 and Proposition 4.2.5 imply

Pn(A) = Pn(D)Pn(A|D) + Pn(Dc)Pn(A|D) −→ p̃A a.s.[P].

As A ⊆ D, it follows that∣∣∣√n(Pn(A|D)− p̃A
)
−
√
n
(
Pn(A)− p̃A

)∣∣∣ =
√
n
∣∣∣Pn(A)

Pn(D)
− Pn(A)

∣∣∣ =

=
√
n
Pn(A)

Pn(D)
Pn(Dc) ≤ n

Nn

Nn(Dc)
Mn(Dc)

Mn(Dc)√
n

−→ 0 a.s.[P],

where Nn/n
a.s.−→ w̄ from Theorem 4.2.2, Nn(Dc)/Mn(Dc) a.s.−→ w̄c from Theorem 4.2.2 as applied to a Dc-

valued DPS, and Mn(Dc)/
√
n

a.s.−→ 0 from Proposition 4.2.3, the discussion after Proposition 4.2.5 and as

w̄c/w̄ < 1/2 by hypothesis. Using again Theorem 4.2 in Fortini and Petrone (2019),

√
n
(
Pn(A)− p̃A

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F .

In the same way, Theorem 4.3.1 implies

√
n
(
P̂n(A|D)− Pn(A|D)

) stably−→ N
(
0, U(A)

)
.

It follows that

√
n
(
P̂n(A|D)− Pn(A|D)

)
−
√
n
(
P̂n(A)− Pn(A)

)
=

=
√
n
(
Pn(A|D)− p̃A

)
−
√
n
(
Pn(A)− p̃A

)
+
√
n · P̂n(A)

P̂n(Dc)− 1
n

P̂n(D) + 1
n

−→ 0 a.s.[P],
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where P̂n(D)
a.s.−→ 1 and P̂n(A)

a.s.−→ p̃A from Proposition 4.2.5 and Lemma A.7 in the Appendix, and
√
n · P̂n(Dc) a.s.−→ 0 from Proposition 4.2.3, the discussion after Proposition 4.2.5 and as w̄c/w̄ < 1/2 by

hypothesis. As a consequence,

√
n
(
P̂n(A)− Pn(A)

) stably−→ N
(
0, U(A)

)
.

Curiously, one has from Proposition 4.2.3 that

√
n
(
Pn(A|D)− p̃A

)
−
√
n
(
Pn(A)− p̃A

)
=
√
nPn(A|D)

(
1− Pn(D)

)
=

= Pn(A|D)
n

Nn

Nn(Dc)
Mn(Dc)

Mn(Dc)√
n

−→∞ a.s.[P],

whenever w̄ < 2 · w̄c and lim infn→∞ P(X̃n+1 ∈ A|F̃n) > 0. In those cases
√
n
(
Pn(A)− p̃A

)
fails to converge

as it is, in fact,
√
n
(
Pn(A|D)− p̃A

)
that is convergent.

4.4 DPS with finite number of colors

The finite-color DPS, also known as the randomly reinforced urn model (RRU), has long been a subject of

interest, with some of the most important studies being Durham et al. (1998), Muliere et al. (2006), and

Berti et al. (2010). In fact, the name ”RRU” has been coined by Muliere et al. (2006), although Durham

et al. (1998) are among the earliest to study particular cases of the basic model. On the other hand, Berti

et al. (2010) are, as far as we know, first to investigate RRUs with more than one dominant color in the

context of continuous responses. The goal of this section is to describe how the aforementioned papers fit

within the DPS framework.

Example 4.4.1 (Durham et al., 1998). Let α0, α1 ∈ (0, 1) be such that α0 < α1. The randomized Pólya urn

model of Durham et al. (1998) (introduced in Durham and Yu (1990) and studied in Li et al. (1996)) is the

{0, 1}-valued DPS with weights of the form

Wn = 1{Un≤αXn},

where (Un)n≥1 is a sequence of i.i.d.Unif[0, 1] random variables that is independent of (Xn)n≥1. In the

context of balls as treatments, αx can be interpreted as the success probability of treatment x; hence,

according to the above structure, we reinforce the urn with one additional ball of the same color, whenever

the corresponding treatment has been successful. It follows that

E[Wn|Xn] = αXn ;
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thus, D = {1}, so dominance is interpreted as a treatment having higher success probability. If the urn

contains initially balls of color 1, then ν({1}) > 0, so from Proposition 4.2.5 and Lemma A.7 in the Appendix,

1

n

n∑
i=1

Xi =
1

n

n∑
i=1

δXi({1}) −→ 1 a.s.[P],

and

P(Xn+1 = 1|Fn) −→ 1 a.s.[P].

On the other hand, Proposition 4.2.3 implies
∑n
i=1(1 −Xi)

/
nγ

a.s.−→ ∞, for any γ < α0/α1. Results about

k-color extensions with a unique optimal treatment can be similarly deduced.

In the case that α0 = α1 = α, the sequence X becomes a c.i.d. RRPS, so it follows from Chapter III that

lim
n→∞

1

n

n∑
i=1

Xi = lim
n→∞

P(Xn+1 = 1|Fn) = p∗1 a.s.[P],

and

lim
n→∞

1

n

n∑
i=1

(1−Xi) = lim
n→∞

P(Xn+1 = 0|Fn) = p∗0 a.s.[P],

where p∗0 = 1 − p∗1, for some [0, 1]-valued measurable function p∗1 such that P(p∗1 = p) = 0, for all p ∈ [0, 1].

In other words, X has directing measure P̃ = p∗0δ0 + p∗1δ1. What is more, since the weights are i.i.d., binary,

and independent of (Xn)n≥1, then (see Example 3.2.4)

P(Wn = 1 i.o.) = 1;

thus, Proposition 3.2.3 applies and

p∗1 ∼ Beta(x1, x0 + x1),

where (x0, x1) ∈ R2
+ is the vector indicating the initial composition of the urn. By Theorem 3.3.1, one has

√
n

(
1

n

n∑
i=1

Xi − P(Xn+1 = 1|Fn)

)
stably−→ N

(
0,
α(1− α)

α2
p∗1(1− p∗1)

)
,

and
√
n
(
P(Xn+1 = 1|Fn)− p∗1

) a.s.cond−→ N
(

0,
α

α2
p∗1(1− p∗1)

)
w.r.t. F .

If the urn contains balls of k colors such that αi = α1 > αj , for all i ∈ {1, . . . , k0}, j ∈ {k0 + 1, . . . , k} and

some 1 ≤ k0 ≤ k, then Theorem 4.2.4 and Proposition 4.2.5 imply

P(Xn+1 ∈ A|Fn) −→
k0∑
i=1

p∗i δi(A) a.s.[P], for A ⊆ {1, . . . , k},

where, as anticipated by Li et al. (1996), the random masses are Dirichlet distributed, (p∗1, . . . , p
∗
k0

) ∼
Dirichlet

(
x1∑k0
i=1 xi

, . . . ,
xk0∑k0
i=1 xi

)
, with (x1, . . . , xk) ∈ Rk+ indicating the initial composition of the urn.
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Example 4.4.2 (Muliere et al., 2006). Let µ0, µ1 ∈ MP ([0, β]), for some β < ∞, and denote by F0, F1 their

respective cumulative distribution functions. The RRU of Muliere et al. (2006), which extends the scheme

of Durham et al. (1998) along the lines of continuous responses, is the {0, 1}-valued DPS with weights, given

by

Wn = F−1
Xn

(Un),

where (Un)n≥1 is a sequence of i.i.d.Unif[0, 1] random variables that is independent of (Xn)n≥1. Then

Wn ∼ µXn and

E[Wn|Xn] =

∫ β

0

tµXn(dt) =: mXn .

Basic convergence results for RRUs can be found in Flournoy et al. (2012). In particular, if m0 < m1, one

has D = {1}, and thus Proposition 4.2.5 and Proposition 4.2.3 imply

P(Xn+1 = 1|Fn) −→ 1 a.s.[P],
1

n

n∑
i=1

Xi −→ 1 a.s.[P] and
1

nγ

n∑
i=1

(1−Xi) −→∞ a.s.[P],

for all γ < m0/m1. It follows that the probability of administering the superior treatment, as determined

by the mean response, and the number of patients treated with it both converge to one. The situation

remains the same if there are k > 2 treatments with corresponding weight distributions µ1, . . . , µk such that

m1 > mi, for i = 2, . . . , k.

In the case m0 = m1 = m, one has D = {0, 1}; thus Theorem 4.2.4 applies with X = D and it holds

P(Xn+1 = 1|Fn) −→ p∗1 a.s.[P],

for some [0, 1]-valued measurable function p∗1. Moreover,
∑∞
n=1 E[X2

n]/n2 ≤
∑∞
n=1 1/n2 <∞, so by Lemma

A.7 in the Appendix, one has

1

n

n∑
i=1

Xi −→ p∗1 a.s.[P].

Regarding a central limit result (which exists in the literature as Corollary 2 of Berti et al. (2011)), note

that

E[W 2
n+1δXn+1({i})|Fn] = E

[
E[W 2

n+1|Xn+1]δXn+1({i})|Fn
]

= E[W 2
n+1|Xn+1 = i]P(Xn+1 = i|Fn),

for i = 0, 1. Therefore, provided both q∗1 = limn→∞ E[W 2
n |Xn = 1] and q∗0 = limn→∞ E[W 2

n |Xn = 0] exist,

Theorem 4.3.1 implies

√
n
( 1

n

n∑
i=1

Xi − P(Xn+1 = 1|Fn)
)
stably−→ N

(
0, p∗1(1− p∗1)

( (1− p∗1)q∗1 + p∗1q
∗
0

m2
− 1
))

,

and √
n
(
P(Xn+1 = 1|Fn)− p∗1

) a.s.cond.−→ N
(

0, p∗1(1− p∗1)
(1− p∗1)q∗1 + p∗1q

∗
0

m2

)
w.r.t. F .

It follows from Proposition 4.3.2 that P(p∗1 = p) = 0, for all p ∈ [0, 1], which is the original result of Aletti

et al. (2009) that motivated the proof of Proposition 4.3.2.
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If µ0 = µ1 = µ, the process X becomes a c.i.d. RRPS that satisfies assumption (A.1) and has directing

measure P̃ = (1− p∗1)δ0 + p∗1δ1. As a consequence of Theorem 3.3.1 (or from above with q∗1 = q∗0), one has

√
n
(
P(Xn+1 = 1|Fn)− p∗1

) a.s.cond−→ N
(

0,
p∗1(1− p∗1)

m2
σ2
)

w.r.t. F ,

where σ2 :=
∫ β

0
t2µ(dt).

The paper by Berti et al. (2010) studies the k-color RRU, whose set of dominant colors is given by

D = {1, . . . , k0}, for 1 < k0 < k. In their model specification, dominance is assumed to occur only in

the limit, which is a weaker (and arguably less realistic) assumption than the one in equation (IV.2) of a

DPS, which requires the elements in D to dominate the other colors at each stage n of the experiment.

Even though the results in Berti et al. (2010) can be recovered through minor changes in the proofs of our

theorems, we present here a version of their model that is within the class of DPSs.

Example 4.4.3 (Berti et al., 2010). Let µ1, . . . µk ∈MP ([0, β]), for k ≥ 2 and some β <∞, be such that

m1 = · · · = mk0 > max
k0<j≤k

mj ,

where mi :=
∫ β

0
tµi(dt), for i = 1, . . . , k, and 1 ≤ k0 ≤ k. Define Fi([0, t]) := µi([0, t]), for t ∈ [0, β] and

i = 1, . . . , k. We consider the DPS having the weights

Wn = F−1
Xn

(Un),

where (Un)n≥1 is a sequence of i.i.d.Unif[0, 1] random variables that is independent of (Xn)n≥1. Then

D = {1, . . . , k0}. Example 4.4.2 already covered the situations (i) k = 2 with k0 = 1, 2; and (ii) k > 2 with

k0 = 1. In the general case, Proposition 4.2.5 implies

P(Xn+1 ∈ D|Fn) −→ 1 a.s.[P],

and as a consequence,

1

n

n∑
i=1

δXi(D) −→ 1 a.s.[P], and
1

nγ

n∑
i=1

δXi(Dc) −→∞ a.s.[P],

for all γ < maxk0<j≤kmj

/
m1. Moreover,

1

n

n∑
i=1

Wi −→ m1 a.s.[P].

Denote by Pn(·|A) := Pn(· ∩A)
/
Pn(A), for each A ∈ X such that Pn(A) > 0. Fix j ∈ {1, . . . , k0}. It follows

from Theorem 4.2.4 that Pn({j}|D)
a.s.−→ p∗j , for some [0, 1]-valued random variable p∗j , and thus

P(Xn+1 = j|Fn) = Pn(D)Pn({j}|D) + Pn(Dc)Pn({j}|Dc) −→ p∗j a.s.[P].
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Next, note that

E[W 2
n+1δXn+1

({j})|Fn] = E[W 2
n+1|Xn+1 = j]P(Xn+1 = j|Fn).

Then, provided q∗j = limn→∞ E[W 2
n |Xn = j] exists for each j = 1, . . . , k0, we can show as in the proof of

Corollary 4.3.3 that

√
n
(
P̂n({j}|D)− Pn({j}|D)

) stably−→ N
(

0,
p∗j
w̄2

{
(1− p∗j )2q∗j + p∗j

∑
i≤k0,i6=j

q∗i p
∗
i

}
− p∗j

(
1− p∗j

))
,

and
√
n
(
Pn({j}|D)− p∗j

) a.s.cond.−→ N
(

0,
p∗j
w̄2

{
(1− p∗j )2q∗j + p∗j

∑
i≤k0,i6=j

q∗i p
∗
i

})
w.r.t. F ,

where P̂n({j}|D) :=
∑n
i=1 δXi({j})

/
(1 +

∑n
i=1 δXi(D)) is the relative frequency of j within D. The latter

result strengthens the kind of convergence found in Berti et al. (2010) and implies, together with Proposition

4.3.2, that P(p∗j = p) = 0, for all p ∈ [0, 1]. Although it holds Pn({j}) a.s.−→ p∗j , Berti et al. (2010) show that

a central limit result for
√
n
(
Pn({j})− p∗j

)
is impossible.

4.5 Inference

In this section we demonstrate how to use the results in Theorem 4.3.1 and Corollary 4.3.3 for the inference

on the random limit of the predictive and empirical distributions. In particular, we suggest procedures for

the approximation of the prior and posterior distributions of p̃A, depending on the available information.

4.5.1 Confidence intervals for the random limit

Let A ∈ X ∩ D be as in Theorem 4.3.1. Using the notation of Theorem 4.3.1, define

Vn(A) :=
1

m2
n

{(
P̃n(Ac)

)2
sn(A) +

(
P̃n(A)

)2
sn(Ac)

}
,

where Ac is the complement of A in D, and

P̃n(·) := P(X̃n+1 ∈ ·|F̃n), mn :=
1

n

n∑
i=1

W̃i, sn(Aj) :=
1

n

n∑
i=1

W̃ 2
i δX̃i(Aj),

for j = 1, 2, with A1 = A and A2 = Ac. It follows from Theorem 4.2.4 that mn
a.s.−→ w̄ and P̃n(Aj)

a.s.−→ p̃Aj ,

for some p̃A, p̃Ac ∈ M+(H). On the other hand, we have E[W̃ 2
n+1δX̃n+1

(Ai)|F̃n]
a.s.−→ qAj by hypothesis, and

thus sn(Aj)
a.s.−→ qAj from Lemma A.7 in the Appendix. As a consequence,

Vn(A) −→ V (A) a.s.[P].

Given that a.s. conditional convergence implies stable convergence, it follows from Theorem 4.3.1 and the

extended Slutsky’s theorem (see Häusler and Luschgy, 2015, Theorem 3.7) that(
Dn(A), Vn(A)

) F̃∞−stably−→ N
(
0, V (A)

)
× δV (A),
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where Dn(A) =
√
n(P̃n(A) − p̃(A)) and F̃∞ :=

∨
n∈N F̃n. Since V (A) > 0 a.s.[P] from Proposition 4.3.2, it

holds
Dn(A)√
Vn(A)

d−→ N(0, 1).

One can then build asymptotic confidence intervals for p̃A as(
P̃n(A)− zα

√
Vn(A)/n, P̃n(A) + zα

√
Vn(A)/n

)
,

where zα is the appropriate critical value given 100(1− α)% confidence, with α ∈ (0, 1). Analogous compu-

tations using Cn(A) +Dn(A) lead to asymptotic confidence intervals for p̃A, which do not depend on θ and

ν, namely, (
P̂n(A)− zα

√
Gn(A)/n, P̂n(A) + zα

√
Gn(A)/n

)
,

where P̂n(·) := 1
n

∑n
i=1 δX̃i(·) and

Gn(A) =
2

m2
n

{(
P̂n(Ac)

)2
sn(A) +

(
P̂n(A)

)2
sn(Ac)

}
− P̂n(A)P̂n(Ac)

is a consistent estimator of V (A) + U(A).

4.5.2 Credible intervals for the random limit

Similarly to Chapter III, Section 3.4.2, it is possible to utilize the a.s. conditional convergence in Theorem

4.3.1 for the approximation of the posterior distribution of p̃A given (X̃1, W̃1, . . . , X̃n, W̃n). It follows from

the discussion in Chapter I, Section 1.3 that

P
(
Dn(A) ∈ ·|F̃n

) w−→ N (0, V (A))(·) a.s.[P].

As it holds

Vn(A) −→ V (A) a.s.[P],

then Theorem 4.2 in Fortini and Petrone (2019) implies

P
(
(Dn(A), Vn(A)) ∈ ·

∣∣F̃n) w−→ N (0, V (A))× δV (A)(·) a.s.[P].

Note that V (A) > 0 a.s.[P] from Proposition 4.3.2, so Vn(A) > 0 a.s.[P], for all but a finite number of n. As

the mapping (t, u) 7→ tu from R2
+ to R+ is continuous, we have that

E
[
f
( Dn(A)√

Vn(A)

)∣∣∣F̃n] −→ ∫
R2

+

f(tu)N (0, V (A))× δV (A)(dt, du) =

=

∫
R+

f
(
t · V (A)−1

)
N (0, V (A))(dt) =

=

∫
R+

f(s)N (0, 1)(ds),

for each f ∈ Cb(R+). Since the cumulative distribution function of the Normal distribution is continuous, it

follows P-a.s. that

P
(√
n(P̃n(A)− p̃A) ≤ t ·

√
Vn(A)

∣∣F̃n) −→ N (0, 1)((−∞, t]), for t ∈ R.
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This result allows us to obtain asymptotic credible intervals around p̃A in the sense that

P
(
P̃n(A)− zα

√
Vn(A)/n < p̃A < P̃n(A) + zα

√
Vn(A)/n

∣∣F̃n) ≈ 1− α,

for n large enough, where zα is the appropriate critical value from the standard Normal distribution given

100(1− α)% confidence, with α ∈ (0, 1).

It should be noted that the approximations both here and in the previous subsection can be extended, under

the conditions of Corollary 4.3.3, to hold with the original predictive and empirical distributions. In that

case, the estimator of the variance Vn(A) would have the same form, but will be composed of

mn =
1∑n

i=1 δXi(D)

n∑
i=1

WiδXi(D), and sn(Aj) =
1∑n

i=1 δXi(D)

n∑
i=1

W 2
i δXi(Aj ∩ D).
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Chapter V

Further discussion

This chapter elaborates on the results obtained so far by looking at some applications of the randomly rein-

forced Pólya sequence (RRPS), as well as suggesting ways to extend the basic model. At first, note that the

sampling mechanism of a RRPS allows for ties in the observations. This motivates the study of its clustering

behavior in Section 5.1, which can be described in short as a weighted version of the Chinese Restaurant

Process (see Aldous, 1985). On the other hand, the RRPS of Chapter IV is a generalization of several mod-

els that have been developed as particular proposals for randomized, response-adaptive designs for clinical

trials; thus, in Section 5.2 we investigate how our infinite-color specification fits into that framework. In

Section 5.3 we suggest a way to expand the predictive distributions of the RRPS by incorporating additional

information from the partition. Finally, Section 5.4 considers the case of a family of dependent RRPSs and,

in particular, discusses interacting RRPSs that are partially conditionally identically distributed (p.c.i.d.).

5.1 Weighted Chinese Restaurant Process

The progressive partitioning of the observations of a RRPS into clusters according to color/species/dose can

be interpreted through the Chinese Restaurant Process metaphor (see Pitman, 2010, Section 3.1), which

in its simplest form describes the clustering behavior of an exchangeable sequence with a Dirichlet process

prior. In the latter case, the sampling procedure can actually be derived from the predictive rules of the

Pólya sequence with parameters θ and ν (see Chapter II, Section 2.1), where each observation Xn signals

the arrival of a new customer at the (Chinese) restaurant, who is waiting to be seated. It follows for any

given time n + 1 that there are Ln already occupied tables, so the n + 1th customer is seated randomly at

one of the existing tables with a probability proportional to the number of people eating at it, or is prepared

a new table with probability θ/(θ+ n). In addition, each table comes with a numbered placard that reflects

its order of appearance. Exchangeability in this case implies that the partitions, resulting from any shuffling

of the placards, are equally likely.

Under the RRPS framework, we make two major changes to the basic restaurant idea. First of all, imple-

menting a weighting process changes the probabilities that assign customers to tables. In particular, the nth
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customer is given a ”weight” Wn (think of it as an attractivity index), so that people are drawn to a table

according to its relative total attractiveness. As a result, the placards are no longer exchangeable between

tables. On the other hand, we serve food at each table that all of the customers seating at it share, with no

two tables serving the same dish. In that situation the sequence Xn will denote the dish served to the nth

customer.

Regarding the Pólya sequence with Wn = 1, Proposition 11 of Pitman (1996) shows that one can proceed

with the seating of customers, independently of the dish selection, and in a way choose the dishes post-factum

by drawing them independently from ν for each table. In the general case, we have Theorem 3.2.1 of Chapter

II, which implies that whenever the weights assigned to customers n, n+ 1, n+ 2, . . . are independent of the

dish served to the nth customer, given all past information, the food selection can happen again at the end,

independent of the seating process. Moreover, the proportion of people in the population that will seat at

each table is equal to the weighted average. If the conditions of Proposition 3.3.3 are further satisfied, then

the number of people at each table grows at a rate n, so no table/dish becomes unpopular.

The model specification in Chapter IV assumes weights that are generated from distributions, which depend

on the particular dish served at the table. In that case the partitioning of the observations into clusters is

not independent of the food selection process. What results like Theorem 4.2.5 suggest though is that only

a part of the tables will continue to accomodate customers, whereas the rest of them will become neglected

with time. In this way the restaurant will have a sparse structure in the limit as only tables with ”dominant”

dishes will tend to be prepared.

The Indian buffet process (see Griffiths and Ghahramani, 2011), which is out of the scope of the thesis,

characterizes the situation, in which each customer gets to sample more than one dish, with the possibility

that people seating at the same table may get different dishesh and that dishesh may be shared across tables.

In this analogy, tables become irrelevant and arriving customers select dishes according to their popularity

or may choose to try untested ones. As a result, customers can be partitioned with respect to the dishes

that they try and at the end may become associated with more than one cluster. Similarly to the work so

far, Berti et al. (2015) implement a weighting scheme into the Indian buffet process and study its effects on

the clustering behavior.

5.2 Clinical trials

Design of clinical trials has been an area of ongoing research for some time as researchers have tried to bal-

ance between the competing targets of gathering enough evidence for proper inference and of administering

the superior treatment to the greatest number of patients. Within this field randomized, response-adaptive

designs form an important class of protocols since they have some desirable characteristics (see, e.g., Rosen-

berger, 2002; Hu and Rosenberger, 2006; Zhang, 2015, for a discussion on the topic). For example, in contrast

to standard designs with a one-time randomization of patients into groups, response-adaptive protocols enrol

patients one at a time, so that when a new patient arrives, the clinician would select a treatment randomly

according to predictive rules, which take into account all past information on the treatments’ efficacy and

reinforce the treatments having the better responses.
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The dominant Pólya sequence (DPS) of Chapter IV encodes within its sampling mechanism such a response-

driven design. In fact, the models of Section 4.4 have been developed with such an application in mind. In

order to see this more clearly, suppose that each observation Xn indicates the treatment given to patient n

and let Wn denote his or her response to it. The sampling scheme in Example 4.4.1 studies the simplest case of

two competing treatments, say {0, 1}, with binary weights, indicating success or failure for the corresponding

treatment. Each treatment has a different intrinsic probability of success, α0, α1, so we may consider the

treatment with the higher success probability as the better one. It follows from the results in Section 4.4 that

the probability of assigning the better treatment to the next patient, given all past information on successes

and failures, converges to 1.

In contrast, Example 4.4.2 considers the same case, but with continuous responses, which may, for example,

represent a measurement on a favorable covariate such as the patient’s survival time after treatment (as per

Muliere et al., 2006). It follows again that the probability of assigning the better treatment goes to 1, where

better is a function of the expected value of Wn given Xn. The case m1 := E[Wn|Xn = 1] = E[Wn|Xn =

0] =: m0 can be regarded as the null hypothesis for a statistical test on equivalence, and thus one can use

the central limit theorems from Section 4.3 to derive p-values.

Example 4.4.3 is concerned with the situation of more than one ”dominant” treatment from a set of k

treatments, where dominance is again given in terms of the conditional expectations m1, . . . ,mk. Under the

assumption that m1 = · · · = mk0 , for some 1 ≤ k0 ≤ k, one has that both

P(Xn+1 ∈ {1, . . . , k0}|X1, . . . , Xn) −→ 1 a.s.[P], and
1

n

n∑
i=1

δXi({1, . . . , k0}) −→ 1 a.s.[P].

It is hard to imagine a practical situation, in which two or more treatments have the same overall effect on

people and for which the design of Example 4.4.3 would be applicable. In the clinical trials setting, however,

one might appreciate the theoretical extension of the models in Section 4.4 to the infinite case. At first,

suppose a different framework of interpretation – one of competing doses of a single treatment. As there is

a continuum of doses, the fact that some of them are equally effective is highly probable. Theorem 4.2.2

shows that, under the assumption of positive probability of administering near -dominant doses, both the

probability of assigning and the number of people assigned to a dose, which is at some positive distance from

the dominant set, converge to 0. The stronger condition of non-zero probability of administering a dominant

dose, although not needed for optimality, is less realistic in nature; yet, whenever satisfied, Theorem 4.3.1

provides tools to analyze the dynamics within the dominant set itself.

All in all, the protocol behind a DPS can be considered optimal in that the probability of administering the

superior treatments/doses converges to 1 as the experiment proceeds. However, as argued in Aletti et al.

(2018b), this need not be the preferred design in a clinical trial as it has suboptimal statistical properties.

Instead, Aletti et al. (2018b) provide a modification of the model in Example 4.4.2 in order to have only a

proportion of the patients assigned to the superior treatment, which ultimately resolves some of the inferential

issues.
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5.3 Randomly reinforced Poisson-Dirichlet sequence

Modeling after the exchangeable case, we get an immediate extension of RRPS by considering an X-valued

sequence of random variables X = (Xn)n≥1 such that

P(Xn+1 ∈ ·|Fn) =

n∑
i=1

Wi − α/Ci(Πn)

θ +
∑n
j=1Wj

δX∗k (·) +
θ + αLn

θ +
∑n
j=1Wj

ν(·), (V.1)

for some sequence of non-negative random weights W = (Wn)n≥1, ν ∈ MP (X), α ∈ R+ and θ > −α, where

Fn = FXn ∨ FWn , for n ≥ 0, Πn = {Πn,1, . . . , } is the random partition of {1, . . . , n} that is generated by

(X1, . . . , Xn) and has length Ln, and Ci(Πn) = k is the cardinality of the block in Πn, which contains i.

Denote by (X∗k)Lnk=1 the distinct values in (X1, . . . , Xn). Then

P(Xn+1 ∈ ·|Fn) =

Ln∑
k=1

(∑
i∈Πn,k

Wi

)
− α

θ +
∑n
j=1Wj

δX∗k (·) +
θ + αLn

θ +
∑n
j=1Wj

ν(·).

We call the model with predictive distributions as in (V.1) a randomly reinforced Poisson-Dirichlet sequence

(RRPD) with parameters α, θ, ν and W . If it holds Wn = 1, then we get the exchangeable two-parameter

Poisson-Dirichlet process (see Pitman and Yor, 1997), given by

P(Xn+1 ∈ ·|X1, . . . , Xn) =

Ln∑
k=1

card(Πn,k)− α
θ +

∑n
j=1Wj

δX∗k (·) +
θ + αLn

θ +
∑n
j=1Wj

ν(·),

whereas for α = 0, we are back to the RRPS case. The generalized Poisson-Dirichlet process (GPD) of

Bassetti et al. (2010) is the RRPD with independent weights such that Wn is independent of (X1, . . . , Xn).

In particular, the GPD satisfies assumption (A.1) of Chapter III and is shown by Bassetti et al. (2010,

Theorem 2.1) to be conditionally identically distributed with respect to the filtration F∗ = (F∗n)n≥0, given

by F∗n := FXn ∨ FW∞ , for n ≥ 0. As a result,

Pn(·) := P(Xn+1 ∈ ·|Fn)
w−→ P̃ (·) a.s.[P], and P̂n(·) :=

1

n

n∑
i=1

δXi(·)
w−→ P̃ (·) a.s.[P],

for some P̃ ∈ KP (Ω,X). Suppose ν is diffuse. It follows from the discussion after Theorem 3.2.1 that

P̃ =
∑
k

p∗kδX∗k +
(

1−
∑
k

p∗k

)
ν,

where

p∗k = lim
n→∞

1

n

n∑
i=1

δXi({X∗k}) a.s.[P],

and (X∗k)k≥1 are i.i.d.(ν) conditionally given (p∗k)k≥1. If supn∈N E[W 2
n ] < ∞ and limn→∞ E[Wn] = m, then

Bassetti et al. (2010, Proposition 4.1) prove that

θ + αLn
θ +

∑n
j=1Wj

−→ R a.s.[P], and
Ln
n
−→ R a.s.[P],
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for some R ∈ M+(H). In particular, if m > α, they show that R = 0 a.s.[P], in which case P̃ is proper. If

it actually holds that supn∈N E[Wu
n ] < ∞, for some u > 2, and q = limn→∞ E[W 2

n ], then Therorem 4.1 in

Bassetti et al. (2010) implies

√
n(P̂n(A)− Pn(A))

stably−→ N (0, U(A)), and
√
n(Pn(A)− P̃ (A))

a.s.cond.−→ N (0, V (A)) w.r.t. F ,

for A ∈ X , where

U(A) =
( q

m2
− 1
)
P̃ (A)(1− P̃ (A)) +

α

m

( α
m
− 2
)
R · ν(A)(1− ν(A)),

and

V (A) =
q

m2
P̃ (A)(1− P̃ (A)) +

α2

m2
R · ν(A)(1− ν(A)).

In the case m > α, then V (A) = q
m2 P̃ (A)(1 − P̃ (A)) and U(A) = V (A) − P̃ (A)(1 − P̃ (A)), which is very

reminiscent of the results in Theorem 3.3.1 of Chapter III. In fact, we can relax the conditions in Theorem

3.3.1 to match those for a GDP.

We leave for future research the extension of the results in Chapter IV to RRPDs having weights of the form

Wn = h(Xn, Un),

where (Un)n≥1 is a sequence of independent random variables such that Un is independent of (X1, . . . , Xn).

5.4 Multi-experiment data

The current section should serve as the starting point for future research on groups of interacting RRPSs.

As a matter of fact, such processes are already known in the literature through the works of Paganoni and

Secchi (2004) and Fortini et al. (2018). The following definition, which is derived from Example 3.8 of Fortini

et al. (2018), formalizes the notion of a family of interacting RRPSs.

Definition 5.4.1. An array of X-valued random variables X = [Xn,i]n≥1,i∈I represents a family of inter-

acting randomly reinforced Pólya sequences (IRRPS) if there exist (νi)i∈I ⊆ MP (X) such that X1,i ∼ νi,

for i ∈ I, constants (θi)i∈I ⊆ R+, and an array of non-negative random variables W = [Wn,i]n≥1,i∈I such

that a version of the conditional distribution of Xn+1,i given Fn := σ(XI
1,W

I
1, . . . ,X

I
n,W

I
n) is the transition

probability kernel

P(Xn+1,i ∈ ·|Fn) =

n∑
k=1

Wk,i

θi +
∑n
j=1Wj,i

δXk,i(·) +
θi

θi +
∑n
j=1Wj,i

νi(·), for n ≥ 1 and i ∈ I,

where XI
n = (Xn,i, i ∈ I) and WI

n = (Wn,i, i ∈ I) represent the nth rows of X and W , respectively.

If I = {1}, then we are back to the univariate case. Otherwise, from the towering property of conditional

expectations and from conditional determinism it holds

P(Xn+1,i ∈ ·|X1,i,W1,i, . . . , Xn,i,Wn,i) = P(Xn+1,i ∈ ·|Fn),
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so that each sequence (Xn,i)n≥1, for i ∈ I, constitutes a RRPS in itself. As the filtration system (Fn)n≥1

contains the combined history of the individual RRPSs, one way to read the above equality is to assume,

for any given i ∈ I, that the weight Wn,i depends on the joint set of observations XI
1, . . . ,X

I
n. In fact,

the interacting reinforced-urn system of Paganoni and Secchi (2004) is a countable collection of two-color

randomly reinforced urns (refer to Example 4.4.2 from Chapter IV) such that the reinforcement of each

urn is a function of the observations from the other urns plus an independent component. In particular,

their Example 3.1 considers a system of two urns, I = {1, 2}, whose weights are given by Wn,1 = Xn,2

and Wn,2 = Xn,1. Such models are particularly important in that they represent intuitive constructions

of dependent stochastic processes with reinforcement, and yet are such that if the individual sequences

were exchangeable, the joint process fails to be partially exchangeable in the sense of de Finetti. The next

subsection elaborates more on that.

5.4.1 Partially c.i.d. interacting RRPS

In the context of multiple experiments, partial exchangeability in the sense of de Finetti (see Fortini et al.,

2018, for historical references) is the standard dependence structure for inference in Bayesian statistics.

Roughly speaking, an array of random variables [Xn,i]n≥1,i∈I is said to be partially exchangeable if the joint

probability law is invariant under permutations within, but not across the different groups. Historically,

partially exchangeable laws have been specified through a system of dependent random probability measures

(see, e.g. Bassetti et al., 2018; Camerlenghi et al., 2019, and references therein). In contrast, predictive

construction of partially exchangeable processes remains an open question as the introduction of interactions

in the system leads to complicated predictive rules. In fact, what can be considered natural predictive

constructions could easily break the symmetry required by partial exchangeability. For example, let I =

{1, 2} and suppose Xn+1,1 and Xn+1,2 are conditionally independent given the past observations XI
1, . . . ,X

I
n.

This scheme could represent a game of sequential decisions between two players, in which the players choose

their next moves independently from one another, but have access to the whole decision history of their

opponent. Under this assumption, the joint process is not partially exchangeable (except trivially, when the

sequences are unconditionally indepenendent) as in that case Xn+1,1 and Xn+1,2 would be independent, but

conditionally on the tail information.

Addressing these issues requires the relaxation of some of the structure imposed by partial exchangeability,

yet much as in the univariate case, one would like to simultaneously preserve most of its important properties,

at least in the limit. To that end, Fortini et al. (2018) have proposed an extension of the conditional identity

in distribution property, which they call partial conditional identity in distribution. An array of random

variables [Xn,i]n≥1,i∈I is said to be partially conditionally identically distributed (p.c.i.d.) if the future

observations of each individual sequence are conditionally identically distributed given all past observations

and the concomitant values of the other variables; in other wors, it holds, for each k, n ≥ 1, i ∈ I and any

f ∈Mb(X ), that

E[f(Xn+k,i)|F in] = E[f(Xn+1,i)|F in],

where F in := σ(XI
1,W

I
1, . . . ,X

I
n,W

I
n) ∨ σ(Xn+1,j : j 6= i). Fortini et al. (2018) prove among all that p.c.i.d.

arrays are asymptotically partially exchangeable. Now, contrary to the partial exchangeability case, p.c.i.d.
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probability laws can be readily constructed by interweaving interactions into a set of predictive rules, as long

as the individual sequences are updated independently given the past.

Regarding IRRPS, the latter would amount to the following assumption,

Assumption B.1. (Xn+1,i)i∈I are mutually independent given Fn, for each n ≥ 0. (B.1)

As the individual sequences of a p.c.i.d. process are c.i.d. themselves, we may also require as in Chapter III

that

Assumption B.2. Xn+1,i is independent of Wn+1,i given Fn, for each n ≥ 0 and i ∈ I. (B.2)

Under those two conditions, Fortini et al. (2018, Example 3.8) prove that a family of IRRPS is p.c.i.d. An

interesting example of a p.c.i.d. IRRPS is due to (Paganoni and Secchi, 2004, Example 3.1), which we

outline next. In fact, by applying Theorem 3.2.3 from Chapter III we are able to prove a conjecture of theirs

regarding the univariate distributions of the random limits of the predictive distributions.

Example 5.4.2 (Coupled Pólya urns). Suppose X = {0, 1} and I = {1, 2}. Let (bi, wi)i=1,2 ⊆ R2
+ be such

that bi + wi > 0. Denote by θi := bi + wi and νi := biδ1 + wiδ0, for i = 1, 2. Assume that the predictive

distributions of the two sequences of IRRPSs [Xn,i]n≥1,i=1,2 are given by

P (Xn+1,i = 1 | Fn) =
bi +

∑n
k=1Xk,iXk,j

bi + wi +
∑n
k=1Xk,j

, for i = 1, 2,

where j ∈ I\{i} and Fn := σ(X1,1, X1,2, . . . , Xn,1, Xn,2). The model is comprised of two interacting two-

color randomly reinforced urns such that each urn is reinforced only when the ball extracted from the other

urn has color 1. Paganoni and Secchi (2004) demonstrate that the predictive distributions of both sequences

converge to a random vector (Z1, Z2) such that Cov(Z1, Z2) > 0. They further conjecture that Z1 and Z2

are individually distributed according to Beta(b1, w1) and Beta(b2, w2) distributions, respectively. As each

of the individual sequences forms a RRPS with binary weights such that

∞∑
n=1

E[Xn,i|Fn−1] ≥
∞∑
n=1

bi
bi + wi + n

= +∞ a.s.[P], for i = 1, 2,

then P(Xn,i = 1 i.o.) = 1, for each i = 1, 2, so it follows from Theorem 3.2.3 of Chapter III that the

proportion of balls of color 1 in each urn converges to a Beta(bi, wi) random variable.

5.4.2 Related models

A different way to elicit dependence between a group of RRPSs is through shared atoms. In order to do so,

one has to allow the base measure ν to be a random discrete probability measure and/or to depend on the

time n.
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Let G0 be a random discrete probability measure on X. Consider a pair of IRRPS [Xn,i]n≥1,i=1,2 that have

independent weights and are characterized by the predictive rules

P (Xn+1,i ∈ · | Fn) =

n∑
k=1

Wk,i

θi +
∑n
j=1Wj,i

δXk,i(·) +
θi

θi +
∑n
j=1Wj,i

(
G0(·) + ν(·)
G0(X) + ν(X)

)
, for i = 1, 2,

where Fn := σ(XI
1,W

I
1, . . . ,X

I
n,W

I
n) ∨ σ(G0), for n ≥ 0. This process can be seen as a weighted version of

the bivariate Dirichlet process of Walker and Muliere (2003), which can be recovered in the case θ1 = θ2 = θ,

Wn,i = 1, for n ≥ 1 and i = 1, 2, and G0 =
∑k
j=1 δZj , where (Zj)

k
j=1 is a sample from a DP(θ, ν) process. It

follows that (Xn,1)n≥1 and (Xn,2)n≥1 are conditionally independent RRPSs given G0.

Take instead the predictive system

P (Xn+1,i ∈ · | Fn) =

n∑
k=1

Wk,i

θi +
∑n
j=1Wj,i

δXk,i(·) +
θi

θi +
∑n
j=1Wj,i

Gn(·), for i = 1, 2,

where, for some RRPS (Zn)n≥1 with parameters θ, ν and (Yn)n≥1, it holds

Gn(·) := P(Zn+1 ∈ ·|Fn) =

n∑
i=1

Yi
θ0 +

∑n
j=1 Yj

δZi(·) +
θ0

θ0 +
∑n
j=1 Yj

ν(·),

with Fn := FXn ∨ FZn . It is straightforward to show that [Xn,i]n≥1,i=1,2 is p.c.i.d. under (B.2) and the

following extended version of (B.1),

Zn+1, Xn+1,1 and Xn+1,2 are mutually independent given Fn, for each n ≥ 0. (V.1)

Moreover, (Zn)n≥1 is c.i.d. under its own version of (B.2), in which case Gn
w−→ G0 a.s.[P], for some random

probability measure G0. Provided further Wn,i = 1, for n ≥ 1 and i = 1, 2, the predictive distributions

P(Xn+1,i ∈ ·|Fn) converge weakly on a set of probability one to a random probability measure Gi(·), which

is a DP(θi, G0) process. The hierarchical Dirichlet process of Teh et al. (2006) is then the special case with

Yn = 1, for n ≥ 1, so that G0 ∼ DP(θ0, ν).

5.5 Conclusion

In the final section we provide, in no particular order, comments, as well as suggestions on how to extend

the research on RRPSs or any of topics that were touched upon in the thesis. We have said in Chapter I

that one of the main reasons for the development of the stochastic processes, which we consider, is their

potential role in approximate Bayesian analysis. Before going into that direction though, we need a merging

of opinions type of result as in Blackwell and Dubins (1962) that will ensure the consistency of the conclusions

reached by the approximation. On the other hand, our basic model is defined with respect to a sequence

of weights (Wn)n≥1, which may be non-observable depending on the context. We have suggested in Section

3.4, Chapter III a way to make draws from the posterior distribution of the weights in the c.i.d. case, yet

inference on even the dominance function w of a DPS is more critical because of the particular meaning
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attached to the weighting process. In fact, our current research is aimed in this direction. We recall also the

comment, made in Section 2.3, Chapter II, regarding the lack of studies on Pólya urn models with absolutely

continuous reinforcements, for which we believe the measure-valued Pólya urn process of Janson (2018) to be

an excellent starting point. Immediate extensions of the theory in Chapter III and Chapter IV could involve

work on uniform limit theorems or further inquiry into the random partition of the RRPS, in particular as

regards to the problem of species sampling (see, e.g. Favaro et al., 2012a,b). Lastly, we have outlined in this

chapter some possible generalizations of the RRPS in the uni- and multivariate setting.
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Appendix A

Miscellaneous results

Results in measure theory and real analysis

Lemma A.1 (Two-Valued Measure is Dirac Measure). Let µ ∈ MP (R+) be such that µ ∈ {0, 1}. Then

there exists x ∈ R such that µ({x}) = 1 or, equivalently, µ = δx.

Proof. Define In := [−n, n], for n ≥ 1. Suppose, by contradiction, µ(In) = 0 for all n ≥ 1. Then 1 =

µ(R) = µ
(⋃∞

n=1 In
)

= limn→∞ µ(In) = 0, absurd, hence there exists n ∈ N such that µ(In) = 1. Denote

J0 = In. Set J−0 = [−n, 0] and J+
0 = [0, n]. Then either µ(J−0 ) = 1 or µ(J+

0 ) = 1. Denote that set by

J1. Iterating the procedure yields a sequence (Jk)k≥0 such that µ(Jk) = 1, diam(Jk) ≤ n/2k−1 → 0 and

Jk ↓
⋂∞
k=0 Jk =: J . As R is complete, one has from Cantor’s intersection theorem that J = {x}, for some

x ∈ R. As a consequence,

µ({x}) = µ(J) = lim
k→∞

µ(Jk) = 1.

Lemma A.2 (Approximation of Bounded Functons). Let (X,F) be a measurable space, and f ∈ Mb(F).

Then, for each ε > 0, there exist f1, f2 ∈M0(F) such that f1 ≤ f ≤ f2 and

sup
x∈X

(
f2(x)− f1(x)

)
< ε.

Proof. Suppose |f | ≤M , for some M ∈ R+. From standard approximation results for measurable functions,

there exist (gn)n≥1, (ĥn)n≥1 ⊆ M0(F) such that gn(x) ≤ gn+1(x) and ĥn(x) ≤ ĥn+1(x), for x ∈ X and

n ≥ 1, and it holds

lim
n→∞

sup
x∈X

∣∣f(x)− gn(x)
∣∣ = 0, and lim

n→∞
sup
x∈X

∣∣(M − f(x))− ĥn(x)
∣∣ = 0.

Define hn := M − ĥn, for n ≥ 1. Then hn(x) ≥ hn+1(x), for x ∈ X and n ≥ 1, and limn→∞ supx∈X |f(x)−
hn(x)| = 0. Let ε > 0. There exist n̄1, n̄2 ∈ N such that supx∈X |f(x) − gn(x)| < ε/2, for n ≥ n̄1, and
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supx∈X |hn(x)− f(x)| < ε/2, for n ≥ n̄2. Therefore,

sup
x∈X
|hn(x)− gn(x)| < ε, for n ≥ max{n̄1, n̄2}.

Lemma A.3 (Weighted Average). Let (an)n≥1, (bn)n≥1, (hn)n≥1 ⊆ R be such that an ≥ 0 and hn →∞. If
1
hn

∑n
i=1 ai → 1 and bn → b, for some b ∈ R, then

1

hn

n∑
i=1

aibi −→ b.

Proof. It follows that,

1

hn

n∑
i=1

aibi = b
1

hn

n∑
i=1

ai +
1

hn

n∑
i=1

ai(bi − b).

Fix ε > 0. Then there exists n̄1 ∈ N such that |bn − b| < ε/2, for n ≥ n̄1; thus,∣∣∣∣ 1

hn

n∑
i=1

ai(bi − b)
∣∣∣∣ ≤ 1

hn

n∑
i=1

ai|bi − b| ≤
1

hn

n̄1∑
i=1

ai|bi − b|+
ε

2

1

hn

n∑
i=1

ai.

But 1
hn

∑n̄1

i=1 ai|bi − b| → 0 as hn → ∞, so there is n̄2 ∈ N such that 1
hn

∑n̄1

i=1 ai|bi − b| < ε/4, for n ≥ n̄2.

Finally, take n̄3 ∈ N such that 1
hn

∑n
i=1 ai < 3/2, for n ≥ n̄3. As a result,

∣∣ 1
hn

∑n
i=1 ai(bi − b)

∣∣ < ε, for

n ≥ max{n̄1, n̄2, n̄3}, so 1
hn

∑n
i=1 ai(bi − b)→ 0 and the conclusion follows.

Lemma A.4 (Weighted Average 2). Let (an)n≥1, (bn)n≥1 ⊆ R be such that an ≥ 0. If 1
n

∑n
i=1 ai → a and

bn → b, for some a, b ∈ R, then 1
n

∑n
i=1 aibi → ab.

Proof. The proof is similar to the one for Lemma A.3.

Lemma A.5 (Abel’s Test). Let (an)n≥1 ⊆ R be such that
∑∞
n=1 an < ∞, and (bn)n≥1 ⊆ R be a bounded

monotone sequence. Then
∑∞
n=1 anbn <∞. In particular,

∑∞
n=1 n

−1an <∞, and thus n ·
∑
m≥nm

−1am →
0.

Proof. Set a0 = 0. Define Sn :=
∑n
i=0 ai, for n ≥ 0. Then an = Sn − Sn−1 and

n∑
i=1

aibi =

n∑
i=1

(Si − Si−1)bi =

n∑
i=1

Si(bi − bi+1) + Snbn.

As (bn)n≥1 is bounded and monotone, then bn → b, for some b ∈ R, and thus Snbn converges. Take M ∈ R
such that

∣∣∑∞
n=1 an

∣∣ < M . From the monotonicity of (bn)n≥1, one has

n∑
i=1

∣∣Si(bi − bi+1)
∣∣ ≤M n∑

i=1

|bi − bi+1| ≤M |b1 − bn+1| −→M |b1 − b|;

hence
∑n
i=1 Si(bi − bi+1) converges absolutely.
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Results on conditional expectations

Lemma A.6 (Joint Conditional Expectation). Let (Ω,H,P) be a probability space, F ⊆ H be a sub-σ-

algebra, (X,X ), (Y,Y) and (Z,Z) be measurable spaces, X,Y and Z be random variables on (Ω,H,P) with

values in X, Y and Z, respectively, and κ ∈ KP (Ω,X) be a version of the conditional distribution of X given

F . If Y is F-measurable and Z is independent of σ(X) ∨ F , then the mapping defined by

κf(Y (ω)) :=

∫
X

∫
Ω

f (x, Y (ω), Z(ω′))P(dω′)κ(ω, dx), for ω ∈ Ω,

is a version of E[f(X,Y, Z)|F ] for each f ∈M+(X ⊗ Y ⊗ Z).

Proof. Let f ∈M+(X ⊗ Y ⊗ Z). By Theorem 2.19 in Cinlar (2011, Chapter IV), one has that

h(X(ω), Y (ω)) :=

∫
Ω

f (X(ω), Y (ω), Z(ω′))P(dω′), for ω ∈ Ω,

is a version of E[f(X,Y, Z)|F ∨ σ(X)], for some h ∈M+(X ⊗Y). From repeated conditioning and the same

theorem, the map ω 7→
∫
X h(x, Y (ω))κ(ω, dx) from Ω to R+ is a version of E[f(X,Y, Z)|F ].

Lemma A.7 (Empirical Convergence from Predictive Convergence [Berti et al., 2011, Lemma 3]). Let

(Ω,H,P) be a probability space, F = (Fn)n≥0 be a filtration on (Ω,H), and (Xn)n≥1 be an F-adapted

sequence of real-valued random variables on (Ω,H,P). If

∞∑
n=1

E[X2
n]

n2
<∞, and E[Xn+1|Fn] −→ X a.s.[P],

for some X ∈M(H), then

n ·
∑
k≥n

Xk

k2
−→ X a.s.[P], and

1

n

n∑
k=1

Xk −→ X a.s.[P].

Proof. Define Mn :=
∑n
k=1

1
k

(
Xk − E[Xk|Fk−1]

)
, for n ≥ 1. It follows that,

E[Mn+1|Fn] = E
[n+1∑
k=1

Xk − E[Xk|Fk−1]

k

∣∣∣Fn] = Mn +
1

n+ 1
E
[
Xn+1 − E[Xn+1|Fn]

∣∣Fn] = Mn,

and supn∈N E[M2
n] ≤ 4

∑∞
n=1 E[X2

n]/n2 < ∞; therefore, (Mn)n≥1 is an uniformly integrable F-martingale

and converges P-almost surely. From Lemma A.5,

n ·
∑
k≥n

Xk − E[Xk|Fk−1]

k2
−→ 0 a.s.[P].

But n
∑
k≥n 1/k2 → 1, therefore,

n ·
∑
k≥n

Xk

k2
= n ·

∑
k≥n

Xk − E[Xk|Fk−1]

k2
+ n ·

∑
k≥n

E[Xk|Fk−1]

k2
−→ X a.s.[P].
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Similarly, by Kronecker’s lemma,

1

n

n∑
k=1

(
Xk − E[Xk|Fk−1]

)
−→ 0 a.s.[P].

As E[Xn+1|Fn]
a.s.−→ X, then 1

n

∑n
k=1 E[Xk|Fk−1]

a.s.−→ X, so that

1

n

n∑
k=1

Xk =
1

n

n∑
k=1

E[Xk|Fk−1] +
1

n

n∑
k=1

(
Xk − E[Xk|Fk−1]

)
−→ X a.s.[P].

Lemma A.8 (Conditional Criteria for A.S. Convergence [Pemantle and Volkov, 1999, Lemma 3.2]). Let

(Ω,H,P) be a probability space, F = (Fn)n≥0 be a filtration on (Ω,H), and (Xn)n≥1 be an F-adapted

sequence of real-valued random variables on (Ω,H,P). If

∞∑
n=1

E[Xn+1 −Xn|Fn] <∞ a.s.[P], and

∞∑
n=1

E
[
(Xn+1 −Xn)2|Fn

]
<∞ a.s.[P],

then there exists X ∈ L(H) such that

Xn −→ X a.s.[P].

Proof. Let M ∈ R. Define TM := inf
{
n ∈ N :

∑n
i=1 E

[
(Xi+1 − Xi)

2|Fi
]
> M

}
and X

(M)
n := Xn∧TM −∑n∧TM

i=1 E[Xi+1 −Xi|Fi], for n ≥ 1. Then (X
(M)
n )n≥1 is an F-martingale such that

E
[(
X

(M)
n+1 −X(M)

n

)2∣∣Fn] ≤ Var(Xn+1 −Xn|Fn) · 1{TM>n} ≤ E
[
(Xn+1 −Xn)2|Fn

]
· 1{TM>n};

thus, X
(M)
n converges a.s.[P] and in L2 to a finite limit, say CM . As TM = ∞ on

{∑∞
n=1 E

[
(Xn+1 −

Xn)2|Fn
]
<∞

}
for a sufficiently large M , then

Xn −→ CM +

∞∑
n=1

E[Xn+1 −Xn|Fn] a.s.[P].

Results on c.i.d. processes

Lemma A.9 (Convergence of Predictive/Empirical Distribution on Random Sets). Let (Ω,H,P) be a prob-

ability space, F = (Fn)n≥0 be a filtration on (Ω,H), X and Y be c.s.m.s. equipped with their associated

Borel σ-algebras X and Y, (Xn)n≥1 be an F-c.i.d. sequence of X-valued random variables on (Ω,H,P) with

directing measure P̃ ∈ KP (Ω,X), T be an a.s.-finite F-stopping time, and Y be an Y-valued FT -measurable

random variable. Then,

E[f(Y,Xn+1)|Fn] −→
∫
X
f(Y, x)P̃ (dx) a.s.[P] and in L1,
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and
1

n

n∑
i=1

f(Y,Xi) −→
∫
X
f(Y, x)P̃ (dx) a.s.[P],

for each f ∈Mb(Y ⊗ X ). In particular,

P(Xn+1 = XT |Fn) −→ P̃ ({XT }) a.s.[P] and in L1,

and
1

n

n∑
i=1

δXi({XT }) −→ P̃ ({XT }) a.s.[P].

Proof. Let f ∈Mb(X ). As (Xn)n≥0 is F-c.i.d., then (E[f(Xn+1)|Fn])n≥1 is an F-martingale that converges

P-a.s. to P̃f :=
∫
X f(x)P̃ (dx). In fact, E[P̃f |Fn] = E[f(Xn+1)|Fn] a.s.[P], for n ≥ 1. It follows that

E[P̃f |FT+n] = E[P̃f |FT+n]1{T<∞} =

∞∑
m=1

E[P̃f |FT+n]1{T=m} =

=

∞∑
m=1

E[P̃f |Fm+n]1{T=m} =

∞∑
m=1

E
[
f(Xm+n+1)|Fm+n

]
1{T=m} = E

[
f(XT+n+1)|FT+n

]
,

where we have used that1 E[Z|FT+n]1{T=m} = E[Z|Fm+n]1{T=m} a.s.[P], for each m ≥ 1 and any Z ∈ L(H).

Let V ∈Mb(FT ). As FT ⊆ FT+n, one has P-a.s. that

E
[∫

X
V f(x)P̃ (dx)

∣∣FT+n

]
= V · E[P̃f |FT+n] =

= V · E
[
f(XT+n+1)|FT+n

]
= E

[
V f(XT+n+1)|FT+n

]
.

In particular, the result holds with V = 1{Y ∈A} and f = 1B , for any A ∈ Y and B ∈ X . Define

M :=

{
f ∈Mb(Y ⊗ X ) : E

[∫
X
f(Y, x)P̃ (dx)

∣∣FT+n

]
= E[f(Y,XT+n+1)|FT+n] a.s.[P], for n ≥ 1

}
.

Let a, b ∈ R and f, g ∈ M. From the linearity of integrals w.r.t. transitional probability kernels, one has

P-a.s. that

E
[∫

X

[
af(Y, x) + bg(Y, x)

]
P̃ (dx)

∣∣FT+n

]
= E

[∫
X
af(Y, x)P̃ (dx) +

∫
X
bg(Y, x)P̃ (dx)

∣∣FT+n

]
=

= a · E
[∫

X
f(Y, x)P̃ (dx)

∣∣FT+n

]
+ b · E

[∫
X
g(Y, x)P̃ (dx)

∣∣FT+n

]
=

1Let A ∈ Fm+n and D = {T = m}. As both A ∩D ∈ Fm+n and A ∩D ∈ FT+n, one has∫
A
E[f(Xm+n+1)|Fm+n](ω)1D(ω)P(dω) =

∫
A∩D

f(Xn+m+1(ω))P(dω) =

=

∫
A∩D

f(XT (ω)+n+1(ω))P(dω) =

∫
A
E[f(XT+n+1)|FT+n](ω)1D(ω)P(dω).

But E[f(XT+n+1)|FT+n] ∈M(FT+n), so E[f(XT+n+1)|FT+n] · 1D ∈M(Fm+n) from the properties of stopping times. As a

consequence,

E[f(Xm+n+1)|Fm+n]1D = E[f(XT+n+1)|FT+n]1D a.s.[P].

The case of an H-measurable integrand follows in an analogous way.
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= a · E[f(Y,XT+n+1)|FT+n] + b · E[g(Y,XT+n+1)|FT+n] =

= E[af(Y,XT+n+1) + bg(Y,XT+n+1)|FT+n];

thus, af + bg ∈ M. Let (fm)m≥1 ⊆M be such that fm ≥ 0 and fm ↑ f , for some f ∈Mb,+(Y ⊗ X ). From

the monotone convergence of integrals w.r.t. transitional probability kernels, one has P-a.s. that

E
[∫

X
f(Y, x)P̃ (dx)

∣∣FT+n

]
= lim
m→∞

E
[∫

X
fm(Y, x)P̃ (dx)

∣∣FT+n

]
=

= lim
m→∞

E[fm(Y,XT+n+1)|FT+n] = E[f(Y,XT+n+1)|FT+n],

where we have used that
∫
X fm(Y, x)P̃ (dx) ↑

∫
X f(Y, x)P̃ (dx). As a result f ∈M, so M⊇Mb(Y ⊗X ) from

a monotone class argument; therefore, for each f ∈Mb(Y ⊗ X ),

E
[∫

X
f(Y, x)P̃ (dx)

∣∣FT+n

]
= E [f(Y,XT+n+1)|FT+n] a.s.[P], for n ≥ 1.

Let f ∈Mb(Y ⊗ X ). It follows that (E[f(Y,XT+n+1)|FT+n])n≥0 is a uniformly integrable martingale w.r.t.

(FT+n)n≥0, and hence it converges a.s.[P] and in L1. In fact,

E
[
f(Y,XT+n+1)|FT+n

]
−→ E

[∫
X
f(Y, x)P̃ (dx)

∣∣F∞] =

∫
X
f(Y, x)P̃ (dx) a.s.[P],

by noting that FT ⊆ F∞. Now,

lim
n→∞

E[f(Y,Xn+1)|Fn] · 1{T=m} = lim
n→∞

E[f(Y,XT+n+1)|FT+n] · 1{T=m} =

∫
X
f(Y, x)P̃ (dx) · 1{T=m},

exists P-a.s. for every m ≥ 1. From the dominated convergence theorem w.r.t. the counting measure2, one

has that the following limit exists P-a.s. as well,

lim
n→∞

E[f(Y,Xn+1)|Fn] = lim
n→∞

∞∑
m=1

E[f(Y,Xn+1)|Fn] · 1{T=m} =

=

∞∑
m=1

lim
n→∞

E[f(Y,Xn+1)|Fn] · 1{T=m} =

∫
X
f(Y, x)P̃ (dx).

As (E[f(Y,Xn+1)|Fn])n≥0 is uniformly integrable, then

E[f(Y,Xn+1)|Fn] −→
∫
X
f(Y, x)P̃ (dx) a.s.[P] and in L1.

On the other hand, by Lemma A.7,

1

n

n∑
i=1

f(Y,Xi) −→
∫
X
f(Y, x)P̃ (dx) a.s.[P].

2Indeed, as f is bounded, then |E[f(Y,Xn+1)|Fn] · 1{T=m}| ≤ M1{T=m} a.s.[P] for some M ∈ R and each m ≥ 1, and it

holds that
∞∑

m=1

M1{T=m} = M1{T<∞} = M <∞ a.s.[P].
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Central limit results

Theorem A.1 (A.S. Conditional Convergence of Martingales). Let (Ω,H,P) be a probability space, G =

(Gn)n≥0 be a filtration on (Ω,H), (Mn)n≥1 be a real-valued G-martingale, and Hn ∈ Gn be such that

P(Hc
n i.o.) = 0. Suppose that Mn →M in L1, for some M ∈M(H). If it holds

(i) E
[
supn∈N

√
n · 1Hn |Mn −Mn+1|

]
<∞;

(ii) n ·
∑
m≥n(Mm −Mm+1)2 a.s.−→ U , for some U ∈M+(H);

then √
n(Mn −M)

a.s.cond.−→ N (0, U) w.r.t. G.

Proof. The proof itself uses Theorem A.1 in Crimaldi (2009), which we state here in a shortened version.

Theorem: For each n ≥ 1, let (Mn,h)h≥0 be a real-valued martingale w.r.t. a filtration (Fn,h)h≥0 with

Mn,0 = 0 and such that Mn,h → Mn,∞ in L1, for some Mn,∞ ∈ M(H). Suppose (Fn,1)n≥1 is a

filtration on (Ω,H). Denote by U the completion of
∨
n∈N Fn,1 in H,

Xn,h := Mn,h −Mn,h−1, Un :=

∞∑
h=1

X2
n,h, X∗n := sup

h∈N
|Xn,h|, for h, n ≥ 1.

If it holds

(a) X∗n
a.s.−→ 0;

(b) (X∗n)n≥1 is dominated in L1;

(c) Un
a.s.−→ U , for some U ∈M+(U);

then

Mn,∞
a.s.cond.−→ N (0, U) w.r.t. G.

where in our case Mn,0 = Mn,1 := 0, Fn,0 = Fn,1 := Gn and, for h ≥ 2,

Fn,h := Gn+h−1, Mn,h :=
√
n · 1Hn(Mn −Mn+h−1).

It follows that

E[Mn,h+1|Fn,h] =
√
n · 1Hn

(
Mn − E[Mn+h|Gn+h−1]

)
= Mn,h;

thus, (Mn,h)h≥1 is a martingale w.r.t. (Fn,h)h≥0 such that

Mn,h −→
√
n · 1Hn(Mn −M) =: Mn,∞ in L1, as h→∞.

On the other hand, Xn,h =
√
n · 1Hn(Mn+h−2 −Mn+h−1), so

∞∑
h=1

X2
n,h = n · 1Hn

∑
m≥n

(Mm −Mm+1)2 −→ U a.s.[P],

and

X∗n =
√
n · 1Hn sup

m≥n
|Mm −Mm+1| ≤ 1Hn sup

m≥n

√
m|Mm −Mm+1| ≤ sup

n∈N

√
n · 1Hn |Mn −Mn+1| a.s.[P],
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where we have used 1Hn
a.s.−→ 1 for both results. Moreover,

n(Mn −Mn+1)2 = n ·
∑
m≥n

(Mm −Mm+1)2 − n

n+ 1

∑
m≥n+1

(Mm −Mm+1)2 −→ 0 a.s.[P],

which implies supm≥n
√
m|Mm −Mm+1|

a.s.−→ 0, and thus X∗n
a.s.−→ 0. As a result of the above theorem,

√
n · 1Hn(Mn −M)

a.s.cond.−→ N (0, U) w.r.t. G.

But 1Hn
a.s.−→ 1 and Hn ∈ Gn; therefore,

√
n(Mn −M)

a.s.cond.−→ N (0, U) w.r.t. G.
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Pólya urn schemes. Statistics and Probability Letters, 92:232–240.

Bandyopadhyay, A. and Thacker, D. (2016). A new approach to Pólya urn schemes and its infinite color
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Pólya, G. (1930). Sur quelques points de la théorie des probabilités. Annales de l’Institut Henri Poincaré,
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