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We derive minimax testing errors in a distributed framework where the
data is split over multiple machines and their communication to a central ma-
chine is limited to b bits. We investigate both the d- and infinite-dimensional
signal detection problem under Gaussian white noise. We also derive dis-
tributed testing algorithms reaching the theoretical lower bounds.

Our results show that distributed testing is subject to fundamentally dif-
ferent phenomena that are not observed in distributed estimation. Among our
findings, we show that testing protocols that have access to shared random-
ness can perform strictly better in some regimes than those that do not. We
also observe that consistent nonparametric distributed testing is always pos-
sible, even with as little as 1-bit of communication and the corresponding
test outperforms the best local test using only the information available at
a single local machine. Furthermore, we also derive adaptive nonparametric
distributed testing strategies and the corresponding theoretical lower bounds.

1. Introduction. Distributed methods are concerned with inference in a framework
where the data resides at multiple machines. Such settings occur naturally when data is ob-
served and processed locally, at multiple locations, before sent to a central location where
they are aggregated to obtain a final result. By working with smaller sample sizes locally
distributed methods can substantially speed up the computation compared to centralized,
classical methods. Furthermore, they reduce memory requirements and help protecting pri-
vacy by not storing all the information at a single location. For these reasons, the study of
distributed methods has attracted significant attention in recent years.

In our analysis we first consider the many normal means model, which is often used as
a platform to investigate more complex statistical problems. In the classical version of the
model one obtains an observationX subject to the dynamicsX “ f `n´1{2Z , where f P R

d

is an unknown signal, and Z an unobserved, d-dimensional standard normal noise vector.
This is equivalent to observing n independent copies of a Ndpf, Idq vector. Our focus is on
testing the absence or presence of the signal component f in the model. Rejecting the null
hypothesis H0 : f “ 0 means declaring that there is a non-zero signal underlying the ob-
servation X . The difficulty of distinguishing between the two hypotheses depends on signal
strength, the noise ratio n and dimension d. It is well known that the signal strength in terms
of the Euclidean norm of f needs to be at least of the order d1{4{?

n for the hypotheses to be
distinguishable, see e.g. [6].

We study this signal detection problem in a distributed setting. In the distributed version of
the above normal-means model, the n observations are divided over m machines (assuming
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without loss of generality that n is a multiple of m). Equivalently, each local machine j P
t1, . . . ,mu observes

(1) Xj “ f `
c

m

n
Zj,

where f P R
d and the noise vectors Zj are independent d-dimensional standard normal ran-

dom vectors. Each machine j transmits a b-bit transcript Y j to a central machine. By ag-
gregating these m local transcripts, the central machine computes a test for the hypothesis
H0 : f “ 0. We derive, for this distributed setting, the order of the minimal signal strength
ρ for which the null hypothesis can be distinguished from the alternative H1 : }f}2 ě ρ. In
the distributed setting, ρ is considered as a function of the number of machines m and the
communication budget b, in addition to the dimension d and noise level n. We allow all the
parameters b,m and d to depend on n.

The transcripts generated by the machines may be either deterministic or randomized.
When randomizing the transcript, we consider two different possibilities for the source of
randomness. In the private coin setup, the machines may only use their own local (indepen-
dent) source of randomness. In the public coin setup, the machines have access to a shared
source of randomness in addition to their own independent source. This is akin to a situation
in which the machines have access to the same random seed. We show that depending on
the size of the communication budget, having access to a public coin strictly improves the
distinguishability of the null- and alternative hypothesis.

Our results indicate that, in the case where b and m are small relative to the dimension
d in an appropriate sense, the one-bit protocols have similar properties, in terms of separa-
tion rate, as multi-bits protocols, i.e. one can achieve the minimax optimal b-bit testing rates
with taking the majority vote of appropriately chosen local (one-bit) test outcomes. This is a
striking difference with estimation, where for small values of b, increases in the communi-
cation budget result in (sometimes exponential) improvements in convergence rate. We find
that, as m increases, the local testing problems become more difficult as the local sample
size deceases, but at a certain threshold, this effect is compensated for by the increase in total
communication budget bm. This threshold occurs when bm exceeds the dimension. At this
point, we find that public coin protocols start to strictly outperform private coin protocols, in
the sense that smaller signals can be detected with the same amount of transmitted bits b. This
is also a dissimilarity with estimation, where having access to public randomness offers no
benefit, as we show it in our paper. When the communication budget b per machine exceeds
that of the dimension d of the problem, the minimax rates of the classical, non-distributed
setting can be attained.

We then extend our results for the d-dimensional Gaussian model to the nonparametric
signal in white noise setting. This latter model is of interest as it serves as benchmark and
starting point to investigate more complicated nonparametric models. Here, the local obser-
vations for j “ 1, . . . ,m constitute

ş¨
0
fpsqds `

a

m
n
W

j
¨ where the W j’s are independent

Brownian motions and f P L2r0,1s the unknown functional parameter of interest. Our re-
sults for the infinite dimensional model comes in the form of minimax rates for distributed
protocols in terms of the strength of the signal in L2-norm, the smoothness s of the signal,
the amount of bits b allowed to be communicated by each machine, the signal to noise ratio n
and the number of machinesm. In contrast to nonparametric distributed estimation, we show
that consistent distributed testing is always possible, even when m and b are small. Having
a shared source of randomness results in better rates in certain regimes in the nonparametric
setting, whilst we show that this is never the case for distributed estimation. Finally, we con-
sider the more realistic, adaptive setting where the regularity s is considered to be unknown.
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We show that in contrast to the non-distributed setting where the cost for adaptation is a mul-
tiplicative log logn factor, in the distributed case a more severe logn penalty is necessary. We
also propose a nonparametric distributed testing procedure based on Bonferroni’s correction
reaching the theoretical limits (up to a log logn factor) and observe additional, unexpected
phase transitions compared to the non-adaptive setting.

1.1. Related literature. Starting a few decades ago, earlier investigations into similar
topics originate in the electrical engineering community, under the names “decentralized de-
cision theory / the CEO problem” e.g. [38, 4, 39, 9, 25, 37] or “inference under multiterminal
compression” (see [21] for an overview). Motivated by applications such as surveillance
systems and wireless communication, the inference problems are approached from a “rate-
distortion” angle in this body of literature. However, these results typically consider fixed,
finite sample spaces and a fixed number of machines m and investigate asymptotics only in
the sample size n.

Understanding the fundamental statistical performance of distributed methods in context
of non-discrete, higher-dimensional sample spaces has been considered only recently. Most
of the literature focused on estimating the parameter/signal of the model in a distributed
framework. Minimax lower and (up to a possible logarithmic factor) matching upper bounds
were derived for the minimax risk in terms of communication constraints in context of the
many normal means and simple parametric problems, see [43, 19, 30, 11, 41, 22, 13, 12].
These results were extended to nonparametric models, including Gaussian white noise [44],
nonparametric regression [32], density estimation [7] and general, abstract settings [36]. Dis-
tributed techniques for adapting to the unknown regularity of the functional parameter of
interest were derived in [32, 33, 14].

For distributed testing, much less is known. In [1], the authors consider a setting in which
each machine obtains a single observation from a distribution on a finite sample space and
derive lower bounds for testing uniformity of this distribution. Similar distributed uniformity
testing is considered in [2], where matching upper bounds are exhibited for this setting. In
[34], the authors derive matching upper and lower bounds for the distributed version of the
classical many normal means model (see (1) above) for the case that only the outcome of local
tests can be communicated (e.g. 1-bit of communication). In [3] less stringent communica-
tion requirements are considered, in the special case of the model in (1) above with m “ n.
Questions regarding nonparametric models and adaptation in the setting of distributed testing
have remained completely open thus far.

To summarize the state of the art, the lower bounds derived in the literature so far are only
optimal in case of constant communication budget in the public coin setting, i.e. b“Op1q. So
far no lower bound results are available in the public coin setting if b can tend to infinity as n
increases. Furthermore, there is a lack of any lower bound result in the private coin setup. The
traditional methods based on mutual information and Taylor expansion as considered in [34]
and [3], respectively, do not extend to the setting of multiple bits or private coin protocols. In
this article we fill this gap and derive the first rigorous minimax lower bounds for distributed
testing procedures in the normal means model for arbitrary communication budget b both
for private and public coin settings. In order to prove the lower bounds, we provide a novel
Bayesian testing argument based on a Brascamp-Lieb type inequality with distributed version
of testing lower bounding techniques.

The upper bounds derived in [3] are more complete for both the private and public coin
settings and go beyond the above described restrictive setting in which the lower bounds were
derived, but do not cover all possible cases. For instance, in [3] it is assumed that the sepa-
ration distance between the null and alternative hypotheses is bounded from above by one,
which does not cover the case

?
dm " n. Also, only the m “ n case was considered in the
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preceding paper. Therefore, in certain regimes new testing procedures and proof techniques
had to be derived for full treatment of the problem (e.g. our novel test TIII in the high-budget
private coin case, see Section 4.3).

The literature on distributed testing has so far solely focused on finite dimensional models.
We provide the first results for distributed testing in nonparametric models. Besides deriving
lower and matching upper bounds we also derive an adaptive testing procedure, not depend-
ing on the typically unknown regularity of the underlying functional parameter of interest.

1.2. Overview of our results and organization. For a quick overview, the main contribu-
tions of this article are:

• Sharp minimax upper- and lower bounds for all values of n,m,d, b for the d-dimensional
distributed-signal-in-white-noise model, for both private and public coin settings (Section
3), with accompanying methods achieving these rates (Theorem 3.1 and Theorem 3.2).

• We extend the d-dimensional distributed-signal-in-white-noise model to the nonparametric
setting where the signal is a Sobolev regular functional parameter of known regularity and
establish the minimax rates within this setting for all values of n,m, b for both the private
and public coin settings (Theorem 6.1).

• We consider the nonparametric setting in which the regularity of underlying signal is un-
known and derive adaptive private and public coin procedures. Furthermore, we establish
private and public coin lower bounds for the adaptive setting that are tight up to a log logn
factor for all values of n,m, b (Theorem 7.1 and Theorem 7.2).

The remainder of the paper is organized as follows. In Section 2 we describe the
distributed-signal-in-white-noise model with d-dimensional signal f P R

d and formalize the
distributed testing problem both for private and public coin protocols. In Section 3 we provide
the minimax lower and matching upper bounds for both testing protocols. Section 5 gives
a sketch of the proof of the lower bound. We exhibit constructive algorithms that achieve
matching upper bounds in Section 4. We extend our results to the nonparametric distributed-
signal-in-white-noise model with Sobolev regular functional parameter in Section 6. Here,
we also compare distributed testing and estimation rates and highlight the similarities and
differences between them both in the private and public coin settings. In Section 7, we con-
sider adaptation to the unknown regularity level in the nonparametric setting and present the-
oretical lower and matching upper bounds. In Section 8, we derive constructive algorithms
achieving these upper bounds. The detailed proof of the lower bound for the d-dimensional
signal is deferred to Section 9 and a key technical lemma described in Section 10. Detailed
proofs for this lemma, as well as some of the technical details of the other main results
and various auxilliary results, have been deferred to the Supplementary Material [35] to this
manuscript. Results, equations and sections in the Supplementary Material are indexed by
capital letters as opposed to numerals, as is used in the article.

1.3. Notation. We write a ^ b “ minta, bu and a _ b “ maxta, bu. For two positive
sequences an, bn we use the notation an À bn if there exists a universal positive constant
C such that an ď Cbn. We write an — bn which holds if an À bn and bn À an are satisfied
simultaneously. We shall use an " bn to denote bn{an Ñ 0. The Euclidean norm of a vector
v P R

d is denoted by } ¨ }2. For absolutely continuous probability measures P !Q, we denote
by DKLpP }Qq “

ş

log dP
dQ
dP and Dχ2pP }Qq “

ş

pdP
dQ

´ 1q2dP their Kullback-Leibler and
Chi-square divergences, respectively. Throughout the whole text we use for convenience the
abbreviation rhs and lhs for right-hand-side and left-hand-side, respectively, and cdf for the
cumulative distribution function.
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2. Problem formulation and setting. We consider testing in the distributed-signal-in-
white-noise model. In this section, we provide the formulation of the distributed setup for
data coming from the finite dimensional model. Except for obvious modifications to the sam-
ple space, the same setup is considered when the local data is from the infinite dimensional
distributed-signal-in-white-noise model, which is formulated in Section 6. For j “ 1, . . . ,m

machines, the local observations constitute Xj taking values in X Ă R
d, subject to dynamics

(1) under Pf . Each machine j communicates a b-bit transcript Y j to a central machine.
That is, the transcript Y j takes values in some space Yj with |Yj | ď 2b for b P N. Let
Y “

`

Y 1, . . . , Y m
˘

denote the aggregated data in the central machine. The central machine
computes a test T pY q, where T is a map from Y :“

Âm
j“1Y

j to t0,1u that has to distinguish
between the null hypothesis f “ 0 and the alternative hypothesis. As alternative hypothesis,
we consider whether

f PHρ :“
!

f P R
d : }f}2 ě ρ

)

,

for some appropriately chosen ρ“ ρm,n,d,b.
We distinguish two mechanisms through which the local machines j “ 1, . . . ,m can gen-

erate their transcripts Y j . In the first setup, machines can use only their local observation
Xj when generating Y j , possibly in combination with a local source of randomness. In the
second setup, we allow the machines to access a common source of randomness U , which is
independent of the dataX :“ pX1, . . . ,Xmq. In the latter setup, which we call the public coin
setting, the machines may use both local randomness, the observed draw of U and their local
observation Xj when generating their transcript Y j . The setup where only local randomness
is available shall be referred to as the private coin setting. A formal definition of these two
setups is as follows.

• A private coin distributed testing protocol consists of a map T : Y Ñ t0,1u and a collec-
tion of Markov kernels Kj : 2Y

j ˆ X j Ñ r0,1s, j “ 1, . . . ,m, and the transcript satisfies
Y j|Xj „Kjp¨|Xjq.

• A public coin distributed testing protocol consists of a map T : Y Ñ t0,1u, a random
variable U taking values in a probability space pU ,U ,PUq and a collection of Markov
kernels Kj : 2Y

j ˆ X j ˆ U Ñ r0,1s, j “ 1, . . . ,m, such that Y j|pXj ,Uq „Kjp¨|Xj ,Uq.

The choices for the kernels induce the conditional distribution of Y “ pY 1, . . . , Y mq, which
we will denote K :“ Âm

j“1K
j . For the joint distribution of X , Y and U we shall write

Pf,K ” Pf , where the f subscript indicates the dynamics underlying X and the subscript
K is used to stress that the conditional distribution of Y induced by the choice of kernels.
Furthermore, we denote by P

X
f the corresponding marginal distribution of X, i.e. PX

f “ Pf .
Our distributed architecture in the public coin case then follows the following Markov chain
structure at each local machine j “ 1, ...,m

(2)
U P

Pq

Y j .

f ✲ Xj ✏✏✶

Note that any private coin testing protocol can effectively be considered a public coin
testing protocol for which U has degenerate distribution, i.e. U “ u P U almost surely. In our
proofs below, for the sake of compactness, we consider without loss of generality that the
private coin setting implies U has a degenerate distribution. When no confusion can arise, we
will refer to a distributed testing protocol as “distributed test”, and we will refer to the tuple
pT, tK1, . . . ,Kmu,PU q by T for ease of notation. We use Tprivpbq and Tpubpbq to denote the
classes of all private and public coin distributed tests, respectively, each with communication
budget b per machine.
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We define the testing risk of a distributed test T ” pT,K,PU q for the alternative hypothesis
Hρ as the sum of the Type I and Type II errors, i.e.

(3) RpHρ, T q :“ P0 pT pY q “ 1q ` sup
fPHρ

Pf pT pY q “ 0q .

3. Minimax upper and lower bounds in the normal means model. Our main results
come in the form of two theorems. The first establishes the lower bounds for the detection
threshold for both the public- and private coin distributed tests. We provide the proof of this
theorem in Section 9. The second theorem establishes the optimality of the lower bound
posed in the first theorem by providing distributed tests in both the public and private coin
cases which attain the respective rates posed by the lower bounds. These optimal distributed
testing procedures are described in Section 4. We note that our results are not asymptotic in
nature as they hold for every combination of b,n,m and d, hence going beyond the classical
parametric framework.

THEOREM 3.1. [Distributed testing lower bound] For each α P p0,1q there exists a con-

stant cα ą 0 (depending only on α) such that if

(4) ρ2 ă cα

?
d

n

˜

c

d

b^ d

ľ?
m

¸

,

then in the public coin protocol case

inf
TPTpubpbq

RpHρ, T q ą α for all n,m,d, b P N.

Similarly, for

(5) ρ2 ă cα

?
d

n

ˆ

d

b^ d

ľ?
m

˙

,

we have under the private coin protocol that

inf
TPTprivpbq

RpHρ, T q ą α for all n,m,d, b P N.

The approach to proving the lower bound theorem can be summarized as follows. We start
out by lower bounding the testing risk by a type of Bayes risk, where the parameter f is
drawn from an adversarial prior distribution π. By taking π to be Gaussian, we can exploit
the conjugacy of the model in order to show that optimal transcripts are either invariant to the
prior or “Gaussian” in an appropriate sense. After this, the results follow by data processing
arguments that are geometric in nature. We defer a more elaborate sketch of the proof to
Section 5 and the detailed proof to Section 9. The techniques used in this work are novel and
drastically different than those used in [3, 34], which provide tight bounds only in the 1-bit
case.

The above theorem implies that if (4) holds, no consistent public coin distributed testing
protocol with communication budget b bits per machine exists for the hypothesesH0 : f “ 0

versus the alternative H1 : }f}2 ě ρ. In other words, no public coin distributed test manages
to consistently distinguish all signals from 0 if the signals are smaller than the rhs of (4).
When considering only private coin distributed testing protocols, the detection threshold (5)
is more stringent than the public coin threshold (4) for certain values of d, m and b. Theorem
3.2 below affirms that, in these cases, the best private coin protocol have a strictly worse
performance compared to the best public coin protocol.
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THEOREM 3.2. For each α P p0,1q there exists a constant Cα ą 0 (depending only on

α) such that if

ρ2 ěCα

?
d

n

˜

c

d

b^ d

ľ?
m

¸

,

there exists T P Tpubpbq such that

RpHρ, T q ď α for all n,m,d, b P N.

Similarly, for

ρ2 ěCα

?
d

n

ˆ

d

b^ d

ľ?
m

˙

there exists T P Tprivpbq such that

RpHρ, T q ď α for all n,m,d, b P N.

The achievability of arbitrarily small testing risk is shown using a constructive proof, see
Section 4. That is, we derive distributed testing protocols that distinguish the null hypothesis
from any f P R

d in the alternative class.
Theorem 3.1 together with Theorem 3.2 establish the minimax distributed testing rate for

public and private coin protocols. As a sanity check, note that whenm“ 1, we obtain the non-
distributed minimax testing rate ρ2 “

?
d{n. Furthermore, when b Á d, enough information

about the coefficients can be communicated to obtain the non-distributed minimax rate also,
for both the public coin and private coin distributed protocols. When the communication
budget is smaller than the dimension (b “ opdq), the class of public coin protocols starts to
exhibit strictly better performance than the private coin ones in scenarios as long as d “
opmbq. That is, as long as the total communication budget mb of the system exceeds the
dimension d of the parameter, public coin protocols achieve a strictly better rate than private
coin ones. This remarkable phenomenon disappears when the dimension is larger than the
total communication budget (i.e. mb “ opdq), at which point there exists a one-bit private

coin protocol achieving the optimal rate of ρ2 —
?
md
n

in both cases. Consistent distributed
testing turns out to be possible even for small values of b and m, as long as n is large enough
compared to d. This stands in contrast to estimation in the d-dimensional Gaussian mean
model, where consistent estimation is not possible whenmb“ opdq, regardless of sample size
n (see e.g. [13]). Furthermore, as long as mb“ opdq in the public coin case or mb2 “ opd2q
in the private coin case, an increase in communication budget does not lead to a better rate.
This stands in stark contrast to estimation, where for small budgets an increase can lead to an
exponential improvement in convergence rate.

4. Distributed testing protocols achieving the lower bound in the many normal

means model. In this section, we exhibit three distributed testing procedures achieving the
rates posed by the lower bound. The first distributed testing procedure TI communicates only
a single bit per machine and can detect signals with a squared Euclidean norm of larger or
equal order than

?
dm
n

and does not need a public coin. As a second procedure, we consider
a test satisfying the public coin protocol TII that achieves the rate d

n
?
b^d

. The third proce-

dure satisfies the private coin protocol and achieves the corresponding slower rate d
npb^dq .

Note that, depending on the values of n,m,d and b, the existence of such distributed testing
protocols proves Theorem 3.2 and implies that the lower bounds in Theorem 3.1 are in fact
tight.
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A common denominator in the construction of the three protocols is that the transcripts
Y j are generated as vector of pjf -Bernoulli random variables taking values in t0,1ub where

p
j
f P r0,1sb depends on the underlying signal f , with p

j
f “ p1{2, . . . ,1{2q under the null

hypothesis (f “ 0). The concentration inequality for groups of Bernoulli random variables
given in Lemma 4.1 provides a recipe for the construction of a central test for each of the three
regimes. The Type I error can be controlled since the distribution under the null hypothesis
is known. The Type II error is small whenever the vectors of probabilities p1f , . . . , p

m
f are

sufficiently separated from p1{2, . . . ,1{2q in Euclidean norm.

LEMMA 4.1. Consider for k, l P N, l ě 2, independent random variables tBj
i : i “

1, . . . , k, j “ 1, . . . , lu with B
j
i „ Berppiq. If pi “ 1{2 for i “ 1, . . . , k, it holds that for all

α P p0,1q there exists κα ą 0 such that

T :“ 1

$

&

%

ˇ

ˇ

ˇ

ˇ

1?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

pBj
i ´ 1

2
q
¸2

´
?
k{4

ˇ

ˇ

ˇ

ˇ

ě κα

,

.

-

satisfies ET ď α{2. On the otherhand, if

(6) ηp,l,k :“
l´ 1

2
?
k

k
ÿ

i“1

ˆ

pi ´ 1

2

˙2

ě κα,

it holds that

(7) Ep1 ´ T q ď 1{2 ` 16ηp,l,k{
?
k

η2p,l,k
.

The proof of the lemma can be found in Section A.2 of the Supplementary Material where
it is restated as Lemma A.4. We also provide a version of this lemma (Lemma A.5 in the
Supplement) used in the high-budget private coin protocol case.

4.1. Low communication budget: construction of TI. The protocol presented here is sim-
ilar to the one given in [34], with some adjustment allowing the application of Lemma 4.1
for a simpler proof.

We first compute the local test statistic Sj
I “ pn{mq}Xj}22 at every machine j “ 1, ...,m.

Under the null hypothesis, Sj
I follows a chi-square distribution with d degrees of freedom,

i.e. Sj
I „ χ2

d. Letting Fχ2
d

denote χ2
d-cdf, the quantity Fχ2

d

´

S
j
I

¯

can be seen as the p-value for

the local test statistic Sj
I . Based on these “local p-values”, we then generate the randomized

transcript Y j
I for every j using Bernoulli random variables:

Y
j

I |Sj
I „ Ber

´

Fχ2
d

´

S
j
I

¯¯

.

For a given α P p0,1q, we can construct the test

(8) TI “ 1

!ˇ

ˇ

ˇ

1

m

´
m
ÿ

j“1

pY j
I ´ 1{2q

¯2

´ 1{4
ˇ

ˇ

ˇ ě κα

)

at the central machine. In applications, one could set for instance κα such that P0TI « α

by considering that
řm

j“1Y
j
I is pm,1{2q-binomially distributed under the null. Lemma

A.6 in the Supplementary Material yields that for each α P p0,1q, there exist constants
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κα,Cα,Mα,D0 ą 0 such that for mě Mα and d ěD0 it holds that RpHρ, TIq ď α, when-

ever ρ2 ěCα

?
md
n

.
The casemďMα corresponds essentially to the non-distributed setting and is treated sep-

arately for technical reasons. In practice, one would simply use the test given in (8) also for
m ď Mα. Furthermore, if one allows for a slightly larger amount of bits (e.g. log2pnq bits),
one could opt to transmit an (approximation of) the test statistics Sj

I themselves, see e.g.

Lemma 2.3 in [33], for which it is easy to prove that the rate of
?
md
n

is achieved without re-

quiring any assumptions on m. For the sake completeness: by considering ρ2 ěCα

?
Mα

?
d
n

,

we see that the optimal rate of
?
md
n

can be achieved in the mďMα case by simply taking

(9) T 1
I :“ Y 1

I :“ 1

"

1?
d

`

S1
I ´ d

˘

ě κα

*

for an appropriately large choice of the constant κα. Similarly, the requirement that d is larger
than some constant D0 (which is independent of α) appears for technical reasons. The case
where dďD0 is covered by the private coin protocol TIII in Section 4.3.

4.2. Public coin, high communication budget: construction of TII. We now switch our
attention to exhibiting a testing procedure that is optimal when bmÁ d in the public coin case.
That a shared source of randomness in distributed settings can be strictly better than private
ones in terms of communication complexity, is an idea that goes back to [42]. Essentially, the
use of shared randomness allows for the machines coordinate their efforts in “covering” each
of the d dimensions of the data even though all communication happens in just one round.
See also e.g. Chapter 3 in [29] for an extensive treatment of this phenomenon. We adopt ideas
proposed by [3], who consider the setting where m “ n with asymptotics in m. We exhibit
this testing protocol below and provide a full proof covering also the case where m ‰ n.
To that extend, let U be a random rotation, i.e. U is drawn from the Haar measure (see e.g.
Theorem F.13 in [5]) on the set of orthonormal matrices in R

dˆd. At each machine, for bď d,
we can compute the b-bit transcript Y j

II P t0,1ub conditionally on the shared public coin draw
U , where each of the 1 ď iď b components is defined through

pY j
II qi|U,Xj “ 1

!´

a

n{mUXj
¯

i
ą 0

)

,

where pvqi denotes the projection onto the i-th coordinate of the vector v P R
d. The random

rotation fulfills a similar purpose as the random reweighting algorithm proposed in [34], but
leads to an easier proof in the d-dimensional case because of rotational invariance of the
Gaussian distribution.

Centrally, after transmitting pY 1, . . . , Y mq, we compute the aggregated test statistics SII “
řm

j“1Y
j

II and define the corresponding test as

(10) TII “ 1

!ˇ

ˇ

ˇ

1?
bm

b
ÿ

i“1

´

pSIIqi ´ m

2

¯2

´
?
b{4

ˇ

ˇ

ˇ
ą κα

)

.

Lemma A.7 in the Supplementary Material shows that this test achieves the public coin lower
bound when mbÁ d and měMα.

4.3. Private coin, high total communication budget: constructing TIII. Finally, we con-
sider the case of not having access to a public coin, but having a relatively large com-
munication budget (b2m Á d2). Note that we can assume without loss of generality that
m ě Mαd

2{b2 for a constant Mα ą 0, as otherwise the optimal rate is
?
md{n, obtained
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by the 1-bit private coin test described by (8) (see Section 4.1). This case is the most involved
one and we construct a test consisting two sub-tests optimal in different sub-regimes.

The most obvious approach in this case is to divide the communication budget of each
machine over the d coordinates as uniformly as possible. That is to say, to partition the coor-
dinates t1, . . . , du into approximately d{b sets of size b (we assume without loss of generality
that bď d, as we can always throw away excess budget and b“ d bits suffices for achieving
the minimax rate). The machines are then equally divided over each of these partitions and
communicate the coefficients corresponding to their partition. More formally, such a strategy
entails taking sets Ii Ă t1, . . . ,mu such that |Ii| “ tmb

d
u and each j P t1, . . . ,mu is in Ii for b

different indexes i P t1, . . . , du. For i“ 1, . . . , d and j P Ii, generate the transcripts according
to

(11) Y
j
i |Xj

i “ 1tXj
i ą 0u.

Centrally, a natural test based on these transcripts is

(12) T 1
III :“ 1

!ˇ

ˇ

ˇ

1

|I1|
?
d

d
ÿ

i“1

´

ÿ

jPIi

pY j
i ´ 1{2q

¯2

´
?
d{4

ˇ

ˇ

ˇ
ą κα

)

.

It turns out that such a test does not cover all regimes where m Á d2{b2, because, there
is a certain amount of information loss due to the nonlinearity of the quantization step (11),
i.e. the test induces soft thresholding for the signal components which is sub-optimal for
(relatively) large signal components. For the exact statement on the testing error of this test,
see Lemma A.9 below.

For detecting signals including large coordinates we propose an adaptation of test T 1
III.

We start by assuming that bě 2 logpd` 1q otherwise we do not construct the test. Then for
i“ 1, ..., d and j “ 1, ...,m, let us generate

B
j
li

iid„ Ber
´

Fχ2
1

´

`
a

n{mXj
i

˘2
¯¯

, l P t1, . . . ,Cb,d “ t2b{pd` 1quu.

Note that Cb,d ě 1 by assumption. Then machine j communicate the transcripts

(13) N j “
Cb,d
ÿ

l“1

d
ÿ

i“1

B
j
li P t0,1, . . . ,Cb,ddu,

which can be done using log2pCb,dd ` 1q ď b bits in total. Based on these transcripts, we
compute the test

T 2
III “ 1

$

&

%

ˇ

ˇ

ˇ

ˇ

1

dmCb,d

˜

m
ÿ

j“1

pN j ´Ld{2q
¸2

´ 1

4

ˇ

ˇ

ˇ

ˇ

ě κα

,

.

-

centrally. The testing risk bound for the above test is given in Lemma A.10 below.
Finally, we construct our test by combining the above ones. We construct both partial tests

T 1
III and T 2

III if bě 2 logpd`1q by transmitting b1 “ tb{2u bits per machine for each, otherwise
we just construct T 1

III. Then we merge them by taking

(14) TIII “ T 1
III _ T 2

III1tbě2 logpd`1qu,

where the indicator should be understood to rule out cases in which the transcripts for T 2
III

cannot necessarily be communicated. This case, as shown below, is covered by the first test
T 1

III. Lemma A.8 in the Supplementary Material shows that TIII has sufficiently small testing
risk in all cases where měMαd

2{b2.
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5. A sketch of proof for the testing lower bound (Theorem 3.1). In this section, we
provide a sketch of proof of Theorem 3.1, of which the full details are given in Section 9. The
proof starts out the same way for both the private and public coin cases, but bifurcates later
on. We consider for the time being a generic collection of b-bit distributed testing protocols
T pbq.

As a first step, we introduce a prior distribution π on R
d and lower bound the testing risk

by a type of Bayes risk and the mass of π that resides outside of the alternative hypothesis
Hρ, akin to e.g. [24]. Recall that Pf denotes the joint distribution of Y , U and X where
Xj follows (1) and Y „ E

X,U
f Kp¨|X,Uq “: PY

f,K “ P
Y
f . For π a given a distribution on R

d,

define the mixture distribution P
X
π “ Pπ on R

md by PπpAq “
ş

Pf pAqdπpfq, where we recall
the notational convention P

X
f “ Pf from Section 2.

Through the Markov chain relation f ÑX Ñ Y this defines a distribution P
Y
π “ P

Y
π,K on

Y and let us denote by E
Y
π the corresponding expectation. Lemma A.1 in the Supplementary

Material lower bounds the infimum testing risk infTPT RpHρ, T q using a version of Le Cam’s
lemma adapted to the distributed setting. The lemma yields that, for any distribution on U ,

inf
TPT

´

E
Y
0 T pY q ` sup

fPHρ

E
Y
f p1 ´ T pY qq

¯

ě inf
K

sup
π

´

1 ´ }PY
0,K ´ P

Y
π,K}TV ´ πpHc

ρq
¯

,

where the infimum on the rhs is over all kernels on Y .
Using that the measure dPY

f disintegrates as dPY |U“u
f dPU

f puq, and the fact that U is inde-
pendent of the prior π, we find by Jensen’s inequality that

}PY
0,K ´ P

Y
π,K}TV ď

ż

}PY |U“u
0,K ´ P

Y |U“u
π,K }TV dP

U puq.

By Pinsker’s second inequality and the fact that logpxq ď x´ 1, we obtain that

(15) inf
TPT pbq

RpHρ, T q ě 1 ´ sup
K

inf
π

´

ż
b

2Dχ2pPY |U“u
0,K ;P

Y |U“u
π,K qdPU puq ` πpHc

ρq
¯

,

where

(16) Dχ2pPY |U“u
0,K ;P

Y |U“u
π,K q “ E

Y |U“u
0,K

¨

˝

P
Y |U“u
π,K

P
Y |U“u
0,K

pY q

˛

‚

2

´ 1.

From hereon, the proof can be broken down into two steps. We provide the skeleton of the
proof here and defer the full details to Section 9.

1. The first term on the rhs of (16) can be expressed in terms of a conditional expectation of
the likelihood of X :

(17) E
Y |U“u
0

¨

˝E0

«

ż

m

Π
j“1

dPXj

f

dPXj

0

pXjqdπpfq
ˇ

ˇ

ˇ

ˇ

Y,U “ u

ff2
˛

‚,

which we compare to the quantity

(18)
m

Π
j“1

E
Y j |U“u
0

¨

˝E0

«

ż

dPXj

f

dPXj

0

pXjqdπpfq
ˇ

ˇ

ˇ

ˇ

Y j,U “ u

ff2
˛

‚,

which corresponds to the product of the first terms of the local chi-square divergences. In
particular, we compare the ratio of the expressions in the above two displays and show
that when π is taken to be centered Gaussian, this ratio is maximized when the protocol’s
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kernel K : L2pYq Ñ L2pX q with Hilbert space adjoint K˚ satisfies that K˚K : L2pX q Ñ
L2pX q is Gaussian in an appropriate sense. This is the content of Lemma 10.1, which
forms the crux of our proof. This lemma, on which we expound in Section 10, exploits the
conjugacy between the prior and the model which enables the use of techniques applied in
[26]. Consequently, we obtain that the first term on the rhs of (16) is bounded from above
by a multiple of

(19)
m

Π
j“1

E0

”

Lπ

`

Xj
˘2
ı

ż

exp
`

fJΞug
˘

dpπ ˆ πqpf, gqdPU puq,

where

(20) Ξu :“
m
ÿ

j“1

E
Y j |U“u
0 E0

„

Xj

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u



E0

„

Xj

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u

J
.

2. The final step combines data processing techniques with what is essentially a geometric
argument. The first term in (19) is handled using classical, non-distributed techniques, i.e.
decoupling argument of the measure and the moment generating function of the Gaussian
chaos, see e.g. [40]. In the second term in (19) the dˆ d matrix Ξu geometrically captures
how well Y allows to “reconstruct” the compressed sample X . The information lost by
compressing a d dimensional observation Xj into a b-bit transcript Y j is captured in a
data processing inequality for the matrix Ξu and its trace, which comes in the form of
Lemma A.2 and Lemma A.3. From hereon out, the proof of the private and the public
coin cases separate. Recalling the order of the supremum, infimum and expectation with
respect to the public coin in (15), we see that in the private coin case, π can be chosen with
knowledge of Ξu, as U is degenerate in this case. To obtain the stricter lower bound in the
private coin case, we choose π’s covariance in order to exploit the “weakest directions” of
the protocol Y and the proof is finished by matrix algebra arguments.

6. Nonparametric testing with known regularity. A natural extension of the above
finite dimensional signal in Gaussian noise setting is the infinite dimensional signal in white
noise model. Here, the j “ 1, . . . ,m machines observe iid Xj taking values in X Ă L2r0,1s
and subject to the stochastic differential equation

(21) dX
j
t “ fptqdt`

c

m

n
dW

j
t

under Pf , with W 1, . . . ,Wm iid Brownian motions and f P L2r0,1s. Besides the difference
in the local observations, the distributed setup considered for this model remains exactly the
same. The results derived for the alternatives Hρ in the finite dimensional model translate to
testing in the infinite dimensional model against the alternative hypotheses

f PHs,R
ρ :“ tf P Hs,Rr0,1s : }f}L2

ě ρ and }f}Hs ďRu.

Here, Hs,R “ Hs,Rpr0,1sq denotes the Sobolev ball of radius R in the space of s-smooth
Sobolev functions and } ¨ }Hs the Sobolev norm, see Section G for recalling the definitions.
The smoothness parameter s ą 0 determines the difficulty of the classical (non-distributed,
m “ 1) nonparametric testing problem as considered in e.g. [24]. The asymptotic minimax

rate for the non-distributed case is ρ2 — n
´ 2s

2s`1{2 for the s-smooth Sobolev alternative class.
We allow for asymptotics in b andm in the sense that they can depend on n. Consequently,

we consider the separation rate ρ in the nonparametric problem to be a sequence of positive
numbers in both n, m and the budget b. A distributed test T in the nonparametric setting is
called α-consistent for α P p0,1q if RpHs,R

ρ , T q ď α for all n large enough.
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The distributed setting for the nonparametric model remains unchanged in comparison
with the finite dimensional model introduced in Section 2, except of course for the sample
space in which the observations Xj take values. This becomes L2r0,1s instead of Rd. The
following theorem describes the minimax rate for the nonparametric distributed problem.

THEOREM 6.1 (Nonparametric signal in white noise minimax rate). Take f P Hs,R for

some s,R ą 0 and let b ” bn and m ” mn be sequences of natural numbers and take ρ ”
ρn,b,m,s be a sequence of positive numbers satisfying

(22) ρ2 —

$

’

’

&

’

’

%

n
´ 2s

2s`1{2 , if bě n
1

2s`1{2 ,
´?

bn
¯´ 2s

2s`1

, if n
1

2s`1{2 {m
2s`1

2s`1{2 ď bă n
1

2s`1{2 ,

pn{?
mq´ 2s

2s`1{2 , if bă n
1

2s`1{2 {m
2s`1

2s`1{2 .

In the public coin protocol case the minimax testing rate is ρ2 given in (22), i.e. for all

α P p0,1q there exist constants Cα, cα ą 0 depending only on α, s and R such that for all n

large enough,

inf
TPTpubpbq

RpHs,R
cαρ
, T q ą 1 ´α and inf

TPTpubpbq
RpHs,R

Cαρ
, T q ď α.

Similarly, in the private coin protocol case ρ” ρn,b,m given below

(23) ρ2 —

$

’

’

&

’

’

%

n
´ 2s

2s`1{2 if bě n
1

2s`1{2 ,

pbnq´ 2s

2s`3{2 if n
1

2s`1{2 {m
s`3{4
2s`1{2 ď bă n

1

2s`1{2 ,

pn{?
mq´ 2s

2s`1{2 if bă n
1

2s`1{2 {m
s`3{4
2s`1{2 ,

provides the minimal testing rate, i.e. for all α P p0,1q there exist constants Cα, cα ą 0 de-

pending only on α and R such that for all n large enough,

inf
TPTprivpbq

RpHs,R
cαρ
, T q ą 1 ´α and inf

TPTprivpbq
RpHs,R

Cαρ
, T q ď α.

The proof of the theorem is given in Section B. The theorem reveals the relationship be-
tween the signal-to-noise-ratio n, communication budget per machine b, the number of ma-
chines m and the smoothness of the signal s. Before providing the proof we briefly discuss
the connection with distributed minimax estimation rates.

The distributed minimax estimation rates under private coin protocol were established in
Corollary 2.2 of [32] or Theorem 3.1 in [44]. A slight reformulation of the latter yields that
(24)

inf
pf̂ ,LpY qqPEprivpbq

sup
fPHs,R

E
Y
f }f̂pY q ´ f}2L2

—

$

’

&

’

%

n
´ 2s

2s`1 , if bě n
1

2s`1 ,

pbnq´ 2s

2s`2 , if pn{m2`2sq
1

2s`1 ď bď n
1

2s`1 ,

pbmq´2s , if bď pn{m2`2sq
1

2s`1 ,

where Eprivpbq is the class of all distributed estimators based on b-bit transcripts Y “
`

Y 1, . . . , Y m
˘

.
A first observation is that consistent testing is possible in any regime of b ě 1 and m,

whereas this is not the case in estimation. Consider for instance the regime where m and
b are fixed. In nonparametric distributed estimation, the L2-risk does not improve once the
sample size is large enough. In fact, even when allowing for asymptotics in b and m (but
assuming that pn{m2`2sq

1

2s`1 ě b) one is better off performing the estimation locally using
just one of the machines with local signal-to-noise-ratio n{m, attaining the locally optimal

rate pn{mq´ 2s

2s`1 .
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In the case of nonparametric testing, not only can we consistently test for any fixed m and
b, the distributed testing rate is bounded from above by pn{?

mq´2s{p2s`1{2q (regardless of
the communication budget b), which is significantly smaller (for large m) than the minimax
testing rate based on the local signal-to-noise-ratio pn{mq´2s{p2s`1{2q, which can be achieved
by using only a single local machine. One possible explanation for this discrepancy is that
in nonparametric estimation, the output of the inference is a high-dimensional object, which
requires a large total communication budget to be reconstructed with sufficient granularity.
In testing, the output of our inference is binary.

A perhaps less surprising difference is that a larger budget is needed for testing at the non-
distributed minimax testing rate compared to estimation. That is, in order to obtain the non-

distributed minimax rate of ρ2 — n
´ 2s

2s`1{2 , the communication budget needs to satisfy b Á
n

1

2s`1{2 . On the other hand, the non-distributed minimax estimation rate n´ 2s

2s`1 requires only
bÁ n

1

2s`1 . This follows from the fact that the L2 testing rate is faster than the estimation rate
and hence to achieve this faster rate one has to collect information about the signal at higher

frequency level as well (up to the Opn
1

2s`1{2 q coefficients in the spectral decomposition).
Increasing m decreases the local signal-to-noise-ratio. When the total budget bm grows

at a similar or faster rate than the “effective dimension” of the model, the rate that can be
achieved no longer depends on m in both estimation and testing settings. In this regime,
this effect is offset by the total number of bits being received by the central machine. What
is different in testing problem, however, is that having access to shared randomness strictly
improves the performance (until the local communication budget b reaches the effective di-

mension n
1

2s`1{2 as after that both method reaches the minimax non-distributed testing rate

n
´ 2s

2s`1{2 ). One might wonder whether having access to a public coin improves the rate in
the estimation setting also. It turns out that this is not the case. We show in Theorem C.1
in the Supplementary Material that under the public coin protocol the distributed minimax
estimation rate does not improve compared to the private coin protocol.

7. Adaptation in nonparametrics. In the previous section we have derived minimax
lower and matching upper bounds for the nonparametric distributed testing problem in con-
text of the Gaussian white noise model. The proposed tests, however, depend on the regularity
hyper-parameter s of the functional parameter of interest f . Typically, the regularity of the
function is not known in practice and one has to use data driven methods to find the best test-
ing strategies. In this section we derive distributed tests adapting to this unknown regularity.
We derive both lower and upper bounds and observe surprising, additional phase transition
in the small budget regime which was not present in the non-adaptive setting.

First, we note that even in the non-distributed setting, we have to pay an additional log logn
factor as a price for adaptation (see e.g. Theorem 2.3 in [31] or Section 7 in [24]). More
concretely, if ρs — n´s{p2s`1{2q, it holds that for any smin ă smax,

sup
sPrsmin,smaxs

RpHs,R
cnMn,sρs

, T q Ñ 1,

for all tests T , Mn,s “ plog lognq
s{4

2s`1{2 and any cn “ op1q whilst there exists a test T satisfy-
ing

sup
sPrsmin,smaxs

RpHs,R
CMn,sρs

, T q Ñ 0.

for large enough constant C ą 0.
The distributed testing problem is more complicated as we have to consider different

regimes based on the number of transmitted bits, see Theorem 6.1. These regimes, however,
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depend on the unknown regularity hyper-parameter and require different testing procedures
to achieve consistent testing. The transcripts transmitted require a larger communication bud-
get to attain the same performance as in Theorem 6.1. Theorem 7.1 and 7.2 below capture
this increased difficulty in terms of lower- and upper bounds on the detection rate (tight up to
a log-log factor). In the proof of the theorem, we derive such an adaptive distributed testing
method which adapts to the smoothness. These methods are in principle based on taking a
1{ logn grid of the regularity interval rsmin, smaxs, constructing optimal tests for each of the
grid points and combining them using Bonferroni’s correction. This results in loosing a log-
arithmic factor in the intermediate case as the budget has to be divided over Oplognq tests,
each capturing a different possible level of smoothness.

This additional incurred cost in the distributed setting due to additional communication
budget required is fundamental, as our accompanying lower bound shows. This additional
difficulty translates to a

a

logpnq and logpnq factor more observations required in the inter-
mediate budget regimes for the public and private coin settings, respectively. In the small
budget regime, such a loss is incurred when the local communication budget b is of smaller
order than logpnq. When bÁ logpnq in the small budget regime, the same rate as in Theorem
6.1 can be obtained, up to the log logpnq factor incurred by the Bonferroni correction.

The above described results are split over two theorems. The first, Theorem 7.1, concerns
the case where b Á logpnq. In the second, Theorem 7.2, the case where b À logpnq (both
theorems coincide when b— logpnq). The case where b“Op1q is of special interest, as b“ 1

means each machine’s local transcript forms a test itself and the global test can be seen as
a “meta-analysis” on the basis of these m tests. The proofs of the upper bounds in both
theorems are given in Section 8, while the proofs of the lower bound are deferred to Section
D in the supplement.

THEOREM 7.1. Let us consider some 0 ă smin ă smax ă 8, R ą 0, let b” bn such that

b " logn and m ” mn be sequences of natural numbers and take a sequence of positive

numbers ρs ” ρn,b,m,s satisfying

(25) ρ2s —

$

’

’

’

’

’

&

’

’

’

’

’

%

n
´ 2s

2s`1{2 , if bě logpnqn
1

2s`1{2 ,
ˆ ?

bn?
logpnq

˙´ 2s

2s`1

, if logpnq
ˆ

n
1

2s`1{2

m
2s`1

2s`1{2

Ž

1

˙

ď bă logpnqn
1

2s`1{2 ,

´

n?
m

¯´ 2s

2s`1{2
, if logpnq ď bă logpnq

ˆ

n
1

2s`1{2

m
2s`1

2s`1{2

Ž

1

˙

.

in the public coin case, and

(26) ρ2s —

$

’

’

’

’

&

’

’

’

’

%

n
´ 2s

2s`1{2 if bě logpnqn
1

2s`1{2 ,
´

bn
logpnq

¯´ 2s

2s`3{2
if logpnq

ˆ

n
1

2s`1{2

m
s`3{4
2s`1{2

Ž

1

˙

ď bă logpnqn
1

2s`1{2 ,

´

n?
m

¯´ 2s

2s`1{2
if logpnq ď bă logpnq

ˆ

n
1

2s`1{2

m
s`3{4
2s`1{2

Ž

1

˙

.

in the case of a private coin. Then, there exits a sequence of distributed testing procedures in

the respective setups such that

sup
sPrsmin,smaxs

RpHs,R
Mnρs

, T q Ñ 0,

for arbitrary Mn "
`

log logpnq
˘1{4

. Similarly, for all distributed testing procedures in the

respective setups, we have that for all α P p0,1q there exists cα ą 0 such that

sup
sPrsmin,smaxs

RpHs,R
cαρs

, T q ą α.
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The above theorem recovers (up to log-factors) the three rates corresponding to the three
regimes also found in Theorem 6.1, the different regimes corresponding to different testing
strategies. Since the true smoothness is unknown, these different distributed testing strategies
are to be conducted simultaneously.

We note that for m ě n
1

2smin`1 or m ě n
1

smin`3{4 in the public and private coin cases,
respectively, the small budget regime no longer occurs. The reason for this is that, even
though b could be relatively small, the total communication budget bm is large enough to
warrant the strategy for the intermediate and high budget regimes. Furthermore, whenever

bą logpnqn
1

2s`1{2 , the budget is large enough to recover the non-distributed regime rate.
For b À logpnq the separation rate is different from the non-adaptive low budget regime.

Depending on the interplay between n and m either the minimax rate corresponding to the
intermediate case applies or an additional plogpnq{bqδ factor is present compared to the non-
adaptive low budget regime, both in the private and public coin settings. This results in an
additional phase transition at b“ logn. The reason for this, is that in order to cover approxi-
mately logpnq different levels of smoothness using less than logpnq bits, each of the machines
can no longer send an adequate amount of information on all of the relevant smoothness lev-
els. Instead, an optimal strategy is to divide the different machines over each of the smooth-
ness levels, where each machines foregoes sending information regarding certain smoothness
levels all together.

THEOREM 7.2. Assume the conditions of Theorem 7.1 with bÀ logpnq and assume bm"
logpnq. Let us consider

(27) ρ2s —

$

’

’

’

&

’

’

’

%

ˆ ?
bn?

logpnq

˙´ 2s

2s`1

, if mě n
1

2s`1 ,

ˆ ?
bn?

m logpnq

˙´ 2s

2s`1{2

, if mă n
1

2s`1 ,

in the public coin case and

(28) ρ2s —

$

’

’

&

’

’

%

´

bn
logpnq

¯´ 2s

2s`3{2
if mě n

2

2s`3{2

´

b
logpnq

¯
s´1{4
2s`3{2

,
ˆ

n
?
b?

m logpnq

˙´ 2s

2s`1{2

if mă n
2

2s`3{2

´

b
logpnq

¯
s´1{4
2s`3{2

.

in the private coin case. Then, there exits a sequence of distributed testing procedures in the

respective setups such that

sup
sPrsmin,smaxs

RpHs,R
Mnρs

, T q Ñ 0,

for arbitrary Mn "
`

log logpnq
˘1{4

. Similarly, for all distributed testing procedures in the

respective setups, we have that for all α P p0,1q there exists cα ą 0 such that

sup
sPrsmin,smaxs

RpHs,R
cαρs

, T q ą α.

REMARK 7.3. Both theorems together cover all cases where mb " logpnq. The cases
where mb À logpnq are excluded for technical reasons, as well as the fact that when mb À
logpnq, the optimal rate in (27)-(28) (up to at most a

a

log logpnq factor) is attained by using a
standard non-distributed method using just the data of one machine (see e.g. [31]). Similarly,
in order to contain the level of technicality, we have foregone the plog logpnqq1{4 additional
factor in the lower bound which we esteem also to be present in the distributed setting. We
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refer the reader to the argument of Theorem 2.3 in [31] for how to obtain the plog logpnqq1{4

factor in the lower bound in addition to the
a

logpnq and logpnq factors in the public and
private coin cases respectively.

8. Adaptive tests attaining the adaptation bounds in Theorem 7.1 and 7.2. Let us
consider the smooth orthonormal wavelet basis tψli : l P N0, i“ 0,1, . . . ,2l´1u. See Section
G for a brief introduction of wavelets and collection of properties used in this proof. For
L “ L P N, let VL “ tψli : l ď L, i “ 0,1, . . . ,2l ´ 1u. For f P L2r0,1s, let fL denote the
projection of f onto VL, i.e.

(29) fL “
L
ÿ

l“0

2l´1
ÿ

i“0

f̃liψli

with f̃li :“
ş

fψli. We denote the wavelet coefficients of Xj by X̃j
li :“

ş1

0
ψlidX

j
t . For the

coefficients at resolution level L, write X̃j
L “ pX̃j

L0, . . . , X̃
j
Lp2L´1qq P R

2L

and let X̃j
L1:L de-

note the concatenated coefficients from resolution level L1 ă L up to resolution level L, i.e.
X̃

j
L1:L “ pX̃j

L1 , . . . , X̃
j
Lq P R

2L`1´2L1`1

. The vector X̃j
0:L :“ pX̃j

0 , X̃
j
1 , . . . , X̃

j
Lq follows the

dynamics

(30) X̃
j
0:L “ f̃L `

c

m

n
Zj,

where Zj „iid Np0, I2L`1´1q, j “ 1, . . . ,m, and f̃L :“ pf̃liql“0,...,L; i“0,...,2l´1.
Let νL “ 2L`1 ´ 1 and let us introduce the notations Ls “ ts´1 logp1{ρsqu _ 1, and for

shorthand write Lmin “ Lsmax
and Lmax “ Lsmin

and note that Ls P C :“ tLmin, ...,Lmaxu
for all s P rsmin, smaxs. Note that |C| ď logn.

For each regularity hyper-parameter s, we distinguish low-budget (2Ls Ámb in the public
coin, and 2

3

2
Ls Ámb in the private coin setting) and high-budget (corresponding to 2Ls Àmb

in the public coin and 2
3

2
Ls Àmb in the private coin setting) cases. Since m and b are known

for any given regularity s we know which regime it falls and is sufficient to construct that
test. For notational convenience, without loss of generality, for each s we construct both the
high-budget and the low-budget optimal tests using all them machines (and do not split them
between these two cases).

8.1. Proof of the upper bound in the low-budget regime. First we deal with the low-
budget case (where the total budget is small compared to the effective dimension), which
coincides in both setups. For each L P C we take a subset of machines ML Ă t1, ...,mu such
that |ML| “m1 :“ mplogpnq^bq

logpnq and each machine appears in at most b such subsets. We note

that this is possible since m1|C| ďmb. Then for each j PML, L P C we communicate

(31) Y
j
I pLq|Xj „ Ber

´

χ2
νL

´

a

n{m}X̃j
0:L}22

¯¯

and at the central machine, we can compute

SIpLq “ 1?
m1

ÿ

jPML

p2Y j
I pLq ´ 1q.

Then we consider the following adaptive test based on Bonferroni’s correction

T
adapt
I “ 1

!

max
LPC

SIpLq ě 2
a

log logn
)

.
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Since for L P C, it holds that L — logpnq, the above
?
log logn blow up suffices to guar-

antee that the test has asymptotically vanishing Type I error control, i.e. E0T
adapt
I “ op1q

by Lemma E.1 in the Supplementary Material (as the random variables 2Y j
I pLq ´ 1 are iid

Rademacher under P0).
For the Type II error note that

Ef p1 ´ T
adapt
I q ď Pf

´

SIpLsq ă 2
a

log logn
¯

and aim to apply Lemma A.4. In view of Lemma A.6, (with }f}2 replaced by }f̃Ls}2 and d“
νLs

), noting that by triangle inequality }f̃Ls}22 ě }f}22{2 ´ 2´2LssR2 (see also Section B in

the Supplementary Material), we get for }f}22 ěC2
0

a

log logpnqρ2s ěC2
0

a

log logpnq
?

2Lsm logpnq
n
?

b^logpnq
,

that for m large enough

ηp,m1,1 Á pm1 ´ 1q
´n}f̃Ls}22
m2Ls{2 ^ 1

2

¯2

Ám1
´

pC̃ log logn

m1 q ^ p1{4q
¯

,

with C̃ “ C2
0{2 ´ R2. By the assumption that bm " logpnq, m1 can be taken larger than

arbitrary constant M0 ą 0. This means that, in view of Lemma A.4 with cα,n “ 4 log logn

and large enough constant C0 (depending on R), the Type II error is bounded by α.

8.2. Proof of the upper bound in the public coin, high budget regime. We use similar
arguments as before, applying a Bonferroni-type of correction. First let us consider the public
coin setting and take a one-to-one mapping ξL from t1, . . . , νLu to tpl, iq : l “ 0, . . . ,L, i“
0,1, . . . ,2l ´ 1u. Let us define the test

(32) pY j
II pLqqi|UL “ 1

!´

a

n{mULX̃
j

ξLpiq

¯

i
ą 0

)

,

where the random variable UL P R
νLˆνL is drawn from the Haar measure on the rotation

group on R
νL . Similarly to before for each L we take a subset of machines ML Ď t1, ...,mu

such that |ML| “m1 :“ mpb^logpnqq
logpnq , and each machine appears at most in b such sets.

Then machine j PML, L P C, transmits the bits pY j
II pLqqi, i“ 1, ..., b1 :“ mb

m1|C| ^ νL to the
central machine, where these local test statistics are aggregated, similarly to (10), as

(33) SIIpLq “ 1?
b1m1

b1
ÿ

i“1

»

–

˜

ÿ

jPML

”

pY j
II pLqqi ´ 1{2

ı

¸2

´ m1

4

fi

fl .

In view of Lemma E.1 the Type I error of the test

T
pub,adapt
II :“ 1

!

max
LPC

SIIpLq ě 2
a

log logn
)

is op1q. For the Type II error note that

Ef p1 ´ T
pub,adapt
II q ď Ef1

!

SIIpLsq ă 2
a

log logn
)

.

By Lemma E.2, the above display is op1q whenever ρ2 Á Mn
2Ls

n
b

b

logpnq ^2Ls
, which, for the

choice of Ls“ ts´1 logp1{ρsqu _ 1 yields the rates of Theorem 7.1 and 7.2.
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8.3. Proof of the upper bound in the private coin, high-budget regime. We proceed by
adapting the test TIII provided in Section 4.3 to the nonparametric setting with unknown
regularity using again a Bonferroni type correction to achieve adaptation. For simplicity we
again apply the map ξL introduced previously to move between the single and double index
notations of the sequence model.

For all L P C, similarly to the previous cases we consider a collection of machinesML with
|ML| “m1 “ mpb^logpnqq

logpnq and similarly to Section 4.3 let us use the notation IipLq ĂML for
the collection of machines corresponding the ith coordinate. We note that without loss of
generality we can assume that m1 ě Mα

?
log logn22Ls{pb1q2, for some large enough con-

stant Mα, otherwise the test T adapt
I above covers the corresponding range. Then we modify

the test given in (12) by increasing the threshold with the Bonferroni correction, i.e.

T
priv,adapt,1
III “ 1

!

max
LPC

SIII,1pLq ě 2
a

log logn
)

, where

SIII,1pLq “
ˇ

ˇ

ˇ

1

|I1pLq|2L{2

νL
ÿ

i“1

´

ÿ

jPIipLq
pY j

i ´ 1{2q
¯2

´ 2L{2{4
ˇ

ˇ

ˇ
, Y

j
i |X̃j

ξLpiq “ 1X̃
j

ξLpiqą0.

To deal with large signal components, similarly to (12) (with d“ νL and including the Bon-
ferroni correction in the threshold), we propose the test,

T
priv,adapt,2
III “ 1

!

max
LPC,2 logpLqďb

SIII,2pLq ě κα
a

log logn
)

, where

SIII,2pLq “
ˇ

ˇ

ˇ

ˇ

1

dm1Cb,L

˜

m1
ÿ

j“1

pN j ´Cb,L2
L´1q

¸2

´ 1

4

ˇ

ˇ

ˇ

ˇ

,

with Cb,L “ 2b´L and N j given in (13). Finally, we aggregate these tests by taking

T
priv,adapt
III “ T

priv,adapt,1
III _ T

priv,adapt,2
III .

In view of the law of Lemma E.1 the Type I error tends to zero for both tests. Therefore
it remained to show that the Type II error is bounded by α. Similarly to the previous cases,
note that

Ef p1´ T
priv,adapt
III q ď Ef

´

1

!

SIII,1pLsq ă 2
a

log logn
)

^1

!

SIII,2pLsq ă 2
a

log logn
)¯

.

Following the proofs of Lemmas A.8, A.9 and A.10 (with d “ νLs
, f taken to be the νLs

dimensional vector f̃Ls , b replaced by b1, and Mα replaced by M0

?
log logn, for some large

enough M0 ą 0), noting that for C2
0 ą 4R2

}f̃Ls}22 ě }f}22{2 ´R22´2Lss ÁC0

a

log logpnqρ2s

“ C02
3Ls{2?

log logn

2np b
logpnq ^ 2Lsq

Á C02
Ls

?
log logn

nb1 m1

m

,

and applying Lemmas A.11 and A.4 with cn,α “ 2
?
log logn, we get that the Type II error

of T priv,adapt
III is bounded from above by α{2.

Finally, we combine the above tests by taking

T priv,adapt “ T
priv,adapt
III _ T

priv,adapt
I and T pub,adapt “ T

pub,adapt
II _ T

pub,adapt
I .

Note that both of the above tests still have vanishing Type I error, while the Type II errors are
bounded by the prescribed level α in view of taking the union of the above optimal tests.
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9. Proof of the testing lower bound. We provide the details for Steps 1 and 2 as outlined
in Section 5. We shall write Lπpxq “

ş

Lf pxqdπpfq with Lf pxq :“ dPf

dP0
pxq and Pf “ P

X
f .

Step 1. In view of the Markov chain structure given in (2), the probability measure
dPπpx,u, yq disintegrates as dPY |pX,Uq“px,uq

K dPX
f pxqdPU puqdπpfq. Using the Markov chain

structure, the first term on the rhs of (16) can be seen to equal

(34)
ÿ

yPY
P
Y |U“u
0 pyq

˜

ż

Lπpxq Kpy|x,uq
P
Y |U“u
0 pyq

dP0pxq
¸2

“ E
Y |U“u
0 E0

„

Lπpxq
ˇ

ˇ

ˇ

ˇ

Y,U “ u

2

.

Decoupling the square in X and using Fubini’s theorem we can write the above display as

(35)
ż

Lπpx1qLπpx2qqupx1, x2qdpP0 ˆ P0qpx1, x2q,

where by independence between the transcripts,

qupx1, x2q :“
ÿ

yPY

Kpy|x1, uqKpy|x2, uq
P
Y |U“u
0 pyq

“
m

Π
j“1

¨

˝

ÿ

yjPYj

Kjpyj |xj1, uqKjpyj |xj2, uq
P
Y j |U“u
0 pyjq

˛

‚.

Note that in the above display, xji and yj denote the projection of xi and y on the coordinates
indexed by tpj´1qd`1, . . . , jdu, respectively. In addition, let us denote by

śm
j“1 q

j
upxj1, x

j
2q

the rhs of the preceding display. SinceK is a Markov kernel, the function qu P L2pR2dm, P0ˆ
P0q is bounded and nonnegative. Furthermore,

ż

qupx1, x2q dP0px1q “
ÿ

yPY

Kpy|x2, uq
P
Y |U“u
0 pyq

ż

Kpy|x1, uq dP0px1q “
ÿ

yPY
Kpy|x2, uq “ 1,

similarly
ş

qupx1, x2q dP0px2q “ 1,

(36)
ż

xiqupx1, x2qdpP0 ˆP0qpx1, x2q “
ż

xidP0pxiq “ 0 P R
md

for i“ 1,2, and

(37)
ż
ˆ

x1
x2

˙

`

xJ
1 x

J
2

˘

qupx1, x2qdpP0 ˆ P0qpx1, x2q “: Σ P R
2mdˆ2md,

where the former display can be seen to follow by the law of total expectation, Σ “
Diag

`

Σ1, . . . ,Σm
˘

P R
2md for

Σj :“
ˆ

m
n
Id Ξ

j
u

Ξ
j
u

m
n
Id,

˙

with

Ξj
u :“ E

Y j |U“u
0 E0

„

Xj

ˇ

ˇ

ˇ

ˇ

Y,U “ u



E0

„

Xj

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u

J
.

Writing L
j
π :“

ş dPXj

f

dPXj

0

dπpfq, (18) can be seen to equal

(38)
m

Π
j“1

ż

L
j
π pxj1qL j

π pxj2qqjupxj1, x
j
2qdpP0 ˆP0qpxj1, x

j
2q,

Lemma 10.1 below applies to the ratio between (35) and (38) whenever π is chosen to
be centered Gaussian. The lemma yields that the aforementioned ratio is maximized when
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qupx1, x2qdpP0 ˆ P0qpx1, x2q is a Gaussian distribution on R
2md with covariance Σ, where

the maximization is among all choices of qu such that qu is nonnegative, bounded and sat-
isfying (36)-(37). Deliberation and proof of the lemma is deferred to Section 10 and the
Supplementary Material to the article. For π a centered Gaussian distribution on R

d, the
above lemma applies with k “ 2d, σ2 “m{n, we obtain that the ratio between (35) and (38)
is bounded above by

(39)

ş

Lπpx1qLπpx2qdNp0,Σqpx1, x2q
m

Π
j“1

ş

L
j
π pxj1qL j

π pxj2qdNp0,Σjqpxj1, x
j
2q
.

Combining the result of the lemma with the bound

(40)
m

Π
j“1

E
Y j |U“u
0 E0

„

Lπ

`

Xj
˘

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u

2

ď
m

Π
j“1

E
Xj |U“u
0

”

Lπ

`

Xj
˘2
ı

following from Jensen’s inequality, we obtain that

E
Y |U“u
0

˜

P
Y |U“u
π

P
Y |U“u
0

pY q
¸2

ď
ş

Lπpx1qLπpx2qdNp0,Σqpx1, x2q
m

Π
j“1

ş

L
j
π pxj1qL j

π pxj2qdNp0,Σqpx1, x2q

ˆ
m

Π
j“1

E
Xj |U“u
0

”

Lπ

`

Xj
˘2
ı

.(41)

By the block diagonal matrix structure of Σ, the denominator in the first factor of the rhs of
(41) satisfies

m

Π
j“1

ż

L
j
π pxj1qL j

π pxj2qdNp0,Σqpx1, x2q “
m

Π
j“1

ż

e
n

2m p n

m
}
?
Σjpf,gq}22´}pf,gq}22qdpπ ˆ πq pf, gq

“
m

Π
j“1

ż

e
n2

m2 f
JΞj

ugdpπ ˆ πqpf, gq

ě
m

Π
j“1

e
n2

m2

ş

fJΞj
ug dpπˆπqpf,gq “ 1.

Similarly, the numerator is equal to
ż

Lπpx1qLπpx2qdNp0,Σqpx1, x2q “
ż

e
n2

m2 f
J ř

m

j“1
Ξj

ugdpπ ˆ πqpf, gq.

Combining the above displays (i.e. (16) and the last three displays), we obtain that
(42)

Dχ2pPY |U“u
0,K ;P

Y |U“u
π,K q ď

m

Π
j“1

E
Xj |U“u
0

”

Lπ

`

Xj
˘2
ı

¨
ż

e
n2

m2 f
J ř

m

j“1
Ξj

ugdpπ ˆ πqpf, gq ´ 1.

Step 2. What is left to show in this step, is that for π “Np0,Γq, Γ P R
dˆd can be chosen

such that the rhs of the previous display is small enough whilst also ensuring that πpHc
ρq is

controlled whenever ρ2 satisfies (4)-(5) for cα depending only on α P p0,1q.
For a given cα ą 0, set ǫ :“ ρ

c
1{4
α d1{2 and Γ :“ ǫ2Γ̄ for some Γ̄ P R

dˆd to be specified later,

separately for the private and public coin protocols. The remaining mass πpHρq can now be
seen to equal

πpf : }f}22 ď ρ2q “ Pr
`

ZJΓ̄Z ď ?
cαd

˘

,

where Z is a d-dimensional standard normal vector. If Γ̄ is symmetric, idempotent and has
rank (proportional to) d, the concentration inequality in Lemma A.13 yields that the proba-
bility on the rhs of the above display can be made arbitrarily small for small enough choice
of cα ą 0.
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We now proceed to bound the first factor in the product on the rhs of (42), which for a
positive semi-definite choice of Γ̄ equals
m

Π
j“1

ż

E
Xj |U“u
0 exp

´ n

m
p
a

Γ̄pf ` gqqJXj ´ n

2m
}
a

Γ̄f}22 ´ n

2m
}
a

Γ̄g}22
¯

dNp0, ǫ2I2dqpf, gq.

By direct computation, the latter display equals
m

Π
j“1

ż

exp

ˆ

nǫ2

m
zJΓ̄z1

˙

dNp0, I2dqpz, z1q.

By applying the moment generating function of the Gaussian chaos, e.g. Lemma 6.2.2 in
[40] to the above display and using that ρ2 satisfies (4) or (5), we obtain that for nǫ2

m
}Γ̄} À

nρ2

c
1{2
α m

?
d

ď
a

cα{m ď ?
cα small enough, where } ¨ } denotes the spectral norm of a matrix,

there exists a constant C ě }Γ̄}2{d such that

(43)
m

Π
j“1

E
Xj |U“u
0

”

Lπ

`

Xj
˘2
ı

ď exp

ˆ

Cc´1
α

n2ρ4

md

˙

ď exppCcαq.

The exponent can be made arbitrarily close to zero per choice of cα ą 0.
We switch our attention now to the second factor in the product on the rhs of (42), which

we bound by applying Lemma 6.2.2 in [40] once more,

(44)
ż

e
n2

m2 p
?
ΓfqJ ř

m

j“1
Ξj

up
?
ΓgqdNp0, ǫ2I2dqpf, gq ď e

C n4ǫ4

m4 Tr
´

p
?
Γ̄

J
Ξu

?
Γ̄q2

¯

,

whenever

(45)
n2ǫ2

m2
}
a

Γ̄
J
Ξu

a

Γ̄}
is small enough.

It remains to choose a symmetric, idempotent positive semi-definite Γ̄ that sufficiently
bounds (45) and to combine the above displays providing the stated lower bound for the
testing risk. For the exact choice of Γ̄, we distinguish between the public coin and private
coin cases. In both cases, we employ the data processing inequalities of Lemma A.3 and
Lemma A.2, which yield that

(46) TrpΞuq “
m
ÿ

j“1

TrpΞj
uq ď mint2 log 2 ¨ b

d
,1um

2d

n
.

The public coin case: In this case, it suffices to take Γ̄ “ Id, which is trivially symmetric,
idempotent and positive semi-definite. By Lemma A.2, n

m
Ξ
j
u ď Id, so (45) holds as well for

this choice of Γ̄:
n2ǫ2

m2
}Ξu} ď nǫ2 ď nρ2?

cαd
ď ?

cα,

where the second to last inequality holds for ρ2 satisfying (4).
It remains to combine our results and provide a lower bound for the testing risk. Note that

TrpΞ2
uq “ }Ξu} TrpΞuq ď m2

n
TrpΞuq À pb^ dqm4

n2
,

where the last inequality follows from (46). Combining the above bound with assertions (44),
(43), (42), (16), and (15), ǫ4 “ c´1

α d´2ρ4 and the fact that πpHρq ď α{2, we obtain that

inf
TPTpubpbq

RpHρ, T q ě 1 ´
b

2peCp n2ρ4

cαmd
` n2ρ4pb^dq

cαd2
q ´ 1q ´ πpHc

ρq

ě 1 ´
b

2pe2Ccα ´ 1q ´ α{2 ą 1 ´α,
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whenever ρ2 satisfies (4) for cα ą 0 small enough. This finishes the proof for the public coin
case.

The private coin case: Since without loss of generality we can assume that U is degen-
erate in the private coin case, Ξu “ Ξ for PU -almost every u. The matrix Ξ is positive def-
inite and symmetric, therefore it possesses a spectral decomposition V JDiagpξ1, . . . , ξdqV .
Without loss of generality, assume that ξ1 ě ξ2 ě . . . ě ξd with corresponding eigenvectors
V “

`

v1 . . . vd
˘

. Let V̌ denote the d ˆ rd{2s matrix
`

vtd{2u`1 . . . vd
˘

. The choice of prior
may depend on Ξ, to see this, note the order of the supremum and infimum in (15) and the
fact that Ξ soley depends on the choice of kernel. To that extent, set Γ̄ “ V̌ V̌ J. It holds that

TrpV̌ V̌ Jq “
d
ÿ

i“1

d
ÿ

k“td{2u`1

pvkq2i “ rd{2s.

The choice Γ “ ǫ2Γ̄ is thus seen to satisfy the conditions of symmetry and positive definite-
ness and is idempotent with rank rd{2s.

Since the eigenvalues are decreasingly ordered,

ξtd{2u ď 2

d

td{2u
ÿ

i“1

ξi ď 2

d
TrpΞq.

By orthogonality of the columns of V , V̌ JΞV̌ “ Diagpξtd{2u`1, . . . , ξdq. Combining this in-
equality with the last display and assertion (46) we get that for ρ2 satisfying (5) the term (45)
can be made arbitrarily small for small enough choice of cα, i.e.

n2ǫ2

m2
}
a

Γ̄
J
Ξu

a

Γ̄} ď n2ǫ2

m2
ξtd{2u ď 2

n2ρ2?
cαd2m2

TrpΞq

ď p4 log 2qnρ
2pb^ dq?
cαd2

ď p4 log 2q
a

cα{d.

Finally, a similar argument will be used to bound the right hand side of (44) and finally to
provide a lower bound for the testing risk. Note that

Tr
`

p
a

Γ̄
J
Ξu

a

Γ̄q2
˘

“ Tr
`

pV̌ JΞV̌ q2
˘

“
d
ÿ

i“td{2u`1

ξ2i ď dξ2td{2u ď 4

d
TrpΞq2,

which implies in turn that

n4ǫ4

m4
Tr
`

pV̌ JΞV̌ q2
˘

ď 4
n4ρ4

cαm4d3
TrpΞq2 ď 4

n2ρ4pb^ dq2
cαd3

,

where the last inequality follows from (46). Consequently, we have obtained that

inf
TPTprivpbq

RpHρ, T q ě 1 ´
b

2peCp n2ρ4

cαmd
` n2ρ4pb^dq2

cαd3
q ´ 1q ´ πpHc

ρq

ě 1 ´
b

2pe2Ccα ´ 1q ´α{2 ą 1 ´α,

for ρ2 satisfying (5) and cα ą 0 small enough.
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10. Lemma 10.1: Gaussian maximization. Before giving the detailed statement of the
lemma below, we briefly contemplate on its aim and proof. The lemma bears a close con-
nection to Brascamp-Lieb inequalities [10, 26, 8]. Brascamp-Lieb type inequalities have
appeared in context of information theory in the literature before, see e.g. [16, 27], where
Gaussian extremality is established for certain information theoretic optimization problems.
Instead of the information theoretic entropy based route, we rely on the technique of [26].
The resulting lemma allows us to bound the ratio between (35) and (38), i.e.

(47)

ş

Lπpx1qLπpx2qqupx1, x2qdpP0 ˆP0qpx1, x2q
m

Π
j“1

ş

L
j
π pxj1qL j

π pxj2qqjupxj1, x
j
2qdpP0 ˆ P0qpxj1, x

j
2q
,

by (39), i.e. a Gaussian distribution with matching mean and covariance. Consequently, we
obtain a quadratic form in the covariance that we would otherwise obtain via a Taylor ex-
pansion. That such a quadratic form does not follow through more standard means such as
Taylor expansion is described in [3], Section 4.

The proof of the lemma exploits the conjugacy between likelihood of the observation X
and the Gaussian prior on the parameter to obtain that a Gaussian distribution is in fact an
extremal case. For reasons of space, we defer the proof to Section F of the Supplementary
Material.

LEMMA 10.1. For x P R
mk , let xj P R

k , j “ 1, ...,m, denote the projection of x on

the coordinates tpj ´ 1qk ` 1, . . . , jku. Let Λ P R
kˆk a positive definite symmetric matrix

and Λbm “ DiagpΛ, ....,Λq P R
mkˆmk. For h P R

k, let ph denote the density of a Nph,Λq
distribution with respect to the Lebesgue measure on R

k and let pmh pxq :“ Πm
j“1phpxjq. Con-

sider for some M ą 0, Q ” QpM,Σq the class of all nonnegative functions q P L8pRmkq
satisfying

qpxq
ş

qpxqpm
0 pxqdx ď M Pm

0 -a.e.,
ş

xqpxqpm0 pxqdx “ 0 and
ş

xxJ qpxqpm0 pxqdx “ Σ.

Furthermore, let H a Np0,Υq-distributed random vector in R
k . Then

sup
qPQ

ş

E
HΠm

j“1
pH

p0

`

xj
˘

qpxqpm0 pxqdx
ş

Πm
j“1E

H pH

p0
pxjq qpxqpm0 pxqdx ď

ş

E
HΠm

j“1
pH

p0

`

xj
˘

dNp0,Σqpxq
ş

Πm
j“1E

H pH

p0
pxjqdNp0,Σqpxq .
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SUPPLEMENTARY MATERIAL

Supplementary Material to Optimal high-dimensional and nonparametric dis-

tributed testing under communication constraints

In the supplement to this paper [35], we present the detailed proofs for the main theorems in
the paper “Optimal high-dimensional and nonparametric distributed testing under communi-
cation constraints”.
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In this supplement, we present the detailed proofs for the main theorems
in the paper “Optimal high-dimensional and nonparametric distributed testing
under communication constraints”.

A. Auxilliary lemmas for finite dimensional Gaussian mean testing.

A.1. Lemmas related to the lower bound (Theorem 3.1). Following the notation of Sec-
tion 2 in the article, let Pf ” Pf,K denote the joint distribution of Y , U and X where Xj

follows Npf, m
n
Idq and Y „ E

X,U
f Kp¨|X,Uq “: PY

f,K for f P R
d. Let π be a probability

distribution on R
d and define the mixture distribution Pπ by

PπpAq “
ż

Pf pAqdπpfq,

where Pf “ P
X
f .

LEMMA A.1. [Le Cam bound] For any distribution on U , it holds that

inf
ϕ,K

˜

E
Y
0,Kϕ` sup

fPHρ

E
Y
f,Kp1 ´ ϕq

¸

ě inf
K

ˆ

sup
π

p1 ´ }PY
0,K ´ P

Y
π,K}TV q ´ πpHc

ρq
˙

,

where

• the infimum on the lhs is taken over all Markov kernels K : 2Y ˆ X ˆ U Ñ r0,1s in a

suitable way and maps ϕ : Y Ñ t0,1u,

• the infimum on the rhs is over the same class od Markov kernels ,

• the supremum on the rhs is over all prior distributions π on R
d.

PROOF. It trivially holds that for any ϕ1 : Y ÞÑ t0,1u,
˜

E
Y
0,Kϕ

1pY q ` sup
fPHρ

E
Y
f,Kp1 ´ϕ1pY qq

¸

ě inf
ϕ

˜

E
Y
0,KϕpY q ` sup

fPHρ

E
Y
f,Kp1 ´ϕpY qq

¸

,

where the infimum is over all ϕ : Y ÞÑ t0,1u. Furthermore, for any prior distribution π on Rd

it holds that

sup
fPHρ

E
Y
f,Kp1 ´ϕpY qq ě

ż

tfPHρu
E
Y
f,Kp1 ´ ϕpY qqdπpfq
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ě
ż

E
Y
f,Kp1 ´ϕpY qqdπpfq ´ πpHc

ρq.(S.1)

Hence the rhs of the second last display is further bounded from below by

inf
ϕ

`

E
Y
0,KϕpY q ` E

Y
π,Kp1 ´ϕpY qq ´ πpHc

ρq
˘

for all prior distributions π on R
d. For any ϕ, write Aϕ “ ϕ´1pt0uq and note that

P
Y
0,KϕpY q ` P

Y
π,Kp1 ´ϕpY qq “ 1 ´

`

P
Y
0,KpY PAϕq ´ P

Y
π,KpY PAϕq

˘

.

By combining the above two displays we get that

inf
ϕ

˜

E
Y
0,KϕpY q ` sup

fPHρ

E
Y
f,Kp1 ´ϕpY qq

¸

ě 1 ´ sup
A

|PY
0,KpAq ´ P

Y
π,KpAq| ´ πpHc

ρq.

Since the above is true for any distribution π on R
d, the statement is true after taking the

supremum over π also. Since the above holds for an arbitrary Markov kernel K : 2Y ˆ X ˆ
U Ñ r0,1s, the proof is concluded.

LEMMA A.2. Let Ξ
j
u denote the matrix

Ξj
u “ E

Y j

0 E
Y j |U“u
0

„

Xj

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u



E
Y j |U“u
0

„

Xj

ˇ

ˇ

ˇ

ˇ

Y j,U “ u

J
.

It holds that Ξ
j
u ď m

n
Id.

PROOF. Let v P R
d, then

vJΞj
uv “ E

Y j

0 E
Y |U“u
0

„

vJXj

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u



E
Y |U“u
0

„

pXjqJv

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u



“ E
Y j

0 E
Y |U“u
0

„

vJXj

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u

2

.

Since the conditional expectation contracts the L2-norm, we obtain that the latter is bounded
by

E0v
JXjpXjqJv “ m

n
}v}22,

which completes the proof.

The previous lemma is in some sense a data processing inequality: the covariance matrix of
X|Y is strictly dominated by the covariance of the original processX . The following lemma
extends this and shows that the trace of the covariance satisfies a different data processing
inequality, where the loss of information due to Y j having only bj bits available is captured.
When bj ! d, the latter data processing inequality is stronger than the one implied by Lemma
A.2. The lemma below is essentially Theorem 2 of [7] adapted to our setting, for which we
provide a different proof that results in a smaller constant.

LEMMA A.3. Consider the matrix Ξ
j
u given in Lemma A.2, then

(S.2) TrpΞj
uq ď 2 logp2qm

n
plog2 |Yj |q.

In particular, for log2 |Yj | “ bj ,

(S.3) TrpΞj
uq ď

ˆ

2 logp2qb
j

d

ľ

1

˙

md

n
.
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PROOF. We start by noting that under P0, Xj follows a Np0, m
n
Idq distribution. For any

unit vector v P R
d and s P R this means that

E0e
sxXj ,vy ď e

s2m

2n .

Furthermore, for arbitary y P Y ,
ÿ

y

P
Y j |U“upyqE0

”

esxXj ,vyˇ
ˇY j “ y,U “ u

ı

ě P
Y j |U“upyqE0

”

esxXj ,vyˇ
ˇY j “ y,U “ u

ı

ě P
Y j |U“upyqesE0

”

xXj ,vy
ˇ

ˇY j“y,U“u
ı

,

where the last line follows by Jensen’s inequality. By combining the above displays we obtain
that

sE0

“

xXj , vy
ˇ

ˇY j “ y,U “ u
‰

ď s2m

2n
´ logPY j |U“upyq

for all s P R. Choosing s “ n
m
E0

“

xXj , vy
ˇ

ˇY j “ y,U “ u
‰

, we have for any unit vector v P
R
d,

E0

“

xXj , vy
ˇ

ˇY j “ y,U “ u
‰2 ď ´2

m

n
logPY j |U“upyq.

Next define for y P Yj

(S.4) w1,y “ 1

}E0pXj |Y j “ y,U “ uq}2
E0

“

Xj |Y j “ y,U “ u
‰

.

Choose now w2,y, . . . ,wd,y such that together with w1,y the vectors form an orthonormal
basis for Rd. We then have

TrpΞj
uq “

ÿ

yPYj

P
Y j |U“upyq

d
ÿ

i“1

E0

“

xwi,y,X
jy|Y j “ y,U “ u

‰2

“
ÿ

yPYj

P
Y j |U“upyqE0

“

xw1,y,X
jy|Y j “ y,U “ u

‰2

ď ´2
m

n

ÿ

yPYj

P
Y j |U“upyq logPY j |U“upyq ď 2

m

n
log |Yj |,

where the last inequality follows from the fact that uniform distribution on Yj maximizes
the entropy on the lhs. For the second statement note that by construction log |Yj | ď bj log 2.
Furthermore in view of of Lemma A.2, log |Yj | ď dm{n. Then the statement follows by
combining the above upper bounds for log |Yj | with the preceding display.

A.2. Lemmas for the upper bound theorems in the finite dimensional Gaussian mean

model. We state a slightly extended version of Lemma 4.1.

LEMMA A.4. Consider for k, l P N, l ě 2, independent random variables tBj
i : i “

1, . . . , k, j “ 1, . . . , lu with B
j
i „ Berppiq. If pi “ 1{2 for i “ 1, . . . , k, for each α P p0,1q

there exists κα ą 0 such that

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

pBj
i ´ 1

2
q
¸2

´
?
k{4

ˇ

ˇ

ˇ

ˇ

ě κα

˛

‚ď α.
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On the other hand, for arbitrary cα,n ą 0,

(S.5) ηp,l,k :“
l´ 1

2
?
k

k
ÿ

i“1

ˆ

pi ´ 1

2

˙2

ě cα,n,

it holds that

(S.6) Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

pBj
i ´ 1

2
q
¸2

´
?
k{4

ˇ

ˇ

ˇ

ˇ

ď cα,n

˛

‚ď 1{2 ` 16ηp,l,k{
?
k

η2p,l,k
.

PROOF. The LHS in the event having bounded variance: a straightforward computation
(using that for Bj

i „ Bernppiq, the central fourth moment is EpBj
i ´ piq4 “ pip1 ´ piqp1 ´

3pip1 ´ piqq ď 1{16 and VarpXq ďEX2) yields

E

” 1?
kl

k
ÿ

i“1

´
l
ÿ

j“1

pBj
i ´ 1

2
q
¯2

´
?
k

4

ı2

“ 1

kl2

k
ÿ

i“1

Var
”´

l
ÿ

j“1

pBj
i ´ 1{2q

¯2ı

ď 1

l2

l
ÿ

j“1

EpBj
i ´ 1{2q4 ` 1

l2

l
ÿ

j“1

`

EpBj
i ´ 1{2q2

˘2 ď 1{8,(S.7)

after which Chebyshev’s inequality yields the first statement.
We turn to the second statement. Adding and subtracting pi and expanding the square, the

lhs of the display in the lemma can be written as

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

B
j
i ´ lpi

¸2

´ µp ` l´ 1?
k

k
ÿ

i“1

ˆ

pi ´ 1

2

˙2

` ζ

ˇ

ˇ

ˇ

ˇ

ď cα,n

˛

‚(S.8)

where

µp :“
1?
k

k
ÿ

i“1

pip1 ´ piq and ζ :“ 2?
k

k
ÿ

i“1

ˆ

pi ´ 1

2

˙

˜

l
ÿ

j“1

B
j
i ´ lpi

¸

.

The first term in the event of (S.8) has mean µp and variance (by the same computations as
in (S.7))

Var
” 1?

kl

k
ÿ

i“1

´
l
ÿ

j“1

B
j
i ´ lpi

¯2ı

“ 1

kl2

k
ÿ

i“1

Var
”´

l
ÿ

j“1

B
j
i ´ lpi

¯2ı

ď 1{8.

The term ζ has mean 0 and

Varpζq “ 4l

k

k
ÿ

i“1

ppi ´ 1

2
q2pip1 ´ piq ď l

k

k
ÿ

i“1

ˆ

pi ´ 1

2

˙2

.

Applying the reverse triangle inequality and condition (S.5), the probability in (S.8) is
bounded from above by

Pr
”ˇ

ˇ

ˇ

1?
kl

k
ÿ

i“1

´
l
ÿ

j“1

B
j
i ´ lpi

¯2

´ µp

ˇ

ˇ

ˇ
` |ζ| ě l´ 1

2
?
k

k
ÿ

i“1

´

pi ´ 1

2

¯2ı

ď Pr
”ˇ

ˇ

ˇ

1?
kl

k
ÿ

i“1

´
l
ÿ

j“1

B
j
i ´ lpi

¯2

´ µp

ˇ

ˇ

ˇ
ě ηp,l,k{2

ı

` Pr
”

|ζ| ě ηp,l,k{2
ı

ď 1{8
pηp,l,k{2q2 ` 2lk´1{2ηp,l,k{pl´ 1q

pηp,l,k{2q2 ď 1{2 ` 16ηp,l,k{
?
k

η2p,l,k
,



OPTIMAL DISTRIBUTED TESTING 31

where the last line follows by Chebyshev’s inequality.

Next we provide another version of the above lemma, with the sum over the index i moved
inside of the square.

LEMMA A.5. Consider for k, l P N, l ě 2, independent random variables tBj
i : i “

1, . . . , k; j “ 1, . . . , lu with B
j
i „ Berppiq. If pi “ 1{2 for i “ 1, . . . , k, for each α P p0,1q

there exists κα ą 0 such that

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1

lk

˜

k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ 1

2
q
¸2

´ 1{4
ˇ

ˇ

ˇ

ˇ

ě κα

˛

‚ď α.

On the other hand, if pi ě 1{2 for all i“ 1, ..., k and for arbitrary cα,n ą 0

(S.9) η1
p,l,k :“

l´ 1

2k

˜

k
ÿ

i“1

ppi ´ 1

2
q
¸2

ě cα,n

it holds that

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1

kl

˜

k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ 1

2
q
¸2

´ 1{4
ˇ

ˇ

ˇ

ˇ

ď cα,n

˛

‚ď
1{2 ` 16η1

p,l,k{k
pη1

p,l,kq2 .

PROOF. The lhs in the event having bounded variance: by the same arguments as in (S.7)
we have

E

” 1

lk

´
k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ 1

2
q
¯2

´ 1

4

ı2

ď 1{8,

after which Chebyshev’s inequality yields the first statement.
We turn to the second statement. Adding and subtracting pi and expanding the square, the

lhs of the display in the lemma can be written as

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1

lk

˜

k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ piq

¸2

´ µ1
p ` l´ 1

k

˜

k
ÿ

i“1

ppi ´ 1

2
q
¸2

` ζ

ˇ

ˇ

ˇ

ˇ

ď cα,n

˛

‚,(S.10)

where

µ1
p :“ 1{4 ´ 1

k

´
k
ÿ

i“1

ppi ´ 1

2
q
¯2

and ζ :“ 2

k

˜

k
ÿ

i“1

ppi ´ 1

2
q
¸˜

k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ piq

¸

.

Next we note that in view of the assumption pi ě 1{2 we have that

µ1
p ď 1{4 ´ 1

k

k
ÿ

i“1

ppi ´ 1

2
q2 “ 1

k

k
ÿ

i“1

pip1 ´ piq “: µp.

The first term in the event of (S.10) has mean µp and variance (by the same computations as
in (S.7))

Var
” 1

lk

´
k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ piq

¯2ı

“ 1

l2k2
Var

”´
l
ÿ

j“1

k
ÿ

i“1

pBj
i ´ piq

¯2ı

ď 1{8.
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The term ζ has mean 0 and

Varpζq “ 4l

k2

˜

k
ÿ

i“1

ppi ´ 1

2
q
¸2 k

ÿ

i“1

pip1 ´ piq ď l

k2

˜

k
ÿ

i“1

ppi ´ 1

2
q
¸2

.

Applying the reverse triangle inequality, condition (S.9) and the inequality µp ě µ1
p, the prob-

ability in (S.10) is bounded from above by

Pr
”ˇ

ˇ

ˇ

1

kl

´
k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ piq

¯2

´ µp

ˇ

ˇ

ˇ
` |ζ| ě l´ 1

2

´
k
ÿ

i“1

pi ´ 1

2

¯2ı

ď Pr
”ˇ

ˇ

ˇ

1

kl

´
k
ÿ

i“1

l
ÿ

j“1

pBj
i ´ piq

¯2

´ µp

ˇ

ˇ

ˇ
ě η1

p,l,k{2
ı

` Pr
”

|ζ| ě η1
p,l,k{2

ı

ď 1{8
pη1

p,l,k{2q2 `
2lk´1η1

p,l,k{pl´ 1q
pη1

p,l,k{2q2 ď
1{2 ` 16η1

p,l,k{k
η12
p,l,k

,

where the last line follows by Chebyshev’s inequality.

Next we provide the lemmas used in Section 4, providing guarantees for the testing proce-
dures TI, TII and TIII, proposed in subsections 4.1, 4.2 and 4.3, respectively.

LEMMA A.6. For each α P p0,1q, there exist constants κα,Cα,Mα,D0 ą 0 such that for

měMα and děD0 it holds that

RpHρ, TIq ď α,

whenever ρ2 ěCα

?
md
n

.

PROOF OF LEMMA A.6. Under the null hypothesis the random variables Y j
I „iid Bernp1{2q.

Next we shall apply Lemma 4.1 with k “ 1, and l “m. By the first statement of the lemma,
we obtain that there exists κα ą 0 such that P0TI ď α{2.

We give an upper bound for the Type II error by using the second statement of the lemma,
but before that we show that condition (6) holds. Note that the law of total expectation yields

EfY
j
I “ EfEf

”

Y
j
I

ˇ

ˇS
j
I

ı

“ EfFχ2
d

´

S
j
I

¯

“ PrpSj
I ěWdq,

where Sj
I is noncentral Chi-square distributed under Pf with d-degrees of freedom and non-

centrality parameter n
m

}f}22 andWd is an independent chi-square distributed random variable
with d-degrees of freedom. Then Lemma 4 in [34] yields that

(S.11) ηp,m,1 “ m´ 1

2

ˆ

EfY
j
I ´ 1

2

˙2

ě m´ 1

3200

ˆ

n}f}22
m

?
d

ľ 1

2

˙2

.

whenever d ě D0 for some universal constant D0 ą 0. Consequently, as }f}22 ě ρ2 ě
Cα

?
md
n

, we obtain that condition (6) is satisfied whenever mě Mα for some large enough
Cα ą 0 andMα ą 0. Therefore the Type II error is bounded by the rhs of (7), which is mono-
tone decreasing in ηp,m,1 hence also in Cα. Therefore by large enough choice of Cα the Type
II error is bounded from above by α{2.
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LEMMA A.7. For each α P p0,1q, there exist constants κα,Cα,Mα ą 0 such that for

měMα

RpHρ, TIIq ď α,

whenever ρ2 ěCα
d

n
?
d^b

.

PROOF OF LEMMA A.7. First note that it is sufficient to consider the case b ď d as one
can simply take b“ b^ d. Then note that under Pf ,

a

n{mUXj |U „Ndp
a

n{mUf, Idq by
the rotational invariance of the Gaussian distribution. By linearity of the coordinate projec-
tion, conditionally on U ,

1

!´

a

n{mUXj
¯

i
ą 0

)

d“ 1

!

a

n{mpUfqi `Z ą 0
)

,

where Z „Np0,1q. As a consequence, the vector SII is conditionally on U coordinate wise

independent binomially distributed with parameters m and pf,U P r0,1sb under PY |U
f , where

ppf,U qi “ Φp
a

n{mpUfqiq,
with Φ the standard normal cdf. Under the null hypothesis, pSIIqi is Binpm,1{2q distributed
since p0,U “ p1{2, . . . ,1{2q P r0,1sb. Next we apply Lemma 4.1 with k “ b and l “ m. By
the first statement of the lemma, it follows that for κα large enough, P0TII ď α{2.

In order apply the second statement of the lemma, which yields that the Type II error is
bounded by α{2, it suffices to show that the event

A“
!m´ 1

2
?
b

b
ÿ

i“1

´

ppf,U qi ´ 1

2

¯2

ěNα

)

,

where Nα :“ κα _ 16
α

, occurs with P
U -probability greater than 1 ´ α{4. Note that for this

choice of Nα, (6) is satisfied on the event A and the rhs of (7) is smaller than α{4. The Type
II error is then bound by PfTII ď PfTII1A ` Pf1Ac ď α{2.

We proceed to show that Pf1Ac ď α{4. By a standard bound on the Gaussian error func-
tion x ÞÑ 2Φpxq ´ 1 (see Lemma A.11),

ˆ

Φp
a

n{mpUfqiq ´ 1

2

˙2

ě 1

12
min

! n

m
pUfq2i ,1

)

,

which in turn implies that

P
U

˜

m´ 1

2
?
b

b
ÿ

i“1

ˆ

ppf,U qi ´ 1

2

˙2

ďNα

¸

ď P
U

˜

m´ 1

24
?
b

b
ÿ

i“1

min
! n

m
pUfq2i ,1

)

ďNα

¸

.

Note that Uf d“ }f}2pZ1, . . . ,Zdq{}Z}2, where Z “ pZ1, . . . ,Zdq „ Np0, Idq (see e.g. Sec-
tion 3.4 of [40]). Using that }f}2 ě ρ and ρ2 ě Cα

d

n
?
b
, the previous display is further

bounded by

Pr

˜

m´ 1

24
?
b

b
ÿ

i“1

min

#

Cα
dZ2

i

m
?
b}Z}22

,1

+

ďNα

¸

.

Considering the intersection with the event t}Z}22 ď kdu for some k ą 0, the above display
can be bounded by

Pr

˜

b
ÿ

i“1

mintZ2
i ,C

´1
α m

?
bku ď 24bmk

Cαpm´ 1qNα

¸

` Pr
`

}Z}22 ě kd
˘

.
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For k large enough (independent of d), the second term is less than α{8. By Lemma A.12,

Pr

ˆ

max
1ďiďb

Z2
i ěC´1

α m
?
bk

˙

ď 2b

eC
´1
α m

?
bk{4

.

For large enough Mα ě Cα, the condition m ě Mα implies that the right hand side is less
than α{8. The first term in the second to last display is consequently bounded by

Pr
´

b
ÿ

i“1

Z2
i ď 24bmk

Cαpm´ 1qNα

¯

` Pr

ˆ

max
1ďiďb

Z2
i ěC´1

α m
?
bk

˙

ď Pr

˜

b
ÿ

i“1

Z2
i ď 24bmk

Cαpm´ 1qNα

¸

`α{8.

ForměMα ě 25 and by choosingCα large enough such that the Chernoff-Hoeffding bound
on the left tail of the chi-square distribution (see Lemma A.13) can be applied to the first term
of the preceding display we get that

(S.12) Pr

˜

b
ÿ

i“1

Z2
i ď 25kNα

Cα
b

¸

ď exp

¨

˝´b
25kNα

Cα
´ 1 ´ log

´

25kNα

Cα

¯

2

˛

‚ď α{8,

finishing the proof of the lemma.

LEMMA A.8. For α P p0,1q, there exist constants Mα,Cα ą 0 such that when m ě
Mαd

2{b2, the b-bit distributed private testing protocol TIII given in (14) satisfies

RpHρ, TIIIq ď α,

whenever ρ2 ěCα
d

?
d

nb
.

PROOF. Fix an arbitrary f PHρ and define

(S.13) J “ ti : 1 ď iď d,
n

m
f2i ě 1u.

By Lemma A.9 below, the test T 1
III given in (12) with κα,Cα,Mα ą 0 large enough satisfies

E0T
1
III ď α{6, and Ef p1 ´ T 1

IIIq ď α{6,
whenever

(S.14)
ÿ

iRJ
f2i ě ρ2{2 or

mb

d
?
d

ąMα.

Next we consider the case where (S.14) does not hold. Then Mα ě mb

d
?
d

ěMα

?
d
b

, where

the second inequality follows from the assumption of the lemma. This implies that b ě
?
d.

Since mb

d
?
d

ďMα and m can be taken to be larger than arbitrary constant (otherwise we are
in the non-distributed regime in which the minimax rate can be achieved locally), we can
without loss of generality assume d is larger than an arbitrary constant (depending only on
α), hence b ě

?
d ě 2 logpd ` 1q and the test T 2

III and the corresponding transcripts can be
constructed. Furthermore,

ř

iPJ c f2i ă ρ2{2 implies J ‰ H in view of
ř

i f
2
i ě ρ2. Conse-

quently, the conditions of Lemma A.10 are satisfied, yielding that there exists a test T 2
III such

that E0T
2
III ď α{6 and Ef p1´T 2

IIIq ď α{6. We note that in case mb

d
?
d

ąMα, the test T 2
III cannot

necessarily be computed (not enough communication budget), but this is not required as this
case is covered by T 1

III.
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We now have that for any f PHρ, whenever mb

d
?
d

ďMα, the test TIII can be computed and
using that for nonnegative x, y ě 0, x_ y ď x` y and x_ y ě x, we obtain that

RpHρ, TIIIq ď E0T
1
III ` E0T

2
III1tbě2 logpd`1qu

` sup
fPHρ

min
 

Ef p1 ´ T 1
IIIq,Ef p1 ´ T 2

III1tbě2 logpd`1quq
(

ď 2α{6 ` α{6 “ α{2.

Next we provide the risk bounds for the partial tests T 1
III and T 2

III, used in the previous
lemma.

LEMMA A.9. For any α P p0,1q there exist constants κα,Mα,Cα ą 0 such that E0T
1
III ď

α{2. Furthermore, for f PHρ if ρ2 ěCα
d

?
d

npd^bq and either mb

d
?
d

ěMα or

ÿ

iPJ c
f2i ě ρ2{2,(S.15)

holds, where J was defined in (S.13), then

Ef p1 ´ T 1
IIIq ď α{2.

PROOF. Under the null hypothesis, Y j
i „iid Bernp1{2q. For each α P p0,1q by applying

Lemma 4.1 (with k “ d and l “ |I1|) we get that E0T
1
III ď α{2 for large enough constant κα.

For f PHρ, we have

EfY
j
i “ EfEf

”

Y
j
i |Xj

i

ı

“ Φ

ˆc

n

m
fi

˙

.

To bound the Type II error, we use the second statement of Lemma 4.1 (with k “ d and
l “ |I1|), but before that we show that condition (6) holds. Note that by Lemma A.11,

|I1| ´ 1

2
?
d

d
ÿ

i“1

ˆ

EfY
j
i ´ 1

2

˙2

ě |I1| ´ 1

24
?
d

d
ÿ

i“1

´ n

m
f2i

ľ

1
¯

.(S.16)

In case (S.15) holds, the preceding display is bounded from below by

|I1| ´ 1

24
?
d

ÿ

iPJ c

n

m
f2i ě np|I1| ´ 1qρ2

48m
?
d

.

Note, that for large enough Cα ą 0, np|I1|´1qρ2

48m
?
d

ě npmb
d

qCα
d

?
d

nb
{p96m

?
dq ě κα _ 16

α
. If

(S.15) does not hold, then there exists i˚ P t1, . . . , du such that fi˚ ě
a

m{n, so (S.16) is
lower bounded by

|I1| ´ 1

24
?
d

ě mb

24d
?
d

´ 1

12
?
d

ě Mα

24
´ 1

12
.

Then for large enough Mα ą 0, the condition (6) is satisfied. Consequently, the statement of
the proof follows by the second statement of Lemma 4.1.

LEMMA A.10. For any α P p0,1q there exists a κα ą 0 large enough such that E0T
2
III ď

α{2. Furthermore, if ρ2 ě Cα
d

?
d

npd^bq , m ěMα, for some large enough Cα,Mα ą 0, the set

J defined in (S.13) is non-empty and bě 2 logpd` 1q, then EfT
2
III ď α{2.
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PROOF OF LEMMA A.10. We apply Lemma A.5 (with k “ d and l “Cb,dm), which is a

version of Lemma 4.1, given in the Supplement. Under the null hypothesis,
´

a

n{mXj
i

¯2

follows a chi-square distribution with one degree of freedom. Consequently,

E0B
j
li “ E0Fχ2

1

´´

c

n

m
X

j
i

¯2¯

“ 1{2

and

(S.17)
m
ÿ

j“1

N j „ Bin p1{2,mdCb,dq .

Then Lemma A.5 yields that E0T
2
III ď α{2.

Next we deal with the upper bound for the Type II error. Let pi :“ EfFχ2
1

`

p
a

n{mXj
i q2

˘

and note that pi ě 1{2. We apply again Lemma A.5 (with k “ d, l “mCb,d). Hence it is suffi-

cient to show that the condition (S.9) of the lemma holds. For this first note that
`a

n{mXj
i

˘2

is a non-central chi-square distributed random variable with non-centrality parameter n
m
f2i

and one degree of freedom. Consequently, for all i P J ‰ H we have

(S.18) pi “ EfFχ2
1

´´

c

n

m
X

j
i

¯2¯

“ Pr pV ě 1q ą 3{5,

where it is used that V is noncentral F-distributed with noncentrality parameter n
m
f2i ě 1 and

p1,1q-degrees of freedom. Then by recalling that p̃i ě 1{2 we get that

mCb,d ´ 1

2d

´
d
ÿ

i“1

ppi ´ 1

2
q
¯2

ě mCb,d ´ 1

2d

´

ÿ

iPJ
pp̃i ´ 1

2
q
¯2

ě mCb,d ´ 1

2d
p|J |{10q2 ě m2b

400d2
ěMα{400,

yielding (S.9) for large enough choice of Mα and hence concluding the proof of our state-
ment.

The following three lemmas are standard, technical results, nevertheless we provided them
for completeness.

LEMMA A.11. Let Φ denote the cdf of a standard normal random variable. It holds that
ˆ

Φpxq ´ 1

2

˙2

ě 1

12
min

 

x2,1
(

.

PROOF. Since Φpxq “ 1´Φp´xq, it holds that
`

Φpxq ´ 1
2

˘2 “
`

Φp´xq ´ 1
2

˘2
hence one

can consider xě 0 without loss of generality. We first show that Φpxq ´ 1
2

ě x2

8
for 0 ď xď

1{
?
2. We have

Φpxq ´ 1

2
“ 1?

2π

ż x

0

e´ 1

2
z2

dz “ 1?
2π

ż x

0

8
ÿ

i“0

p´1qiz2i
2ii!

dz “ x?
2π

´
8
ÿ

i“0

p´1qipx{
?
2q2i

p2i` 1qi!
¯

,

(S.19)

where the last equation follows by Fubini’s theorem. The series in the rhs is decreasing in
x P r0,

?
2s, as for each odd i it holds that

d

dǫ

„ p´1qiǫ2i
p2i` 1qi! ` p´1qi`1ǫ2i`2

p2i` 3qpi` 1q!



“ ǫ2i´12i

i!p2i` 1q

ˆ

2ǫ2p2i` 1qp2i` 2q
pi` 1q2ip2i` 3q ´ 1

˙

ă 0
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for 0 ď ǫď 1. Hence, for 0 ď x{
?
2 ď cď 1,

x?
2π

´
8
ÿ

i“0

p´1qipx{
?
2q2i

p2i` 1qi!
¯

ě x?
2π

˜ 8
ÿ

i“0

p´1qic2i
p2i` 1qi!

¸

“ x?
2c

ˆ

Φp
?
2cq ´ 1

2

˙

,

where the last equality follows by (S.19). For xą
?
2c, it holds that

Φpxq ´ 1{2 ě Φp
?
2cq ´ 1{2

as x ÞÑ Φpxq ´ 1{2 is increasing. Taking c“ 1 we obtain

Φpxq ´ 1{2 ě min
!

x
`

Φp
?
2q ´ 1{2

˘

{
?
2,Φp

?
2q ´ 1

)

ą mintx,1u{
?
12,

which finishes the proof.

LEMMA A.12. LetZ “ pZ1, . . . ,Zdq „Np0, Idq. It holds that Emax
1ďiďd

|Zi| ď 3
a

logpdq _ logp2q
and

Pr

ˆ

max
1ďiďd

Z2
i ě x

˙

ď 2d

ex{4 ,

for all xą 0.

PROOF. The case where d “ 1 follows by standard Gaussian concentration properties.
Assume dě 2. For 0 ď tď 1{4,

EetmaxipZiq2 “ etEmax
i
etpZ

2
i ´1q ď de2t

2`t,

see e.g. Lemma 12 in [34]. Taking t “ 1{4 and applying Markov’s inequality yields the
second statement of the lemma. Furthermore, in view of Jensen’s inequality

Emax
i

pZiq2 ď logpdq
t

` 2t` 1,

which in turn yields maxi |Zi| ď 3
a

logpdq.

LEMMA A.13. Let Xd be Chi-square random variable with d-degrees of freedom. For

0 ă că 1 it holds that

Pr pXd ď cdq ď e´d
c´1´logpcq

2 .

Similarly, for cą 1 it holds that

Pr pXd ě cdq ď e´d
c´1´logpcq

2 .

PROOF. Let tă 0. We have

Pr pXd ď cdq “ Pr
´

etXd ě etcd
¯

ď EetXd

etcd
.

Using that EetXd “ p1 ´ 2tq´d{2, the latter display equals

exp
´

´ d
`

tc` 1

2
logp1 ´ 2tq

˘

¯

.

The expression tc` 1
2
logp1 ´ 2tq is maximized when t “ 1

2
p1 ´ 1

c
q ă 0 which leads to the

result. The second statement follows by similar steps.
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B. Proof of Theorem 6.1. For convenience, we consider a sufficiently smooth orthonor-
mal wavelet basis tψli : l P N0, i “ 0,1, . . . ,2l ´ 1u for L2r0,1s, see Section G for a brief
introduction of wavelets and collection of properties used during the proof. Nevertheless we
note, that other basis (e.g. Fourier) could be used equivalently. Let fL, X̃j

L1:L and f̃L as de-
fined in (29), (30) and below (30), respectively. Furthermore, let ΨL : R2L Ñ L2r0,1s be the
measurable map defined by

(S.20) ΨLf̃
L “

2L´1
ÿ

i“0

f̃iψLi,

for f̃L “ pf̃0, . . . , f̃2L´1q.

The existence of Cα ą 0 such that f PHs,R
Cαρ

can be detected.

In view of Theorem 3.2, there exists a constant C 1
α ą 0 and a b-bit public coin distributed

testing protocol T with transcripts generated according to Y j|pX̃j
0:L,Uq „ Kjp¨|X̃j

0:L,Uq
such that if }f̃L}22 ě pC 1

αq2
?
2L

n

ˆ

b

2L

b^2L

Ź?
m

˙

, we have

E0T ` E
f̃Lp1 ´ T q ď α.

Similarly, there exists a constant C 1
α ą 0 and a b-bit private coin distributed testing protocol

T such that the above display holds if }f̃L}22 ě pC 1
αq2

?
2L

n

´

2L

b^2L

Ź?
m
¯

. See Section 4 for

the construction of such testing protocols.
Consequently, it suffices to show that for f PHs,R

Cαρ
, }f̃L}22 satisfies the above lower bounds

for some L P N and cą 0. In view of pa` bq2{2 ´ b2 ď a2,

}fL}2L2
ě

}f}2L2

2
´ }f ´ fL}2L2

.

Furthermore, f PHs,R
Cαρ

implies that

}f ´ fL}2L2
“

ÿ

ląL

2l´1
ÿ

i“0

f̃2li ď 2´2Ls
ÿ

ląL

2l´1
ÿ

i“0

f̃2li2
2ls ď }f}2Hs

22Ls
ď R2

22Ls
and }f}2L2

ěC2
αρ

2.

Consequently, in view of Plancharel’s theorem and taking L“ 1 _ r´1
s
log ρs,

(S.21) }f̃L}22 “ }fL}2L2
ě ρ2C2

α{2 ´R22´2Ls ě ρ2pC2
α{2 ´R2q.

Consequently, there exists a b-bit public coin distributed testing protocol such that

E0T ` Ef p1 ´ T q ď α

whenever

(S.22) ρ2 Á
?
2L

n

˜
c

2L

b^ 2L

ľ?
m

¸

—
a

1 _ ρ´1{s

n

˜
d

1 _ ρ´1{s

b^ p1 _ ρ´1{sq
ľ?

m

¸

,

since the constant pC
2
α

2
´R2q can be made arbitrary large by large enough choice of Cα ą 0.

In the case that bě p1 _ ρ´1{sq, the above display is satisfied whenever ρ2` 1

2s Á n´1, which
provides the first case in (22). Similarly, if bď ρ´1{s, the above display boils down to ρ2` 1

s Á
p
?
bnq´1 whenever bmě ρ´1{s, which leads to the second case in (22). If bm ď ρ´1{s, the

inequality (S.22) reduces to ρ2` 1

2s Á ?
m{n and consequently provides the third case in (22).
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By similar argument as for the public coin protocol above, there exists a b-bit private coin
distributed testing protocol with testing risk less than α whenever

ρ2 Á
a

1 _ ρ´1{s

n

´ 1 _ ρ´1{s

b^ p1 _ ρ´1{sq
ľ?

m
¯

and Cα ą 0 large enough. Then a similar computation as in the public coin case above leads
to the three cases in (23).

The existence of cα for which the risk is lower bounded.

For any distribution πL on R
L, πL ˝Ψ´1

L defines a probability measure on the Borel sigma

algebra of L2r0,1s. For f̃L P R
2L

, the likelihood ratio dPf

dP0
pXjq with f “ ΨLf̃

L equals

(S.23) exp

ˆ

n

m

ż 1

0

fdX
j
t ´ n

2m
}f}22

˙

“ exp
´ n

m
pf̃LqJX̃j

L ´ n

2m
}f̃L}22

¯

“:Lf̃LpX̃j
Lq,

where X̃j
L “ p

ş1

0
ψL0ptqdXj

t , . . . ,
ş1

0
ψLp2L´1qptqdXj

t q P R
2L

. For an arbitrary b-bit distributed
testing protocol T “ pT,K,PU q, following the proof of Theorem 3.1 up until equation (15)
we obtain that
(S.24)

RpHρ, T q ě 1 ´
ˆ
ż
b

2Dχ2pPY |U“u
0,K ;P

Y |U“u
π,K qdPU puq ` π

´

f̃L P R
L : Ψf̃L RHs,R

cαρ

¯

˙

.

By (S.23),

(S.25) Dχ2pPY |U“u
0,K ;P

Y |U“u
π,K q “ E

Y |U“u
0

˜

E0

„
ż

m

Π
j“1

L
f̃LpX̃j

Lqdπpf̃Lq
ˇ

ˇ

ˇ

ˇ

Y,U “ u

2
¸

´ 1.

Under P0, Lf̃LpX̃j
Lq is equal in distribution to the likelihood ratio

dNpf̃L, m
n
I2Lq

dNp0, m
n
I2Lq .

That means that the argument of the proof of Theorem 3.1 for bounding the Chi-square

divergence applies to the first term in (S.24). Choosing πL “ Np0,Γq with Γ “
?
cαρ

2

2L Γ̄ P
R
2Lˆ2L

and Γ̄ as in the proof of Theorem 3.1. In particular, we obtain that for some constant
C ą 0 not depending on ρ,n,m, b, cα or L,
(S.26)
ż
b

2Dχ2pPY |U“u
0,K ;P

Y |U“u
π,K qdPU puq ď

$

&

%

?
2peCc´1

α p n2ρ4

2Lm
` n2ρ4pb^2Lq2

23L
q ´ 1q, if U is degenerate,

?
2peCc´1

α p n2ρ4

2Lm
` n2ρ4pb^2Lq

22L
q ´ 1q, otherwise.

Note that for ρ2 ď c
?
2L

n

´
b

2L

b^2L

Ź?
m
¯

in the degenerateU and for ρ2 ď c
?
2L

n

´

2L

b^2L

Ź?
m
¯

in the not degenerate U case, both terms on the rhs of the preceding display are bounded by?
2pe2cαC ´ 1q, which is further bounded by 25{2Ccα ď α for small enough choice of cα.

Taking again L “ 2 _ rlog ρ´1{ss, by similar argument as given below display (S.22) the
above upper bounds for ρ2 result in (22) and (23).

It remained to bound the prior mass term in (S.24) for L“ 2_ rlog ρ´1{ss. That is, we will
show that

(S.27) πL

´

f̃L P R
2L

: }ΨLf̃
L}2L2

ě cαρ
2, }ΨLf̃

L}2Hs ďR2
¯

ě 1 ´α{2,



40

for all n large enough. Note that for all L P N, }ΨLf̃
L}2Hs ď 22Ls}ΨLf̃

L}L2
. Consequently

using Plancharel’s theorem, we obtain that the lhs of (S.27) is bounded from below by

πL

´

f̃L P R
2L

: cαρ
2 ď }f̃L}22 ď 2´2LsR2

¯

ě Pr
`

cαρ
2 ď ZJΓZ ďR2ρ2

˘

“ Pr

ˆ?
cα2

L ď ZJΓ̄Z ď R2

?
cα

2L
˙

,(S.28)

where Z is a 2L-dimensional standard normal vector. For both the public and private coin
choices of Γ̄ in the proof of Theorem 3.1, Γ̄ is symmetric, idempotent and has rank 2L and
r2L{2s respectively. In the public coin case ZJΓZ „ χ2

2L , hence Lemma A.13 yields that the
rhs of the above display is bounded from below by

1 ´ exp
´

´ 2L
?
cα ´ 1 ´ 0.5 log cα

4

¯

´ exp
´

´ 2L
R2{?

cα ´ 1 ´ 0.5 log
`

R4{cα
˘

4

¯

,

which can be set arbitrarily close to 1 per small enough choice of cα ą 0, verifying the prior
mass condition.

In the private coin protocol case ZJΓZ „ χ2
r2L{2s and by applying again Lemma A.13

(with d“ r2L{2s) we get by similar computations as above that the rhs of (S.28) is arbitrarily
close to one for small enough choice of cα.

C. Public coin protocols for estimation. Consider the distributed signal-in-Gaussian-
white-noise model as described in Section 6, i.e. local X “ pX1, . . . ,Xmq observations sat-
isfying the dynamics of (21) and b-bit transcripts Y “ pY 1, . . . , Y mq communicated to a
central machine taking values in a space Ym with |Y| “ b. Let Epubpbq denote the class of all
distributed estimation protocols generating transcripts that may depend on a public coin U .
That is, Epubpbq consists of pairs pf̂ ,LpY,U |Xqq where f̂ : Y Ñ L2r0,1s and LppY,Uq|Xq
is such that

P
Y
f pyq “

ż ż

P
Y |pX,Uq“px,uqpyqdPX

f pxqdPU puq,

X is independent of U and Y 1, . . . , Y m are independent given pX,Uq. Let Eprivpbq denote
the class of all distributed estimation protocols that do not depend on a public coin. This
is equivalent to the definition of Epubpbq above with U set to a degenerate random variable.
Below, we shall write f̂ ” pf̂ ,LpY,U |Xqq when no confusion can arise.

THEOREM C.1. The distributed minimax estimation rates under communication con-

straints are the same in the public and private coin protocols, i.e.

inf
f̂PEpubpbq

sup
fPHs,R

E
pY,Uq
f }f̂pY q ´ f}2L2

— inf
f̂PEprivpbq

sup
fPHs,R

E
Y
f }f̂pY q ´ f}2L2

.

PROOF. Since a private coin protocol can be seen as a public coin protocol with a degen-
erate random variable U , it remained to deal with the “Á” inequality. To that extend, it is
sufficient to show that the same lower bound as for the private coin case holds.

Following the proof of Theorem 3.1 of [44], there exists a distribution π on Hs,R such that

(S.29) inf
f̂PEprivpbq

sup
fPHs,R

E
Y
f }f̂pY q ´ f}2L2

ě inf
f̂PEprivpbq

ż

E
Y
f }f̂pY q ´ f}2L2

dπpfqp1 ` op1qq,
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where the op1q term is concerned with asymptotics in n only. The particular choice of π
considered in [44] does not depend on the law of Y and satisfies

(S.30)
ż

E
Y
f }f̂pY q ´ f}2L2

dπpfq Á

$

’

&

’

%

n
´ 2s

2s`1 if bÁ n
1

2s`1 ,

pbnq´ 2s

2s`2 if bÀ n
1

2s`1 and bÁ pn{m2s`2q
1

2s`1 ,

pbmq´2s if bÀ pn{m2s`2q
1

2s`1 .

Furthermore, this lower bound is tight, see Section 4 in [44]. By the Markov chain structure
of (2), we have that

ż

P
Y
f pyqdπpfq “

ż ż ż

P
Y |pX,Uq“px,uq
f pyqdPX

f pxqdPU puqdπpfq.

Consequently, for the same choice of prior and any pf̂ ,LpY,U |Xqq P Epubpbq, f P Hs,R,

E
Y
f }f̂pY q ´ f}2L2

ě
ż ż

E
Y |U“u
f }f̂pY q ´ f}2L2

dπpfqp1 ` op1qqdPU puq

ě
ż

inf
f̂PEpubpbq

ż

E
Y |U“u

f }f̂pY q ´ f}2L2
dπpfqp1 ` op1qqdPU puq

“
ż

inf
f̂PEprivpbq

ż

E
Y
f }f̂pY q ´ f}2L2

dπpfqp1 ` op1qqdPU puq

“ inf
f̂PEprivpbq

ż

E
Y
f }f̂pY q ´ f}2L2

dπpfqp1 ` op1qq.

Here, the second to last equation follows from the fact that for any pf̂ ,LpY,U |Xqq P Epubpbq,

it holds that pf̂ ,PY |X,U“u

f q P Eprivpbq. By (S.30), the private coin lower bound also holds in
the public coin case and the result follows.

D. Proof of the lower bounds in Theorems 7.1 and 7.2. Let fL and X̃j
L1:L as defined

in (29) and (30), respectively. Let T “ pT,K,PU q be a given distributed testing protocol
(with U degenerate in the case it is a private coin protocol) and fix α P p0,1q. For given
smin ă smax, consider for s P rsmin, smaxs the map s ÞÑ ρs.

Recall that for ΨL as defined in (S.20) and any distribution πL on R
νpLq, πL ˝Ψ´1

L defines
a probability measure on the Borel sigma algebra of L2r0,1s. Define the mixture of the above
probability measures by

(S.31) Π “ 1

|C0|
ÿ

LPC0

πL ˝ Ψ´1
L

where C0 Ď C. There exists a grid of points S Ă rsmin, smaxs such that the map s ÞÑ Ls is a
one-to-one map from S to C. Let L ÞÑ sL denote its inverse.

By the same steps as in (S.1),

(S.32) sup
fPHsL,R

cαρsL

P
Y
f pT “ 0q ě P

Y
πL

pT “ 0q ´ πL ˝ Ψ´1
L

´

f RHsL,R
cαρsL

¯

,

for all L P C. Using the above display, we can bound the risk in the adaptive setting from
below:

sup
sPrsmin,smaxs

RpHs,R
cαρs

, T q ě 1

|C|
ÿ

LPC
RpHsL,R

cαρsL
, T q

ě P
Y
0 pT “ 1q ` P

Y
ΠpT “ 0q ´ 1

|C0|
ÿ

LPC0

πL ˝ Ψ´1
L

´

f RHsL,R
cαρsL

¯

.(S.33)
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Taking πL as in the proof of Theorem 6.1, then by the same reasoning as in proof the proof of
Theorem 6.1 that the third term in the above display can be made arbitrarily small per choice
of cα for ρs satisfying (25)-(26). For the first two terms, define

LY |u
πL

:“
ż

dP
Y |U“u
f

dP
Y |U“u
0

dπLpfq

and note that

P
Y
0 pT “ 1q ` P

Y
ΠpT “ 0q “ 1

|C0|
ÿ

LPC0

ż

P
Y |U“u
0

´

T ` LY |u
πL

p1 ´ T q
¯

dPU puq

ě 1

|C0|
ÿ

LPC0

ż

E
Y |U“u
0

´

γT ` LY |u
πL

p1 ´ T q
¯

1

!

LY |u
πL

ą γ
)

dPU puq

ě γ
1

|C0|
ÿ

LPC0

ż

P
Y |U“u
0

´

LY |u
πL

ą γ
¯

dPU puq,

where the conditioning follows from the Markov chain structure (2) and the inequality holds
for 0 ă γ ă 1. We can conclude that it suffices to show that for all εą 0,

(S.34)
1

|C0|
ÿ

LPC0

P
pY,Uq
0

´ˇ

ˇ

ˇ
LY |U
πL

´ 1
ˇ

ˇ

ˇ
ą ε

¯

can be made arbitrarily small per small enough choice of cα in order obtain the required lower
bound in (S.33). Using P

pY,Uq
0 “ dPUdP

Y |U
0 , conditioning on the PY |U

0 -variance of LY |u
Π with

Chebyshev’s inequality and E
Y |U“u
0 L

Y |u
Π “ 1 lead to

1

|C0|
ÿ

LPC0

P
pY,Uq
0

ˆ

´

LY |U
πL

´ 1
¯2

ą ε2
˙

ď 1

|C0|
ÿ

LPC0

P
U
´

E
Y |UpLY |U

πL
q2 ą 1 ` ζ

¯

` ζ

ε2

for all ε ą 0 and ζ ą 0. Noting that EY |U“upLY |U“u
πL

q2 ě 1, sufficiently bounding (S.34)
follows from Markov’s inequality and showing

(S.35)
1

|C0|
ÿ

LPC0

ż

log
´

E
Y |U“upLY |U“u

πL
q2
¯

dPU puq À cα.

Noting that EY |U“upLY |U“u
πL

q2 “Dχ2pPY |U“u
0,K ;P

Y |U“u
πL,K

q ` 1, we can apply the argument of
the proof of Theorem 3.1 (foregoing the bound of (40)) for bounding the Chi-square diver-
gence and we obtain that for some fixed C ą 0,

(S.36) log
´

E
Y |U“upLY |U“u

πL
q2
¯

ď
#

Ccα
n4ρ4

sL

m423L Tr pΞL,uq2 `AL,u, if U is degenerate,

Ccα
n3ρ4

sL

m222L Tr pΞL,uq `AL,u, otherwise,

where

AL,u “
m
ÿ

j“1

log

¨

˝E
Y j |U“u
0

¨

˝E0

«

ż

dPX̃j

f

dPX̃j

0

pX̃j
LqdπLpfq

ˇ

ˇ

ˇ

ˇ

Y j,U “ u

ff2
˛

‚

˛

‚

and ΞL,u “ řm
j“1Ξ

j
L,u with Ξ

j
L,u “ E0E0

”

X̃
j
L

ˇ

ˇY j ,U “ u
ı

E0

”

X̃
j
L

ˇ

ˇY j ,U “ u
ıJ

. Via a data

processing argument (Lemma E.5 in the supplement),

1

|C0|
ÿ

LPC0

ż

AL,udP
U puq À max

LPC0

cαn
2ρ4sLpb^ |C0|q
m2L|C0| .
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When U is degenerate, Lemma E.3 implies that there exists a choice for C0 Ă C0 such that
for all L P C0,

Tr pΞL,uq2 À
ˆ

b

|C| ^ 2L
˙2

m4

n2
.

When U is not degenerate, Lemma E.4 implies that taking C0 “ C,

1

|C|
ÿ

LPC

n3ρ4sL
m222L

Tr pΞL,uq À max
LPC

n2ρ4sL
22L

ˆ

b

|C| ^ 2L
˙

.

Combining the above with the fact that s ÞÑ Ls “ ts´1 logp1{ρsqu _ 1 maps a grid S Ă
rsmin, smaxs one-to-one to C0 with inverse map L ÞÑ sL on C0, we obtain

1

|C0|
ÿ

LPC0

ż

log
´

E
Y |U“upLY |U“u

πL
q2
¯

dPU puq À cα ¨

$

’

’

&

’

’

%

max
LPC

n2ρ4
sL

´

b

logpnq ^2L

¯

2

23L

Ž n2ρ4
sL

pb^logpnqq
m2L logpnq ,

max
LPC

n2ρ4
sL

´

b

logpnq ^2L

¯

22L

Ž n2ρ4
sL

pb^logpnqq
m2L logpnq ,

where the first case corresponds to a degenerateU , the latter to the general (public coin) case.
The conditions (25)-(26) for ρsL yield (S.35), which in turn finishes the proof.

E. Lemmas concerning the adaptation upper and lower bounds. The following
lemma controls the Type I error of the adaptive tests defined in Section 7.

LEMMA E.1. Consider for L P N and a nonnegative positive integer sequenceKn,

SnpLq :“ 1?
Kn

Kn
ÿ

i“1

ζi,L

where pζ1,L, . . . , ζKn,Lq independent random variables with mean 0 and unit variance.

Assume that the random variables satisfy Cramér’s condition, i.e. for some ǫą 0 and all

t P p´ǫ, ǫq, i“ 1, . . . ,Kn and L P C, for some set C Ă N satisfying |C| — logpnq,

Eetζi,L ă 8.

Then for Kn " plog lognq6, it holds that

Pr

ˆ

max
LPC

|SnpLq| ě c
a

log logpnq
˙

Ñ 0

for all cą
?
2 as nÑ 8.

If the random variables are iid Rademacher or are of the form

ζi,L “ 1

4Q

»

–

˜

Q
ÿ

q“1

RqL

¸2

´Q

fi

fl

with R“ pR1L, . . . ,RQLq independent Rademacher random variables and Q P N, the state-

ment holds for any sequenceKn as nÑ 8.

PROOF. By using union bounds,

Pr

ˆ

max
LPC

SnpLq ě c
a

log logpnq
˙

ď
ÿ

LPC
Pr
´

|SnpLq| ě c
a

log logpnq
¯

ď

ÿ

LPC

”

Pr
´

SnpLq ě c
a

log logpnq
¯

` Pr
´

´SnpLq ě c
a

log logpnq
¯ı

.
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The proof follows by showing that SnpLq and ´SnpLq are or tend to sub-Gaussian variables
with sub-Gaussianity constant less than or equal to 1, since this allows for bounding the above
display by

2
ÿ

LPC
e´ c2

2
log logpnq À 1

plogpnqqc2{2´1

and the result follows.
For the first statement, by Cramér’s theorem (see e.g. Theorem 7 in Section 8.2 of [28]),

Pr
´

SnpLq ě c
a

log logpnq
¯

1 ´ Φpc
a

log logpnqq
“ exp

ˆ

Op1q ¨ plog lognq3?
Kn

˙ˆ

1 `O

ˆ

log logn?
Kn

˙˙

Ñ 1.

Note that the above statement holds for ´SnpLq also. The statement now follows by using
1 ´ Φpxq ď e´x2{2.

For the second statement, note that by symmetry of the Rademacher distribution, it suffices
to consider only SnpLq. In case the ζi,L’s are iid Rademacher, note that a Chernoff bound
yields

Pr
´

SnpLq ě c
a

log logpnq
¯

ď inf
tą0
e

t2

2
´ct

?
log logpnq “ e´ c2

2
log logpnq.(S.37)

Similarly, for the sum of Rademacher random variables, we have

E exp

ˆ

t?
Kn

ζi,L

˙

“ E exp

˜

t

4Q
?
Kn

«

Q
ÿ

q‰q1

RqLRq1L

ff¸

ď E exp

˜

t

Q
?
Kn

«

Q
ÿ

q‰q1

RqLR
1
q1L

ff¸

,

where the inequality follows from e.g. Theorem 6.1.1 in [40] with R1 “ pR1
1L, . . . ,R

1
QLq in-

dependent of R. The latter implies that pRqLR
1
q1Lqpq,q1qPt1,...,Qu2 itself is a vector of indepen-

dent Rademacher random variables, and consequently the above display is further bounded
by

exp

ˆ

t2QpQ´ 1q
2KnQ2

˙

ď exp

ˆ

t2

2Kn

˙

.

The proof of the last statement now follows via Chernoff bound as in (S.37).

The next lemma controls the Type 2 error of the adaptive test in the high-budget case under
public coin protocol.

LEMMA E.2. Consider SIIpLsq as in (33) in the paper. It holds that

Ef1

!

SIIpLsq ă 2
a

log logn
)

ď α{2

whenever f PHs,R
Cαρs

with ρ2 ěC0

a

log logpnq 2Ls

n
b

b

logpnq ^2Ls
for C0 large enough, depending

only on R.

PROOF. The proof is similar in spirit to that of the risk bound in the finite dimensional,
non-adaptive, public coin setting given in Lemma A.7.
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We show below that the event

A“
!m1 ´ 1

2
?
b1

b1
ÿ

i“1

pY j
II pLqqi ´ 1{2q2 ě 2

a

log logn
)

,

occurs with Pf -probability greater than 1 ´ α{4. Since on A the condition of Lemma A.4
is satisfied with cα,n “ 2

?
log logn and consequently, by the conclusion of Lemma A.4,

Ef1
 

SIIpLsq ă 2
?
log logn

(

is bounded by α{2.
Following the proof of Lemma A.7 (with d“ νLs

, considering the νLs
dimensional vector

f νLs , and taking Nα “ 2
?
log logn), and noting that for C2

0 ą 4R2

}f̃Ls}22 ě }f}22{2 ´R22´2Lss Á C02
Ls

a

log logpnq
2n

b

b
logpnq ^ 2Ls

Á C02
Ls

a

log logpnq
n

b

b1 m1

m

,

we get that

Ef1Ac ď Pr

˜

m1 ´ 1

24
?
b1

b1
ÿ

i“1

min

#

C0

?
log logn2LsZ2

i

2m1
?
b1}Z}22

,1

+

ď 2
a

log logn

¸

.(S.38)

Considering the intersection with the event t}Z}22 ď k2Lsu for some large enough k ą 0, and
noting that by Lemma A.12,

Pr

˜

max
1ďiďb1

Z2
i ě 2m1?b1k

C0

?
log logn

¸

ď 2b1 exp

˜

´ m1?b1k

2C0

?
log logn

¸

“ op1q,

the right hand side of (S.38) is further bounded by

Pr

˜

b1
ÿ

i“1

Z2
i ď 96b1m1k

C0pm1 ´ 1q

¸

` op1q `α{8 ď α{4,

where the last inequality holds for large enough choices m1 :“ mpb^logpnqq
logpnq , b1 :“ mb

m1|C| ^ νL
and large enough choice of C0 (depending on k), see e.g. (S.12) in the proof of Lemma A.7,
which finishes the proof of our statement.

Next we provide the lemmas for the lower bound. From now on in this section, we consider
the setting of Section 7. That is, let X̃j

L, X̃j
1:L denote the wavelet coefficients ofXj as in (30).

Define in addition the matrices

Ξ
j
L,u “ E0E0

”

X̃
j
L

ˇ

ˇY j ,U “ u
ı

E0

”

X̃
j
L

ˇ

ˇY j ,U “ u
ıJ
,

Ξ
j
L1:L,u “ E0E0

”

X̃
j
L1:L

ˇ

ˇY j ,U “ u
ı

E0

”

X̃
j
L1:L

ˇ

ˇY j,U “ u
ıJ
,

ΞL,u :“
řm

j“1Ξ
j
L,u and Ξu “ řm

j“1Ξ
j
Lmin:Lmax,u

. The lemma below allows for extending the
data processing inequality of Lemma A.3 to the adaptive private coin case, in which extra
demands are placed on the communication budget in terms of the budget needing to cover
the coordinates corresponding to each resolution level.

LEMMA E.3. Suppose Y j takes values in a space with cardinality at most 2b P N, for

j “ 1, . . . ,m and let C “ tLmin, ...,Lmaxu, for some Lmin ă Lmax P N . There exists C0 Ă C

such that

Tr pΞL,uq À
ˆ

b

|C| ^ 2L
˙

m2

n

for all L P C0.



46

PROOF. Define ∆L “ Tr pΞL,uq and let ℓ : t1, . . . ,Lmax ´ Lmin ` 1u Ñ C a map that
respects the ordering of the ∆L’s in the sense that

∆ℓpiq ď ∆ℓpkq if iď k.

Let C0 denote the first tLmax´Lmin`1
2

u elements of the collection t∆ℓ1,∆ℓp2q, . . . ,∆ℓpLmax´Lmin`1qu.
For all L˝ P C,

Tr pΞL˝,uq ď 2

|C|
ÿ

LPCzC0

Tr pΞL,uq .

By definition of the trace of a matrix,
ř

L TrpΞL,uq “ TrpΞLmin:Lmax,uq. By Lemma A.3,

Tr pΞLmin:Lmax,uq “
m
ÿ

j“1

Tr
´

Ξ
j
Lmin:Lmax,u

¯

ď 2 logp2qm2b

n
.

Combining the above two displays, we obtain that

Tr pΞL˝,uq À m2b

np|C| .

By an application of Lemma A.2 and a straightforward computation as in the proof of Lemma
A.3,

(S.39) Tr pΞL˝,uq ď m2

n
2L

˝
.

Combining the two bounds for Tr pΞL˝,uq gives the result.

The next lemma applies to the adaptive public coin setting. The bound below is slightly
more relaxed than the previous one, which relates to the private coin setting. The reason for
this is the fact that in the public coin setting, the hyperprior cannot be chosen in an adversarial
way because the public coin draw.

LEMMA E.4. With the notation as in the proof of Theorem 7.1, it holds that

1

|C|
ÿ

LPC

n3ρ4sL
m222L

Tr pΞL,uq À max
LPC

n2ρ4sL
22L

ˆ

b

|C| ^ 2L
˙

.

PROOF. Similarly to the proof of Lemma E.3, we note that by the linearity of the trace,
ÿ

LPC
Tr pΞL,uq “ Tr pΞuq ,

where Ξu “ řm
j“1Ξ

j
Lmin:Lmax,u

. Lemma A.3 yields Tr pΞuq ď 2 logp2q bm2

n
. Otherwise, apply-

ing Lemma A.2 yields Tr pΞL,uq ď 2Lm2

n
. Combining these two inequalities yields the result:

1

|C|
ÿ

LPC

n2ρ4sL
22L

Tr pΞL,uq ď 1

|C|
ÿ

LPC

n2ρ4sL
22L

´ n

m2
Tr pΞL,uq

ľ

2L
¯

ď max
L˚

n2ρ4
s˚
L

22L
˚

˜

n

m2

1

|C|
ÿ

LPC
Tr pΞL,uq

ľ

2L
˚

¸

ď max
L˚

n2ρ4
s˚
L

22L
˚

ˆ

b

|C|
ľ

2L
˚
˙

.



OPTIMAL DISTRIBUTED TESTING 47

Whereas in the nonadaptive setting of Theorem 3.1 and Theorem 6.1 the local “chi-square”
based terms need no special data processing treatment, it does in the adaptive case. For each
of the logpnq resolution levels L, information on the norm of X̃j

L is communicated. Using
b— logpnq to this without loss (compared to Theorem 6.1) turns out to be fundamental, as is
the content of the lemma below. The proof of the lemma is based on exploiting the fact that
even though 2´L{2p}

a

n{mX̃j
L}22 ´ 2Lq is sub-exponential, the fact that it tends to a sub-

Gaussian random variable can be exploited whenever the communication budget is small
enough.

LEMMA E.5. Let πL as in the proof of Theorem 7.1, with ρs “ ρsL satisfying (26) or

(25). Furthermore, let

AL,u “
m
ÿ

j“1

log

¨

˝E
Y j |U“u
0

¨

˝E0

«

ż

dPX̃j

f

dPX̃j

0

pX̃j
LqdπLpfq

ˇ

ˇ

ˇ

ˇ

Y j,U “ u

ff2
˛

‚

˛

‚.

Then for arbitrary C Ă N,

1

|C|
ÿ

LPC

ż

AL,udP
U puq À max

LPC

cαn
2ρ4sLpb^ |C|q
m2L|C| .

PROOF. Recalling the notation from Section B, we shall write LπL
pX̃j

Lq “
ş

Lf pX̃j
LqdπLpfq

with

Lf pX̃j
Lq :“

dPX̃j

f

dPX̃j

0

pX̃j
Lq “ e

n

m
fJX̃

j

L´ n

2m
}f}22 .

Note that, using logpxq ď x´ 1, E0LπL
pX̃j

Lq “ 1 and the fact that by the law of total proba-
bility

E
Y j |U“u
0 E0

„

LπL
pX̃j

Lq
ˇ

ˇ

ˇ

ˇ

Y j,U “ u



“ 1,

we obtain that

(S.40) AL,u ď
m
ÿ

j“1

E
Y j |U“u
0

˜

E0

„

LπL
pX̃j

Lq ´ 1

ˇ

ˇ

ˇ

ˇ

Y j,U “ u

2
¸

.

We work out the case where π “Np0, ǫ2sI2Lq, the case where π “Np0, ǫ2sΓq with }Γ} — 1

follows similarly with additional bookkeeping. Since f „Np0, ǫ2sI2Lq with ǫs “ c
1{4
α ρs{2L{2,

LπL
pX̃j

Lq “
2L´1

Π
i“0

ż

e
n

m
fiX̃

j

Li´ 1

2
p n

m
`ǫ´2

s qf2
i

a

2πǫ2s
dfi “ e

n

m
ǫ2s

}
?

n
m

X̃
j
L

}22
2p1` n

m
ǫ2sq

p1 ` n
m
ǫ2sq2L{2(S.41)

where the last equality follows by the substitution u “ fi
a

1 ` n
m
ǫ2s and completing the

square. Taking the logarithm and using that p1`xq logp1`xq
x

ą 1 for xą 0, we find

(S.42) V
j
L :“ n

m
ǫ2s

}
a

n
m
X̃

j
L}22

2p1 ` n
m
ǫ2sq ´ 2L´1 logp1 ` n

m
ǫ2sq ď

n
m
ǫ2s

2

ˆ

}
c

n

m
X̃

j
L}22 ´ 2L

˙

Therefore, using (S.41), Taylor expanding, pa ` bq2 ď 2a2 ` 2b2 and (S.42), we can upper
bound (S.40) by

(S.43) 2

m
ÿ

j“1

E
Y j |U“u
0

˜

E0

„

V
j
L

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u

2
¸

` 2

m
ÿ

j“1

E
Y j |U“u
0 pDjq2,
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with

Dj “ E0

« 8
ÿ

k“2

nkǫ2ks
2kmkk!

ˇ

ˇ

ˇ

ˇ

}
c

n

m
X̃

j
L}22 ´ 2L

ˇ

ˇ

ˇ

ˇ

k ˇ
ˇ

ˇ

ˇ

Y j ,U “ u

ff

.

We deal with the two terms in (S.43) separately. Since conditional expectation contracts
the L2-norm,

m
ÿ

j“1

E
Y j |U“u
0 pDjq2 Àm ¨

8
ÿ

k“2

8
ÿ

i“2

nkc
k{2
α ρ2ks

2kmk2kLs{2k!

nic
i{2
α ρ2is

2imi2iLs{2i!
EW i`k

where W d“
´

}
a

n
m
X̃

j
L}22 ´ 2L

¯

. Furthermore, since }
a

n
m
X

j
L}22 „ χ2

2L is sub-exponential,

EW i`k ď Ck`ipi ` kqi`k , where C ą 0 is a constant (see e.g. Proposition 2.7.1 in [40]).
Then in view of pi ` kqi`k ď 2i`ki!k!, we the above display is Op c2αn

4ρ8
s

m322Ls
q whenever

c2αn
4ρ8

s

C2m422Ls
ă 1. This is certainly the case when ρ2s À

ˆ ?
m logpnq

n
?

b^logpnq

˙ 2s

2s`1{2

and mb Á logpnq,

which yields that
m
ÿ

j“1

E
Y j |U“u
0 pDjq2 À c2αn

2ρ4s
m2Ls{2 ¨O

ˆ

logpnq
mpb^ logpnqq

˙

.

It remained to deal with the first term in (S.43), where we proceed by a data processing
argument. When bě logpnq,

2

m
ÿ

j“1

E
Y j |U“u
0

˜

E0

„

V
j
L

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u

2
¸

ď 2

m
ÿ

j“1

E
X̃j

0

´

V
j
L

¯2

ď cαn
2ρ4s

m2Ls
,

in which case the result follows.
We continue with the case where bă logpnq, which implies |Yj | ď 2logpnq. We bound the

average of the first terms in (S.43) over C, by

1

|C|
ÿ

LPC

m
ÿ

j“1

n2ρ4s
m22Ls

E
Y j |U“u
0

˜

E0

„

G
j
L

ˇ

ˇ

ˇ

ˇ

Y j ,U “ u

2
¸

ď(S.44)

max
LPC

n2ρ4sL
m22L|C|

m
ÿ

j“1

E
Y j |U“u
0 TrpM jpY jqq,

where M jpyq “ E0

„

G
j
C

ˇ

ˇ

ˇ

ˇ

Y j “ y,U “ u



E0

„

G
j
C

ˇ

ˇ

ˇ

ˇ

Y j “ y,U “ u

J
, Gj

C
“ pGj

LqLPC , and

G
j
L “

´

nρ2
s

m2Ls{2

¯´1

V
j
L . We show below that for all v “ pvLqLPC of unit norm

E
Y j |U“u
0 xvC ,Gj

C
y2 ď b,(S.45)

which by taking v “G
j
C

{}Gj
C
}2 yields that (S.44) is Opmaxs

n2ρ4
s

m2Ls |C|bq as required.
Therefore, it remained to verify (S.45). For any λ P R, independence and (S.42) yield

E
Xj

0 eλv
JG

j

C ď Π
LPC

E
Xj

0 e
λ

2Ls{2 vL
2L´1
ř

i“0

pX̃2
Li´1q

.

When |λ|
2¨2Ls{2 vL ď 1

4
, the latter can be further bounded by

Π
LPC

exp
`

λ2v2L
˘

“ exp
`

λ2
˘

,
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see e.g. Lemma 12 in [34]. In view of 0 ď Kpy|Xj , uq ď 1 and the previously shown sub-
exponential behaviour of xvC ,Gj

C
y, we get that

P
Y j |U“upyqE0

„

xvC ,Gj
C
y
ˇ

ˇ

ˇ

ˇ

Y j “ y,U “ u



“ E
Xj

0 xvC ,Gj
C
yKpy|Xj , uq “ E

Xj

0

ż 8

0

1

!

|xvC ,Gj
C

y| ą t
)

Kpy|Xj , uqdt

ď
ż 8

0

min
!

P
Xj

0

´

|xvC ,Gj
Cy| ą t

¯

,PY j |U“upyq
)

dtď e´t0 ` t0P
Y j |U“upyq.

Taking t0 “ ´ logpPY j |U“upyqq yields

(S.46) E0

„

xvC ,Gj
Cy
ˇ

ˇ

ˇ

ˇ

Y j “ y,U “ u



ď ´2 logpPY j |U“upyqq.

Furthermore, for λy P R and y satisfying

(S.47) ´ 2Ls{2`2 ď λy “ E0

„

xvC ,Gj
C
y
ˇ

ˇ

ˇ

ˇ

Y j “ y,U “ u



ď 2Ls{2`2,

the argument of Lemma A.3 yields

(S.48) E0

„

xvC ,Gj
Cy
ˇ

ˇ

ˇ

ˇ

Y j “ y,U “ u

2

ď ´ log
´

P
Y j |U“upyq

¯

.

Note, that if (S.47) does not hold, then in view of (S.46), ´ logpPY j |U“upyqq ě 2Ls{2`1.
Let us write py “ P

Y j |U“upyq and define Yj
˚ “ ty P Yj : logp1{pyq ď 2Ls{2`2u. Since x ÞÑ

x log2p1{xq is increasing on p0, e´2q, it holds that py log
2p1{pyq ď e´2Ls{2`2`pLs`4q logp2q for

y P pYj
˚qc. Then, in view of (S.46) and (S.48) we get that

ÿ

yPYj

pyE0

„

xvC ,Gj
C
y
ˇ

ˇ

ˇ

ˇ

Y j “ y,U “ u

2

ď
ÿ

yPYj
˚

py logp1{pyq ` 4
ÿ

yPpYj
˚qc
py log

2p1{pyq

À log |Yj | ` e´2Ls{2`2`pLs`4q logp2q À b,

concluding the proof of (S.45) and hence the lemma.

F. Proof of Lemma 10.1. We start by introducing some short hand notations for conve-
nience. Write, for x P R

vk , v P t1,mu,

φvpxq “ E
H p

v
H

pv0
pxq “ E

HeH
Jpřv

j“1
Λ´1xjq´ v

2
}Λ´1{2H}22 ,

with φmpxqpm0 pxq “ E
HpmHpxq, x “ px1, ..., xmq, and Πm

j“1φ1pxjq “ Πm
j“1E

HpHpxjq. Let
Pm
0 denote the measure corresponding to the Lebesgue density pm0 . Furthermore, recall that

Q ” QpM,Σq :“
"

q PL1pRmk, Pm
0 q : q ě 0,

q
ş

qpxqdPm
0 pxq ďM Pm

0 ´ a.e.,

ż

xqpxqdPm
0 pxq “ 0, and

ş

xxJ qpxqdPm
0 pxq

ş

qpxqdPm
0 pxq “ Σ

*

,

where L1pRmk, Pm
0 q “ tf :Rmk ÞÑ R, such that

ş

fdPm
0 pxq ă 8u.
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Let λ ” λmk denote the Lebesgue measure on R
mk , define for r P L1pRmk, λq nonnega-

tive,

(S.49) F prq :“
ş

φmpxq rpxqdx
ş

m

Π
j“1

φ1pxjq rpxqdx
P r0,8s,

and set Gpqq :“ F pqpm0 q. Since Gpcqq “Gpqq for any constant c P R, it suffices to show that

Ḡ“ sup
qPQ

Gpqq ď
ş

φmpxqdNp0,Σqpxq
ş

m

Π
j“1

φ1pxjqdNp0,Σqpxq
.

We will proceed through the following steps.

1. First, we show that the supremum Ḡ is finite and attained in Q, i.e. by the Banach-Alaoglu
theorem there exists q P Q such that Gpqq “ Ḡ.

2. We will then consider Q2, the class of all Q P L1pR2km, λq such that x1 ÞÑQpx1, x2q is
in Q for Pm

0 -almost every x2 P tx1 ÞÑ Qpx1, x2q ı 0u and x2 ÞÑ Qpx1, x2q is in Q for
Pm
0 -almost every x1 P tx2 ÞÑQpx1, x2q ı 0u. It holds that

G2pQq :“
ş

φmpx1qφmpx2qpm0 px1qpm0 px2qQpx1, x2qdpx1, x2q
ş

m

Π
j“1

φ1pxj1qφ1pxj2qpm0 px1qpm0 px2qQpx1, x2qdpx1, x2q

satisfies sup
QPQ2

G2pQq “ Ḡ2.

3. Next, we show that px1, x2q ÞÑ qpx1´x2?
2

qqpx1`x2?
2

q is a maximizer of G2 whenever q P Q

is a maximizer of G. This is a consequence of the conjugacy between the observation and
the distribution of the parameter H .

4. Then it will be shown that for any maximizer Q of G2, x1 ÞÑQpx1, x2q maximizes G for
Pm
0 -almost every x2.

5. Combining the above steps, we obtain that for any maximizer q, an appropriately rescaled
convolution of q with itself is also a maximizer, i.e.

F p
?
2pqpm0 q ˚ pqpm0 qp

?
2 ¨qq “ Ḡ,

where ˚ denotes convolution.
6. By repeated application of Step 5 and the central limit theorem, the result follows.

Step 1. For q P Q, define the normalizing constant as Cq :“ p
ş

qdPm
0 q´1. As linear combi-

nations and products of nonnegative convex functions are convex, the mapping

x ÞÑ
m

Π
j“1

E
HeH

JΛ´1xj´ 1

2
}Λ´1{2H}22

is convex. Then Jensen’s inequality gives
ş

E
HeH

Jpřm

j“1
Λ´1xjq´ 1

2
}Λ´1{2H}22qpxqdPm

0 pxq
ş

m

Π
j“1

EHeH
JΛ´1xj´ 1

2
}Λ´1{2H}22 qpxqdPm

0 pxq
ď Cq

ş

E
HeH

JpΛ´1
ř

m

j“1
xjq´ 1

2
}Λ´1{2H}22qpxqdPm

0 pxq
m

Π
j“1

EHeCq

ş

HJΛ´1xjqpxqdPm
0 pxq´ 1

2
}Λ´1{2H}22

.

Since X “ pX1, . . . ,Xmq „ qdPm
0 has mean 0, the denominator on the lhs is equal

to pEHe´ 1

2
}Λ´1{2H}22qm ą 0. This means that the denominator in the above display is

bounded away from 0 over q. Since qCq ď M a.e., the numerator is bounded above by
M

ş

E
HpmHpxqdx“M . We can conclude that the supremum of (S.49) over qpm0 , q P Q is fi-

nite. It is easy to construct a q˚ P Q such thatGpq˚q ą 0, so we can conclude that 0 ă Ḡă 8.
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Let qt be a maximizing sequence for G, rescale qt such that
ş

qtP
m
0 “ 1 and note that

qt P Q and qt is contained in the L8pRmkq ball of radius M . Since L8pRmkq is the dual
of L1pRmk, λq, by the Banach-Alaoglu theorem the L8pRmkq ball of radius M is weak-˚-

compact. Therefore, there exists a subsequence, again denoted by qt, along which qt
wk´˚Ñ

q for some q in the L8pRmkq ball of radius M . Since x “ px1, . . . , xmq ÞÑ φmpxq is in
L1pRmk, Pm

0 q, the weak-˚-convergence implies that
ż

φm pxq qtpxqdPm
0 pxq Ñ

ż

φm pxq qpxqdPm
0 pxq.

Similarly,
ż

Πm
j“1φ1

`

xj
˘

qtpxqdPm
0 pxq Ñ

ż

Πm
j“1φ1

`

xj
˘

qpxqdPm
0 pxq P p0,8q,

where the boundedness away from 0 has been concluded earlier on in the proof. We have
now obtained that

(S.50) Ḡ“ lim
tÑ8

ş

φm pxq qtpxqdPm
0 pxq

ş

Πm
j“1φ1 pxjq qtpxqdPm

0 pxq “
ş

φm pxq qpxqdPm
0 pxq

ş

Πm
j“1φ1 pxjq qpxqdPm

0 pxq .

Since qt P Q, we have
ż

xqtpxqdPm
0 pxq “ 0 and

ż

xxJ qtpxqdPm
0 pxq “ Σ for all t.

As x ÞÑ 1, x ÞÑ x and x ÞÑ xxJ are all Pm
0 integrable, the weak-˚-convergence yields that

ş

qpxqdPm
0 pxq “ 1,

ş

xqpxqdPm
0 pxq “ 0 and Σ “

ş

xxJ qpxqdPm
0 pxq. Since we have that

ş

ζpxqqtpxqdPm
0 pxq Ñ

ş

ζpxqqtpxqdPm
0 pxq for every continuous and bounded function ζ :

R
mk Ñ R

mk , the Portmanteau lemma yields that
ş

B
qdPm

0 ě 0 for all open sets B so q ě 0
almost everywhere. We conclude that Gpqq “ Ḡ and q P Q.

Step 2. Let Q P Q2 be given. By definition, the marginals x1 ÞÑ Qpx1, x2q, x2 ÞÑ
Qpx1, x2q are in Q Pm

0 -a.e. and E
HpHpxqdx“ φmpxqpm0 pxqdx is equivalent to the Lebesgue

measure, hence

G2pQq “
ż

φmpxqpm0 px1q
ż

φmpxqpm0 px2qQpx1, x2qdx2dx1

ď Ḡ

ż

φmpxqpm0 px1q
ż

Πm
j“1φ1pxj2qpm0 px2qQpx1, x2qdx2dx1

ď Ḡ2

ż

Πm
j“1φ1pxj2qpm0 px2q

ż

Πm
j“1φ1pxj1qpm0 px1qQpx1, x2qdx1dx2.

Let q P Q be a maximizer of G. Then, the above steps hold with equality for Qpx1, x2q :“
qpx1qqpx2q. For almost every x1 P tq ‰ 0u ” tx2 ÞÑQpx1, x2q ı 0u,

Qpx1, x2q
ş

Qpx1, x2qdPm
0 px2q “ qpx2q

ş

qpx2qdPm
0 px2q ďM.

By similar calculations, the rescaled marginal has the correct mean and covariance. By sym-
metry, we conclude that the marginals of px1, x2q ÞÑ qpx1qqpx2q belong to Q and it is a
maximizer of G2 over Q2.

Step 3. Consider a maximizer q P Q of G. By a change of variables w1 “ px1 ´ x2q{
?
2

and w2 “ px1 ` x2q{
?
2,

ż

φmpx1qφmpx2qq
ˆ

x1 ´ x2?
2

˙

q

ˆ

x1 ` x2?
2

˙

pm0 px1qpm0 px2qdpx1, x2q “
ż

φm

´w1 `w2?
2

¯

φm

´w1 ´w2?
2

¯

qpw1qqpw2qpm0
ˆ

w1 ´w2?
2

˙

pm0

ˆ

w1 `w2?
2

˙

dpw1,w2q.
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Since pm0 is a Gaussian density, pm0
´

w1´w2?
2

¯

pm0

´

w1`w2?
2

¯

“ pm0 pw1qpm0 pw2q. This fol-

lows from direct computation, but it characterizes Gaussian functions in general, see e.g.
Theorem 1 in [15]. Likewise, for H 1 an independent copy of the centered Gaussian random
vector H , H´H 1?

2
and H`H 1?

2
are independent and furthermore equal in distribution to H .

Therefore,

φm

´w1 `w2?
2

¯

φm

´w1 ´w2?
2

¯

“ E
pH,H 1qeH

JΛ´1
ř

m

j“1

w
j
1

`w
j
2?

2
`pH 1qJΛ´1

ř

m

j“1

w
j
1

´w
j
2?

2
´ m

2
}Λ´1{2H}22´ m

2
}Λ´1{2H 1}22

“ E
pH,H 1qe

´

H`H1
?

2

¯J
Λ´1

ř

m

j“1
w

j
1´ m

2
}Λ´1{2 H`H1

?
2

}22`
´

H´H1
?

2

¯J
Λ´1

ř

m

j“1
w

j
2´ m

2
}Λ´1{2 H´H1

?
2

}22

“ φmpw1qφmpw2q.
Since px1, x2q ÞÑ qpx1qqpx2q was established to be a maximizer of G2 in the second step, the
above establishes that px1, x2q ÞÑ qpx1´x2?

2
qqpx1`x2?

2
q is a maximizer of G2 also.

Step 4. Next, we will show that for a maximizer Q P Q2 of G2, x ÞÑQpx,wq is in Q and
is a maximizer of G for almost every w. We prove this by contradiction. Take an arbitrary
measurable set A Ă R

mk s.t. λpAq ą 0. Note that Gaussian measures are equivalent to the
Lebesgue measure, so both E

HPm
H pAq and Πm

j“1E
HP 1

HpAq are bounded away from zero.
Suppose that for Q P Q2 a maximizer of G2 it holds that

ż

A

φmpwq
ż

φmpxqQpx,wqdPm
0 pxqdPm

0 pwq

ă Ḡ

ż

A

φmpwq
ż

Πm
j“1φ1

`

xj
˘

Qpx,wqdPm
0 pxqdPm

0 pwq.(S.51)

Since the marginal w ÞÑQpx,wq is in Q for almost every x P tw ÞÑQpx,wq ı 0u,

Ḡ2

ż

Πm
j“1φ1

`

wj
˘

Πm
j“1φ1

`

xj
˘

Qpx,wqpdPm
0 ˆ Pm

0 qpx,wq

ě Ḡ

ż

Πm
j“1φ1

`

xj
˘

ż

φmpwqQpx,wqdPm
0 pwqdPm

0 pxq.

Likewise, x ÞÑQpx,wq is in Q for almost every u PAc X tx ÞÑQpx,wq ı 0u, so

Ḡ

ż

Πm
j“1φ1

`

xj
˘

ż

Ac

φmpwqQpx,wqdPm
0 pwqdPm

0 pxq

ě
ż

Ac

φmpwq
ż

φmpxqQpx,wqdPm
0 pxqdPm

0 pwq.

Together with (S.51) and the second to last display, we obtain that

Ḡ2

ż

Πm
j“1φ1

`

wj
˘

Πm
j“1φ1

`

xj
˘

Qpx,wqpdPm
0 ˆPm

0 qpx,wq

ą
ż ż

φm pxqφmpwqQpx,wqdPm
0 pwqdPm

0 pxq,

which contradicts with Q maximizing G2.
Step 5. Let q P Q be a maximizer of G over Q, where q is normalized such that

ş

qdPm
0 “

1. Define q2 as

q2pxq :“
ż

q

ˆ

x´w?
2

˙

q

ˆ

x`w?
2

˙

dPm
0 puq.
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The map x ÞÑ q
´

x´w?
2

¯

q
´

x`w?
2

¯

:“ Qpx,wq is in Q for almost all w s.t. Qpx,wq ı 0 and

as a consequence of the previous step, it is a maximizer of G for such w. Hence, q2pxq is a
maximizer of G:

ż

φmpxqq2pxqdPm
0 pxq “

ż ż

φmpxqq
ˆ

x´w?
2

˙

q

ˆ

x`w?
2

˙

dPm
0 pxqdPm

0 pwq

“ Ḡ

ż

Πm
j“1φ1

`

xj
˘

q2pxqdPm
0 pxq.

Let h P L1pRmk, pm0 q. Using again that pm0

´

w1´w2?
2

¯

pm0

´

w1`w2?
2

¯

“ pm0 pw1qpm0 pw2q and ap-

plying a change of variable w “
?
2w´ x, we get

ż

hpxqq2pxqpm0 pxqdx“
ż ż

hpxqq
ˆ

x´w?
2

˙

q

ˆ

x`w?
2

˙

pm0

ˆ

x´w?
2

˙

pm0

ˆ

x`w?
2

˙

dxdw

“
ż ż

hpxqq
´?

2x´w
¯

q pwq pm0
´?

2x´w
¯

pm0 pwq dx
?
2dw

“
ż

hpxq
?
2pqpm0 q ˚ pqpm0 qp

?
2xqdx,

where f ˚ g denotes convolution. Therefore, qpm0 being a probability density with mean 0

and covariance Σ implies that q2pm0 is too. So, q2 P Q and maximizes G.

Step 6. Consider now q4 P Q defined by q4pxq :“
ş

q2

´

x´w?
2

¯

q2

´

x`w?
2

¯

dPm
0 pwq. Since

q2 P Q is a maximizer, the above steps imply that Gpq4q “ Ḡ and by a similar computation
as above,

q4pxqpm0 pxq “
?
4

4
˚ pqpm0 qp

?
4xq,

where
4
˚r denotes r ˚ r ˚ r ˚ r. Repeating the above steps, we obtain a maximizer q2N P Q of

G for N P N which satisfies

r2N pxq :“ q2N pxqpm0 pxq “
ż

q2N´1

ˆ

x´w?
2

˙

q2N´1

ˆ

x`w?
2

˙

pm0 pxqpm0 pwqdxdw

“
?
2

ż

q2N´1

´?
2x´w

¯

pm0

´?
2x´w

¯

q2N´1 pwqdPm
0 pwq

“
?
2 pq2N´1pm0 q ˚ pq2N´1pm0 q p

?
2xq.

We conclude that

r2N pxq “ 2N{2 2N

˚ pqpm0 qp2N{2xq

and
ş

φmpxqr2N pxqdx
ş

Πm
j“1φ1pxjqr2N pxqdx “Gpq2N q “ Ḡ

for all N P N. Let r “ qpm0 . The characteristic function of r2N equals, for s P R
mk,

Fr2N psq :“
ż

e´isJxr2N pxqdx“
ż

e
´i sJ

2N{2 x
2N

˚ r pxqdx“
´

ż

e
´i sJ

2N{2 x rpxqdx
¯2N

“
´

ż

´

1 ´ i
s

2N{2x´ psJxq2
2N`1

`O
´psJxq3
23N{2

¯¯

rpxqdx
¯2N

.
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Since r has mean 0, covariance Σ and bounded third moment (by the boundedness of q and
pm0 dλ possessing a third moment), Fr2N psq Ñ e´ 1

2
sJΣs. Consequently, r2Ndλ converges

weakly to a Gaussian distribution with mean 0 and covariance Σ. In particular,
ş

φr2NdλÑ
ş

φdNp0,Σq for all φ PC8pRmkq, so

Ḡ“ lim
NÑ8

ş

φmpxq r2N pxqdx
ş

Πm
j“1φ1pxjq r2N pxqdx “

ş

φmpxqdNp0,Σqpxq
ş

Πm
j“1φ1pxjqdNp0,Σqpxq ,

which finishes the proof.

G. Definitions and notations for wavelets. In this section we briefly introduce wavelets
and collect some properties used in the article. For a more detailed and elaborate introduction
of wavelets we refer to [23, 20].

In our work we consider the Cohen, Daubechies and Vial construction of compactly sup-
ported, orthonormal, N -regular wavelet basis of L2r0,1s, see for instance [17]. First for any
N P N one can follow Daubechies’ construction of the father φp.q and mother ψp.q wavelets
with N vanishing moments and bounded support on r0,2N ´ 1s and r´N ` 1,N s, respec-
tively, see for instance [18]. The basis functions are then obtained as

 

φj0m, ψjk : m P t0, ...,2j0 ´ 1u, j ą j0, k P t0, ...,2j ´ 1u
(

,

with ψjkpxq “ 2j{2ψp2jx´ kq, for k P rN ´ 1,2j ´N s, and φj0kpxq “ 2j0φp2j0x´mq, for
m P r0,2j0 ´ 2N s, while for other values of k and m, the basis functions are specially con-
structed, to form a basis with the required smoothness property. For notational convenience
we take j0 “ 0 and denote the father wavelet by ψ00. Then the function f P L2r0,1s can be
represented in the form

f “
8
ÿ

j“j0

2j´1
ÿ

k“0

fjkψjk,

with fjk “ xf,ψjky. Note that in view of the orthonormality of the wavelet basis the L2-norm
of the function f is equal to

}f}22 “
8
ÿ

j“j0

2j´1
ÿ

k“0

f2jk.

Next we give an equivalent definition of Sobolev spaces using wavelets. Let us define the
norm for s P p0,Nq as

}f}2Hs “
ÿ

jěj0

22js
2j´1
ÿ

k“0

f2jk.

Then the Sobolev space Hspr0,1sq and Sobolev ball Hs,Rpr0,1sq of radiusRą 0 are defined
as

Hs “ tf P L2r0,1s : }f}Hs ă 8u, and Hs,Rpr0,1sq “ tf PL2r0,1s : }f}Hs ăRu,
respectively. The above definition of the Sobolev space and norm is equivalent to the classical
one based on the weak derivatives of the function.
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