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Abstract

Hierarchical nonparametric processes are popular tools for defining priors on collections of
probability distributions, which induce dependence across multiple samples. In survival analy-
sis problems one is typically interested in modeling the hazard rates, rather than the probability
distributions themselves, and the currently available methodologies are not applicable. Here
we fill this gap by introducing a novel, and analytically tractable, class of multivariate mixtures
whose distribution acts as a prior for the vector of sample–specific baseline hazard rates. The
dependence is induced through a hierarchical specification for the mixing random measures
that ultimately corresponds to a composition of random discrete combinatorial structures.
Our theoretical results allow to develop a full Bayesian analysis for this class of models, which
can also account for right–censored survival data and covariates, and we also show posterior
consistency. In particular, we emphasize that the posterior characterization we achieve is the
key for devising both marginal and conditional algorithms for evaluating Bayesian inferences
of interest. The effectiveness of our proposal is illustrated through some synthetic and real
data examples.

Keywords: Bayesian Nonparametrics, completely random measures, generalized gamma pro-
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1 Introduction

Hierarchical processes are hugely popular Bayesian nonparametric models, which have seen success-

ful applications in linguistics, information retrieval, topic modeling and genomics, among others.

They are ideally suited to model relationships across multiple samples, which may share distinct

observations’ values (or latent features, if used in a mixture setup). For instance, a topic might be

shared by different documents of a corpus or a specific sub-sequence of a cDNA sequence might be

recorded at different tissues of an organism. The prototype of this class of models is the hierarchical

Dirichlet process (HDP) introduced in [42], which can be seen as an infinite–dimensional extension

of the latent Dirichlet allocation model in [4]. Besides being a clever construction, the availability

of suitable algorithms allow to perform Bayesian inference. The general structure of hierarchical
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processes amounts to

(p̃1, . . . , p̃d) | p̃0
iid∼ L̃0

p̃0 ∼ L0

(1)

where L̃0 is the probability distribution of each random probability measure p̃i such that E[p̃i | p̃0] =∫
p L̃0(dp) = p̃0, and L0 is such that E[p̃0] =

∫
pL0(dp) = P0, for some fixed non–atomic probabil-

ity measure P0. The vector of random probability measures in (1) defines a prior for the probability

distributions of d partially exchangeable samples with dependence across samples being induced by

p̃0. Since p̃0 and (p̃1, . . . , p̃d) are taken to be discrete random probability measures, distinct values

are shared within and across the d samples. Clearly, in the extreme case of p̃0 degenerating on

P0, the p̃i’s are unconditionally independent corresponding to independence across samples with

no shared values. See [42], [43] and, for a recent study of its distributional properties, [6].

Though currently available hierarchical processes are effective in modeling probability measures,

in survival analysis one needs a flexible tool that is able to model directly the hazard rates. Here

we successfully address the issue and introduce the natural counterpart, for hazard rate functions,

of hierarchical random probability measures. This corresponds to a class of dependent hazard

models defined as mixtures with mixing measures displaying a hierarchical dependence structure.

Such a prior is ideally suited to model hazard rate functions associated to different, though related,

populations in a similar fashion as hierarchical processes do for related probability distributions.

Moreover, both censored observations and covariates are easily incorporated. More specifically,

our proposal assumes a prior for the hazard rate functions of each individual sample identified by

the distribution of the random mixture

h̃`(t) =

∫
Y

k(t; y) µ̃`(dy) ` = 1, . . . , d (2)

where k( · ; · ) is a suitable kernel and µ̃` a random measure. Note that an extension of such a

proposal that accommodates also for subject–specific covariates can be achieved by resorting, e.g.,

to a semiparametric representation through a multiplicative term as in Cox proportional hazards

models. Dependence among the hazard rates is then created at the level of the random measures

through a hierarchical structure

(µ̃1 . . . µ̃d) | µ̃0
iid∼ G̃0

µ̃0 ∼ G0

(3)

where G̃0 is the distribution of each random measure µ̃` and depends on µ̃0, which in turn is

distributed according to G0. An important feature of the proposed construction is that it allows

for nonproportional hazard rates across samples. In the sequel µ̃0 and µ̃`|µ̃0, for ` = 1, . . . , d,

will be assumed to be completely random measures (CRMs), which play a key role in Bayesian

Nonparametrics as effectively described in [30]. This will allow, in the following sections, to derive

some key distributional properties of (µ̃0, µ̃1, . . . , µ̃d), both a priori and a posteriori. Based on

the latter, and conditional on a suitable latent structure, closed form expressions for posterior

estimates of both the hazard rates and the survival functions are obtained as well as a sampling

scheme for performing full Bayesian inference.

Survival analysis has been one of the driving application areas for Bayesian Nonparametrics

since its early days and among the many seminal papers in the simple exchangeable setup we

mention [14, 19, 20, 23, 16, 31]. The latter two papers are of particular importance to the present
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contribution since they introduced the mixture hazard structure (2) with a gamma process as

mixing measure. Still in the exchangeable case, they were extended to general mixing CRMs in

[26] and further investigated in e.g. [24, 36, 37, 39, 10, 38, 13]. Beyond the exchangeable case,

a popular modeling strategy, which yields the desired heterogeneity across samples, relies on the

construction of dependent and sample–specific random measures that, suitably transformed, allow

to model partially exchangeable data. An example is the mixture transformation in (10), which is

the focus of this contribution. This technique has been widely used for creating dependent random

probability measures in the literature and examples are available in, e.g., [12, 11, 17, 35, 29, 34, 5].

For a review see [33]. The only contribution aiming to model directly dependent hazard rates, is

[28], which however has the drawback of incurring into combinatorial, and hence computational,

issues for d > 2 samples. In contrast, the methodology proposed here leads to simple and tractable

expressions for d > 2 groups of observations.

The outline of the paper is as follows. In Section 2 the basic building blocks of our model,

namely vectors of hierarchical CRMs, are defined. Hierarchically dependent random hazard rates

are introduced and investigated in Section 3. Posterior consistency, in a partially exchangeable

framework, is established in Section 4, while the posterior distribution is identified in Section 5. The

theoretical findings form the basis for devising suitable marginal and conditional sampling schemes,

which are described in Section 6. Finally a simulation study is considered in Section 7. Proofs,

other relevant technical details, extensions accounting for right-censored data and covariates as

well as additional illustrations are deferred to the Supplementary Material.

2 Hierarchical random measures

The key ingredient for our dependent hazard rates model is a vector of random measures (µ̃1, . . . , µ̃d)

with dependence induced by a hierarchical structure as in (3). First we introduce the notion of

completely random measure (CRM). A CRM is a random element µ̃, defined on some probability

space (Ω,F ,P) and taking values in the space MY of boundedly finite measures on some Polish

space Y, such that µ̃(A1), . . . , µ̃(An) are mutually independent random variables for any choice

of bounded and pairwise disjoint Borel sets A1, . . . , An, and any n ≥ 1. In the following we con-

sider CRMs without fixed jumps and no deterministic component. They are characterized by the

respective Laplace functional transform at any measurable function g : Y → R+

E
[
e−

∫
Y
g(y)µ̃(dy)

]
= exp

{
−
∫
R+×Y

(1− e−sg(y))ν(ds,dy)

}
, (4)

where ν, known as the Lévy intensity measure, uniquely identifies µ̃. Hence, the notation µ̃ ∼
CRM(ν). For completeness, we remind that µ̃ may be seen as a functional of a Poisson random

measure Ñ =
∑
i≥1 δ(Ji,Yi) on R+ ×Y characterized by a mean intensity measure ν such that for

any Borel set A in R+ ×Y with ν(A) < ∞ one has Ñ(A) ∼ Po(ν(A)). The CRM µ̃ can be then

represented as
∑
i≥1 JiδYi , hence its realizations are a.s. discrete with both jumps and locations

random. See [27] for an exhaustive account on CRMs.

In analogy to the hierarchical construction for random probability measures we define a hier-

archical structure for CRMs as

µ̃` | µ̃0
ind∼ CRM(ν̃`) ` = 1, . . . , d

µ̃0 ∼ CRM(ν0).
(5)
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with Lévy intensities of the form

ν̃`(ds,dy) = ρ`(s) ds µ̃0(dy), ν0(ds,dy) = ρ0(s) ds c0P0(dy), (6)

where P0 is a diffuse probability measure on Y, while ρ` (for ` = 1, . . . , d) and ρ0 are non–negative

measurable functions such that
∫∞

0
min{1, s} ρ`(s) ds <∞ and

∫∞
0

min{1, s} ρ0(s) ds <∞.

Remark 1. The specification in (5) entails that the µ̃`’s may have different distributions, which

yields greater flexibility in applications. Nonetheless, for the sake of simplicity we henceforth stick

to the case where ρ` = ρ for any ` = 1, . . . , d. The results we obtain can be adapted to recover the

case where the ρ`’s differ and we defer this to future work.

The fundamental tool to work with a hierarchical CRM vector (µ̃1, · · · , µ̃d) is represented by

its Laplace functional transform, which has a simple structure. For ` = 1, . . . , d, set µ̃`(g`) =∫
Y
f`(y)µ̃`(dy) with g` a non–negative real valued function. Moreover, we let ψ(0)(u) :=

∫∞
0

(1 −
e−su)ρ0(s)ds and ψ(`)(u) :=

∫∞
0

(1 − e−su)ρ`(s)ds, as ` = 1, . . . , d. By exploiting conditional

independence and (4), the Laplace functional transform is given by

E[e−µ̃1(g1)−···−µ̃d(gd)] = exp
{
− c0

∫
Y

ψ(0)
[ d∑
`=1

ψ(`)(g`(y))
]
P0(dy)

}
(7)

Now we introduce two special cases to be considered throughout and which represent natural

choices for hierarchical CRM constructions.

Example 1. (Hierarchical gamma CRM model). If both µ̃`’s and µ̃0 are gamma CRMs,

which corresponds to ρ0(s) = ρ`(s) = e−s s−1 with c0 = 1, we obtain the hierarchical gamma

CRM model, whose Laplace functional reduces to

E[e−µ̃1(g1)− ··· −µ̃d(gd)] = exp
{
−
∫
Y

log
(

1 +

d∑
`=1

log(1 + g`(y)
)
P0(dy)

}
.

Example 2. (Hierarchical generalized gamma CRM model). Let us assume that both

µ̃`’s and µ̃0 are generalized gamma CRMs, i.e. ρ0(s) = e−s s−1−σ0/Γ(1 − σ0) and ρ`(s) =

e−s s−1−σ/Γ(1 − σ) for some σ and σ0 in (0, 1), we obtain the hierarchical generalized gamma

CRM model with Laplace functional

E[e−µ̃1(g1)−···−µ̃d(gd)]

= exp
{
− c0
σ0

∫
Y

[(∑
`=1

(g`(y) + 1)σ − 1

σ
+ 1
)σ0

− 1
]
P0(dy)

}
.

Remark 2. The construction of hierarchical CRMs in (5) is closely related to the popular Bochner

subordination in the theory of Lévy processes. Indeed, with Y = [0, 1], define t 7→ τt = µ̃0((0, t])

and t 7→ ξ
(`)
t = µ̃`((0, t]). Moreover, let P0(dt) = dt. In this case, {τt : 0 ≤ t ≤ 1} is known

as a subordinator and the time–changed process {ξ(`)
τt : 0 ≤ t ≤ 1} corresponds to the so–called

Bochner’s subordination. See, e.g., [2] and [41]. Hence, our proposal can be seen as an extension of

such a construction to more abstract spaces. Subordination of Lévy processes has been widely used

in Finance and the first contributions in this direction can be found in [32] and [7]. Very much in the

spirit of the present paper, subordination has been applied to a vector of independent Brownian

motions (B
(1)
τt , . . . , B

(d)
τt ) in order to define dependent Lévy processes for financial applications.

Examples can be found in the monograph by Cont et al. [8].
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3 Hierarchical mixture hazard rates

If an exchangeable sequence of lifetimes, or time-to-event data, is from an abosolutely continuous

distribution, with hazard rate h, the pioneering papers by [16] and [31] define a prior for h in

terms of a mixture model. Recast in a more general setting, as done in [26], their prior equals the

distribution of the random hazard

t 7→ h̃(t) :=

∫
Y

k(t; y)µ̃(dy) (8)

where µ̃ is a mixing CRM and k : R+ × Y → R+ is a suitable transition kernel. Dykstra and

Laud [16] considered the case of h̃ being an extended gamma process, which corresponds to µ̃ being

a gamma CRM and k(t; y) = 11(0,t](y)β(y) for some positive and right–continuous function β. Lo

and Weng [31] investigated the weighted gamma process, which arises with µ̃ still a gamma CRM

and k a general kernel. The posterior characterization for the general case was first derived in [26].

Assuming the lifetimes are exchangeable is clearly restrictive for practical purposes. A typical

example are data collected under d different experimental conditions that identify d samples or

groups such as patients suffering from the same illness but undergoing different treatments resulting

in homogeneity within the groups of patients undergoing the same treatment and heterogeneity

across groups. It is worth noting that the d samples may be identified also by a vector of categorical

covariates, as long as they take on finitely many values. For example, the real data illustration

in the Supplementary Material (Section A.7) discusses the case where the patients’ groups are

determined by the hospital where they are treated and by the type of tumor they suffer from. In

these cases, partial exchangeability [9] is the appropriate notion of dependence, since it implies

that observations are exchangeable within the same group and conditionally independent across

the different groups. More precisely, for an array {(X`,i)i≥1 : ` = 1, . . . , d} of X–valued random

elements we assume that for any `1 6= · · · 6= `k in {1, . . . , d}, (i1, . . . , ik) ∈ Nk and k ≥ 1

(X`1,i1 , . . . , X`k,ik) | (p̃1, . . . , p̃d)
iid∼ p̃`1 × · · · × p̃`k

(p̃1, . . . , p̃d) ∼ Q.
(9)

with Q is a distribution on PdX dictating the dependence across the different groups. The literature

on dependent nonparametric priors essentially boils down to the definition of probability mea-

sures Q inducing natural dependence structures across groups while still preserving mathematical

tractability. And, hierarchical processes represent one of the most popular instances.

In the survival context, i.e. X = R+, it is often more convenient to devise inferential procedures

that are suited for models based on hazard rates and this motivates our approach; in addition our

proposal allows for a straightforward inclusion of possible censoring mechanisms and individuals’

covariates as discussed in the Supplementary Material (see Section A.7). The prior specification we

suggest resorts to a vector of dependent hazard rates h̃1, . . . , h̃d based on hierarchically dependent

CRMs according to the following

Definition 1. A partially exchangeable sequence {(X`,i)i≥1 : ` = 1, . . . , d} is directed by a

hierarchically dependent mixture hazard model if it is characterized by (9) with

p̃`((−∞, t]) = 1(0,+∞)(t) exp
(
−
∫ t

0

h̃`(s) ds
)

(` = 1, . . . , d) (10)

where the hazard rates h̃` admit the mixture representation in (2) and the mixing hierarchical

CRMs are defined as in (3).
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Note that our model allows for non–proportional hazards across samples. Moreover, the survival

function associated to the hazard rate (10) is

S̃`(t) = exp
(
−
∫
Y

K
(`)
t (y)µ̃`(dy)

)
, ` = 1, · · · , d (11)

where K
(`)
t (y) =

∫ t
0
k(s; y) ds for each ` = 1, · · · , d. Two important properties of the dependent

survival functions are the determination of sufficient conditions guaranteeing they are proper and

of their pairwise correlation structure. These are provided in the following result.

Theorem 1. Consider a hierarchical mixture hazard model as in Definition 1.

(i) If
∫∞

0
ρ`(s)ds = +∞, for ` = 0, . . . , d, and limt→∞

∫ t
0
k(s; y)ds = ∞, P0–a.s., then with

probability 1

lim
t→∞

S̃`(t) = 0 (` = 1, . . . , d). (12)

(ii) The covariance between any two survival functions `1 6= `2, time points t1, t2 ∈ R+ equals

Cov(S̃`1(t1), S̃`2(t2))

= exp
(
− c0

∫
Y

ψ(0)
( 2∑
i=1

ψ(`i)(K
(`i)
ti (y))

)
P0(dy)

)
− exp

(
− c0

2∑
i=1

∫
Y

ψ(0)(ψ(`i)(K
(`i)
ti (y)) P0(dy)

)
≥ 0.

(13)

As for (ii), the non–negativity of the covariance between random probabilities p̃i(A) and p̃j(A),

for any i 6= j, is a common feature of a number of dependent processes’ proposals in the literature.

In particular, there are several instances where Cov(p̃i(A), p̃j(A)) does not even depend on the

specific set A and is then often interpreted as a measure of overall dependence between p̃i and p̃j .

Theorem 1 can be nicely illustrated in two special cases that correspond to the hierarchical

CRMs already considered in Section 2. Note further that we shall consider the µ̃`’s conditionally

identically distributed, i.e. ρ` = ρ for any `, and hence it is not surprising that in both examples

Cov(S̃`1(t1), S̃`2(t1)) does not depend on the specific `1 6= `2.

Example 3. (Hierarchical gamma mixture hazard model). Consider the Dykstra–Laud

kernel k(t; y) := 11(0,t](y)α(y) and, for simplicity, take α(y) ≡ α > 0. Combining this kernel with

a hierarchical vector of gamma CRMs on Y = R+ leads to a hierarchical gamma mixture hazard

model. The associated survival functions are proper, given they clearly satisfy the conditions of

(i) in Theorem 1. As for the pairwise correlation structure, by (ii) in Theorem 1 and calculations

detailed in the Supplementary Material, one obtains for any `1 6= `2 and t1 ≤ t2 in R+

Cov(S̃`1(t1), S̃`2(t2)) =

exp
(
− c0

∫ t2

t1

log(1 + log(1 + α (t2 − y))) P0(dy)
)

×

{
exp

(
− c0

∫ t1

0

log
(

1 +

2∑
i=1

log
(

1 + α (ti − y)
))

P0(dy)
)

− exp
(
−

2∑
i=1

c0

∫ t1

0

log(1 + log(1 + α (ti − y)))P0(dy)
)}

.

(14)
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Example 4. (Hierarchical generalized gamma mixture hazard model). If the Dykstra

and Laud kernel in Example 3 is combined with a hierarchical vector of generalized gamma CRMs

on Y = R+, we obtain a hierarchical generalized gamma mixture hazard model. The conditions

of (i) in Theorem 1 are met also in this case leading to proper survival functions. The pairwise

correlation between survival functions, for any `1 6= `2 and t1 ≤ t2 in R+ is

Cov(S̃`1(t1), S̃`2(t2)) =

exp
(
− c0
σ0

∫ t2

t1

[(
1 + [(1 +A2(y))σ − 1]/σ

)σ0

− 1
]
P0(dy)

)
×

{
exp

(
− c0
σ0

∫ t1

0

[( 2∑
i=1

[(1 +Ai(y))σ − 1]/σ + 1
)σ0

− 1
]
P0(dy)

)
− exp

(
− c0
σ0

2∑
i=1

∫ t1

0

[(
1 + [(1 +Ai(y))σ − 1]/σ

)σ0

− 1
]
P0(dy)

)}
.

(15)

where Ai(y) = α(ti−y)1(0,ti)(y). This is again a consequence of (ii) in Theorem 1 and calculations

detailed in the Supplementary Material.

4 Posterior consistency

In this section we investigate frequentist posterior consistency of the proposed class of priors. Most

of the existing literature on the topic deals with sequences of exchangeable data and other specific

forms of dependence (see [21] for an account). But very few results are available for partially

exchangeable observations (see, e.g., [1]) and general theorems to study posterior consistency in a

multiple samples framework, as the one we are studying here, are still missing. Here we provide

a strategy to face consistency in a partially exchangeable setting and, then, adapt it to show con-

sistency of hierarchical generalized gamma CRMs. Consider the partially exchangeable framework

(9) for R+–valued random elements X`,i’s and note that the hierarchically dependent mixture

hazard model in Definition 1 implies that their distribution is absolutely continuous with respect

to the Lebesgue measure. If (f̃1, . . . , f̃d) is the vector of random dependent densities associated

with (p̃1, . . . , p̃d), one has

f̃`(t) = h̃`(t)S̃`(t) = h̃`(t) e−H̃`(t) (16)

where t 7→ H̃`(t) =
∫ t

0
h̃`(s)ds is the cumulative hazard of the `-th sample, with ` = 1, . . . , d. Let us

denote by FR the space of all probability density functions, with respect to the Lebesgue measure on

R. We shall now assume the data from each sequence (X`,i)i≥1, with ` = 1, . . . , d, are independently

generated from a true and fixed density f
(0)
` and we, then, check whether the posterior distribution

of the vector (f̃1, . . . , f̃d) accumulates in a neighborhood of f (0) := (f
(0)
1 , . . . , f

(0)
d ) in a suitable

topology on the product space FdR. In the sequel we deal with weak consistency, hence we endow

FR with the weak topology and for any f ∈ FR we denote by A(f) a weak neighborhood of f .

Moreover, the space FdR is naturally endowed with the product topology.

In order to state the main results, we need to introduce some additional notation. First, we

let P
(0)
` denote the probability distribution associated with f

(0)
` and P

(0),∞
` be the infinite product

measure. Similarly, P (0),∞ := P
(0),∞
1 × . . .×P (0),∞

d . If Π is the prior distribution on FdR induced by

Q, we let Πn( · |X1, . . . ,Xd) be the corresponding posterior and n = (n1, . . . , nd). Hence, the goal

7



is to identify sufficient conditions on the intensities ν` of the underlying CRMs (` = 0, 1, . . . , d)

such that, as n1, . . . , nd → +∞, one has

Πn(A(f (0))|X1, . . . ,Xd)→ 1 P (0),∞ − a.s. (17)

for any neighborhood A(f0) of f (0) = (f
(0)
1 , . . . , f

(0)
d ) ∈ FdR in the weak topology. If (17) holds

true, we say that Π is consistent at f (0). One can, then, show the following

Theorem 2. Let (f
(0)
1 , . . . , f

(0)
d ) be an element of FdR, if for any weak neighborhood A`(f

(0)
` ) of

f
(0)
`

Π`,n`

(
A`(f

(0)
` ) |X`

)
:= P

[
f̃` ∈ A`(f (0)

` ) |X`

]
→ 1 P

(0),∞
` –a.s (18)

as n` →∞ for any ` = 1, . . . , d, then (17) holds true and Π is weakly consistent at (f
(0)
1 , . . . , f

(0)
d ).

It is worth remarking two important points related to this result. Firstly, from Theorem 2 it

is apparent that showing (17) boils down to proving consistency for each f̃` given the `–th sample

X` and, hence, allows us to address the problem in an exchangeable setting. Secondly, Theorem 2

may be rephrased for vectors of random probability measures (p̃1, . . . , p̃d) and its validity is not

limited just to random dependent densities.

In view of Theorem 2, in order to show consistency with partially exchangeable arrays, we need

to identify conditions for which (18) holds true, for any ` = 1, . . . , d. Henceforth we assume that

the support of ρ` is the whole positive real line R+ and that∫
R+

ρ`(s)ds = +∞

for each ` = 0, 1, . . . , d. Moreover, P0 is such that its weak support is the whole space Y. We

tackle the problem by relying on [10, Theorem 2], which is proved for mixture hazards, and on

a result on the support of hierarchical CRMs discussed in Section A.2.3 of the Supplementary

Material. To fix the notation, h
(0)
` is the true hazard rate for the `–sample, namely f

(0)
` (t) =

h
(0)
` (t) exp{−

∫ t
0
h

(0)
` (s)ds}. Let us now recall the following:

Theorem 3 ([10]). Let f̃` be a random density function induced by a random hazard mixture model

and denote its distribution by Π`. If the following conditions hold

(i) f
(0)
` > 0 on (0,∞) and

∫
R+ max{EH̃`(t), t}f (0)

` (t)dt < +∞,

(ii) either there exists r > 0 such that lim inft→0 h̃`(t)/t
r =∞, a.s., or h

(0)
` (0) > 0,

a sufficient condition for weak consistency of Π` at f
(0)
` is

Π`

({
h : sup

t≤T
|h(t)− h(0)

` (t)| < δ
})

> 0 ∀ T, δ ∈ (0,∞). (19)

Theorem 3 provides us with a sufficient condition to prove weak consistency of random densities

f̃`. In order to verify condition (ii), one should study the small time behavior of h̃` otherwise one

has to assume that the true hazard rate is such that h
(0)
` (0) > 0 as in [15].

We now focus on the case Y = R+, and identify easier sufficient conditions ensuring the validity

of Theorem 3(ii). See, e.g., Proposition 3 in [10]. We shall do this with hierarchies of the generalized

gamma random measure

ρ0(s) =
1

Γ(1− σ0)

e−s

s1+σ0
and ρ`(s) ≡ ρ(s) =

1

Γ(1− σ)

e−s

s1+σ
(20)
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as ` = 1, . . . , d, being σ, σ0 ∈ (0, 1). This prior specification will be adopted in the numerical

illustrations in Section 7.

Proposition 1. Let k( · ; · ) be the Dykstra and Laud kernel and let µ̃` be the hierarchical generalized

gamma process as in (20), with σ, σ0 ∈ (0, 1) and P0 such that P0((0, t))/tr
′ → C ∈ (0,∞) as t→ 0

for some r′ > 0. Then the corresponding mixture hazard h̃` satisfies condition (ii) of Theorem 3.

We can state a theorem concerning marginal consistency of a hierarchical mixture hazard based

on generalized gamma processes.

Theorem 4. Let h̃` be a hierarchical mixture hazard as in Proposition 1. Then Π` is consistent

at any f
(0)
` ∈ F1, where F1 is the set of densities satisfying

∫
R+ E[H̃(t)]f

(0)
` (t)dt <∞, h

(0)
` (0) = 0

and h
(0)
` (t) is strictly positive and non-decreasing for any t > 0.

Combining Theorems 2 and 4 we obtain a consistency theorem for Π. With Fd1 = ×d1F1, one

easily deduces the following

Corollary 1. Let k( · ; · ) be the Dykstra and Laud kernel and (µ̃1, . . . , µ̃d) a vector of hierarchical

generalized gamma processes that meets the conditions in Proposition 1. Then Π is consistent at

any (f
(0)
1 , . . . , f

(0)
d ) ∈ Fd1.

Along similar lines one may prove consistency for other kernels k, as the ones considered by De

Blasi et al. [10].

Remark 3. If σ = σ0 = 0, we obtain the gamma process, but condition ii) is not satisfied in such

a case and it should be replaced with a condition on the true hazard rate (h
(0)
` (0) > 0). Indeed,

Drǎghici and Ramamoorthi [15] show the consistency under this assumption and they consider a

random hazard rate of the following type

h̃`(t) = h̃`(0) + µ̃`(0, t)

where h̃`(0) is a random element with support on R+, to consistently estimate the value of the

hazard rate in t = 0.

5 Random partitions and Bayesian inference

The primary goal we wish to pursue here is the determination of a conditional probability distri-

bution of the vector (µ̃1, · · · , µ̃d) in (5), given data from a partially exchangeable array and given

a suitable collection of latent variables. Indeed, it will be assumed that the data are from an array

{(X`,j)j≥1 : ` = 1, . . . , d} as in (9) with

p̃`((t,+∞)) = exp
(
−
∫
Y

∫ t

0

k(s, y) ds µ̃`(dy)
)

(21)

for any ` = 1, . . . , d. The hierarchical specification of µ̃ = (µ̃1, . . . , µ̃d), combined with the almost

sure discreteness of the base measure µ̃0, poses some serious analytical challenges that need to be

addressed if one wants to determine Bayesian inferences for survival data modeled through the

random probability measure in (21). Hence, from a technical standpoint achieving a posterior

characterization is much more difficult than analogous results for exchangeable (see [26]) and for

alternative partially exchangeable priors (see, e.g., [28]). Here we successfully tackle this issue

9



and show that the results we get are not only of theoretical interest per se, but they are also

fundamental for devising efficient sampling schemes for an approximate evaluation of Bayesian

inferences in this framework. The key is the introduction of two collections of latent variables that

describe a sampling procedure somehow reminiscent of the Chinese restaurant franchise scheme

introduced in [42] and extended to a more general framework in [6].

5.1 Latent variables and their partition structure

For simplicity in the sequel we will assume that all data are exact. The possible presence of

censored observations, with censoring times being independent from all other random components

of the model, can be easily accommodated for and this will be explicitly seen in Section 7 through

an illustrative example. In order to keep the notation concise, we set µ̃ = (µ̃`)` and X = (X`)`.

From [25] it is seen that the likelihood function associated to a multiplicative intensity model as

the one we are considering here is

L (µ̃;X) = e−
∑d
`=1

∫
Y
K`(y)µ̃`(dy)

d∏
`=1

n∏̀
i=1

∫
Y

k(X`,i; y) µ̃`(dy) (22)

where

K`(y) :=

n∑̀
i=1

K
(`)
X`,i

(y) =

n∑̀
i=1

∫ X`,i

0

k(s, y) ds (23)

for ` = 1, . . . , d. A considerable simplification of (22) occurs if one removes the integrals by

introducing a suitable sequence of latent variables Y = (Y`)`. This leads to

L (µ̃;X,Y ) = e−
∑d
`=1

∫
Y
K`(y) µ̃`(dy)

d∏
`=1

n∏̀
i=1

k(X`,i;Y`,i) µ̃`(dY`,i). (24)

It is worth noting that Y = (Y`)` forms an array of partially exchangeable random elements and

(24) suggests they are generated by a discrete random probability measure. Hence, with positive

probability there will be tied values in Y both within each sample Y` and across samples Y`1 and

Y`2 , for `1 6= `2. In other terms, Y generates a random partition of the integers [N ] = {1, . . . , N},
where N = n1 + · · · + nd. This can be described by ordering the Y`,i’s in such a way that

Y`,i = Y`′,j entails n̄`−1 + i and n̄`′−1 + j are in the same partition set, where n̄` = n1 + · · · + n`
for each ` = 1, . . . , d with the proviso n̄0 = 0. According to this notation, for any partition

C = {C̄1, . . . , C̄k} of [N ], one can further decompose C̄j = C̄1,j ∪ · · · ∪ C̄d,j with C̄`,j = {n̄`−1 + i ∈
C̄j : i = 1, . . . , n`}. In the sequel we denote by ΨN the random partition of [N ] generated by

Y , and by Y ∗ := (Y ∗1 , . . . , Y
∗
k ) the k distinct values associated with such a partition. With this

notation, C̄`,j refers to all elements of the `–th sample that coincide with Y ∗j . It is easy to realize

that the distribution of (X,Y ∗,ΨN ) is equivalent to the distribution of the vector (X,Y ), which

are characterized in the following theorem, where we agree that
∑0
i=1 ai ≡ 0. In order to simplify

the notation, we also set

Q(X,Y ∗) =

d∏
`=1

k∏
j=1

∏
i∈C̄`,j

k(X`,i;Y`,i), τ (`)
q (u) =

∫ ∞
0

sqe−suρ`(s)ds

for any u > 0, q ∈ N and ` = 0, 1, . . . , d. The subsequent expressions (25) and (27) we determine

depend on sums over q and i, and they may appear difficult to evaluate and interpret at a first
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glance. Nonetheless a considerable simplification, and additional intuition on these results, is

achieved if one resorts to a version of the Chinese restaurant franchise metaphor suited to this

particular setting. The franchise is made of d restaurants and the Y`,i variables identify the

specific dish chosen from the menu by customer i at the `–th restaurant. The values Y ∗1 , . . . , Y
∗
k

are the k distinct dishes selected by the N customers at the d restaurants of the franchise and

n`,j = card{i : Y`,i = Y ∗j } is the number of customers being served dish j at the `–th restaurant.

Of course, one may have that {i : Y`,i = Y ∗j } = ∅, in which case n`,j = 0. With reference to

previous notation, the set C`,j := {i : Y`,i = Y ∗j } plays the role of C̄`,j , whose elements are equal

to those of C`,j after subtracting the additive constant n̄`−1. At this stage it is, then, convenient

to introduce latent variables T` := (T`,1, . . . , T`,n`) where, for each ` = 1, . . . , d, T`,j is the label of

the table where the j–th customer of restaurant ` is sitting and with the convention that customers

seating at the same tables are being served the same dish. The T`,i’s are generated by a discrete

random probability measure and hence admit ties, namely {T`,i : i ∈ C`,j} display i`,j ≤ n`,j
distinct values T ∗`,j,1, . . . , T

∗
`,j,i`,j

that induce a partition of [n`,j ] = {1, . . . , n`,j} into i`,j sets

C`,j,t = {i ∈ C`,j : T`,i = T ∗`,j,t} (t = 1, . . . , i`,j)

with q`,j,t = card(C`,j,t) such that
∑i`,j
t=1 q`,j,t = n`,j . We are now ready to prove the main results

of this section, that can be read in terms of the metaphor just outlined.

Theorem 5. The probability distribution of (X,Y ∗) and of ΨN equals

π(X,Y ∗,ΨN )

∝ Q(X,Y ∗)ck0 e−c0
∫
Y
ψ(0)(

∑d
`=1 ψ

(`)(K`(y)))P0(dy)

×
∑
i

∑
q

k∏
j=1

τ
(0)
i•j

( d∑
`=1

ψ(`)(K`(Y
∗
j ))
)
P0(dY ∗j )

×
d∏
`=1

k∏
j=1

1

i`,j !

(
n`,j

q`,j,1, · · · , q`,j,i`,j

) i`,j∏
t=1

τ (`)
q`,j,t

(K`(Y
∗
j ))

(25)

where the sum with respect to q runs over all the vectors of positive integers {q`,j,t} such that∑i`,j
t=1 q`,j,t = n`,j for any ` = 1, . . . , d and j = 1, . . . , k and i = {i`,j} is through the set of all

integers i`,j ∈ {1, · · · , n`,j}, with i•j =
∑d
`=1 i`,j, for any j = 1, . . . , k.

This result is the backbone of theoretical and computational developments in the remainder of

the paper. For example, one can deduce from (25) the following augmented joint distribution

π(X,Y ∗,T ,ΨN )

∝ ck0 Q(X,Y ∗) e−c0
∫
Y
ψ(0)(

∑d
`=1 ψ

(`)(K`(y)))P0(dy)

×
k∏
j=1

τ
(0)
i•j

( d∑
`=1

ψ(`)(K`(Y
∗
j ))
)
P0(dY ∗j )

d∏
`=1

k∏
j=1

i`,j∏
t=1

τ (`)
q`,j,t

(K`(Y
∗
j ))P0(dT ∗`,j,t),

(26)

where i = {i`,j} and q = {q`,j,t} are now fixed. Note that, since the specific table’s label is not

relevant, for simplicity and with no loss of generality we have assumed that each table’s label

still takes values in Y. This formula provides some nice intuition on the Chinese restaurant

franchise metaphor briefly discussed before Theorem 5. Indeed, if we agree that D−(`,i) is the
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vector (X,Y ∗,T , q, i) after the removal of (X`,i, Y`,i, T`,i), one has that the dish chosen by the ith

customer in the `th restaurant and the table where she seats are determined through the following

distribution

P[Y`,i = Y ∗j , T`,i = T ∗`,j,t |D−(`,i)] ∝ k(X`,i;Y
∗
j )

τ
(`)
q`,j,t+1(K`(Y

∗
j ))

τ
(`)
q`,j,t(K`(Y ∗j ))

which corresponds to the customer choosing the jth dish already ordered from the menu and

seating at the already existing tth table, whereas

P[Y`,i = Y ∗j , T`,i 6∈ T−(`,i) |D−(`,i)] ∝ k(X`,i;Y
∗
j )

τ
(0)
i•,j+1(

∑d
`=1 ψ

(`)(Y ∗j ))

τ
(0)
i•,j

(
∑d
`=1 ψ

(`)(Y ∗j ))

is the probability that the customer still chooses the jth dish though decides to sit at a new table

whose label will be drawn from P0. Finally, the customer may choose a new dish and, then, seat

at a new table with probability

P[Y`,i 6∈ Y−(`,i), T`,i 6∈ T−(`,i) |D−(`,i)] ∝ c0
∫
Y

k(X`,i; y) τ
(`)
1 (K`(y)) τ

(0)
1 (

d∑
`=1

ψ(`)(K`(y)))P0(dy).

and the label of both the new dish and the new table are generated from P0. This structure of

the Chinese restaurant franchise will be used in the algorithm that will be used for determining

Bayesian inferences. For details see the Supplementary Material.

Theorem 5 is also relevant for deducing the distribution of the random partition ΨN condition-

ally on the other variables of the model.

Corollary 2. Let C = {C̄1, . . . , C̄k} denote a partition of [N ] into k sets such that C̄j = C̄1,j ∪
· · · ∪ C̄d,j. Moreover, we let card(C̄j) = nj ≥ 1 and card(C̄`,j) = n`,j ≥ 0. If ΨN denotes the

random partition of [N ] induced by Y , then P[ΨN = C |X] is proportional to

ck0
∑
i

∑
q

{ d∏
`=1

k∏
j=1

1

i`,j !

(
n`,j

q`,j,1, · · · , q`,j,i`,j

)}

×
k∏
j=1

∫
Y

{ d∏
`=1

∏
i∈C̄`,j

k(X`,i−n̄`−1
; y)
}
τ

(0)
i•j

( d∑
`=1

ψ(`)(K`(y))
)

×
d∏
`=1

i`,j∏
t=1

τ (`)
q`,j,t

(K`(y)) P0(dy)

(27)

where the sums with respect to q and i are as in Theorem 5.

At this point one may wonder whether there exist CRMs such that

π(Y ∗,T ,ΨN |X) =

∫
π(Y ∗,T ,ΨN |X,µ) P(dµ |X), (28)

the answer is provided by the following result, which is based on Corollary 2.
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Theorem 6. Let m0 ∼ CRM(ν0) and m`,y ∼ CRM(ν`,y) be independent and such that

ν0(ds,dy) = c0 e−
∑d
`=1 ψ

(`)(K`(y)) ρ0(s) ds P0(dy)

ν`,y(ds,dw) = e−K`(y)wρ`(s) ds P0(dw)

Then,

π(Y ∗,T ,ΨN |X,m0,m) ∝
d∏
`=1

k∏
j=1

{ ∏
i∈C`,j

k(X`,i, Y
∗
j )
} i`,j∏
t=1

m0(dY ∗j )
∏

r∈C`,j,t

m`,Y ∗j
(dT ∗`,j,t) (29)

where m denotes the vector containing the m`,Y ∗j
’s.

We have previously defined the random partition ΨN in such a way that there is a one to one

correspondence between the two vectors (Y ∗,ΨN ) and Y . Henceforth, we equivalently write Y

instead of (Y ∗,ΨN ).

5.2 A posterior characterization

The result in Theorem 5, combined with the related augmented probability distribution in (26),

paves the way to the determination of the posterior distribution of µ̃ = (µ̃1, · · · , µ̃d), given the

data and the latent variables. This is described in the next theorem, which shows that a structural

conjugacy property holds true and the vector µ̃ is still hierarchical a posteriori. In order to state

the result, let I1, . . . , Ik be independent non–negative random variables with Ij having density

function

fj(s) ∝ si•je−s
∑d
`=1 ψ

(`)(K`(Y
∗
j )) ρ0(s) ds (30)

and η∗0 ∼ CRM(ν∗0 ) where

ν∗0 (ds,dy) = e−s
∑d
`=1 ψ

(`)(K`(y)) ρ0(s) ds c0 P0(dy). (31)

Finally, set µ̃∗0 = η∗0 +
∑k
j=1 IjδY ∗j and correspondingly

ν̃∗` (ds,dy) = e−sK`(y) ρ`(s) ds µ̃∗0(dy) (32)

for each ` = 1, . . . , d.

Theorem 7. The posterior distribution of µ̃, conditional on (X,Y ,T ), equals the distribution of

the vector of CRMs

(µ̃∗1, · · · , µ̃∗d) +
( k1∑
j=1

i1,j∑
t=1

J1,j,tδY ∗1,j , · · · ,
kd∑
j=1

id,j∑
t=1

Jd,j,tδY ∗d,j

)
(33)

where µ̃∗` | µ̃∗0
ind∼ CRM(ν̃∗` ), for ` = 1, . . . , d, and the jumps J`,j,t are independent and non–negative

random elements with corresponding density functions

f`,j,t(s) ∝ sq`,j,te−sK`(Y
∗
`,j) ρ`(s) ds. (34)

Moreover, the random elements µ̃∗ = (µ̃∗1, · · · , µ̃∗d), η∗0 , (I1, . . . , Ik) and {J`,j,t} are mutually inde-

pendent.
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It is worth stressing that according to Theorem 7, the random measures µ̃∗`+
∑k`
j=1

∑i`,j
t=1 J`,j,t δY ∗`,j

are conditionally independent CRMs, given µ̃∗0. The main differences with respect to the prior (5)

are the presence of the jumps J`,j,t at fixed locations identified by the distinct values Y ∗`,j of the

latent variables Y` and the exponential updating of the conditional Lévy intensity as described in

(32). Moreover, unlike (5) the CRM µ̃∗0 at the top hierarchy does also have jumps at fixed locations

corresponding to the overall distinct latent variables’ values Y ∗1 , . . . , Y
∗
k . Hence the hierarchical

structure is preserved also a posteriori and a property of structural conjugacy holds true. Note

that the posterior characterization given in Theorem 7 shares some interesting features with the

one of [6, Theorem 10]. Indeed, at the CRM level, the posteriors exhibit structural analogies

displaying an updated CRM independent of positive fixed jumps Ij ’s, that are shared across the

groups, and of positive fixed jumps J`,j,t’s, that are specific to group `. Otherwise the posteriors

are very different in distribution, given the different transformation of the CRMs they rely on.

This, somehow surprising and interesting, finding is reminiscent of the structural analogies pointed

out by [30] for the simple exchangeable case.

A posterior characterization, as the one in Theorem 7, is the starting point for evaluating

Bayesian inferences of interest on functionals of (p̃1, . . . , p̃d). For example, one can resort to (33)

for determining a posterior estimate of the sample–specific survival functions. Indeed one can

deduce the following

Corollary 3. For any t > 0, the posterior estimate of the survival function S̃`(t) with respect to

a quadratic loss is

E[S̃`(t) |X,Y ,T ] = exp
(
− c0

∫
Y

ψ
(0)
∗ (ψ

(`)
∗ (K

(`)
t (y))) P0(dy)

)

×
k∏
j=1

∫∞
0

e−s{ψ
(`)
∗ (K

(`)
t (Y ∗j ))+

∑d
h=1 ψ

(h)(Kh(Y ∗j ))} si•jρ0(s)ds∫∞
0

e−s
∑d
h=1 ψ

(h)(Kh(Y ∗j ))si•jρ0(s)

×
k∏̀
j=1

i`,j∏
t=1

∫∞
0

e−s(K
(`)
t (Y ∗`,j)+K`(Y

∗
`,j))sq`,j,tρ`(s)ds∫∞

0
e−sK`(Y

∗
`,j)sq`,j,tρ`(s)ds

(35)

where

ψ
(0)
∗ (u) =

∫ ∞
0

(1− e−su) e−s
∑d
`=1 ψ

(`)(K`(y))ρ0(s)ds

ψ
(`)
∗ (u) =

∫ ∞
0

(1− e−su) e−sK`(y)ρ`(s)ds ` = 1, . . . , d.

The posterior expectation of S̃`, as described in Corollary 3, is conditional on the data X

and on all the latent variables. Therefore, in order to obtain a posterior estimate of the survival

function, one marginalizes (35) with respect to the posterior distribution of (Y ,T ), given X. This

goal may be achieved resorting to a Gibbs sampler, since such a marginalization cannot be handled

analytically, and this will be the subject of Section 6.1. Analogously one can obtain the posterior

expectation of the hazard rate for each group of survival times.

Corollary 4. For any t > 0, the posterior estimate of the hazard rate h̃`(t) conditionally given
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X,Y ,T , under a square loss function is∫
Y

k(t; y)

∫ ∞
0

se−sK`(y)ρ`(s)ds

∫ ∞
0

we−w
∑d
h=1Kh(y)ρ0(w)dwc0P0(dy)

+

k∑
j=1

k(t;Y ∗j )

∫ ∞
0

se−sK`(Y
∗
j )ρ`(s)ds

∫ ∞
0

wfj(w)dw +

k∑̀
j=1

i`,j∑
t=1

k(t;Y ∗`,j)

∫ ∞
0

wf`,j,t(w)dw.

6 Marginal and conditional samplers

We now rely on the theoretical finding of the previous sections to describe a marginal and a

conditional sampler, which can be used, for instance, to obtain posterior estimates of the survival

functions. More precisely in Section 6.1 we develop a MCMC procedure to estimate dependent

survival functions, based on Theorem 7 and Corollary 3. We in fact use the output of such an

MCMC procedure to estimate the posterior expected values of the random survival functions,

marginalizing out the CRMs. Hence in Section 6.1 we devise a so–called marginal algorithm. On

the other hand, we also describe a conditional strategy in Section 6.2, which allows us to simulate

the trajectories of the hierarchical CRMs.

6.1 A marginal MCMC sampler

Though here we will focus on a special case where each µ̃` is a generalized gamma process, more

specifically ρ`(s) = e−ss−1−σ/Γ(1 − σ) for ` = 1, . . . , d and ρ0(s) = e−ss−1−σ0/Γ(1 − σ0), our

analysis can be extended to any other choice of Lévy intensities that satisfy the conditions (i)–(ii)

in Theorem 1. We further assume that Y = R+ and set k(t; y) := 11(0,t](y)α(y) for some positive

right–continuous real–valued function α( · ). Note that when σ = σ0 = 0, each random hazard rate

is an extended gamma process, given µ̃0, with parameters (µ̃0, α). The extended gamma process

has been introduced in [16] to model monotone increasing hazard rates and it has been extensively

used in an exchangeable setting. We will further assume that the function α(y) ≡ α is constant

and we specify a prior for α. We are able to deal with the general case d ≥ 2, without analytical

difficulties with respect the situation in which d = 2. One can now specialize Corollary 3 to this

case and get the following result.

Corollary 5. Let ρ`(s) = e−ss−1−σ/Γ(1− σ) for ` = 1, . . . , d, ρ0(s) = e−ss−1−σ0/Γ(1− σ0), and

k(t; y) := α 11(0,t](y). Then the posterior expected value E[S̃`(t) |X,Y ,T ] equals

exp
(
− c0
σ0

∫
Y

F`(y) P0(dy)
) k∏
j=1

{
1 +

[1 +K`(Y
∗
j ) +K

(`)
t (Y ∗j )]σ − [1 +K`(Y

∗
j )]σ∑d

h=1[(Kh(Y ∗j ) + 1)σ − 1]

}−(i•j−σ0)

×
k∏̀
j=1

{
1 +

K
(`)
t (Y ∗`,j)

1 +K`(Y ∗`,j)

}−(n`,j−i`,jσ)

being

F`(y) =

[
d∑

h=1

(Kh(y) + 1)σ − 1

σ
+ 1

]σ0

1 +

[1 +K`(y) +K
(`)
t (y)]σ − [1 +K`(y)]σ

σ
[∑d

h=1
(Kh(y)+1)σ−1

σ + 1
]

σ0

− 1


for each ` = 1, . . . , d.

15



As far as the hazard is concerned, an application of Corollary 4 in the case of hierarchies of

generalized gamma process leads to the following:

Corollary 6. Let ρ`(s) = e−ss−1−σ/Γ(1− σ) for ` = 1, . . . , d, ρ0(s) = e−ss−1−σ0/Γ(1− σ0), and

k(t; y) := α 11(0,t](y), then the posterior expected value E[h̃`(t)|X,Y ,T ] equals∫
Y

k(t; y)(
1 +

∑d
h=1Kh(y)

)1−σ0

(1 +K`(y))
1−σ

c0P0(dy)

+

k∑
j=1

k(t;Y ∗j )(i•j − σ0)(
1 + σ−1

∑d
h=1[(1 +Kh(Y ∗j ))σ − 1]

) (
1 +K`(Y ∗j )

)1−σ
+

k∑̀
j=1

i`,j∑
t=1

k(t;Y ∗`,j)(q`,j,t − σ)

(1 +K`(Y ∗`,j))

(36)

for any ` = 1, . . . , d.

It is now immediate to check that, with our choices of the kernel k(t; y) and of the Lévy

intensities ρ`, one has

K
(`)
t (y) = α (t− y)11(0,t](y)

K`(y) = α
∑

{i: y≤X`,i}

X`,i − yα ·#{i : y ≤ X`,i}.

An approximate evaluation of the posterior estimate E[S̃`(t)|X] of the survival function S̃` may be

obtained by means of an MCMC procedure. At the same time, one can obtain a posterior estimate

of the hazard rate h̃`(t). To this end, the full conditional distributions of the latent variables must

be identified. The detailed description of the Gibbs sampler and all the full conditional distributions

is reported in Section A.5. To complete the picture, we assume α and c0 are independent and further

specify the following priors

α ∼ Ga(a, b), c0 ∼ Ga(a0, b0). (37)

For computational convenience σ and σ0 are assumed to be fixed values.

6.2 Conditional sampler

The key distinctive feature of the MCMC procedure detailed in previous Section 6.1 is the marginal-

ization with respect to the mixing dependent CRMs µ̃`’s. This is very useful when one is mainly

interested in determining estimates of the survival functions, at any point t > 0, as posterior ex-

pected values of S̃`(t)’s. See Corollary 5. On the contrary, in the present section we are going to

develop a conditional algorithm that generates trajectories of the µ̃`’s from their respective poste-

rior distributions. Our strategy relies on Theorem 7 and a proper adaptation of the algorithm by

Wolpert and Ickstadt [44]. A conditional sampler is very useful for many practical reasons, and

we here confine ourselves to just mentioning that: (i) it allows to estimate the actual posterior

distribution of the survival functions or, equivalently, of the hazard rates at any time point t; (ii)

it yields estimates of the posterior credible intervals for the estimated quantities that are more

reliable than those arising from marginal samplers.

As for (i), if Φ1, . . . ,ΦN denote N posterior samples of the latent vector Φ obtained through an

MCMC procedure, and if in addition µ̃
(i,1)
` , . . . , µ̃

(i,M)
` are M trajectories of µ̃`, conditionally given
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Φi,X, then the posterior distribution function of survival function S̃`(t), at t, is approximated by

P(S̃`(t) ≤ s|X) ≈ 1

NM

N∑
i=1

M∑
k=1

11{
S̃

(i,k)
` (t)≤s

}, (38)

where

S̃
(i,k)
` (t) := exp

(
−
∫ t

0

∫
Y

k(s; y)µ̃
(i,k)
` (dy)ds

)
.

See Section A.6.1 for details on the derivation of (38). Being provided with the approximation of

the posterior distribution of the survival functions (38), it is now clear one can also address the

aforementioned point (ii).

Hence, we need to devise an algorithm that samples the trajectories of the µ̃`’s from their

posterior distribution and plug them in (38). Having fixed ` = 1, . . . , d, the computational proce-

dure is based on Theorem 7 and a non–trivial adaptation of the algorithm developed by Wolpert

and Ickstadt [44]. The technique suggested in [44] is easier to implement in the presence of non–

homogeneous CMRs, as those considered here, if compared to an alternative and popular sampler

yielded by the Ferguson and Klass [18] representation. Nonetheless, the jumps of the CRMs are

not sampled in a decreasing order and this may be a serious drawback when one wants to obtain

an approximate draw of a CRM by discarding the infinite number of jumps whose size does not

exceed a fixed threshold, ε > 0 say. We have been able to successfully address this issue for the

CRMs

η∗0 =
∑
h≥1

J
(0)
h δ

y
(0)
h

, µ̃∗` =
∑
h≥1

J
(`)
h δ

y
(`)
h

, (39)

for ` = 1, . . . , d, where y
(0)
h

iid∼ P0 and y
(`)
h | µ̃∗0

iid∼ µ̃∗0/µ̃
∗
0(Y). See Theorem 7. Let, now, S

(0)
h and

S
(`)
h be the points of a unit rate Poisson process, for h ≥ 1, namely S

(0)
h −S

(0)
h−1 and S

(`)
h −S

(`)
h−1 are

independent random variables whose distribution is negative exponential with unit mean. Hence,

according to [44] the jumps J
(0)
h and J

(`)
h in (39) are such that

S
(0)
h = c0

∫ ∞
J

(0)
h

e−s
∑d
`=1 ψ`(K`(y

(0)
h )) ρ0(s) ds (40)

S
(`)
h = c̃

∫ ∞
J

(`)
h

e−sK`(y
(`)
h ) ρ`(s) ds, (41)

where c̃ :=
∑
h≥1 J

(0)
h δ

y
(0)
h

+
∑k
j=1 IjδY ∗j is the total mass of µ̃∗0. One can, then, show the following

Proposition 2. The sequences of non–negative random variables (J̃
(0)
h )h≥1 and (J̃

(`)
h )h≥1, for

` = 1, . . . , d, defined through the equations

S
(0)
h = c0

∫ ∞
J̃

(0)
h

ρ0(s) ds, S
(`)
h = c̃

∫ ∞
J̃

(`)
h

ρ`(s) ds

are monotonically decreasing and dominate (J
(0)
h )h≥1 and (J

(`)
h )h≥1 in (40)–(41), namely J

(0)
h ≤

J̃
(0)
h and J

(`)
h ≤ J̃ (`)

h , for any h ≥ 1 and ` = 1, . . . , d, almost surely.

In order to make precise the use of this result, let us focus attention on η∗0 in (39). If one

wants to determine a finite–sum approximation of η∗0 , one can fix ε > 0 and discard jumps whose
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size is smaller than ε by setting the truncation level Hε as the minimum value of h such that the

additional jump satisfies J̃
(0)
h ≤ ε, i.e.

η∗0 ≈
Hε∑
h=1

J
(0)
h δ

y
(0)
h

. (42)

By virtue of Proposition 2, such a procedure guarantees that the heights of the discarded jumps

J
(0)
h ’s in (42) are smaller than ε. Similar arguments apply to µ̃∗` .

We now have all the necessary ingredients to describe the conditional algorithm.

(1) Generate µ̃0 from its posterior distribution, which is described right before Theorem 7, namely

proceed as follows.

(1.a) Generate the random jumps Ij , as j = 1, . . . , k, whose density is proportional to (30);

(1.b) generate η∗0 using the algorithm developed by Wolpert and Ickstadt [44], i.e. fix a threshold

level ε > 0 and proceed with the following steps:

– generate the atom of the CRM y
(0)
h ∼ P0;

– generate the waiting times S
(0)
h of a standard Poisson process, that is to say S

(0)
h −

S
(0)
h−1 are independent and identically distributed exponential random variables with

unit mean;

– determine the jump J
(0)
h by inverting the Lévy intensity (31), i.e. by solving (40);

– stop the procedure at Hε
0 := min{h : J̃

(0)
h ≤ ε} where the auxiliary jumps J̃

(0)
h are

determined according to Proposition 2.

(1.c) Evaluate an approximate draw of µ̃∗0

µ̃∗0,ε =

Hε0∑
h=1

J
(0)
h δ

y
(0)
h

+

k∑
j=1

IjδY ∗j .

(2) Generate µ̃`, given (µ̃∗0,X), as follows.

(2.a) Generate the J`,j,t’s from the density in (34);

(2.b) with ε > 0 fixed, generate the µ̃∗` ’s using the posterior representation in Theorem 7 and the

algorithm by Wolpert and Ickstadt [44], namely:

– generate the atoms of the CRMs y
(`)
h ∼ P ∗0,ε = µ̃∗0,ε/µ̃

∗
0,ε(Y);

– generate the waiting times S
(`)
h of a standard Poisson process, that is to say S

(`)
h −

S
(`)
h−1 are independent and identically distributed exponential random variables with

unit mean;

– determine the jump J
(`)
h by inverting the Lévy intensity (41);

– stop the procedure at Hε
` := min{h : J̃ (`) ≤ ε}, where the auxiliary jumps J̃

(`)
h are

determined according to Proposition 2;
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(2.c) evaluate an approximate draw from the posterior of µ̃`, by putting

µ̃` ≈
Hε∑̀
h=1

J
(`)
h δ

y
(`)
h

+

k∑̀
j=1

i`,j∑
t=1

J`,j,tδY ∗`,j .

For the numerical experiments of Section 7, we have implemented the conditional algorithm when

µ̃` is such that ρ`(s) = (Γ(1−σ))−1e−s/s1+σ for ` = 1, . . . , d, and ρ0(s) = (Γ(1−σ0))−1e−s/s1+σ0 ,

i.e. the CRMs are generalized gamma processes exactly as in the previous section. For the readers’

convenience we have specialized the conditional sampler for such a noteworthy example in Section

A.6.3.

7 Illustrations

In this section we display an illustrative example that provide evidence of the effectiveness of

our proposal on simulated datasets. In Section A.7 we also discuss how to adapt our strategy in

presence of covariates and right–censored survival times, dealing with tumor survival data.

(a) (b)

Figure 1: True survival functions (dotted) versus estimated (straight blue) for the first sample and 95%
posterior credible intervals estimated using the marginal method (a) and conditional method (b). The
BNP estimates are also compared with the corresponding frequentist estimate (straight red).

In the following simulated scenario we have run the MCMC algorithm for 50, 000 iterations with

a burn–in period of 20, 000 sweeps: the number of iterations allow the convergence of all the MCMC

procedures. We have considered a synthetic dataset composed by d = 3 groups of observations,

more specifically the data are generated by three different mixtures of Weibull distributions f1 ∼
Wbl(1.5, 3/2), f2 ∼ 0.5Wbl(2.5, 3/2)+0.5Wbl(1.5, 3/2) and f3 ∼ 0.5Wbl(2, 3/2)+0.5Wbl(1.5, 3/2).

For any ` = 1, 2, 3, we have set n` = 100. For the sake of simplifying notation we denote by S`
the survival function associated to f`, for any ` = 1, 2, 3. As priors are concerned, we have used

the specifications a = a0 = 1, b−1 = b−1
0 = 10 and T = 30 which correspond to a non–informative
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(a) (b)

Figure 2: True survival functions (dotted) versus estimated (straight blue) for the second sample and 95%
posterior credible intervals estimated using the marginal method (a) and conditional method (b). The
BNP estimates are also compared with the corresponding frequentist estimate (straight red).

(a) (b)

Figure 3: True survival functions (dotted) versus estimated (straight blue) for the third sample and 95%
posterior credible intervals estimated using the marginal method (a) and conditional method (b). The
BNP estimates are also compared with the corresponding frequentist estimate (straight red).

specification. While we have fixed the values of σ = σ0 = 0.25. We compare our BNP estimates

(obtained via the marginal and conditional algorithm) with a frequentist estimate which is based

on a smoothed version of the Kaplan–Meier estimator (using the optimized Matlab command

ksdensity). Since the data have been generated independently across groups, we evaluate the
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Table 1: The Kolmogorov distance between the true and estimated survival functions for the different
methodologies.

dK(S1, Ŝ1) dK(S2, Ŝ2) dK(S3, Ŝ3)
marginal BNP 0.033 0.027 0.023

conditional BNP 0.031 0.024 0.031
smoothed KM 0.060 0.042 0.056

frequentist estimator separately for each group. Figure 1 compares the true survival curve, the

estimated survival function obtained via the marginal algorithm (in blue) and the frequentist

estimate (in red). In Figure 1(a) the estimated credible intervals are obtained through the outputs

of the marginal procedure, while in Figure 1(b) they are evaluated through the conditional method.

More precisely the BNP estimated survival function in Figure 1(a) has been obtained generating

N = 30000 values of E[S̃`(t) |X,Y ,T ] (see Corollary 5) through the Gibbs sampler of Section 6.1,

besides the respective credible intervals have been approximated evaluating the quantiles of the

corresponding vector of outputs. On the other hand, as for Figure 1(b), we have implemented the

conditional sampler depicted in Section 6.2 and we have estimated the posterior distribution (38)

of S̃1 to derive both the credible intervals and the estimator (posterior mean). Analogously Figures

2–3 compare the two survival functions for the second and third sample, respectively. First of all we

observe that both the BNP marginal and the BNP conditional method outperform with respect to

the frequentist approach, providing estimates which are closer to the truth. This is also emphasized

by the Kolmogorov distances dK(S`, S̃`) between the true survival curve and the estimated one

reported in Table 1 for all ` = 1, 2, 3 and for the different kinds of estimators. Second, it is apparent

that the point estimates are similar with both the marginal and conditional procedures, but the

marginal method underestimates the credible intervals: indeed in such a situation the infinite

dimensional random elements are integrated out. We finally note that the conditional algorithm

is able to provide more reliable credible intervals which always contain the true survival functions,

but as for the traditional marginal procedure this does not happen (see Figure 3).
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A Supplementary material

A.1 Proofs of Section 3

A.1.1 Proof of Theorem 1

We start by proving statement (i) and first show that (12) holds true if and only if

lim
t→∞

E[S̃`(t)] = 0. (43)

In fact, an application of the dominated convergence theorem yields

lim
t→∞

E[S̃`(t)] = lim
t→∞

E
[

exp
(
−
∫ t

0

h̃`(s)ds
)]

= E
[

lim
t→∞

exp
(
−
∫ t

0

h̃`(s)ds
)]

= E[ lim
t→∞

S̃`(t)].

Therefore, (43) follows, being S̃`(t) ≥ 0 with probability 1.

Hence, to prove the validity of (12), it is enough to show that

lim
t→∞

E[S̃`(t)] = 0.

The computation of the expected value of S̃`(t) is then as follows

E[S̃`(t)] = E
[

exp
(
−
∫
Y

K
(`)
t (y)µ̃`(dy)

)]
= E

[
E
[

exp
(
−
∫
Y

K
(`)
t (y)µ̃`(dy)

)∣∣∣µ̃0

]]
= E

[
exp

(
−
∫
Y

ψ(`)(K
(`)
t (y))µ̃0(dy)

)]
= exp

(
−
∫
Y

ψ(0)(ψ(`)(K
(`)
t (y)))c0P0(dy)

)
,

where we have exploited the hierarchical structure of µ̃`.

Consequently limt→∞E[S̃`(t)] = 0 is equivalent to

lim
t→∞

∫
Y

ψ(0)(ψ(`)(K
(`)
t (y)))P0(dy) = +∞.

It is then easily seen that

lim
t→∞

∫
Y

ψ(0)(ψ(`)(K
(`)
t (y)))P0(dy)

= lim
t→∞

∫
Y

∫ ∞
0

(
1− exp

(
− s

∫ ∞
0

(1− e−uK
(`)
t (y))ρ`(u)du

))
ρ0(s)dsP0(dy).

Since K
(`)
t (y) increases as t grows to infinity, the monotone convergence theorem is applied thrice

to obtain

lim
t→∞

∫
Y

ψ(0)(ψ(`)(K
(`)
t (y)))P0(dy)

=

∫
Y

∫ ∞
0

(
1− exp

(
− s

∫ ∞
0

(1− e−u limt→∞K
(`)
t (y))ρ`(u)du

))
ρ0(s)dsP0(dy).

(44)

Under the stated conditions on the Lévy intensities and the kernel, the previous expression clearly

diverges. Therefore (43) and consequently also (12) are proven.
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Now we prove statement (ii) concerning the covariance structure. By definition we have

Cov(S̃`1(t1), S̃`2(t2)) = E[S̃`1(t1)S̃`2(t2)]− E[S̃`1(t1)]E[S̃`2(t2)]. (45)

Proceeding along the same lines as before, we find

E[S̃`i(ti)] = exp
(
−
∫
Y

ψ(0)(ψ(`i)(K
(`i)
ti (y)))c0P0(dy)

)
for each i = 1, 2. An analogous computation leads to determine the first expectation in (45) as

E[S̃`1(t1)S̃`2(t2)] = exp
(
−
∫
Y

ψ(0)
( 2∑
i=1

ψ(`i)(K
(`i)
ti (y))

)
c0P0(dy)

)
.

The desired expression in (13) then follows. In order to show non-negativity, i.e. Cov(S̃`1(t1), S̃`2(t2)) ≥
0, one has

Cov(S̃`1(t1), S̃`2(t2))

=
exp

(
−
∫
Y
ψ(0)

(∑2
i=1 ψ

(`i)(K
(`i)
ti (y))

)
+
∑2
i=1 ψ

(0)(ψ(`i)(K
(`i)
ti (y)))c0P0(dy)

)
− 1

exp
(∑2

i=1

∫
Y
ψ(0)(ψ(`i)(K

(`i)
ti (y))c0P0(dy)

) .

The previous expression can then be rewritten as

Cov(S̃`1(t1), S̃`2(t2)) =
exp

( ∫
Y

∫∞
0

∏2
i=1(1− e−sψ

(`i)(K
(`i)
ti

(y)))ρ0(s)dsP0(dy)
)
− 1

exp
(∑2

i=1

∫
Y
ψ(0)(ψ(`i)(K

(`i)
ti (y))c0P0(dy)

) ≥ 0,

since ∫
Y

∫ ∞
0

2∏
i=1

(1− e−sψ
(`i)(K

(`i)
ti

(y)))ρ0(s)dsP0(dy) ≥ 0.

A.1.2 Details for the determination of (14) and (15)

Let us first prove (14) in Example 3. Since µ̃` is a gamma CRM, i.e. ρ`(s) = e−s/s for ` = 0, . . . , d,

one has ψ(`)(u) = log(1 + u) for any u > 0 and ` = 0, . . . , d. Hence, we are able to obtain∫
Y

ψ(0)
( 2∑
i=1

ψ(`i)(K
(`i)
ti (y))

)
P0(dy) =

∫ ∞
0

log

(
1 +

2∑
i=1

log
(
1 + α (ti − y) 11(0,ti](y)

))
P0(dy)

=

∫ t1

0

log

(
1 +

2∑
i=1

log (1 + α (ti − y))

)
P0(dy)

+

∫ t2

t1

log(1 + log(1 + α (t2 − y))) P0(dy).

In a similar fashion, one shows that

2∑
i=1

∫
Y

ψ(0)(ψ(`i)(K
(`i)
ti (y))) P0(dy) =

2∑
i=1

∫ t1

0

log(1 + log(1 + α (ti − y))) P0(dy)

+

∫ t2

t1

log(1 + log(1 + α (t2 − y)))P0(dy)
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whenever t1 ≤ t2. Therefore the covariance in (13) reduces to (14) as desired.

Now we show that (15) in Example 4 holds. Here we deal with generalized gamma CRMs i.e.

ρ`(s) = e−ss−1−σ/Γ(1− σ) for ` = 1, . . . , d and µ̃0 is also generalized gamma with parameter σ0.

In this setup, one has ψ(0)(u) = ((u+ 1)σ0 − 1)/σ0 and ψ(`)(u) = ((u+ 1)σ − 1)/σ. Moreover, one

can derive∫
Y

ψ(0)
( 2∑
i=1

ψ(`i)(K
(`i)
ti (y))

)
P0(dy)

=
1

σ0

∫ t1

0

[( 2∑
i=1

[(1 + α(ti − y))σ − 1]/σ + 1
)σ0

− 1
]
P0(dy)

+
1

σ0

∫ t2

t1

[(
[(1 + α(t2 − y))σ − 1]/σ + 1

)σ0

− 1
]
P0(dy)

and

2∑
i=1

∫
Y

ψ(0)(ψ(`i)(K
(`i)
ti (y)))P0(dy)

=
1

σ0

2∑
i=1

∫ t1

0

[(
[(1 + α(ti − y))σ − 1]/σ + 1

)σ0

− 1
]
P0(dy)

+
1

σ0

∫ t2

t1

[(
[(1 + α(t2 − y))σ − 1]/σ + 1

)
− 1
]
P0(dy).

By resorting to (13) one then obtains (15).

A.2 Proofs of Section 4

A.2.1 Proof of Theorem 2

Our proof is divided in two main parts. First of all we reduce the study of consistency of the

whole posterior distribution P((f̃1, . . . , f̃d) ∈ · |X1, . . . ,Xd) to the study of consistency of all

the marginals P(f̃` ∈ · |X1, . . . ,Xd) as ` = 1, . . . , d. Secondly we prove that if the d posteriors

P(f̃` ∈ · |X`) are consistent at the respective f
(0)
` , for any ` = 1, . . . , d, as in the assumptions of

the theorem, then also P(f̃` ∈ · |X1, . . . ,Xd) are consistent at f
(0)
` , for any ` = 1, . . . , d.

It should be first stressed that if

Πn(FR × · · · ×A`(f (0)
` ) × · · · × FR |X1, . . . ,Xd)→ 1 a.s.–P (0),∞ (46)

for any weak neighbourhood A`(f
(0)
` ) of the true density f

(0)
` , and for any ` = 1, . . . , d, then (17)

holds true. To this end, it is enough to note that (46) implies

P((f̃1, . . . , f̃d) ∈ A1(f
(0)
1 )× . . .×Ad(f (0)

d )|X1, . . . ,Xd)→ 1

as n := (n1, . . . , nd)→∞, P (0),∞ − a.s.. Indeed,

P((f̃1, . . . , f̃d) ∈ A1(f
(0)
1 )× . . .×Ad(f (0)

d )|X1, . . . ,Xd)
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= P
( d⋂
`=1

{
f̃` ∈ A`(f (0)

` )
}
|X1, . . . ,Xd

)
= 1− P

( d⋃
`=1

{
f̃` ∈ (A`(f

(0)
` ))c

}
|X1, . . . ,Xd

)
≥ 1−

d∑
`=1

P
(
f̃` ∈ (A`(f

(0)
` ))c|X1, . . . ,Xd

)
and the right–hand side converges to 1 as a consequence of (46).

As remarked at the beginning of the proof, we now need to show that (18) entails (46). To fix

the notation we will define the following σ–fields

F`,n` = σ(X`) = σ(X`,1, . . . , X`,n`)

the σ–field generated by X`, and by

F`,∞ = σ(X`,1, X`,2, . . .)

the σ–field generated by the whole sequence of random variables of group `. Analogously, define

Gn1,...,nd = σ(X1, . . . ,Xd)

and the limit σ–field as n1, . . . , nd →∞

G∞ = σ((X`,1, X`,2 . . .); ` = 1, . . . , d).

It is clear that, as n` ↑ ∞, then the sequence F`,n` is increasing and we have F`,n` ↑ F`,∞; besides

Gn1,...,nd ↑ G∞ as n1, . . . , nd →∞. By [3, Theorem 35.6] we have that

P(f̃` ∈ Ac`(f
(0)
` )|F`,n`)→ P(f̃` ∈ Ac`(f

(0)
` )|F`,∞) (47)

P
(0),∞
` –almost surely as n` → ∞. Therefore, since the almost sure limit is unique, by (18) and

(47), we get that

P(f̃` ∈ Ac`(f
(0)
` )|F`,∞) = 0 (48)

P
(0),∞
` –almost surely. Applying again [3, Theorem 35.6], we obtain

P(f̃` ∈ Ac`(f
(0)
` )|Gn1,...,nd)→ P(f̃` ∈ Ac`(f

(0)
` )|G∞) (49)

as n1, . . . , nd →∞.

Therefore the limit of the conditional probability of interest P(f̃` ∈ Ac`(f
(0)
` )|Gn1,...,nd) = P(f̃` ∈

Ac`(f
(0)
` )|X1, . . . ,Xd) exists and it equals P(f̃` ∈ Ac`(f

(0)
` )|G∞). It remains to prove that the latter

term equals zero almost surely. To this end note that the properties of conditional expectations

and (48) imply

0 = P(f̃` ∈ Ac`(f
(0)
` )|F`,∞) = E[P(f̃` ∈ Ac`(f

(0)
` )|G∞)|F`,∞]

almost surely. Hence since P(f̃` ∈ Ac`(f
(0)
` )|G∞) ≥ 0, unless in a set of measure 0, we get that

P(f̃` ∈ Ac`(f
(0)
` )|G∞) = 0

P
(0),∞
` –almost surely and our result follows.
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A.2.2 Proof of Proposition 1

Let k be the kernel by Dykstra and Laud, i.e. k(t; y) = α1(0,t](y), then the random hazard rate

h̃`(t) equals αµ̃`(0, t]. Now fix u > 0 and evaluate the Laplace functional of µ̃`(0, t]:

Ee−uµ̃`(0,t] = exp

{
−c0P0(0, t)ψ(0)

( (u+ 1)σ − 1

σ

)}
= exp

{
−c0P0(0, t)

σ0

[( (u+ 1)σ − 1

σ
+ 1
)σ0

− 1

]}
.

Therefore for any u > 0 and r > 0, we have

Ee−uµ̃`(0,t]/t
r

= exp

{
−c0P0(0, t)

σ0

[( (u/tr + 1)σ − 1

σ
+ 1
)σ0

− 1

]}
and, since, as t → 0, P0(0, t) tends to zero at the same speed as tr

′
does, there exists some r > 0

such that

lim
t→0

Ee−uµ̃`(0,t]/t
r

= 0

for some r > 0. Next, by the Fatou lemma

E
[
lim inf
t→0

e−uµ̃`(0,t]/t
r
]
≤ lim inf

t→0
Ee−uµ̃`(0,t]/t

r

= 0

which also implies that

E
[
lim inf
t→0

e−uµ̃`(0,t]/t
r
]

= 0

and from this one deduces that

lim inf
t→0

e−uµ̃`(0,t]/t
r

= 0

almost surely. Hence, condition ii) of Theorem 3 is satisfied.

A.2.3 Support of hierarchical CRMs

In this section we consider a hierarchical CRM of the type

µ̃ | µ̃0 ∼ CRM(ν̃)

µ̃0 ∼ CRM(ν0),

where ν̃(ds,dy) = ρ(s) ds µ̃0(dy) and ν0(ds,dy) = ρ0(s) ds c0P0(dy). We suppose that the

following assumptions are fulfilled:

(H1) ρ0 > 0 and ρ > 0 on R+,

(H2) ρ and ρ0 have infinite integrals on R+, i.e.∫
R+

ρ(s)ds =

∫
R+

ρ0(s)ds = +∞,

(H3) ρ0 has finite mean and second moment, namely
∫∞

0
s ρ0(s) ds <∞ and

∫∞
0
s2 ρ0(s) ds <∞.

We study the support of the hierarchical CRM, proving a result similar to [10, Theorem 2], which

is used in the proof of Theorem 4 to show the consistency of marginal densities f̃` for each ` ∈
{1, . . . , d}.
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Proposition 3. Let µ̃|µ̃0 ∼ CRM(ν̃) and µ̃0 ∼ CRM(ν0). If (H1)–(H3) hold true for ρ and ρ0

and the support of P0 is the interval [0, T ], for some T > 0, then µ̃(0, t] is supported by the whole

positive real line, for any t ≤ T .

Proof. The proof goes along similar lines as the proof of [15, Proposition 1]: we need to show that

for any 0 < a < b, P(µ̃(0, t] ∈ (a, b)) > 0. We denote by µ̃t := µ̃(0, t] and µ̃t(δ) the sum of all the

jumps in (0, t] of size less or equal than δ. Since µ̃ is a CRM it can be represented as a functional

of a Poisson process Ñ on R+ × [0, T ], indeed

µ̃(A) =

∫
R+×A

sÑ(ds,dx),

and the same holds true for µ̃0, in particular we denote by Ñ0 the respective Poisson point process

on R+ × [0, T ]. Observe that

µ̃t(δ) =

∫
(0,δ)×(0,t]

sÑ(ds,dx)

and its expected value is

Eµ̃t(δ) = EE

[∫
(0,δ)×(0,t]

sÑ(ds,dx)
∣∣∣µ̃0

]

= E

[∫ δ

0

sρ(s)dsµ̃0(0, t)

]
=

∫ δ

0

sρ(s)dsE

∫
R+×(0,t)

sÑ0(ds,dx)

= c0P0(0, t)

∫ δ

0

sρ(s)ds

∫ ∞
0

sρ0(s)ds

where we have repeatedly applied the Campbell Theorem. Hence, Eµ̃t(δ) <∞, for any 0 < t ≤ T
and δ > 0, and an argument similar to the one used in the proof of [15, Proposition 1] can be

employed to show that for any c > 0 there exists δc > 0 such that P(µ̃t(δc) < c) > 0. Now set

c = (b− a)/k, where k is such that (b− a)/k < a, and choose δ > 0 such that the latter condition

on µ̃t(δ) holds true. One, then, defines the following sets

A1 :=
{
Ñ((a, (a+ b)/2)× (0, t]) = 1

}
A2 :=

{
Ñ((δ, a)× (0, t]) = 0

}
A3 := {µ̃t(δ) < c}

A4 :=
{
Ñ(((a+ b)/2,+∞)× (0, t]) = 0

}
and notes that A1∩A2∩A3∩A4 is the event “µ̃ has exactly one jump in (0, t] of size in (a, (a+b)/2)

and all the other jumps have size less than δ with sum at most c = (b − a)/k”, hence P(µ̃(0, t] ∈
(a, b)) ≥ P(A1 ∩ A2 ∩ A3 ∩ A4). We prove that this probability is strictly positive by a direct

calculation. Using the conditional independence of the events Ai and the fact that Ñ(C×(0, t))|µ̃0

is, for any C ∈ B(R+), a Poisson random variable with mean µ̃0(0, t)
∫
C
ρ(s)ds, we get

P(A1 ∩A2 ∩A3 ∩A4) = E

[
4∏
i=1

P(Ai|µ̃0)

]

=

∫ (a+b)/2

a

ρ(s)dsE
[
µ̃0(0, t)e−µ̃0(0,t)

∫∞
δ
ρ(s)dsP(µ̃t(δ) < c|µ̃0)

]
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≥
∫ (a+b)/2

a

ρ(s)dsE

[
µ̃0(0, t)e−µ̃0(0,t)

∫∞
δ
ρ(s)ds

(
1− E[µ̃t(δ)|µ̃0]

c

)]
=

∫ (a+b)/2

a

ρ(s)dsE
[
µ̃0(0, t)e−µ̃0(0,t)

∫∞
δ
ρ(s)ds

×

(
1− µ̃0(0, t)

c

∫ δ

0

s ρ(s)ds

)]
(50)

where we have applied the Markov inequality and the last equality follows again from the Campbell

Theorem. Now define

u(δ) :=

∫ ∞
δ

ρ(s)ds, (51)

simple calculations show that for any A ⊂ [0, T ] and w > 0 one has

Ee−wµ̃0(A)µ̃0(A) = − d

dw
Ee−wµ̃0(A)

= c0P0(A)

∫ ∞
0

e−swsρ0(s)ds exp

{
−c0P0(A)

∫ ∞
0

(1− e−sw)ρ0(s)ds

} (52)

and analogously

Ee−wµ̃0(A)µ̃2
0(A) =

d2

dw2
Ee−wµ̃0(A)

=

{
c0P0(A)

(∫ ∞
0

e−swsρ0(s)ds
)2

+

∫ ∞
0

s2e−swρ0(s)ds

}
× c0P0(A) exp

{
−c0P0(A)

∫ ∞
0

(1− e−sw)ρ0(s)ds

} . (53)

We use equations (52)–(53), with u(δ) in place of w, to evaluate the expected value in (50):

P(A1 ∩A2 ∩A3 ∩A4)

≥
∫ (a+b)/2

a

ρ(s)ds · exp

{
−c0P0(0, t)

∫ ∞
0

(1− e−su(δ))ρ0(s)ds

}
× c0P0(0, t)

{∫ ∞
0

se−su(δ)ρ0(s)ds− 1

c

∫ δ

0

sρ(s)ds

×

[
c0P0(0, t)

(∫ ∞
0

se−u(δ)sρ0(s)ds

)2

+

∫ ∞
0

s2e−su(δ)ρ0(s)ds

]}
.

In order to simplify the notation we define

C(δ) := exp

{
−c0P0(0, t)

∫ ∞
0

(1− e−su(δ))ρ0(s)ds

}
c0P0(0, t)

∫ (a+b)/2

a

ρ(s)ds

I1(δ) :=

∫ ∞
0

se−u(δ)sρ0(s)ds

I2(δ) :=

∫ ∞
0

s2e−su(δ)ρ0(s)ds
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it is also useful to observe that

I1(δ) ≥
∫ 1

0

se−u(δ)sρ0(s)ds ≥ e−u(δ)

∫ 1

0

sρ0(s)ds > 0 (54)

and besides

I2(δ) =

∫ 1

0

s2e−su(δ)ρ0(s)ds+

∫ ∞
1

s2e−su(δ)ρ0(s)ds

≤
∫ ∞

0

se−su(δ)ρ0(s)ds+ e−u(δ)

∫ ∞
1

s2ρ0(s)ds

= I1(δ) + e−u(δ)

∫ ∞
1

s2ρ0(s)ds.

(55)

We now use (54)–(55) to lower bound the probability of interest:

P(A1 ∩A2 ∩A3 ∩A4) ≥ C(δ)

{
I1(δ)− 1

c

∫ δ

0

sρ(s)ds(I2
1 (δ)c0P0(0, t) + I2(δ))

}

≥ C(δ)

{
I1(δ)− 1

c

∫ δ

0

sρ(s)ds

×
(
I2
1 (δ)c0P0(0, t) + I1(δ) + e−u(δ)

∫ ∞
1

s2ρ0(s)ds
)}

= C(δ)

{
I1(δ)

(
1− 1

c

∫ δ

0

sρ(s)ds (I1(δ)c0P0(0, t) + 1)
)

−e
−u(δ)

c

∫ ∞
1

s2ρ0(s)ds

∫ δ

0

sρ(s)ds

}
.

Since u(δ) ↗ +∞ as δ ↘ 0 then I1(δ) is a decreasing function of δ, as well as the integral∫ δ
0
sρ(s)ds, and both these terms go to zero as δ goes to 0, as a consequence we can choose δ

sufficiently small in such a way that(
1− 1

c

∫ δ

0

sρ(s)ds (I1(δ)c0P0(0, t) + 1)
)
> 0.

We now use the lower bound (54) to get

P(A1 ∩A2 ∩A3 ∩A4) ≥ C(δ)e−u(δ)

{∫ 1

0

sρ0(s)ds
(

1− 1

c

∫ δ

0

sρ(s)ds (I1(δ)c0P0(0, t) + 1)
)

−1

c

∫ ∞
1

s2ρ0(s)ds

∫ δ

0

sρ(s)ds

}
which is strictly positive for a sufficiently small δ > 0, indeed the negative term on the r.h.s. of the

previous inequality can be made as small as required by reducing the value of δ, because it goes

to 0 as δ → 0.

A.2.4 Proof of Theorem 4

In the case of generalized gamma process and the Dykstra–Laud kernel the assumptions of Theorem

3 are met, therefore to prove consistency we need to check (19). If h
(0)
` is non decreasing and
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h
(0)
` (0) = 0, it defines a measure µ

(0)
` on R+ indeed µ

(0)
` ((0, t]) = h

(0)
` (t). As a consequence

condition (19) is equivalent to the following

P

(
sup
s≤t
|αµ̃`(0, s]− µ(0)

` (0, s]| < η

)
> 0

for any t > 0, η > 0. This can be proved along the same lines as [10, Lemma 11], using Proposition 3

instead of [15, Proposition 1] (concerning the support of a hierarchical CRM) and the independence

properties of the hierarchical CRM µ̃`.

A.3 Proofs of Section 5

A.3.1 Proof of Theorem 5

First of all, recall that (see for example [6, 22])

(−1)r
dr

dur
e−mψ

(`)(u) = e−mψ
(`)(u)

r∑
i=1

miξ
(`)
r,i (u) (56)

where

ξ
(`)
r,i (u) =

∑
(∗)

1

i!

(
r

q1, · · · , qi

)
τ (`)
q1 (u) · · · τ (`)

qi (u)

and the sum runs over all the vectors (q1, · · · , qi) of positive integers such that
∑i
j=1 qi = r.

The joint distribution of (X,Y ) and of the partition ΨN is determined taking the expected value

with respect to the distribution of the vector of CRMs:

π(X,Y ∗,ΨN ) = E[L (µ̃;X,Y )] = E
[ d∏
`=1

exp
(
−
∫
Y

K`(y)µ̃`(dy)
) n∏̀
i=1

k(X`,i;Y`,i)µ̃`(dY`,i)
]

setting Q(X,Y ) :=
∏d
`=1

∏n`
i=1 k(Xi,`;Yi,`), we get

π(X,Y ∗,ΨN ) = Q(X,Y )E
[ d∏
`=1

exp
(
−
∫
Y

K`(y)µ̃`(dy)
) n∏̀
i=1

µ̃`(dY`,i)
]

We can exploit the hierarchical structure of the model in order to get out the expectation:

π(X,Y ∗,ΨN ) = Q(X,Y )E
[
E
[ d∏
`=1

exp
(
−
∫
Y

K`(y)µ̃`(dy)
) n∏̀
i=1

µ̃`(dY`,i)
∣∣∣µ̃0

]]
= Q(X,Y )E

[ d∏
`=1

E
[

exp
(
−
∫
Y

K`(y)µ̃`(dy)
) n∏̀
i=1

µ̃`(dY`,i)
∣∣∣µ̃0

]]
conditional on µ̃0, µ̃` is a completely random measure with known intensity, so we can compute

the Laplace functional, in fact, denoting by Y∗ := Y \ {Y ∗1 , · · · , Y ∗k }, we obtain:

π(X,Y ∗,ΨN ) = Q(X,Y )E
[ d∏
`=1

exp
(
−
∫
Y∗
ψ(`)(K`(y))µ̃0(dy)

)
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× E
[ k∏
j=1

e−K`(Y
∗
j )µ̃`(dY

∗
j )µ̃

n`,j
` (dY ∗j )

∣∣∣µ̃0

]]

= Q(X,Y )E
[ d∏
`=1

exp
(
−
∫
Y∗
ψ(`)(K`(y))µ̃0(dy)

)
×

k∏
j=1

dn`,j

dun`,j
(−1)n`,je−ψ

(`)(u)µ̃0(dY ∗j )
∣∣∣
u=K`(Y ∗j )

]
(56)
= Q(X,Y )E

[ d∏
`=1

exp
(
−
∫
Y∗
ψ(`)(K`(y))µ̃0(dy)

)
×
∑
i

k∏
j=1

ξ
(`)
n`,j ,i`,j

(K`(Y
∗
j ))µ̃

i`,j
0 (dY ∗j )

]
where i`,j ∈ {1, · · · , n`,j}, with n`,j ≥ 0 and the convention

∑0
i`,j=1 ≡ 1. Introducing the notation

i•j :=
∑d
`=1 i`,j , a standard argument shows that:

π(X,Y ∗,ΨN ) = Q(X,Y )
∑
i

d∏
`=1

k∏
j=1

ξ
(`)
n`,j ,i`,j

(K`(Y
∗
j ))

× E
[

exp
(
−
∫
Y∗

d∑
`=1

ψ(`)(K`(y))µ̃0(dy)
) k∏
j=1

µ̃
i•j
0 (dY ∗j )

]

= Q(X,Y )
∑
i

ck0

k∏
j=1

P0(dY ∗j )

d∏
`=1

k∏
j=1

ξ
(`)
n`,j ,i`,j

(K`(Y
∗
j ))

× exp
(
−
∫
Y

ψ(0)
( d∑
`=1

ψ(`)(K`(y))
)
c0P0(dy)

)
×

k∏
j=1

τ
(0)
i•j

( d∑
`=1

ψ(`)(K`(Y
∗
j ))
)

+ o
( k∏
j=1

P0(dY ∗j )
)

= Q(X,Y )ck0

k∏
j=1

P0(dY ∗j ) exp
(
−
∫
Y

ψ(0)
( d∑
`=1

ψ(`)(K`(y))
)
c0P0(dy)

)

×
∑
i

d∏
`=1

k∏
j=1

ξ
(`)
n`,j ,i`,j

(K`(Y
∗
j ))

k∏
j=1

τ
(0)
i•j

( d∑
`=1

ψ(`)(K`(Y
∗
j ))
)

+ o
( k∏
j=1

P0(dY ∗j )
)
.

Putting the expression of ξ
(`)
n`,j ,i`,j

in the previous equation, and ignoring the higher order terms,

we finally obtain:

π(X,Y ∗,ΨN ) = Q(X,Y )ck0

k∏
j=1

P0(dY ∗j ) exp
(
−
∫
Y

ψ(0)
( d∑
`=1

ψ(`)(K`(y))
)
c0P0(dy)

)
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×
∑
i

∑
q

k∏
j=1

τ
(0)
i•j

( d∑
`=1

ψ(`)(K`(Y
∗
j ))
)

×
d∏
`=1

k∏
j=1

1

i`,j !

(
n`,j

q`,j,1, · · · , q`,j,i`,j

) d∏
`=1

k∏
j=1

i`,j∏
t=1

τ (`)
q`,j,t

(K`(Y
∗
j )).

where the sum with respect to q runs over all the vectors of positive integers such that
∑i`,j
t=1 q`,j,t =

n`,j .

A.3.2 Proof of Theorem 6

In order to prove the theorem, one has to verify the validity of (28). The l.h.s. of (28), that is

to say the conditional distribution of (Y ∗,T ,ΨN ) given X, can be easily derived from (26) and it

satisfies

π(Y ∗,T ,ΨN |X) ∝ ck0

d∏
`=1

n∏̀
i=1

k(X`,i;Y`,i)

k∏
j=1

τ
(0)
i•j

( d∑
`=1

ψ(`)(K`(Y
∗
j ))
)
P0(dY ∗j )

×
d∏
`=1

k∏
j=1

i`,j∏
t=1

τ (`)
q`,j,t

(K`(Y
∗
j ))P0(dT ∗`,j,t).

(57)

Marginalizing out m0 andm in (29), one immediately realizes that the r.h.s. of (28) is proportional

to (57) and this concludes the proof.

A.3.3 Proof of Theorem 7

The posterior distribution of (µ̃1, · · · , µ̃d) is characterized by the Laplace functional, i.e.

E[e−µ̃1(f1)−···−µ̃d(fd)|X,Y ,T ] =
E[e−µ̃1(f1)−···−µ̃d(fd)L (X,Y ,T )]

E[L (X,Y ,T )]

where f` : Y → R+ and we have used the notation µ̃`(f`) =
∫
Y
f`(y)µ̃`(dy). The denominator

is the likelihood in (26), the numerator can be determined in a similar fashion, so the Laplace

functional equals

E[e−µ̃1(f1)−···−µ̃d(fd)|X,Y ,T ] = exp
(∫

Y

ψ(0)
( d∑
`=1

ψ(`)(K`(y))
)
c0P0(dy)

−
∫
Y

ψ(0)
( d∑
`=1

ψ(`)(K`(y) + f`(y))
)
c0P0(dy)

)

×

∏k
j=1 τ

(0)
i•j

(∑d
`=1 ψ

(`)(K`(Y
∗
j ) + f`(Y

∗
j ))
)

∏k
j=1 τ

(0)
i•j

(∑d
`=1 ψ

(`)(K`(Y ∗j ))
)

×
∏d
`=1

∏k
j=1

∏i`,j
t=1 τ

(`)
q`,j,t(K`(Y

∗
j ) + f`(Y

∗
j ))∏d

`=1

∏k
j=1

∏i`,j
t=1 τ

(`)
q`,j,t(K`(Y ∗j ))

(58)

Consider separately the three parts contained in (58):
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(1) the exponential part refers to η∗0 , in fact a simple rearrangement of the terms leads to

exp
(∫

Y

ψ(0)
( d∑
`=1

ψ(`)(K`(y))
)
c0P0(dy)−

∫
Y

ψ(0)
( d∑
`=1

ψ(`)(K`(y) + f`(y))
)
c0P0(dy)

)
= exp

(
−
∫
Y

ψ
(0)
∗

( d∑
`=1

ψ
(`)
∗ (f`(y))

)
c0P0(dy)

)
,

where we have set:

ψ
(0)
∗ (u) =

∫ ∞
0

(1− e−su)e−s
∑d
`=1 ψ

(`)(K`(y))ρ0(s)ds

ψ
(`)
∗ (u) =

∫ ∞
0

(1− e−su)e−sK`(y)ρ`(s)ds ` = 1, . . . , d.

exp
(
−
∫
Y
ψ

(0)
∗

(∑d
`=1 ψ

(`)
∗ (f`(y))

)
c0P0(dy)

)
is the Laplace functional of the CRM η∗0 (com-

pare with (7)).

(2) Concentrate on the following term in (58)∏k
j=1 τ

(0)
i•j

(∑d
`=1 ψ

(`)(K`(Y
∗
j ) + f`(Y

∗
j ))
)

∏k
j=1 τ

(0)
i•j

(∑d
`=1 ψ

(`)(K`(Y ∗j ))
)

the denominator can be considered as a normalizing term, so we deal with the numerator:

k∏
j=1

τ
(0)
i•j

( d∑
`=1

ψ(`)(K`(Y
∗
j ) + f`(Y

∗
j ))
)

=

k∏
j=1

∫ ∞
0

e−s
∑d
`=1 ψ

(`)
∗ (f`(Y

∗
j ))si•je−s

∑d
`=1 ψ

(`)(K`(Y
∗
j ))ρ0(s)ds

therefore:∏k
j=1 τ

(0)
i•j

(∑d
`=1 ψ

(`)(K`(Y
∗
j ) + f`(Y

∗
j ))
)

∏k
j=1 τ

(0)
i•j

(∑d
`=1 ψ

(`)(K`(Y ∗j ))
) =

k∏
j=1

∫ ∞
0

e−s
∑d
`=1 ψ

(`)
∗ (f`(Y

∗
j ))fj(s)ds,

which is the joint Laplace functional of d hierarchical completely random measures η∗` , ` =

1, . . . , d, of the type:

η∗` |I1, · · · , Ik ∼ CRM(e−sK`(y)ρ`(s)ds

k∑
j=1

IjδY ∗j (dy))

furthermore these random measures are independent given the weights I1, . . . , Ik.

(3) Consider the last term in (58):∏d
`=1

∏k
j=1

∏i`,j
t=1 τ

(`)
q`,j,t(K`(Y

∗
j ) + f`(Y

∗
j ))∏d

`=1

∏k
j=1

∏i`,j
t=1 τ

(`)
q`,j,t(K`(Y ∗j ))

as before the denominator is a normalizing constant, and this is the Laplace functional of(∑k1
j=1

∑i1,j
t=1 J1,j,tδY ∗1,j , · · · ,

∑kd
j=1

∑id,j
t=1 Jd,j,tδY ∗d,j

)
.

Items (1) and (2) give (i), instead (ii) follows from (3) and this concludes the proof.
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A.3.4 Proof of Corollary 3

First observe that:

E[S̃`(t)|X,Y ,T ] = E[e−
∫ t
0
h̃`(s)ds|X,Y ,T ]

= E[e−
∫ t
0

∫
Y
k(s;y)µ̃`(dy)ds|X,Y ,T ] = E[e−

∫
Y
K

(`)
t (y)µ̃`(dy)|X,Y ,T ].

Then the proposition is a simple consequence of Theorem 7, from which we can deduce the posterior

distribution of µ̃`:

E[S̃`(t)|X,Y ,T ] = E[e−
∫
Y
K

(`)
t (y)µ̃∗` (dy)]E

[
e
−

∫
Y
K

(`)
t (y)

∑k`
j=1

∑i`,j
t=1 J`,j,tδY ∗`,j

(dy)
]

(59)

The two expectations can be evaluated using their characterization, given in Theorem 7:

E[e−
∫
Y
K

(`)
t (y)µ̃∗` (dy)] = E[E[e−

∫
Y
K

(`)
t (y)µ̃∗` (dy)|µ̃∗0]]

= E[exp
(
−
∫
Y

∫ ∞
0

(1− e−sK
(`)
t (y))e−sK`(y)ρ`(s)dsµ̃

∗
0(dy)

)
]

= E[e−
∫
Y
ψ(`)
∗ (K`(y))µ̃∗0(dy)]

= exp
(
−
∫
Y

∫ ∞
0

(1− e−sψ
(`)
∗ (K

(`)
t (y)))e−s

∑d
`=1 ψ

(`)(K`(y))ρ0(s)dsc0P0(dy)
)

× E
[

exp
(
−
∫
Y

ψ
(`)
∗ (K

(`)
t (y))

k∑
j=1

IjδY ∗j (dy)
)]

= exp
(
−
∫
Y

ψ
(0)
∗ (ψ

(`)
∗ (K

(`)
t (y)))c0P0(dy)

) k∏
j=1

E[e−ψ
(`)
∗ (K

(`)
t (Y ∗j ))Ij ]

= exp
(
−
∫
Y

ψ
(0)
∗ (ψ

(`)
∗ (K

(`)
t (y)))c0P0(dy)

)
×

k∏
j=1

∫∞
0
e−s(ψ

(`)
∗ (K

(`)
t (Y ∗j ))+

∑d
`=1 ψ

(`)(K`(Y
∗
j )))si•jρ0(s)ds∫∞

0
e−s

∑d
`=1 ψ

(`)(K`(Y ∗j )))si•jρ0(s)
.

The second expectation in (59) is equal to:

E
[
e
−

∫
Y
K

(`)
t (y)

(∑k`
j=1

∑i`,j
t=1 J`,j,tδY ∗`,j

)
(dy)
]

=

k∏̀
j=1

i`,j∏
t=1

E[e−K
(`)
t (Y ∗`,j)J`,j,t ]

=

k∏̀
j=1

i`,j∏
t=1

∫∞
0
e−s(K

(`)
t (Y ∗`,j)+K`(Y

∗
`,j))sq`,j,tρ`(s)ds∫∞

0
e−sK`(Y

∗
`,j)sq`,j,tρ`(s)ds

.

Putting the previous expressions in (59), the thesis follows.

A.3.5 Proof of Corollary 4

Thanks to Theorem 7, we can write

E[h̃`(t)|X,Y ,T ] = E
[ ∫
Y

k(t; y)µ̃`(dy)
∣∣∣X,Y ,T

]
= E

[ ∫
Y

k(t; y)µ̃∗` (dy)
]

+

k∑̀
j=1

i`,j∑
t=1

k(t;Y ∗`,j)E[J`,j,t].

(60)
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We now focus on the first term of (60)

E
[ ∫
Y

k(t; y)µ̃∗` (dy)
]

= E
[
E
[ ∫
Y

k(t; y)µ̃∗` (dy)
∣∣∣µ̃∗0]]

= − d

du

(
E
[
E
[
e−u

∫
Y
k(t;y)µ̃∗` (dy)

∣∣∣µ̃∗0]]) ∣∣∣
u=0

= − d

du

(
E

[
exp

{
−
∫
Y

ψ
(`)
∗ (uk(t; y)) µ̃∗0(dy)

}]) ∣∣∣
u=0

= − d

du

(
E

[
exp

{
−
∫
Y

ψ
(`)
∗ (uk(t; y)) η∗0(dy)

}]
×

k∏
j=1

E
[
exp

{
ψ

(`)
∗
(
uk(t;Y ∗j )

)
Ij

}])∣∣∣
u=0

,

where we have used the posterior representation of µ̃∗0 given in Theorem 7. Straightforward calcu-

lations of the derivative in the previous expression lead to

E
[ ∫
Y

k(t; y)µ̃∗` (dy)
]

=

∫
Y

k(t; y)

∫ ∞
0

se−sK`(y)ρ`(s)ds

×
∫ ∞

0

we−w
∑d
h=1Kh(y)ρ0(w)dwc0P0(dy)

+

k∑
j=1

k(t;Y ∗j )

∫ ∞
0

se−sK`(Y
∗
j )ρ`(s)ds

∫ ∞
0

wfj(w)dw

(61)

being fj the density function of the jump Ij , for any j = 1, . . . , k. As for the second term in (60),

we have:
k∑̀
j=1

i`,j∑
t=1

k(t;Y ∗`,j)E[J`,j,t] =

k∑̀
j=1

i`,j∑
t=1

k(t;Y ∗`,j)

∫ ∞
0

wf`,j,t(w)dw. (62)

Hence, putting the expressions (61)–(62) in (60), the thesis follows.

A.4 Proofs of Section 6.1

A.4.1 Proof of Corollary 5

The posterior expected value of the survival function E[S̃`(t) |X,Y ,T ] can be computed resorting

to (35) and specializing ψ
(`)
∗ , ψ

(0)
∗ in the case of generalized gamma CRM. With our assumptions,

it is easy to see that:

ψ
(`)
∗ (u) =

(u+ 1 +K`(y))σ − (1 +K`(y))σ

σ
` = 1, . . . , d

ψ
(0)
∗ (u) =

1

σ0

{[
u+

d∑
`=1

(K`(y) + 1)σ − 1

σ
+ 1

]σ0

−

[
d∑
`=1

(K`(y) + 1)σ − 1

σ
+ 1

]σ0}
,

for any q ∈ N and u > 0, we also have that∫ ∞
0

e−susqρ`(s)ds =
(1− σ)q−1

(u+ 1)q−σ
` = 1, . . . , d.

Substituting these expressions in (35), a straightforward calculation gives the result.
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A.5 A marginal MCMC sampler for hierarchies of generalized Gamma
processes

Here we describe the MCMC sampler (see Section 6.1) that allows to marginalize out the latent

variables, generating samples from their posterior distribution given the observed survival times

X. The full conditional distributions may be derived resorting to (26), which in the specific case

of hierarchies of generalized Gamma processes becomes

π(X,Y ,T ) ∝
{ k∏
j=1

c0P0(dY ∗j )
}{ d∏

`=1

n∏̀
i=1

k(X`,i;Y`,i)
}

× exp

{
− c0
σ0

∫
Y

[(
1 +

d∑
`=1

(1 +K`(y))σ − 1

σ

)σ0

− 1

]
P0(dy)

}

×
k∏
j=1

(1− σ0)i•j−1(
1 +

∑d
`=1

(1+K`(Y ∗j ))σ−1

σ

)i•j−σ0

×
d∏
`=1

k∏
j=1

i`,j∏
t=1

(1− σ)q`,j,t−1

(1 +K`(Y ∗j ))q`,j,t−σ
P0(dT ∗`,j,t),

where, with some abuse of notation, we agree that Γ(0) ≡ 1 and
∏0
p=1 ≡ 1. To simplify the

notation we will set Φ := ((Y`,T`)`, α, c0, σ, σ0) and we denote by Φ−V the vector Φ with the

component V removed. The steps of the MCMC algorithms may be read in terms of the Chinese

restaurant franchise metaphor, as well as the marginal sampler in [6], however the full conditional

distributions differ from those of [6] due to the different modeling assumptions. All the steps of

the MCMC procedure are described below.

Update the couple (Y`,r, T`,r) for r = 1, . . . , n` and ` = 1, . . . , d.

For the sake of clarity we explicitly deal with the case ` = 1, since everything can be replicated

in a straightforward way for general `. The full conditional distributions are a convex linear

combination of three cases

P(Y1,r ∈ dy, T1,r ∈ dt |Φ−(Y1,r,T1,r),X) = w1,0G0(dy)P0(dt)

+

k−r∑
h=1

w1,hδY ∗,−rh
(dy)P0(dt) +

k−r1∑
h=1

i−r1,h∑
t=1

w1,h,tδY ∗,−r1,h
(dy)δT∗,−r1,h,t

(dt)

where

G0(dy) ∝ k(X1,r; y)P0(dy)(
1 +

∑d
`=1

(1+K`(y))σ−1
σ

)1−σ0

(1 +K`(y))1−σ

and the three summands appearing in the expression above can be given straightforward interpre-

tations as follows:

(1) the r–th costumer eats a new dish seating at a new table in the first restaurant with proba-

bility

w1,0 ∝
∫
Y

c0k(X1,r; y)(
1 +

∑d
`=1

(1+K`(y))σ−1
σ

)1−σ0

(1 +K`(y))1−σ
P0(dy),
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and, conditional on the fact that a new dish and a new table is chosen, their labels are

selected from G0 × P0,

(2) the r–th costumer eats the h–th dish already served in the franchise in a new table with

probability

w1,h ∝
k(X1,r;Y

∗,−r
h )(i−r•h − σ0)

(1 +
∑d
`=1

(1+K`(Y
∗,−r
h ))σ−1

σ )(1 +K1(Y ∗,−rh ))1−σ
,

for each h = 1, . . . , k−r1 , and the new table’s label is drawn from P0;

(3) the r–th costumer eats the h–th dish already served in the franchise while seating at the t–th

existing table of the first restaurant, where the dish is actually served, with probability

w1,h,t ∝
k(X1,r;Y

∗,−r
1,h )(q−r1,h,t − σ)

1 +K1(Y ∗,−r1,h )
,

for any h = 1, . . . , k−r1 .

The integral that defines w1,0, in (1), can be evaluated through a Monte Carlo method, by gen-

erating i.i.d. realizations from P0, which will be assumed to be a uniform distribution over [0, T ],

being T large enough so that all the survival times are contained in the interval [0, T ].

Sample a new latent variable and acceleration step

A Metropolis–Hastings algorithm has been developed in order to sample a new latent variable from

G0, when P0 is the probability distribution of a uniform distribution in [0, T ]. The procedure can

be obviously adapted to any alternative choice of a diffuse P0.

As suggested in [24], we add an acceleration step, which consists in resampling all the distinct

values of Y at the end of every iteration. {C`,j}j=1,...,k` will denote the (finer) random parti-

tion associated to {Y ∗`,1, . . . , Y ∗`,k`}, for every ` = 1, . . . , d. Setting X̄j := mini∈C1,j
X1,i ∧ . . . ∧

mini∈Cd,j Xd,i, the full conditional distribution for the distinct values is

π(Y ∗j |Φ−Y ∗j ,X) ∝

(
1 +

d∑
h=1

(1 +Kh(Y ∗j ))σ − 1

σ

)−(i•j−σ0)

×
d∏
`=1

1

(1 +K`(Y ∗j ))n`,j−i`,jσ
11(0,X̄j ](Y

∗
j )P0(dY ∗j ).

The issue of sampling from the previous distribution can be easily tackled by means of a Metropolis–

Hastings step with a change of scale. Indeed, since the full conditional of Y ∗j is concentrated on

(0, X̄j ], the transformation Zj = g(Y ∗j ) := tan(π(Y ∗j /X̄j − 1/2)) is invertible and Zj is, thus,

updated through a Metropolis–Hastings step. This is implemented by choosing a proposal that

equals a normal distribution centered in the previous value of Zj and with fixed variance (in our

case 1). Finally, one updates Y ∗j by setting Y ∗j = g−1(Zj).
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Update α and c0

In view of (37), we let κα denote that Gamma (a, b) prior for α. The full conditional distribution

for α is then

π(α |Φ−α,X) ∝ κα(α) αn1+n2 exp

{
− c0
σ0

∫
Y

[(
1 +

d∑
`=1

(1 +K`(y))σ − 1

σ

)σ0

− 1

]
P0(dy)

}

×
k∏
j=1

∏d
`=1

(
1 +K`(Y

∗
j )
)−(n`,j−i`,jσ)

(
1 +

∑d
h=1[(1 +Kh(Y ∗j ))σ − 1]/σ

)i•j−σ0
.

The parameter α is updated through a random walk Metropolis–Hastings step. More precisely we

generate z = log(α) using, as a proposal, a normal distribution centered around the previously

accepted value of z with fixed variance 0.5 and, then, determine α by inverting the transformation.

Finally, since c0 is set as a gamma random variable with parameters (a0, b0), the full conditional

π(c0|Φ−c0 ,X) is available in closed form and equals

Ga
(
k + a0, b0 +

1

σ0

∫
Y

[(
1 +

d∑
`=1

(1 +K`(y))σ − 1

σ

)σ0

− 1

]
P0(dy)

)
.

which can be directly sampled from, once the integral defining the second parameter of the gamma

distribution is approximately evaluated through a plain Monte Carlo procedure.

A.6 Proof and algorithmic details of the conditional sampler

A.6.1 Derivation of the approximation (38)

In the present section we discuss how we can estimate the whole posterior distribution of the

survival functions once we have obtained samples of the trajectories of the CRMs (µ̃1, . . . , µ̃k) a

posteriori ; in particular we discuss how formula (38) has been obtained. Using the same notations

as in the Section 6.1, we will denote by Φ := ((Y`,T`)`, α, c0) the vector containing all the latent

variables of the model. We first notice that the posterior c.d.f. of the survival function S̃`(t) may

be rewritten as

P(S̃`(t) ≤ s|X) =

∫
Θ

P(S̃`(t) ≤ s|Φ,X)P(dΦ|X),

for any s ≥ 0 and ` = 1, . . . , d, where Θ denotes the state space of the whole vector of latent

variables Φ. Assume that N vectors of latent variables Φ1, . . . ,ΦN have been sampled through an

MCMC procedure, it is then possible to approximate the posterior c.d.f. as follows

P(S̃`(t) ≤ s|X) ≈ 1

N

N∑
i=1

P(S̃`(t) ≤ s|Φi,X). (63)

An approximation of the probability P(S̃`(t) ≤ s|Φi,X) appearing in (63) may be easily obtained

through its empirical c.d.f.. In fact, having generated M trajectories of µ̃`, conditionally given

Φi,X, and denoting them as µ̃
(i,1)
` , . . . , µ̃

(i,M)
` , the posterior c.d.f. appearing in (63) is approxi-

mated by

P(S̃`(t) ≤ s|X) ≈ 1

NM

N∑
i=1

M∑
k=1

11{
S̃

(i,k)
` (t)≤s

}, (64)
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where

S̃
(i,k)
` (t) := exp

(
−
∫ t

0

∫
Y

k(s; y)µ̃
(i,k)
` (dy)ds

)
.

A.6.2 Proof of Proposition 2

We prove the proposition for ` = 0, the general case proceeds in a similar fashion. Remind that

the CRM η∗0 may be represented as

η∗0 =
∑
h≥1

J
(0)
h δ

y
(0)
h

where the J
(0)
h ’s arise from the Wolpert and Ickstadt [44] representation. We further recall that

the jumps in the previous representation of η∗0 satisfy the equation

S
(0)
h =

∫ ∞
J

(0)
h

η(s, y
(0)
h )ds

being

η(s, y
(0)
h ) = c0e−s

∑d
`=1 ψ`(K`(y

(0)
h )) ρ0(s) ≤ ρ0(s)c0, (65)

where the very last inequality holds true because the functions ψ(`)( · )’s are positive. As a conse-

quence, thanks to (65), we get

S
(0)
h ≤ c0

∫ ∞
J

(0)
h

ρ0(s)ds. (66)

Now recall that J̃
(0)
h is implicitly defined by the equation

S
(0)
h = c0

∫ ∞
J̃

(0)
h

ρ0(s)ds, (67)

whose solution uniquely exists, indeed S
(0)
h > 0 and ρ0(s) is such that

∫∞
0
ρ0(s)ds = +∞. Therefore

we are now provided with two sequences of jumps {J (0)
h }h≥1 and {J̃ (0)

h }h≥1, which satisfy the

properties in the statement of the Proposition:

(a) {J̃ (0)
h } is monotonically decreasing.

Indeed, since S
(0)
h are the points of a Poisson process, if h1 < h2 then S

(0)
h1
≤ S

(0)
h2

, which

implies that (see (67)) ∫ ∞
J̃

(0)
h1

ρ0(s)ds ≤
∫ ∞
J̃

(0)
h2

ρ0(s)ds

which finally gets J̃
(0)
h1
≥ J̃ (0)

h2
.

(b) J
(0)
h ≤ J̃ (0)

h for any h ≥ 1.

Putting equality (67) in (66), we obtain∫ ∞
J̃

(0)
h

ρ0(s)ds ≤
∫ ∞
J

(0)
h

ρ0(s)ds,

which is true iff J̃
(0)
h ≥ J (0)

h , for every h ≥ 1.
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A.6.3 Conditional sampler for hierarchies of generalized gamma processes

We will specialize the general algorithm developed in Section 6.2 when each µ̃` is a general-

ized gamma CRM, i.e. ρ`(s) = (Γ(1 − σ))−1e−s/s1+σ for ` = 1, . . . , d, and ρ0(s) = (Γ(1 −
σ0))−1e−s/s1+σ0 . In the sequel we will denote by

Γa(x) :=
1

Γ(a)

∫ ∞
x

ta−1e−tdt

the incomplete gamma function for any a > 0 and x > 0. The steps of the algorithm are described

below.

(1) Generate µ̃0 from its posterior distribution, which is described right before Theorem 7,

namely:

(1.a) generate the random jumps Ij , as j = 1, . . . , k, from a gamma distribution

Ij ∼ Gam
(
i•j − σ0, 1 + σ−1

d∑
`=1

[(1 +K`(Y
∗
j ))σ − 1]

)
(1.b) generate η∗0 using the algorithm developed by Wolpert and Ickstadt [44], i.e. fix a threshold

level ε > 0 and proceed with the following steps:

– generate the atom of the CRM y
(0)
h ∼ P0;

– generate the waiting times S
(0)
h of a standard Poisson process, that is to say S

(0)
h −

S
(0)
h−1 are independent and identically distributed exponential random variables with

unit mean;

– determine the jump J
(0)
h by inverting the Lévy intensity, i.e. solve the equation

S
(0)
h Γ(1− σ0)σ0

[1 +
∑d
`=1 ψ`(K`(y

(0)
h ))]σ0c0

=
exp{−J (0)

h [1 +
∑d
`=1 ψ`(K`(y

(0)
h ))]}

[1 +
∑d
`=1 ψ`(K`(y

(0)
h ))]σ0(J

(0)
h )σ0

− Γ(1− σ0)Γ1−σ0(J
(0)
h [1 +

d∑
`=1

ψ`(K`(y
(0)
h ))]),

(68)

note that ψ`(u) = σ−1[(u + 1)σ − 1] for any ` = 1, . . . , d, we also point out that one

may find J
(0)
h in equation (68) resorting to a suitable numerical method (e.g. bisection

method);

– sample an additional jump J̃
(0)
h by inverting the equation

S
(0)
h Γ(1− σ0)σ0

c0
=

e−J̃
(0)
h

(J̃
(0)
h )σ0

− Γ(1− σ0)Γ1−σ0(J̃
(0)
h )

and stop the procedure if J̃
(0)
h ≤ ε.

(1.c) Evaluate an approximate draw of µ̃∗0

µ̃∗0 =

Hε∑
h=1

J
(0)
h δ

y
(0)
h

+

k∑
j=1

IjδY ∗j .
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(2) Generate µ̃` given µ̃∗0,X, more precisely:

(2.a) generate the random jumps J`,j,t from a Gamma distribution

J`,j,t ∼ Gam(q`,j,t − σ,K`(Y
∗
`,j) + 1).

(2.b) generate the CRM µ̃∗` using the posterior representation given in Theorem 7 and the algorithm

by Wolpert and Ickstadt [44], namely:

– generate the atom of the CRM y
(`)
h ∼ P ∗0 , where P ∗0 is the probability measure obtained

from the normalization of the draw of µ̃∗0 in (1.c);

– generate the waiting times S
(`)
h of a standard Poisson process, that is to say S

(`)
h −

S
(`)
h−1 are independent and identically distributed exponential random variables with

unit mean;

– determine the jump J
(`)
h by inverting the Lévy intensity (31), i.e. solve the equation

S
(0)
h Γ(1− σ)σ

(1 +K`(y
(`)
h ))σ c̃

=
exp{−J (`)

h (1 +K`(y
(`)
h ))}

(1 +K`(y
(`)
h ))σ(J

(`)
h )σ

− Γ(1− σ)Γ1−σ(J
(`)
h (1 +K`(y

(`)
h ))),

being c̃ :=
∑Hε

h=1 J
(0)
h δ

y
(0)
h

+
∑k
j=1 IjδY ∗j the total mass of µ̃∗0;

– sample an additional jump J̃
(`)
h solving the equation

S
(`)
h Γ(1− σ)σ

c̃
=

e−J̃
(`)
h

(J̃
(`)
h )σ

− Γ(1− σ)Γ1−σ(J̃
(`)
h )

and stop the procedure if J̃
(`)
h ≤ ε.

(2.c) Evaluate an approximate draw from the posterior of µ̃`, by putting

µ̃` ≈
Hε∑̀
h=1

J
(`)
h δ

y
(`)
h

+

k∑̀
j=1

i`,j∑
t=1

J`,j,tδY ∗`,j . (69)

A.7 Covariates dependent and censored data: an illustration

Here we discuss how to adapt the model in presence of covariates and right–censored survival times:

the results we have stated for the case where only exact data without covariates are recorded can

be easily extended to this more general setting. We then present an application to tumor survival

data in Subsection A.7.1

Suppose d partially exchangeable samples in (9) X` = (X`,1, · · · , X`,n`), for ` = 1, . . . , d, are

available together with their individuals’ covariates across all d samples {z` : ` = 1, . . . , d} =

{(z`,1, · · · , z`,n`) : ` = 1, . . . , d} , with each z`,i taking values in a set Z ⊂ Rp. For instance,

X` may be a vector of survival times of patients treated at the `–th hospital and affected by

different tumors. We include the covariate information via an exponential term in the mixture

representation of the hazard (8). More specifically, our proposal is based on a Cox regression
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model that defines a semiparametric prior for the hazard rate functions of each individual sample

as

h̃`(t; z) = eβ`·z
∫
Y

k(t; y)µ̃`(dy),

where β` ·z denotes the scalar product between the vector of predictors and the associated covari-

ates. The survival function for each group ` is thus given by

S̃`(t, z) = exp

{
−
∫
Y

K
(`)
t (y,z)µ̃`(dy)

}
where now K

(`)
t (y,z) := eβ`·z

∫ t
0
k(s; y) ds for each ` = 1, · · · , d. The likelihood function (22) in

presence of covariates is the following

L (µ̃,β;X) = κβ(β) e−
∑d
`=1

∫
Y
K`(y,z`)µ̃`(dy)

d∏
`=1

n∏̀
i=1

eβ`·z`,i
∫
Y

k(X`,i; y) µ̃`(dy) (70)

where z` = (z`,1, . . . ,z`,n`), with each z`,i in Z, and

K`(y,z`) :=

n∑̀
i=1

K
(`)
X`,i

(y,z`,i) = eβ`·z`,i
n∑̀
i=1

∫ X`,i

0

k(s, y) ds (71)

for ` = 1, . . . , d, and we have denoted by κβ the prior distribution of the β coefficients. The

likelihood (70) differs from (22) for the presence of K`(y,z`) in place of K`(y) and for the presence

of the exponential term eβ`·z`,i , which however depends only on the predictor β` and not on the

other variables. Then it is not difficult to adapt all the results in our paper to the case of covariates

dependent data.

We now discuss a further extension to accommodate for censored observations. First of all,

we have to define the censoring time C`,i corresponding to the observation X`,i, and the indicator

variable ∆`,i = 11(0,C`,i](X`,i) which is ∆`,i = 0 if X`,i is censored, ∆`,i = 1 otherwise. Here the

observed survival time turns out to be X ′`,i = min {X`,i, C`,i} and the actual observations, then,

are summarized through D` = {(X ′`,j ,∆`,j) : j = 1, . . . , n`} for any ` = 1, . . . , d. For the sake

of simplifying notation we define D := {D` : ` = 1, . . . , d}. Taking into account the possible

presence of right–censored observations, the expression of the likelihood (70) modifies as follows

L (µ̃,β;D) = κβ(β) exp
(
−

d∑
`=1

∫
Y

K`(y,z`)µ̃`(dy)
)

×
d∏
`=1

∏
{i: ∆`,i=1}

eβ`·z`,i
∫
Y

k(X ′`,i; y) µ̃`(dy).

(72)

From (72) it is apparent that the censored data affect the likelihood only through K` in the

exponential term, whereas the product component is unchanged. Therefore the results of the

paper can be easily adapted to deal with this more general setting.

We now consider an application of our model in presence of right–censored survival times. The

results are base on 50, 000 iterations of the MCMC algorithm with a burn–in period of 20, 000

sweeps: the number of iterations allow the convergence of all the MCMC procedures.
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Table 2: The estimated values of β` for the different groups.

Squamous small adeno large
Standard -0.9906 -0.6499 -0.8003 -1.1296

Test -2.2800 -0.6359 -0.7226 -1.3120

A.7.1 Tumor survival data

In this section we refer to a real dataset discussed in [40], who studied 137 advanced lung cancer

patients as collected by the Veterans Administration Lung Cancer Study Group. Patients are ran-

domized according to one of two chemotherapeutic agents (standard and test). Tumors are further

classified into one of four broad groups (squamous, small, adeno and large). Hence we assume to

be provided with d = 8 groups of survival times, each one is characterized by the tumor type and

the type of treatment. Data include censored observations and a set of covariates, here we consider

only the medical status on the normalized scale [0, 1], the others not need to be included in the

model as proved in [40]. Hence we have that d = 8, Z = [0, 1] and β` ∈ R, for each ` = 1, . . . , 8.

We have set a = a0 = 1, b = b0 = 1 to obtain a prior distribution for each Si assigning positive

probability to survival times in the interval [0, 1000], which contains the data. The base measure

P0 is a uniform distribution over [0, T ], being T = 1000; finally σ and σ0 are fixed and equal 0.25.

We consider independent priors for each β`, in particular β` ∼ N(0, 1), and we have also modified

the MCMC algorithm to update the β`’s from their full conditional distributions.

The estimated survival functions are shown in Figure 4 with the corresponding 95% credible inter-

vals estimated using the conditional algorithm of Section 6.2, and the value of the covariate equals

z = 0.5. The survival functions have been evaluated using a suitable adaptation of Corollary 5 to

this more general framework. It can be seen that the test treatment is better for squamous, but not

for the other types of tumors. The values of the covariates are reported in Table 2. The β`’s are

negative, as expected, indeed if the medical status increases, then the survival function increases.

Moreover the acceptance rates for α and the β`’s of the Metropolis–Hastings step, embedded within

the Gibbs sampler, are 39% and (60%, 58%, 57%, 59%, 54%, 57%, 55%, 58%). Finally, in order to

show that the MCMC does converge, we report here some trace plots. Figure 5 reports trace plots

of the β`’s, whereas Figure 6 depicts the two trace plots for α and c0. All the figures display good

mixing properties.
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Figure 4: Survival functions for the different types of tumors, from the top on the left we have: squamous,
small, adeno and large. In blue the test treatment and in red the standard one when the medical status
equals 0.5.
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Figure 5: Trace plots of the β`’s, in blue the test treatment and in red the standard one.

(a) (b)

Figure 6: 6(a): trace plot referring to c0. 6(b): trace plot referring to α.
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based on Lévy-driven processes. Lifetime Data Anal. 11, 529–543.

[38] Nieto, L.E. (2014) Bayesian semiparametric analysis of short- and long-term hazard ratios

with covariates. Comput. Statist. Data Anal. 71, 477–490.

[39] Peccati, G. and Prünster, I. (2008) Linear and quadratic functionals of random hazard

rates: an asymptotic analysis. Ann. Appl. Probab. 18, 1910–1943.

[40] Prentice, R.L. (1973) Exponential Survivals with Censoring and Explanatory Variables.

Biometrika 60, 279–288.
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