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Editor's note

We started to work on Covid Economics on 23 March. The first submissions 
arrived on 26 March. Since then we have received 101 papers, an average of 5.6 
submissions per day.

The Editorial Board includes 33 reviewers. They are asked to evaluate papers 
in less than 48 hours. Many react within 2 hours and, with very few exceptions, 
I send the editorial decision to the submitting author well within the 48 hours 
period, often in one day or less. 

So far, 39 papers have been accepted and 47 have been rejected. 
It has taken some time between the day when a paper is accepted and when it 

is published. In order to reduce this lag and the accompanying backlog, starting 
with the third issue, we have stopped typesetting the papers, a time-consuming 
process. The papers now appear as submitted. We should be able to publish at 
least two issues per week and thus quickly eliminate the backlog so that papers 
will be published within days of their acceptance.

The response of the economics profession to the Covid-19 pandemic is 
impressive. I thank the members of the Editorial Board, whom I relentlessly 
solicit (on average once every six days), for the quality of their reviews, their 
speed of reaction, and their dedication toward this original venture. The staff of 
CEPR, who were instantaneously mobilized, should be warmly congratulated as 
well. 

Charles Wyplosz
Editor
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Aggregate and firm-level stock 
returns during pandemics,  
in real time1

Laura Alfaro,2 Anusha Chari,3 Andrew Greenland4 and  
Peter K. Schott5

Date submitted: 3 April 2020; Date accepted: 4 April 2020

 We exploit unexpected changes in the trajectory of pandemics to quantify their 
effects on aggregate and firm-level stock returns. We find that an unanticipated 
doubling of predicted infections during the Covid-19 and SARS outbreaks 
forecasts aggregate equity market value declines of 4% to 11%. Firm returns 
are sensitive to this information even after accounting for their co-movement 
with the market, and vary widely both within and across sectors. Our results 
imply a decline in returns' reaction to new infections as the trajectory of the 
pandemic becomes clearer.

1	 This paper is preliminary and incomplete. Missing citations and discussions of related research will be be 
added in future drafts. We thank Nick Barberis, Lorenzo Caliendo, Teresa Fort, Mihai Ion, and Ed Kaplan for 
comments and suggestions. We thank Alex Schott and Mengru Wang for excellent research assistance.

2	 Warren Alpert Professor of Business Administration, Harvard Business School.
3	 Professor of Economics and Finance, University of North Carolina at Chapel Hill.
4	 Assistant Professor of Economics, Elon University.
5	 Professor of Economics, Yale School of Management.
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1 Introduction

We show that unanticipated changes in predicted infections based on daily re-estimation of simple
epidemiological models of infectious disease forecast stock returns during the SARS and COVID-19
pandemics. This relationship is consistent with investors using such models to update their beliefs
about the economic severity of the outbreak, in real time, as they attempt to gauge risk in the face
of uncertainty (Knight, 1921; Keynes, 1937).

We emphasize that we are not epidemiologists and are not outlining a method to characterize
the true path of pandemics. We also are not trying to infer the efficacy of various intervention
strategies.1 Such efforts, while of immense value, require data which may not be available until after
the outbreak is substantially underway. Rather, we view real-time changes in the predicted severity
of an outbreak as potentially useful summary statistics of its ultimate consequences, especially
before the true model is revealed.

We model cumulative infections as either exponential or logistic. We re-estimate the parameters
of these models each day of the outbreak using information on reported cases up to that day (which
arrives after trading closes on that day). We then use these parameters to compute the predicted
number of cases for the next trading day t using the cumulative counts reported after closing on days
t− 1 and t− 2. The difference in these forecasts reflect unanticipated changes in the trajectory of
the pandemic due to newly available information. We examine how these differences in projections
covary with aggregate market returns on day t.

Applying this procedure to the United States during the current COVID-19 pandemic and
to Hong Kong during the 2003 SARS outbreak, we find that sharper increases in predictions
are associated with larger declines in market returns.2 In the United States thus far, coefficient
estimates imply declines of 4 to 10 percent in the Wilshire 5000 index in response to a doubling
of predicted COVID-19 infections. We find a similar relationship during SARS, where a doubling
of projected cases implies declines of 8 to 11 percent in the Hong Kong stock market’s Hang Seng
index. These findings suggest equity markets become less responsive to new cases the more they
adhere to previously estimated parameters.

We find that changes in forecasts retain their aggregate-market explanatory power even after
controlling for a simpler summary of the severity of the outbreak, the most recent increase in
reported cases. In contrast to this simple measure, estimated model parameters explicitly predict
the eventual number of people that may be infected (e.g., the “carrying capacity” under the logistic
model), and the speed with which that number may be reached. For example, a jump in estimated
share of the population that ultimately will be infected suggests a larger labor supply shock, while
an increase in the estimated growth rate of infections has implications for healthcare capacity
constraints. We show that our results for the United States are robust to the inclusion of coarse
controls for changes in federal and local policy.

Using disaggregate data, we find that individual firms’ returns are sensitive to unanticipated
increases in predicted infections, and that this sensitivity persists even after accounting for their co-
movement with the market (Sharpe, 1964a). While there is substantial heterogeneity in firm returns
within sectors, average returns by sector vary in an intuitive way. Firms operating in industries
more heavily affected by social distancing – Accommodations, Entertainment and Transportation
– exhibit the greatest exposure to the pandemic and the largest declines in market value. Firms
in Education, Professional Services and Finance, by contrast, are less sensitive, likely due to their

1Piguillem and Shi (2020) and Berger et al. (2020), by contrast, use estimates of micro-founded SEIR models to
argue that expanded testing generates substantial welfare gains relative to quarantines.

2While our results at present focus on SARS in Hong Kong and COVID-19 in the United States, we are expanding
the set of countries we analyze during the latter, and have begun a similar analysis for the 2009 H1N1 outbreak.

3
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 2

-2
4



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

greater ability to continue operations online.
Our analysis contributes to several literatures. First, we add to the very large body of research

on asset pricing that examines the predictability of stock returns. Seminal papers by Campbell and
Shiller (1988), Fama and French (1988) and others show that factors ranging from valuation ratios
to corporate payout and financing policies forecast stock returns. In this paper we draw upon
standard epidemiological models to infer how investors might update their beliefs about disease
progression.

Second, our examination of firm returns in response to changes in model predictions contributes
to numerous studies in corporate finance, pioneered by Ball and Brown (1968) and Fama et al.
(1969), which use plausible changes in investors’ information sets to understand market dynamics.
In a typical event study, researchers examine specific events, such as an earnings announcements,
that may release information relevant to investors’ beliefs about firm market value. Firms’ “ab-
normal” returns relative to a benchmark asset pricing model during such events summarize these
changes expectations.3 Here, we demonstrate that plausibly exogenous changes in the daily infor-
mation set regarding the epidemic’s trajectory are correlated with firms’ stock returns.4

Third, our paper contributes to the very large literature in public health which attempts to
explain the trajectory of infections during a pandemic.5 In contrast to that research, we link
changes in the estimated parameters and predictions of these models in real time to economic
outcomes. To reiterate, we do not claim that the evolution of a pandemic must follow a purely
exponential or logistic growth path. Rather, we explore whether the predictions of these models
are informative of economic conditions, as manifest in their correlation with the market.6 An
interesting question for further research is the extent to which feedback from the predicted health
and economic consequences of the outbreak affects future infections. For example, dire enough
anticipated economic consequences might influence the set of policies used to combat the outbreak,
thereby altering its trajectory (Lucas, 1976).

Finally, this paper relates to a rapidly emerging literature studying the economic consequences of
COVID-19, and a more established literature investigating earlier pandemics. Barro et al. (2020),
for example, argue that the decline in output during the 1918 to 1920 “Spanish Flu” epidemic
provide a plausible mode of the economic consequences of COVID-19. Our analysis complements
(Ramelli and Wagner, 2020), who focus on debt and international supply chains as key channels of
exposure to the COVID-19 epidemic, and Gormsen and Koijen (2020), who use the performance
of US futures’ markets during the outbreak to infer bounds on future GDP growth. Analyzing
newspaper articles since 1900, Baker et al. (2020) find that the COVID-19 pandemic is the first
infectious disease outbreak whose mention in the press is associated with a large daily market
movement.

This paper proceeds as follows. Section 2 provides a brief description of infectious disease
models and how investors might link the predictions of these models and to asset prices. Sections
3 and 4 apply our framework to COVID-19 and SARS. Section 5 concludes.

3Wang et al. (2013), for example, examines how the stocks of Taiwanese biotechnology companies respond to a
series of infectious disease outbreaks.

4Greenland et al. (2019) exploit a change in US trade policy to identify firms’ exposure to greater import compe-
tition from China.

5Early contributions to this literature include Ross (1911), Kermack and McKendrick (1927), Kermack and McK-
endrick (1937) and Richards (1959).

6For an interesting discussion on the complexities associated with modeling an outbreak in real time, see https:

//fivethirtyeight.com/features/why-its-so-freaking-hard-to-make-a-good-covid-19-model/.
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2 Modeling

In this section we outline how infectious disease outbreaks can be modeled in real time, and how
investors might make use of the model’s estimated parameters.

2.1 Simple Models of Infectious Diseases

Exponential and logistic growth models are frequently used in biology and epidemiology to model
infection and mortality. An exponential model,

Ct = ae(rt) (1)

predicts the cumulative number of cases on day t, Ct, as a function of the growth rate of infections
in that country, r, the initial number of infected persons a, and time. In an exponential model, the
number of infections per day continues to climb indefinitely. While clearly unrealistic ex-post, the
exponential growth model is consistent with early stage pandemic growth rates.

In a logistic model (Richards, 1959), by contrast, the growth in infections grows exponentially
initially, but then declines as the stock of infections approaches the population’s “carrying-capacity,”
i.e., the cumulative number of people that ultimately will be infected. Carrying capacity is generally
less than the full population. The cumulative number of infections on day t is given by

Ct =
k

1 + ce(−rt) , (2)

where k is the carrying, c is a shift parameter (characterizing the number of initially infected
persons) and r is the growth rate. Figure 1 provides an example of logistic infections for three
different growth rates (2.5, 5 and and 7.5 percent) assuming k = 250 and c = 50. For each growth
rate, we plot both the number of new cases each day (right axis) and the cumulative number of
cases up to each day (left axis). As indicated in the figure, higher growth rates both shorten the
time required to reach carrying capacity and increase the peak number of infections.

Figure 1: New and Cumulative New Cases Under the Logistic Model

Source: Authors’ calculations. Figure compares new and cumu-
lative infections from days 1 to 200 assuming a logistic model
with k = 250 and c = 50 and noted growth rates (r).

Given data on the actual evolution of infections, the two parameters in equation 1 and the
three parameters in equation 2 can be updated each day using the sequence of infections up to that
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date. We estimate these sequences using STATA’s nonlinear least squares command (nl).7 This
command requires a vector of starting values, one for each parameter to be estimated.

We encounter two problems during our estimation of logistic functions in our applications below.
First, estimates for each day t are sensitive to the choice of starting values for that day, particularly
in the initial days of the pandemic. This feature of the estimation is not surprising: when the
number of cases is relatively small, the data are consistent with a wide range of logistic curves, and
the objective function across them may be relatively flat.

To increase the likelihood that our parameter estimates represent the global solution, we estimate
500 epidemiological models for each day, 250 for the logistic case, and 250 for the exponential case.
In each iteration we use a different vector of starting values. For each day t, our first starting values
are the estimated coefficients from the prior day, if available.8 In the case of the logistic model, we
then conduct a grid search defined by all triples {r, c, k} such that

r ∈ {0.01, 0.21, 0.41, 0.61, 0.81}

c ∈ {ĉt−1, 2 ∗ ĉt−1, 4 ∗ ĉt−1, . . . , 10 ∗ ĉt−1}

k ∈ {k̂t−1, 2 ∗ k̂t−1, 3 ∗ k̂t−1, . . . , 10 ∗ k̂t−1

where hats over variables indicate prior estimates, and superscripts indicate the day on which they
are estimated. If more than one of these initial starting values produces estimates, we choose the
parameters from the model with the highest adjusted R2. We estimate the exponential model
similarly.

The second, more interesting, problem that we encounter during estimation of the logistic
outbreak curves is that STATA’s nl routine may fail to converge. This failure generally occurs in
the transition from relatively slow initial growth to subsequent, more obviously exponential growth
as the pandemic proceeds. During this phase of the outbreak, the growth in the number of new
cases each day is too large to fit a logistic function, i.e., the drop in the growth of new cases
necessary to estimate a carrying capacity has not yet occurred.9

In our application below, we re-estimate both exponential and logistic parameters each day of
an outbreak. To fix ideas, we simulate a 200-day cumulative logistic disease outbreak by generating
a sequence of Ct = k

1+ce(−rt) + |εt| for t ∈ (1 : 200), assuming k = 250, r = .025, c = 50 and |εt|
is the absolute value of a draw from a standard normal distribution. For each day t, we estimate
logistic and exponential parameters using the sequence of simulated infections up to that day.

Figure 2 displays the results. Both sets of parameter estimates are volatile in the early stage
of the outbreak. Logistic parameters are not available from days 47 through 78 due to lack on
convergence, but settle down shortly thereafter, as the data increasingly conform to underlying
logistic path. Exponential parameters are available for each day, but do not settle down as time
goes on. The intuition for the unending increase in ât and decline in r̂t is as follows: because the
simulated data are logistic, the only way to reconcile them with an exponential function is to have
the estimate of initial exposure (ât) rise as the estimate of the growth rate, r̂t, drops.

7We are exploring other estimation procedures for use in a future draft, including use of SIR and SEIR models,
e.g., Li et al. (2020) and Atkeson (2020).

8If the prior day did not converge, we use the most recent prior day for which we have estimates.
9In a future draft we will consider an estimation strategy that nests these functions.
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Figure 2: Parameter Estimates Using Simulated Logistic Pandemic

Source: authors’ calculations. The left panel plots the sequence of logistic parameters, k̂t, ĉt and r̂t, estimated
using the information up to each day t on simulated data (see text). Right panel of Figure plots the analogous
sequence of exponential parameters, ât and r̂t, using the same data. Missing estimates indicate lack of
convergence (see text). Circles represent estimates. Solid lines connect estimates.

Figure 3 compares predicted cumulative cases for each model for each day t using the parameter

estimates from day t − 1. We denote these predictions Ĉt−1
t , where the superscript t − 1 refers to

the timing of the information used to make the prediction, and the subscript refers to the day
being predicted. As illustrated in the figure, predictions for the two models line up reasonably
well during the initial phase of the pandemic. Their 95 percent confidence intervals (not shown)
cease overlapping on t = 104. After this point, the exponential model continues to project an
ever-increasing number of infections, while the logistic model’s predictions head towards the “true”
carrying capacity of 250.

Figure 3: Simulated Pandemic Daily Predictions (Ĉt−1
t )

Source: authors’ calculations. Figure compares simulated “actual” cumulative in-

fections to predicted infections (Ĉt−1
t ) under the logistic and exponential models.

The prediction for each day t is based on the information available up to day t− 1.
The two vertical lines in the figure note when the 95 percent confidence intervals
of the two models’ predictions (not shown) initially diverge, and when the logistic
model’s estimates first indicate that its inflection point has passed.
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2.2 Modeling Economic Impact

Predicted cumulative cases for day t based on day t− 1 information, Ĉt−1
t , can be compared to the

day t forecast made with day t− 2 information, Ĉt−2
t . The log difference in these predictions,

∆ln

(
Ĉ−2,−1
t

)
= ln

(
Ĉt−1
t

)
− ln

(
Ĉt−2
t

)
, (3)

captures unexpected changes in severity of the outbreak between these two days.10 This potentially
noisy “news” may be an important input into investors’ assessment of the economic impact of a
pandemic. For example, a jump in estimated carrying capacity suggests a larger ultimate supply
shock in terms of lost labor supply, while an uptick in the estimated growth rate has implications
for healthcare capacity constraints.11

In our application below, we compare aggregate equity returns on day t to the difference in
forecasts for that day using an OLS regression,

∆ln (Indext) = α+ γ1 ∗∆ln

(
Ĉ−2,−1
t

)
+ γ2Xt + εt. (4)

where ∆ln (Indext) is the daily log change in either opening-to-opening or closing-to-closing prices
in the aggregate market index of country i, and Xt represents a vector of country controls, e.g.,
changes in policy.12

We assess firm j’s sensitivity to the pandemic via an analogous specification,

Rjt = δ + βC
−2−1

j ∗∆ln

(
Ĉ−2,−1
t

)
+ βMKT

j ∗∆ln (Indext) + εt, (5)

where the dependent variable is the daily return of firm j on day t. The second term on the right
hand side accounts for the possibility that COVID-19 is no different than any other aggregate
shock, and that a firm’s return during the pandemic merely reflects its more general co-movement
with the market (Sharpe, 1964b). In our baseline assessment of firms’ exposure to the pandemic,
we do not include this second covariate. When it is included, βC

−2−1

j represents the firm’s return
in excess of its covariance with the market.

3 Application to COVID-19

In this section we provide real-time estimates of the outbreak parameters and infection predictions
for COVID-19 in the United States. We then examine the relationship between changes in these
predictions and both aggregate and firm-level returns in the United States.

10Timing is as follows. The number of infections on day t− 1 is observed after the market closes on that day but

before the market opens on day t. This day t− 1 information is used to predict the number of cases for day t, Ĉt−1
t ,

which is compared to Ĉt−2
t .

11As noted in the introduction, the evolution of these parameters may also trigger policy ”events” either directly
or as a result of their economic consequences, which may alter the underlying parameters of the outbreak. We do
not currently account for such feedback, but plan to do so in a future draft.

12We are currently exploring more flexible specifications, e.g., those which might capture the switch between
exponential and logistic models, as well as those which reveal any over- or undershooting of reactions.
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3.1 Epidemiological Model Paremeters

Data on the cumulative number of COVID-19 cases in the United States as of each day are from
the Johns Hopkins Coronavirus Resource Center.13 The first COVID-19 case appeared in China
in November of 2019, while the first cases in the United States and Italy appeared on January 20,
2020. Our analysis begins on January 22, 2020, the first day that the World Health Organization
began issuing situation reports detailing new case emergence internationally. Appendix Figure A.1
displays the cumulative reported infections in the United States from January 22 through April 3,
2020.

We estimate logistic and exponential parameters (equations 1 and 2) for the United States by
day as discussed in Section 2.1. The daily parameter estimates for the logistic estimation, k̂t, ĉt
and r̂t are displayed the left panel of Figure 4, while those for the exponential model, ât and r̂t, are
reported in the right panel. Gaps in the time series in either figure represent lack of convergence.

Figure 4: Parameter Estimates for COVID-19

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. The left panel

plots the sequence of logistic parameters, k̂it , ĉit and r̂it , estimated using the cumulative in-
fections in the US up to each day t. Right panel plots the analogous sequence of exponential
parameters, âit and r̂it , using the same data. Missing estimates indicate lack of convergence
(see text). Circles represent estimates. Solid lines connect estimates. Data currently extend to
Friday March 27, 2020.

Logistic parameter estimates for the United States fail to converge after February 23, when
the number of cases jumps abruptly from 15 to 51. That no parameter estimates are available
after this date suggests that growth in new cases observed thus far is inconsistent with a leveling
off, or carrying capacity, at least according to our estimation method. The exponential model, by
contrast, converges for all days. As a result, we focus on the exponential model for the remainder
of our analysis.

As the sharp changes in US exponential model parameters suggest, predicted cumulative infec-
tions vary substantially depending upon the day in which the underlying parameters are estimated.
Figure 5 highlights this variability by comparing predicted cumulative infections based on the in-
formation available as of February 29 and March 7, 13, 21 and 28. The left panel displays these
projections in levels, while the right panel uses a log scale. The five colored lines in the figure trace
out each set of predictions. Dashed lines highlight 95 percent confidence intervals around these
predictions. Finally, the confidence intervals are shaded for all days following the day upon which
the prediction is based. To promote readability, we restrict the figure to the period after February
29. The black, solid line in the figure represents actual reported cases.

Predicted cumulative infections based on information as of February 29 are strikingly lower
than predictions based on information as of March 21 due to the jump in reported cases between

13These data can be downloaded from https://github.com/CSSEGISandData/COVID-19 and visualized at https:

//coronavirus.jhu.edu/map.html.
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Figure 5: Predicted Cumulative Cases Using Different Days’ Estimates (COVID-19)

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. Figure displays
predicted cases for the United States from March 18 onwards using the cumulative reported
cases as of five dates: February 29, March 7, March 13, March 21 and March 28. Dashed lines
represent 95 percent confidence intervals. Confidence intervals are shaded for all days after the
information upon which the predictions are based.

those days. Indeed, according to the parameter estimates from March 21, US cases would number
close to 300 thousand by the end of March. Equally striking is the downward shift in predicted
cumulative cases that occurs between March 21 and March 28. It is precisely these kinds of changes
in predicted cumulative cases that our analysis seeks to exploit.

Figure 6 uses the logistic parameter estimates in Figure 4 to plot Ĉt−1
t and Ĉt−2

t for the expo-
nential model, i.e., the predicted number of cases on day t using the information up to day t − 1
and day t− 2. Magnitudes for these cumulative cases are reported on the left axis. The right axis

reports ∆(Ĉ−2,−1
t ), the log difference in these two predictions. Intuitively, Ĉt−1

t and Ĉt−2
t for the

most part track each other closely. The former rises above the latter on days when reported cases
jump, while the reverse happens when new cases are relatively flat.

Figure 6: Daily Logistic Predictions (Ĉt−1
t and ∆ln(Ĉ−2,−1

t )) for COVID-19

Source: Source: Johns Hopkins Coronavirus Resource Center and au-
thors’ calculations. Left axis reports the predicted cumulative cases

for day t using information as of day t− 1, Ĉt−1
t , and day t− 2, Ĉt−2

t ,
under the exponential model. Right axis reports the log change in

these two predictions, ∆ln(Ĉ−2,−1
t ). Data currently extend to Friday

April 3, 2020.

10
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 2

-2
4



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

3.2 Aggregate US Returns During COVID-19

We examine the link between changes in model predictions and aggregate US stock via the Wilshire
5000 index.14 We choose this index for its breadth, but note that results are qualitatively similar
for other US market indexes.

Figure 7 plots the daily log change in the Wilshire 5000 index against unanticipated increases

in cases, ∆ln(Ĉ−2,−1
t ). Their negative relationship indicates that returns are higher when the

difference in predictions is lower, and vice versa. In particular, the approximate 20 percent decline
in predicted cases that occurs on March 24 coincides with a greater than 9 percent growth in the
market index.

Figure 7: Change in Predicted COVID-19 Cases (∆Ĉ−2,−1
t ) vs Aggregate Market Returns

Source: Johns Hopkins Coronavirus Resource Center, Yahoo Finance and authors’ calculations.
Figure displays the daily log change in the Wilshire 5000 index against the log change in pre-
dicted cases under the exponential model for day t based on day t−1 and day t−2 information.
Sample period is January 22 to April 3, 2020.

We investigate the relationship displayed in Figure 7 formally by estimating equation 4 via OLS.
For each day, we compute ∆ln (Indext) as the daily log change in either the closing or opening
values of the Wilshire 5000. The estimation period consists of 47 trading days from January 22 to
April 3.15 The unit of observation is one day.

Coefficient estimates as well as robust standard errors are reported in Tables 1 and 2, where the
former focuses on the daily opening-to-opening return and the latter on the daily closing-to-closing
return. Coefficient estimates in the first column of each table indicate that a doubling of predicted
cases using information from day t − 1 versus day t − 2 leads to average declines of -7.0 and -3.8
percent for closing and opening prices respectively. These effects are statistically significant at
conventional levels.

In the second and subsequent columns of each table, we adjust the dependent and independent
variables by the number of days since the last trading day. This adjustment insures that changes
which transpire across weekends and holidays, when markets are closed, are not spuriously large
compared to those that take place across successive calendar days. As indicated in the second
column of each table, relationships remain statistically significant at conventional levels and now

14Data for the Wilshire 5000 are downloaded from Yahoo Finance.
15The actual number of trading days between these two dates is 50. We lose 3 days due to lack of estimates in the

initial days of the outbreak.
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Table 1: Changes in Predicted COVID-19 Cases (∆Ĉ−1,−2
t ) vs Market Open Returns

(1) (2) (3) (4) (5) (6)
∆Ln(Open) ∆Ln(Open) ∆Ln(Open) ∆Ln(Open) ∆Ln(Open) ∆Ln(Open)

∆Ln(Ĉ−2,−1) -0.040∗∗∗ -0.049∗∗ -0.061∗∗ -0.063∗∗ -0.085∗∗ -0.055∗∗

(0.013) (0.024) (0.024) (0.025) (0.033) (0.025)

∆Ln(C−2,−1) 0.019 0.026 0.028 0.006
(0.028) (0.026) (0.026) (0.033)

I(∆SIndex) -0.014
(0.014)

∆Ln(SIndex) -0.055
(0.061)

Fiscal Stimulus 0.017
(0.013)

Constant -0.007∗ -0.005 -0.008∗∗ -0.007∗ -0.006 -0.008∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Observations 47 47 47 47 43 47
R2 0.084 0.069 0.078 0.121 0.144 0.118
Daily Adjustment N Y Y Y Y Y

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. ∆Ln(Opent) and
∆Ln(Closet) are the daily log changes in the opening (i.e., day t− 1 to day t open) and closing values

of the Wilshire 5000. ∆ln(Ĉ−2,−1
t ) is the change in predicted cases. ∆ln(C−2,−1

t ) is the change in
actual observed cases between days t− 2 and t− 1. ∆ln(C−1,0

t ) is the change in actual observed cases
between days t − 1 and t. Robust standard errors in parenthesis. Columns 2-6 divide all variables by
the number of days since the last observation (i.e. over weekends). Sample period is January 22 to
April 3, 2020.

have the interpretation of daily growth rates. Here, a doubling of predicted cases per day leads to
average declines of 8.6 percent for closing and 4.8 percent for opening prices.

In column 3 of each table, we examine whether the explanatory power of ∆Ĉ−2,−1
t remains

after controlling for a simple, local proxy of outbreak severity, the most recent change in reported
cases. We use a slightly different variable in each table to account for the timing of the opening and
closing returns. For the opening price regressions, we use ∆Ln(C−2,−1) under the assumption that
the only information available to predict the opening price on day t is the difference in reported
cases from days t− 2 and t− 1. For the closing price regressions, however, we use ∆Ln(C−1,0) to
informally allow for the possibility that, although day t cases are not officially available until after
closing, some information might “leak out” during day t trading.

In both cases, these measures are positive but not statistically significant at conventional lev-
els. Moreover, they have little impact on our coefficients of interest. These results suggest that
the primary role local increases in reported cases play in determining market value is through
their contribution to the overall sequence of reported infections, manifest in the estimated model
parameters.

In the final three columns of Tables 1 and 2 we examine the robustness of our results to including
coarse controls for policy. As the COVID-19 pandemic has unfolded in the United States, state and
local governments as well as the federal government have undertaken various measures to control
its spread and limit the economic burden the disease itself imposes. Enactment of such policies is
by definition correlated with the severity of the outbreak, and some of them may be designed to
stabilize equity markets, confounding our results.
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Table 2: Change in Predicted COVID-19 Cases (∆Ĉ−2,−1
t ) vs Market Close Returns

(1) (2) (3) (4) (5) (6)
∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close)

∆Ln(Ĉ−2,−1) -0.067∗∗ -0.080∗∗ -0.089∗∗∗ -0.093∗∗∗ -0.146∗∗∗ -0.089∗∗∗

(0.030) (0.030) (0.031) (0.034) (0.041) (0.032)

∆Ln(C−1,−0) 0.033 0.055 0.065∗ 0.034
(0.031) (0.037) (0.035) (0.032)

I(∆SIndex) -0.021
(0.018)

∆Ln(SIndex) -0.091
(0.076)

Fiscal Stimulus -0.005
(0.018)

Constant -0.009 -0.005 -0.010∗∗ -0.010∗∗ -0.010∗∗ -0.010∗∗

(0.006) (0.005) (0.004) (0.004) (0.004) (0.004)
Observations 47 47 47 47 43 47
R2 0.092 0.086 0.103 0.145 0.224 0.104
Daily Adjustment N Y Y Y Y Y

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. ∆Ln(Opent) and
∆Ln(Closet) are the daily log changes in the opening (i.e., day t− 1 to day t open) and closing values

of the Wilshire 5000. ∆ln(Ĉ−2,−1
t ) is the change in predicted cases for day t using information from

days t− 1 anfd t− 2. ∆ln(C−2,−1
t ) is the change in actual observed cases between days t− 2 and t− 1.

∆ln(C−1,0
t ) is the change in actual observed cases between days t − 1 and t. Robust standard errors

in parenthesis. Columns 2-6 divide all variables by the number of days since the last observation (i.e.
over weekends). Sample period is January 22 to April 3, 2020.

We consider two controls for policy. The first is a country-level index developed at Oxford
University, the Government Response Stringency Index (SIndex), which tracks travel restrictions,
trade patterns, school openings, social distancing and other such measures, by country and day.16

We make use of this index in two ways in columns 4 and 5 of Tables 1 and 2. First, we include
an indicator function I{∆SIndex} which takes a value equal to one if the index changes on day t.
Second, we use log changes in the index itself, ∆Ln(SIndex). As indicated in the tables, neither
covariate is statistically significant at conventional levels, and their inclusion has little impact on
the coefficient of interest.

Our second control for policy is a coarse measure of fiscal stimulus. This dummy variable is
set to one for four days (chosen by the authors) upon which major fiscal policies were enacted.
The “Coronavirus Preparedness and Response Supplemental Appropriations Act, 2020”, which
appropriated 8.3 billion dollars for preparations for the COVID-19 outbreak, was signed into law
on March 6. Then, from March 25 to March 27, Congress voted for and the President signed into
law the 2 trillion dollar “Coronavirus Aid, Relief, and Economic Security Act.” As reported in the
table, this dummy variable, too, is statistically insignificant at conventional levels, and exerts no
influence on the coefficient of interest.

Policy variables’ lack of statistical significance is somewhat puzzling. One explanation for this
outcome is that these measures are a function of the information contained in the cumulative
reported cases, and therefore retain no independent explanatory power. On the other hand, the
various government policies included in the SIndex may have offsetting effects. For example, while

16This index can be downloaded from https://www.bsg.ox.ac.uk/research/research-projects/

oxford-covid-19-government-response-tracker.
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social distancing measures might be interpreted by the market as a force that reduces the economic
severity of the crisis, they may also be taken as a signal that the crisis is worse than publicly
available data suggest. At present, we do not have the degrees of freedom to explore the impact of
individual elements of the this index, but plan to do so in a future draft when inclusion of additional
countries in the analysis allows for panel estimation.

3.3 Firm-Level US Returns During COVID-19

In this section we examine the relationship between unanticipated changes in predictions and returns
at the firm level. The sample period is January 22 to April 3, 2020. Data are taken from Bloomberg
and Yahoo finance.17 We link firms to balance sheet information in Compustat via their CUSIP
numbers. In the analysis that follows, we focus on the sample of 4070 firms incorporated in the
United States for which we observe returns. These firms span 505 six-digit NAICS classifications
and 249 4-digit NAICS classifications.

As a baseline, we assess firms’ exposure to COVID-19 by estimating equation 5 omitting the
market term ∆ln (Indext). We estimate this regression separately for each firm j, yielding 4070

β̂C
−2−1

j . The distribution of these exposures is summarized by the kernal density reported in
Figure 8. Intuitively, given the behavior of the overall market discussed in the above, we find
that the overwhelming majority of firm-level sensitivities are below zero, indicating that the firms’
returns generally have a negative relationship with predicted increases in cumulative infections,

∆ln(Ĉ−2,−1
t ).

Figure 8: Distribution of US Firms’ Sensitivity to COVID-19: β̂C
−2−1

j

Source: Johns Hopkins Coronavirus Resource Center,
Bloomberg, Yahoo Finance and authors’ calculations. Figure

reports the distribution of firm sensitivities (
̂
βC−2−1

j ) to unan-

ticipated changes in exponential model predictions, ∆Ĉ−2,−1
t ,

estimated using equation 5. Sample period is January 22 to
April 3, 2020.

17We use Yahoo for stock prices after March 18, the last day for which we had access to Bloomberg terminals. We
use the Bloomberg data to filter our Yahoo sample as follows. We match firms by ticker from January, 22 to March
18. If returns from the two sources differ by 0.01 on more than one day, or if they differ by more than 1 on any day,
we deem that firm’s returns unreliable and drop them from the analysis. The remaining returns have an in-sample
correlation of 99.6 percent during the overlap period.

14
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 2

-2
4



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

The right panel of Figure 9 summarizes firms’ exposure to COVID-19 by two-digit NAICS
sector. While sectors clearly vary in (and are sorted by) their median level of exposure, there is
substantial variation across firms within sectors. The left panel of the figure plots firms’ average
exposure by sector against their average daily returns between January 17, the last trading day
prior to the United States’ first case, and April 3. We compute a firm’s mean daily return over
this period, rj , where the bar denotes an average, as the geometric mean of its daily returns, Rjt,
during the holding period.

The position of sectors in the figure is intuitive. First, all sectors exhibit a negative average
return in response to the COVID-19 shock. Second, firms operating in sectors more heavily affected
by the imposition of social distancing – Accommodations, Entertainment, and Transportation –

exhibit more negative values for β̂C
−2−1

j and relatively larger declines in daily average returns. The
position of Mining, in the extreme lower left position of the figure, is also unsurprising given the
sharp contraction in economic activity.18 Agriculture, Utilities, Education, Professional Services
and FIRE (Finance, Insurance and Real Estate) are towards the upper right of the figure. These
sectors are less exposed to COVID-19 due to their necessity or their ability to conduct business
online, and experience relatively less negative average returns.

Figure 9: US Firms’ Sensitivity to COVID-19 (β̂Cj ), by NAICS Sector

Source: Johns Hopkins Coronavirus Resource Center, Bloomberg, Yahoo Finance and authors’ calculations. Figure

reports the distribution of firm sensitivities (β̂C
j ) to unanticipated changes in exponential model projections, ∆Ĉ−2,−1

t ,
estimated using equation 5. Geometric average of daily returns calculated from January 17 - April 3, 2020.

We examine the extent to which exposure to COVID-19 affects firms’ cumulative change in firm
value (thus far) using a cross-sectional OLS regression,

rj = ν1β̂Cj + ν2β̂MKT
j + ξj , (6)

where rj is firm j’s average daily return from January 22 to April 3, and β̂Cj and β̂MKT
j are its

sensitivities to the log changes in predicted cumulative infections and the US market index (Wilshire
5000) estimated from equation 5. To the extent that exposure to COVID-19 influences firm returns
beyond their co-movement with the market, both terms in equation 6 will have explanatory power.19

18Returns in mining, which include oil and gas extraction, are also affected by recent disagreements within OPEC,
which are potentially endogenous to the pandemic.

19This regression similar in spirit to those proposed by Fama and MacBeth (1973), though here we use a single
cross section rather than repeated cross sections, i.e., one for each day as the crisis unfolds. We plan to exploit the
panel nature of our data in a future drafts.
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Table 3: Attributing Holding Period Returns to US COVID-19 Cases

rj rj

̂
βC−2,−1

j 0.050∗∗∗ 0.023∗∗∗

(0.008) (0.007)

β̂MKT
j -0.007∗∗∗

(0.001)

Constant -0.006∗∗∗ -0.003∗∗∗

(0.001) (0.001)
Observations 4070 4070
R2 0.114 0.198

Source: Johns Hopkins Coronavirus
Resource Center, Bloomberg, Yahoo
Finance and authors’ calculations.
Table reports results of cross-sectional
OLS regression of firms’ average re-
turn between January 22 and April 3,

rj , on β̂C
j and β̂MKT

j , the coefficient
estimates from equation 5. Robust
standard errors reported in parenthe-
sis below coefficients. The standard
deviations of rj , β̂C

j and β̂MKT
j are

0.008, 0.051 and 0.043.

Results are reported in Table 3, where the first column focuses on firms’ sensitivity to COVID-
19, and the second column includes both exposures. The coefficient estimate in column 1, 0.050,

implies that a one standard deviation increase in β̂C
−2,−1

j is associated with a 0.33 standard deviation

reduction in average daily returns, a sizable influence.20 The estimates in column 2 indicate that this
influence remains even after accounting for firms’ sensitivity to the market. Here, the magnitude
of the coefficient, 0.023, implies that a one standard deviation increase in exposure to COVID-19 is
associated with a 0.11 standard deviation decrease in daily returns, or roughly one quarter of the
magnitude of the implied impact of a standard deviation change in market exposure.

4 Application to SARS

In this section we demonstrate historical precedent for the link between US stock market returns
and COVID-19 discussed above by reporting a similar link during the Severe Acute Respiratory
Syndrome (SARS) outbreak in Honk Kong nearly 20 year years earlier.

The first SARS case was identified in Foshan, China in November 2002, but was not recognized
as such until much later. According to WHO (2006), on February 10, 2003 a member of the WHO
in China received an email asking:

“Am wondering if you would have information on the strange contagious disease (similar
to pneumonia with invalidating effect on lung) which has already left more than 100
people dead in ... Guangdong Province, in the space of 1 week. The outbreak is not
allowed to be made known to the public via the media, but people are already aware of
it (through hospital workers) and there is a ‘panic’ attitude.”

20The standard deviations of rj , β̂C
j and β̂MKT

j are 0.008, 0.051 and 0.043.
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The WHO immediately began an investigation into SARS, and started releasing regular reports
of suspected and confirmed cases beginning March 17, 2003.21 The World Health Organization
(WHO) declared SARS contained in July 2003, though cases continued to be reported until May
2004. Figure 10 plots the cumulative number of confirmed SARS infections worldwide (left scale)
and in Hong Kong (right scale). The two vertical lines in the figure note the days on which the
WHO officially received the aforementioned email, and the first day on which the WHO began
reporting the number of infections on each weekday.

Figure 10: SARS Infections in Hong Kong and Worldwide During 2003

Source: World Health Organization and authors’ calculations. Figure
displays the cumulative reported SARS infections in Hong Kong and
the rest of the world from January 1, 2003 to July 11, 2003. The two
vertical lines in the figure note the days on which the WHO officially
received the aforementioned email, and the first day on which the
WHO began reporting the number of infections on each weekday.

Hong Kong and China accounted for the vast majority of cases worldwide.22 We focus our
analysis on Hong Kong for two reasons related to data reliability. First, while China acknowledged
having over 300 cases of “atypical pneumonia” in February, the Ministry of Health did not provide
day-by-day counts until March 26. In fact, on March 17, the day before WHO began releasing
daily situation reports, Chinese authorities informed the WHO that “[t]he outbreak in Guangdong
is said to have tapered off.” The next day, cases were reported in 8 locations other than China
– including Hong Kong. When China did begin reporting daily counts, on March 26, the first
count was 800 cases. This large initial level of infections accounts for the sharp jump in world
counts displayed for that day in Figure 10. Lack of real-time infection updates in mainland China
prior to this jump undermines reliable estimation of model parameters, thereby impeding accurate
assessment of unanticipated changes in infections. Second, it is unclear how China’s restrictions
on foreign ownership of companies’ “A shares” during this period affects the extent to which such
unanticipated changes will be reflected in Mainland firms’ equity value.

We estimate equations 1 and 2 by day for each country as discussed in Section 2. The daily
parameter estimates for the logistic estimation, k̂t, ĉt and r̂t are displayed graphically in the left
panel of Figure 11. The right panel displays analogous estimates for the exponential function.
Gaps in either panel’s time series represent lack of convergence. As indicated in the figure, logistic
parameters fail to converge for several days early in the outbreak, and then once again when the
estimates have started to settle down in the beginning of May. The exponential model, by contrast,
converges on every day in the sample period.

21Counts were released every weekday. These data can be downloaded from https://www.who.int/csr/sars/

country/en/. A timeline of WHO activities related to SARS events can be found at https://www.who.int/csr/

don/2003_07_04/en/.
22Reported cases for China are plotted in appendix Figure A.2.
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Figure 11: Parameter Estimates for SARS

Source: World Health Organization and authors’ calculations. The left panel plots the sequence of logistic
parameters, k̂t, ĉt and r̂t, estimated using the information up to each day t on the cumulative reported
cases for Hong Kong displayed in Figure 10. Right panel Figure plots the analogous sequence of exponential
parameters, âit and r̂it , using the same data. Missing estimates indicate lack of convergence (see text).
Circles represent estimates. Solid lines connect estimates.

In the left panel of Figure 12, we compare the predictions of the two models. In each case,
parameter estimates from day t − 1 are used to predict the cumulative number of cases for day t.
Shading represents 95 percent confidence intervals. As indicated in the panel, predicted infections
under the two models (left axis) are similar through the first week in April, but diverge thereafter.
Interestingly, this divergence coincides with a stabilization of the estimated inflection point of the
logistic curve (right axis), which, as illustrated by the dashed grey line in the panel, hovers between
April 5 and 7 from April 5 onward.23

Figure 12: Daily Predictions (Ĉt−1
t ) for SARS

Source:World Health Organization and authors’ calculations. Left panel displays predicted cumulative cases

for each day t, Ĉt−1
t , information as of day t − 1, based on parameter estimates reported in Figure 11.

Shading spans 95 percent confidence intervals. Dashed line (right scale) traces out the estimated of the
logistic curve’s inflection point (ln(ĉt)/r̂t). Right panel reports day t predicted cumulative cases under the

logistic model using information as of day t − 1, Ĉt−1
t , and day t − 2, Ĉt−2

t , as well as the log difference

between these predictions, ∆ln(Ĉ−2,−1
t ). Missing estimates in left panel indicate lack of convergence (see

text).

We use the predictions of the logistic model for the remainder of the analysis. The right panel

23The inflection point is given by ln(ĉt)/r̂t.
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of Figure 12 compares the logistic model predictions for day t using information as of day t − 1,

Ĉt−1
t , versus day t−2, Ĉt−2

t , as well as the log difference between these predictions, ∆ln(Ĉ−2,−1
t ).24

We find that ∆ln(Ĉ−2,−1
t ) exhibits wide swings in value during the early stages of the outbreak,

before settling down in late April. As illustrated in Figure 13, these swings have a noticeably
negative correlation with aggregate stock market performance in Hong Kong, as identified via daily
log changes in the Hang Seng Index.25

We explore this relationship formally in an OLS estimation of equation 4. Coefficient estimates
and robust standard errors are reported in Table 4. In the first column, we find a negative and
statistically significant relationship using the raw data displayed in Figure 13. In column 2, we
account for weekends and holidays by dividing both the left- and right-hand side variables by the
number of days over which the returns are calculated, so that the regression coefficient represents
a daily change in market value for a given log change in predicted cases. Here, too, the coeffi-
cient estimate is negative and statistically significant at conventional levels, and higher in absolute
magnitude.

Figure 13: Changes in Predicted SARS Cases (∆Ĉ−2,−1
t ) vs Hang Seng Index Returns

Source: World Health Organization, Yahoo Finance and au-
thors’ calculations. Figure displays the daily log change in the
Hang Seng Index against the daily log change in predicted cases
for day t based on information as of day t− 1 versus day t− 2,

∆ln(Ĉ−2,−1
t ).

In column 3, we examine whether the explanatory power of ∆ln(Ĉ−1,−2
t ) remains after control-

ling for a simple, local proxy of outbreak severity, the difference in cumulative reported infections
between days t − 1 and t − 2, ∆ln(C−1,−0

t ). As indicated in the table, the coefficient of interest
remains negative and statistically significant at conventional levels, though of lower magnitude in
absolute terms. The coefficient for ∆ln(C−2,−1

t ) is also negative and statistically significant.
Finally, in column 4, we repeat the specification for column 3 but include month fixed effects to

account for potential secular movements in the market unrelated to SARS. Esimate are essentially
unchanged.

Overall, the estimates in Table 4 suggest investors may have used simple epidemiological models
to update their beliefs about the economic severity of the outbreak in Hong Kong, in real time.

24We use the last available parameter estimates for days on which logistic parameters do not converge.
25Data for the Hong Seng index are downloaded from Yahoo Finance.
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Table 4: Changes in Predicted SARS Cases vs Hang Seng Index Returns

(1) (2) (3) (4)
∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close)

∆Ln(Ĉ−2,−1) -0.0752∗∗∗ -0.1095∗∗∗ -0.0891∗∗ -0.0923∗

(0.0241) (0.0396) (0.0427) (0.0537)

∆Ln(C−2,−1) -0.0445∗∗ -0.0483
(0.0200) (0.0294)

Constant 0.0018 0.0010 0.0019∗ 0.0025
(0.0013) (0.0011) (0.0011) (0.0051)

Daily Adjustment N Y Y Y
Month FE N N N Y
Observations 70 70 70 70
R2 0.108 0.060 0.103 0.111

Source: World Health Organization,Yahoo Finance and authors’ calcula-
tions. ∆Ln(Closet) is the daily log change (i.e., day t− 1 to day t) closing

values Hang Seng Index. ∆ln(Ĉ−2,−1
t ) is the change in predicted cases for

day t using information from days t−1 and t−2. ∆ln(C−2,−1
t ) is the change

in reported cases between days t−1 and t. Robust standard errors in paren-
thesis. Columns 2-4 divide all variables by the number of days since the last
observation (i.e. over weekends). Column 4 includes month fixed effects.

Across specifications, coefficient estimates indicate an average decline of 8 to 11 percent in response
to a doubling of predicted cumulative infections.

5 Conclusion

This paper shows that day-to-day changes in the predictions of standard models of infectious disease
forecast changes in aggregate stock returns in Hong Kong during the SARS outbreak and the United
States during the COVID-19 pandemic. In future updates to this paper, we plan to extend the
analysis to other countries and pandemics, and to investigate the link between individual firms’
returns and their exposure to public health crises via domestic and international input and output
linkages as well as the demographics and occupations of their labor forces.
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Figure A.1: Actual COVID-19 Cases, By Country

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. Figure displays
the COVID-19 up to March 28.

Figure A.2: SARS Infections in China and Worldwide During 2003

Source: World Health Organization and authors’ calculations. Figure
displays the cumulative reported SARS infections in China and the
rest of the world from January 1, 2003 to July 11, 2003.
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Figure A.3: Changes in Predicted SARS Cases vs HSI Index

Source: Johns Hopkins Coronavirus Resource Center, Yahoo
Finance and authors’ calculations. Figure displays the daily
log change in the Hang Seng Index against the log change in
projected cases for day t based on day t − 1 and day t − 2
information.
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A Note on Efficient Mitigation Policies∗

Callum Jones† Thomas Philippon‡ Venky Venkateswaran§

First version: March 31, 2020; this version: April 7, 2020

Abstract

We study the response of an economy to an unexpected epidemic and we compare the decen-

tralized equilibrium with the efficient allocation. Households mitigate the spread of the disease

by reducing consumption and hours worked. A social planner worries about two externalities: an

infection externality and a healthcare congestion externality. Private agents’ mitigation incentives

are too weak, especially at early stages while the planner implements drastic and front-loaded mit-

igation policies. In our calibration, assuming a CFR of 1% and an initial infection rate of 0.1%,

private mitigation leads to a 10% drop in consumption and reduces the cumulative death rate from

2.5% of the initially susceptible population to about 2%. The planner reduces the death rate to

0.2% at the cost of an initial drop in consumption of around 40%.

Keywords: contagion, containment, covid 19, recession, R0, social distancing, SIR model, mitigation,

suppression, vaccine.

1 Introduction

The response to the Covid-19 crisis highlights the tension between health and economic outcomes. The

containment measures that can help slow the spread of the virus are likely to reinforce the economic

downturn. Policy makers have naturally recognized this trade off and we hope to contribute to ongoing

effort to provide quantitative models to guide their decisions.

∗We are grateful for comments from seminar participants at the University of Chicago. The views expressed herein
are those of the authors and should not be attributed to the IMF, its Executive Board, or its management. First version:
March 31, 2020.
†International Monetary Fund, jonescallum@gmail.com
‡New York University, CEPR and NBER, tphilipp@stern.nyu.edu
§New York University, NBER, vvenkate@stern.nyu.edu
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We propose a simple extension of the neoclassical model to quantity the tradeoffs and guide policy.

We are particularly interested in understanding the design of the policy response. When will the

private sector engineer the right response, and when is there a need for policy intervention? Which

measures should be front-loaded and which ones should ramp up as the contagion progresses?

Our model has two building blocks: one for dynamics of contagion, and one for consumption and

production. Our starting point is the classic SIR model of contagion used by public health specialists.

Atkeson (2020b) provides a clear summary of this class of model. In a population of initial size N ,

the epidemiological state is given by the numbers of Susceptible (S), Infected (I), and Recovered (R)

people. By definition, the cumulative number of deaths is D = N−S−I−R. Infected people transmit

the virus to susceptible people at a rate that depends on the nature of the virus and on the frequency

of social interactions. Containment, testing, and social distancing reduce this later factor. The rates

of recovery (transitions from I to R), morbidity (I becoming severely or critically sick) and mortality

(transition form I to D) depend on the nature of the virus and on the quality of health care services.

The quality of health services depends on the capacity of health care providers (ICU beds, ventilators)

and the number of sick people.

On the economic side of the model we use a standard model where members of large households

jointly make decisions about consumption and labor supply. We assume that the consumption of

(some) goods and services increases the risk of contagion, and that going to work also increases the

risk of contagion.

We can then study how the private sector reacts to the announcement of an outbreak and how

a government should intervene. Upon learning of the risks posed by the virus, households change

their labor supply and consumption patterns. They cut spending and labor supply in proportion to

the risk of infection, which – all else equal – is proportional to the fraction of infected agents I/N .

Households only take into account the risk that they become infected, not the risk that they infect

others, therefore their mitigation efforts are lower than what would be socially optimal. This infection

externality is well understood in the epidemiology literature. The other important externality is the

congestion externality in the healthcare system. When hospitals are overwhelmed the risk of death

increases but agents do not internalize their impact on the risk of others.

We obtain interesting results when we compare the timing of mitigation. The planner wants to

front load these efforts compared to the private sector. The risk of future contagion and of congestion

in the health care system also drives an important wedge between private decisions and the socially
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efficient allocation. If a private agent knows that she is likely to be infected in the future, this reduces

her incentives to be careful today. We call this effect the fatalism effect. The planner on the other

hand, worries about future infections and future congestion.

Literature Our paper relates to the literature on contagion dynamics (Diekmann and Heesterbeek,

2000). We refer to the reader to Atkeson (2020b) for a recent discussion. Berger et al. (2020) show

that testing can reduce the economic cost of mitigation policies as well as reduce the congestion in the

health care system. Baker et al. (2020) document the early consumption response of US households.

The most closely related papers are Barro et al. (2020), Correia et al. (2020), Eichenbaum et al.

(2020) and Alvarez et al. (2020). Barro et al. (2020) and Correia et al. (2020) draw lessons from the

1918 flu epidemic. Barro et al. (2020) find a high death rate (about 40 million people, 2% of the

population at the time) and a large but not extreme impact on the economy (cumulative loss in GDP

per capita of 6% over 3 years). The impact on the stock market was small. Correia et al. (2020) find

that early interventions help protect health and economic outcomes.

Our model shares with Eichenbaum et al. (2020) and Alvarez et al. (2020) the idea of embedding

SIR dynamics in a simple DSGE model. The SIR model is the same, but there are some key differ-

ences in the DSGE model. Eichenbaum et al. (2020) consider hand-to-mouth agents who know their

true status (infected or susceptible) while we work within a representative shopper/worker household

framework à la Lucas and Stokey (1987). We explain the dynamic tension between the planner and the

private sector and we describe an endogenous fatalism bias in private incentives. In terms of results, we

find that optimal interventions are more front-loaded in our setting than in Eichenbaum et al. (2020).

In their benchmark case, they find that the optimal policy is to gradually ramp up containment policies

as the number of infected people rises, while congestion externalities in the healthcare system induce

more aggressive, albeit still gradual, containment. Front-loading seems to become optimal only when

agents anticipate the arrival of a vaccine in the future. In our setting, front-loading is optimal in almost

all cases.

Alvarez et al. (2020) study a lockdown planning problem under SIR dynamics. They assume risk

neutral agents and a linear lockdown technology. They find that the congestion externality plays an

important role in shaping the policy response and that the planner front-loads the effort. Our planner

has similar incentives but takes into account the desire for consumption smoothing. Jones et al. (2020)

study optimal policies in a pandemic, including the option of working from home.
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2 Benchmark Model

2.1 Households

There is a continuum of mass N of households. Each household is of size 1 and the utility of the

household is

U =
∞∑
t=0

βtu (ct, lt; it, dt) ,

where ct is per-capita consumption and lt is labor supplied by those who are alive and not sick. The

household starts with a continuum of mass 1 of family members, all of them susceptible to the disease.

At any time t > 0 we denote by st, it and dt the numbers of susceptible, infected and dead people.

The size of the household at time t is therefore 1− dt. If per capita consumption is ct then household

consumption is (1− dt) ct. Among the it infected members, κit are too sick to work. The labor force at

time t is therefore 1−dt−κit, and household labor supply is (1− dt − κit) lt. The number of household

members who have recovered from the disease is rt = 1− st − it − dt. In the quantitative applications

below we use the functional form

u (ct, lt; it, dt) = (1− dt − κit)

(
log (ct)−

l1+η
t

1 + η

)
+ κit (log (ct)− uκ)− uddt,

where uκ is the disutility from being sick and ud the disutility from death which includes lost consump-

tion and the psychological cost on surviving members.1 For simplicity we assume that sickness does

not change the marginal utility of consumption therefore c is the same for all alive members of the

household. The variables s, i and d evolve according a standard SIR model described below. We use

a Lucas and Stokey (1987) approach to model households. At the beginning of period t the household

decides how much to consume ct (per capita) and how much each able-bodied member should work

lt. Then the shoppers go shopping and the workers go to work. Notice that we have normalized the

disutility of labor so that l = c = 1 before the epidemic starts.

Households understand that they can become infected by shopping and by going to work. We

compute infection in two steps. First we define exposure levels for shoppers and for workers. Then

we aggregate these into one infection rate at the household level. Finally we take into account the

stochastic arrival of a vaccine by adjusting the discount factor β. Formally, we assume an exogenous

arrival rate for a cure to the disease. By a cure we mean both a vaccine and a treatment for the

1Formally ud = PsyCost− log (cd) where cd is the consumption equivalent in death. Technically we cannot set cd = 0
with log preferences but ud is a large number.
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currently sick. Under this simplifying assumption the economy jumps back to l = c = 1 when a cure

is found. We can therefore focus on the stochastic path before a cure is found. Let β̃ be the pure time

discount rate and ν the likelihood of a vaccine. We define β = β̃ (1− ν) along the no-cure path.

2.2 Shopping

Household members can get infected by shopping. We define consumption (shopping) exposure as

ecctCt,

where ec measures the sensitivity of exposure to consumption and Ct is aggregate consumption, all

relative to a steady state value normalized to one. The idea behind this equation is that household

members go on shopping trips. We assume that shopping trips scale up with consumption and that,

for a given level of aggregate consumption, exposure is proportional to shopping trips. This functional

form captures the notion of crowds in shopping mall as well as in public transportation.

2.3 Production

Exposure at work for household members working is given by

elltLt,

where ec measure the sensitivity of exposure to labor and Lt is aggregate labor supply. Effective labor

supply, l̂t, is given by

l̂t = (1− dt − κit) lt.

This equation captures the fact that the number of valid household member is decreased by death and

sickness. Production is linear in effective labor

Yt = L̂t = Nl̂t.

In our basic model we ignore the issue of firm heterogeneity and market power. Therefore price is

equal to marginal cost

Pt = Wt = 1,
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where W is the wage per unit of effective labor, which we normalize to one.

2.4 Income and Contagion

At the end of each period, household members regroup and share income, consumption and exposure.

Household labor income is Wt l̂t = l̂t and the budget constraint is

(1− dt) ct +
bt+1

1 + rt
≤ bt + l̂t

Household exposure is

et = ē+ (1− dt) ecctCt + (1− dt − κit) elltLt,

where ē is baseline exposure, independent of market activities. Contagion dynamics follow an SIR

model. From the perspective of one household, this model is:

st+1 = st − γet
It
N
st

it+1 = γet
It
N
st + (1− ρ) it − δtκit

dt+1 = dt + δtκit

rt+1 = rt + ρit

where γ is the infection rate per unit of exposure, ρ the recovery rate, κ the probability of being sick

conditional on infection, and δt the mortality rate of sick patients. In the standard SIR model γ is

constant. In our model it depends on exposure and therefore on mitigation strategies. The parameter

δt increases when the health system is overwhelmed, as discussed below.

2.5 Market Clearing and Aggregate Dynamics

Infection dynamics for the the entire population are simply given by the SIR system above with

aggregate variable It = Nit, and so on. The aggregate labor force is N (1− κit − dt) lt and total

consumption is N (1− dt) ct. Goods market clearing requires

(1− dt) ct = l̂t,
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and bond market clearing requires

bt = 0.

Finally we capture the limited capacity of the healthcare system with the increasing function

δt = δ (It) .

Note that δ (It) should really be written as δ (κIt, Ht) where κIt is the number of sick people and Ht

is the capacity of the healthcare system. Since we assume that both κ and H are constant we write

simply δ (It). We call the fact that δ is increasing the congestion externality.

3 Decentralized equilibrium

Our main goal is to compare the decentralized equilibrium with the planner’s solution.

3.1 Equilibrium Conditions

Since our model reduces to a representative household model and since b = 0 in equilibrium, we simply

omit b from the value function. The household’s recursive problem is

Vt (it, st, dt) = max
ct,lt,mt

u (ct, lt; it, dt) + βVt+1 (it+1, dt+1, st+1) ,

where the flow utility is

u (ct, lt; it, dt) = (1− dt) log (ct)− (1− dt − κit)
l1+η
t

1 + η
− uκκit − uddt

Using the definition of effective labor l̂t = (1− dt − κit) lt, we can write the Lagrangian as

Vt = u (ct, lt; it, dt) + βVt+1 + λt

(
l̂t + bt − (1− dt) ct −

bt+1

1 + rt

)
+ λe,t

(
et − ē− (1− dt) ecctCt − (1− dt − κit) elltLt

)
+ λi,t

(
it+1 − γet

It
N
st − (1− ρ) it + δtκit

)
+ λs,t

(
st+1 − st + γet

It
N
st

)
+ λd,t (dt+1 − dt − δtκit)
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We highlight in red the externalities, from infection and from congestion. The first order conditions

for consumption and labor are then

ct : c−1
t = λt + λe,te

cCt

lt : lηt = λt − λe,telLt

The remaining first order conditions are

et : λe,t = (λi,t − λs,t) γ
It
N
st

it+1 : λi,t = −βVi,t+1

st+1 : λs,t = −βVs,t+1

dt+1 : λd,t = −βVd,t+1

The envelope conditions are

Vi,t = κ
l1+η
t

1 + η
− κuκ − κλtlt + λe,tκe

lltLt − (1− ρ)λi,t + δtκ (λi,t − λd,t)

Vs,t = (λs,t − λi,t) γet
It
N
− λs,t

Vd,t =
l1+η
t

1 + η
− log (ct)− ud − λt (lt − ct) + λe,t

(
ecctCt + elltLt

)
− λd,t

3.2 Equilibrium with Exogenous Infections

Economy before the pandemic To simplify the notation we normalize N = 1, so we should think

of our values as being per-capita pre-infection. When there is no risk of contagion, i.e., when it = 0

and λe,t = 0, optimal consumption and labor supply implies c−1
t = lηt . We have l̂t = lt so market

clearing is simply ct = lt. Combining these two conditions we get

ct = lt = 1.

The pre-infection economy is always in steady state.
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Exogenous infections Consider now an economy with exogenous SIR dynamics: ec = el = 0.

The SIR system is then independent from the economic equilibrium. In the SIR system, the share

of infected agents It increases, reaches a maximum and converges to 0 in the long run. Assuming a

constant δ, the long run solution solves

log

(
S∞

1− I0

)
= − γē

ρ+ δκ

(
1− S∞
N

)
,

and

D∞ =
δκ

δκ+ ρ
(1− S∞) .

When the congestion externality arises and δt increases, then we cannot obtain a closed-form solution

for the long run death rate but the qualitative results are unchanged. Since ec = el = 0 we have mt = 0

and c−1
t = lηt . Market clearing requires (1− dt) ct = (1− dt − κit) lt therefore labor supply is

l1+η
t = 1 +

κit
1− dt − κit

.

The labor supply of valid workers increases to compensate for the reduced productivity of the sick.

Per capita consumption is

ct =

(
1− dt

1− dt − κit

)− η
1+η

As long as η > 0 consumption per capita decreases. Aggregate GDP decreases because of lost labor

productivity and deaths. The following proposition summarizes our results.

Proposition 1. When contagion does not depend on economic activity
(
ec = el = 0

)
, the share of

infected agents It increases, reaches a maximum and converges to 0 in the long run. The long run

death rate is given by D∞ = δκ
δκ+ρ (1− S∞) where the long run share of uninfected agents solves

log
(
S∞

1−I0

)
= − γē

ρ+δκ

(
1−S∞
N

)
. Along the transition path, labor supply of able-bodied workers follows the

infection rate while per-capita consumption moves in the opposite direction as ct =
(

1− κit
1−dt

) η
1+η

.

3.3 Private Incentives for Mitigation

Let us focus on consumption by setting el = 0. Optimal private consumption is

c−1
t = λt + λe,te

cCt,
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so the temptation to cut consumption depends on λe,t = (λi,t − λs,t) γ ItN st which is high when γ ItN st is

high, which is exactly when new infections are high and S is quickly decreasing. So holding constant

λi,t− λs,t the private incentives to cut consumption are proportional to the number of new cases. The

other important element is

λi,t − λs,t = β (Vs,t+1 − Vi,t+1)

The right-hand-side of this expression represents the value of avoiding an infection. This reflects the

future disutility of avoiding sickness and death. One problem is that when agents anticipate large

infections in the future this value can fall. Jones et al. (2020) call this the fatalism effect.

4 Planner’s Problem

We normalize N = 1 for simplicity. The planner solves

maxU =

∞∑
t=0

βtu (Ct, Lt; It, Dt)

subject to

u (Ct, Lt; It, Dt) = (1−Dt) log (Ct)− (1−Dt − κIt)
L1+η
t

1 + η
− uκκIt − udDt

and

(1−Dt)Ct = (1−Dt − κIt)Lt.

The first order conditions for consumption and labor are then (highlighted in red the difference with

the decentralized equilibrium)

Ct : C−1
t = λt + 2λe,te

cCt,

Lt : Lηt = λt − 2λe,te
lLt.

The marginal utilities of the planner with respect to exposure are twice as high as those of the private

sector because of the contagion externalities: private agents only care about how their behavior affect

35
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 2

5-
46



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

their own infection risk. They do not care about how their behavior affects the infection risk of others.

The envelope condition that differs from that of private agents is

VI,t = κ
L1+η
t

1 + η
− κuκ − κλtLt + λe,tκe

lL2
t − (1− ρ)λi,t−γetStλi,t −

(
δtκ+ δ′tκ

2It
)

(λd,t − λi,t) .

This equation highlights the congestion externality. These externalities determine the planner’s incen-

tives to reduce consumption today.

Incentives to Mitigate Let us focus on consumption by setting el = 0 to understand the incentives

to mitigate.

C−1
t = λt + 2λe,te

cCt = λt + 2ecCtγItSt (λi,t − λs,t)

The contemporaneous impact depends on γItSt but the impact is twice as high as in the private case

because of the infection externality. As in the decentralized equilibrium, the forward looking effect

depends on λi,t − λs,t = β (VS,t+1 − VI,t+1), the future disutility of avoiding sickness and death, which

is magnified in the planner solution compared to the decentralized equilibrium because of the potential

for congestion in the healthcare system.

5 Calibration

The lack of reliable data to calibrate the contagion model creates a serious challenge and an important

limitation. Atkeson (2020a) discusses these difficulties. We calibrate our model at the weekly frequency.

Contagion The SIR block of the model is parameterized as follows. The recovery parameter is set

to ρ = 0.35. The fraction of infected people who are sick is κ = 0.15. We normalize ē + ec + el = 1.

In our baseline calibration, we set the exposure loading parameters ec = el = 1
3 which is consistent

with the estimation in Ferguson (2020). These parameters imply e = 1 at the pre-pandemic levels of

consumption and labor (the calibration of production and utility parameters will be described later).

The parameter γ is then chosen to target the basic reproduction number (i.e. the average number

of people infected by a single infected individual) of R = 2, yielding an estimated value of γ = 0.7.

Finally, to parameterize the fatality rate and the congestion effects, we adopt the following functional

form for δ (·) :

δ (κIt) = δ̄ + exp (φIt)− 1
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where the parameter φ indexes the strength of the congestion externality. We set δ̄ and φ to match two

targets for the case fatality rate: a baseline value (i.e. the fraction of infected people who die even in the

absence of congestion) of 1% and an ‘extreme’ value (the fraction of people who die κI = 0.15 (0.2), i.e.

3% of the population requires medical attention) of 5%. This procedure yields δ̄ = 0.023 and φ = 3.15.

Preferences and technology The utility parameter ud is set to a baseline value of 2. This implies

a flow disutility from death that is roughly 7 times per capita income. Such large non-monetary costs

associated with loss of life are consistent with estimates in the literature and with values used by

government entities like the EPA. For example, Greenstone and Nigam (2020) use an estimated value

of a statistical life of $11.5 million (in 2020 dollars) to the household from death. Assuming a rate

of return of 5%, this translates into an annual flow value of $575,000, or roughly 10 times per capita

GDP. The flow disutility from sickness usis set to equal one-fourth of ud, i.e. a value of 0.5.

Initial Conditions, Vaccine, and Robustness A time period is interpreted as a week. The

discount factor β captures both time discounting and the discovery of a cure/vaccine. We assume for

simplicity that a cure and a vaccine arrive randomly together with a constant arrival rate. This is

then exactly equivalent to adjusting β. We take a relatively pessimistic case as our baseline, where the

combined effect of time discounting and the vaccine is to yield an annual β of 0.8 and a weekly beta

of β = (0.8)
1
52 = 0.9957.

6 Quantitative Results

Our benchmark exercise uses a large initial infection rate of i0 = 1% because it makes the figures easier

to read, but this is a large shock. It seems likely that agents and policy makers become aware of the

epidemic much earlier so we report simulations starting at i0 = 0.1%.

Private Response The figures show the results of simulations. We start with the decentralized

solution. Figure 1 shows the behavior of the contagion and macro variables in the decentralized

equilibrium, under two different assumptions about exposure. The blue line solid shows a situation

where infection rates are exogenous, i.e. do not vary with the level of economic activity. Since infection

is assumed to be exogenous, agents do not engage in mitigation, i.e., they ignore the pandemic. In fact,

labor input rises (the solid line, left panel in the third row in Figure 1), while per-capita consumption
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falls by about 2.5% (the dashed line), as able-bodied workers work harder to compensate for the

workers who are sick. This is of course not a realistic assumption, but it serves as a useful benchmark

for the worst case scenario. In this scenario, eventually about 80% of the population is infected and

about 2.5% of the population succumbs to the virus (left panel in the second row in Figure 1). The

case mortality rate peaks at 4% roughly 15 weeks after the initial infection because, at the peak, about

15% of the population is infected and the healthcare system is overwhelmed.

The red line describes the case where exposure is endogenous and the household can reduce exposure

by cutting back on its consumption and labor supply. As we would expect, this leads to a sharp

reduction in economic activity (third row, left panel in Figure 1) by about 10%. Importantly, however,

the reduction is gradual, tracking the overall infection rate (it takes almost 17 weeks for consumption

and labor to hit their trough). Intuitively, when the fraction of infected people is low (as is the case in

the early stages), a reduction in exposure has a small effect on infection risk, relative to the resulting

fall in consumption. And since each household does not internalize the effect it has on the future

infection rate, it has little incentive to indulge in costly mitigation early on. This dynamic is reflected

in the hump-shaped pattern in λe (the bottom, left panel in Figure 1). As we will see, this is drastically

different in the planner’s problem. The mitigation behavior does lower the cumulative infection and

death rates (relative to the exogenous infection risk) down do about 2%.

Optimal Response We now turn to the planner’s solution, depicted in Figures 2. As before,

the blue and red lines show the cases of exogenous infection and mitigation. As the red curve in

Figure 2 clearly shows, the planner finds it optimal to “flatten the curve” rather dramatically. The

peak infection and mortality rates are only slightly higher than their initial levels and well below the

decentralized equilibrium levels, as are cumulative fatalities (approximately 0.8%, compared to 2% in

the decentralized equilibrium). To achieve this, the planner has to reduce exposure drastically by more

than 40% (recall that, in the decentralized equilibrium, exposure bottomed out at 0.8), keeping the

basic reproduction number R from rising much above 1. Of course, this pushes the economy into a

deep recession with consumption falling by as much as 40% (third row, left panel in Figure2). More

interestingly, the planner chooses to step on the brakes almost immediately, rather wait for infection

rates to rise. In fact, the shadow value of exposure (bottom left panel in Figure 2) spikes upon impact

and then slowly decays over time, as the number of susceptible people declines.
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Early Warning What is the value of an early warning? Suppose agents become aware of the disease

at i0 = 0.1% instead of 1% as assumed above. This simulation highlights even more the gap between

the decentralized outcome and the planner’s solution. The private sector response continues to follow

the infection curve. As a result, the outcome barely changes. Private agents do not have the proper

incentives to use the early warning.

The planner, on the other hand, continues to front-load her effort and achieves a much better

outcome when it receives an early warning. The cumulative fatality rate is only 0.2% instead of 0.8%

when it reacts to the disease at a later stage.

7 Conclusions

We propose an extension of the neoclassical model to include contagion dynamics, to study and quantify

the tradeoffs of policies that can mitigate the Covid-19 pandemic. Our model reveals two key insights.

The first insight is that externalities are massive. The planner acts much more forcefully than private

agents. Roughly speaking, under SIR dynamics, the planner’s incentives are twice as high as those

of private agents. The risk of congestion increases the difference even further. Thus, when private

incentives would yield a 10% drop in consumption, the planner engineers an optimal decline of 30%

to 40%. One reason why the planner is willing to tolerate such a large decline in consumption is

the assumption of complete risk-sharing, i.e. the recession affects all agents equally. Heterogeneity

and incomplete markets might make the recession more costly, especially if the the burden of the

recession falls disproportionally on low-income, low-wealth households, as in Kaplan et al. (2020). Our

neoclassical setting also abstracts from demand-related amplifications, as in Guerrieri et al. (2020).

The second key difference is that the planner optimally chooses to front-load her mitigation strate-

gies. As a result, a planner with an early warning does much better than a planner without an

early warning. Private agents, on the other hand, waste the value of the early warning because their

mitigation efforts are essentially proportional to the current infection rate.

As we write the first draft of this paper there is much uncertainty about the parameters of the

disease, and yet decisions must be made. Some of our results speak directly to this dilemma. Atkeson

(2020a) points out that, when one does not know the initial number of active cases, it is difficult “to

distinguish whether the disease is deadly (1% fatality rate) or milder (0.1% fatality rate).” In our

simulations we have considered a deadly disease with a low initial infection rate of i0 = 0.1%, and a
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milder disease with a high initial infection rate of i0 = 0.1%. Interestingly, in both cases, the planner

should implement immediately a strong suppression policy. The main difference is that in the mild

case it is optimal to release the lockdown sooner. Assuming that there is enough data 20 weeks after

the outbreak to correctly estimate the fatality rate, the planner could implement an optimal response

despite the large uncertainty in the key parameter. Jones et al. (2020) study extensions of our baseline

setup.
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Figure 1: Decentralized Equilibrium
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Figure 2: Planner Equilibrium
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Figure 3: Decentralized Equilibrium, 0.1% Initial Infected
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Figure 4: Planner Solution, 0.1% Initial Infected
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model1
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The standard SEIR model based on a parameterisation consistent with 
the international evidence cannot explain the very high Covid-19-related 
mortality in Lombardy. This paper proposes an extension of the standard 
SEIR model that is capable of solving the puzzle. The SEIR model features 
exogenous mortality: once susceptible individuals are first exposed, and then 
infected, they succumb with a given probability. The extended model inlcudes a 
hospitlisation process and the possibility that hospitalised patients, who need 
to resort to an intensive care unit, cannot find availability because the ICU is 
saturated. This constraint creates an additional increase in mortality, which 
is endogenous to the diffusion of the disease. The SEIHCR model (H stands 
for hospitalisation and C stands for constraint) is capable of explaining the 
dynamics of Covid-19-related mortality in Lombardy with a paramerisation 
consistent with the international evidence.
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1 Introduction

COVID-19 related mortality in Lombardy is way above COVID-related

mortality everywhere else. Using data made available by the Civil Pro-

tection, https://github.com/pcm-dpc/COVID-19 , Figure 1 illustrates

the ratio of deaths (morti) to total cases (casi_totali) observed daily

over the period February 24th 2020-April 8th 2020 which shows a re-

ported lethality growing rather steadily from an initial 4 per cent to a

value reaching 16 per cent at the end of the sample (9722 Fatalities for

53414 total observed cases).

INSERT FIGURES 1 HERE

This pattern of lethality cannot be replicated by standard SEIR

model, which has been successfully applied to the analysis of COVID-19

diffusion in China [Wu, et. al, Kucharski et. al.]. The second line in the

graph reports the pattern of the ratio of fatalities to the sum of Exposed,

Recovered and Removed as Fatalities generated by a SEIR model with

an internationally consistent CFR of 0.0138 ( see, for example, Verity et

al(2020)) which is nowhere near the observed data.

Two possible explanations can be considered for a discrepancy be-

tween observed data andmodel simulated data: either the model is wrong

or the data are wrong. As matter of fact, the data can be wrong the to-

tal observed cases observe do not include patients with mild symptoms,

which were not hospitalized and were therefore not tested.

In this paper we explore the possibility that the standard model

misses an important dimension that is instead reflected in the data.

Figure 2 reports daily fatalities in Lombardy and Veneto, nearby

region with about half of the population (4.9 millions inhabitants versus

about 10 millions in Lombardy), which witnessed a remarkably lower

number of deaths per day. Figure 3 illustrates another interesting fea-

ture of the data from Lombardy and Veneto: the share of hospitalized

patients in ICU has been much higher in Veneto than in Lombardy, hint-

ing at the possibility of an important mismatch between the demand of

ICU beds and their supply in Lombardy.

INSERT FIGURES 2-3 HERE

The mismatch between data and model prediction in Lombardy and

the heterogenous pattern of mortality observed in Lombardy and Veneto

can be related to a specific feature of the SEIR model: mortality is ex-

ogenously given by a constant parameter. In the SEIR specification

Infectious patients are divided in three groups, Mild, Severe and Fatal,
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and the destiny of each patient is written at the time their are exposed

to the disease. After some heterogenous duration, Mild and Severe pa-

tients inevitably recover, while fatal patients inevitably die. What if

what happened in Lombardy can be described as follows: infectious pa-

tients are still divided in the three standard groups, but the Severe do

not inevitably recover. In fact, some of them need assistance in Intensive

Care Unit and if there are no available ICU positions, then their status

changes from Severe to Fatal . There is therefore a time-varying endoge-

nous component of mortality that cannot be captured by the standard

SEIR model.

Note that Ferguson et al. (2020) when providing estimates of the

simulated effect on US and UK of an unmitigated epidemic featuring a

basic reproduction number R of 2.4 clearly state "... In total, in an

unmitigated epidemic, we would predict approximately 510,000 deaths

in GB and 2.2 million in the US, not accounting for the poten-

tial negative effects of health systems being overwhelmed on

mortality...."

This paper extends the SEIR model to a SEIHCR that follows pa-

tients in their pattern of Hospitalization and endogeneize the possible

Constraint of ICU availability and its impact on lethality.

The model is calibrated to the data from Lombardy to illustrate that

it is capable to replicate the observed pattern of lethality in Lombardy

with a parametrization fully in line with the international evidence.

2 The SEIHCR Model: Description

The SEIHCRmodel is a system of differential equations for the dynamics

of a virus across different groups of the population.

The exact specification of the equations is reported in the Appendix,

Figure 4 reports the Dependency Graph of the Model, while this section

describes its structure and fundamental elements.

INSERT FIGURE 4 HERE

The model allows to simulate the dynamics of the virus diffusion

starting from an initial period in which the total Population () of N

individuals is divided in 1 Infectious () and N-1 Susceptible (). In

each period (day) some Susceptible become Exposed (), their num-

ber is determined by the basic reproduction number 0that determines

the number of secondary infections each infected individual produces, by

the probability with which Susceptible meets Infectious,
³

−1
−1

´
 and

by the average duration of the period in which a patient is infectious
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inf  Exposed after an incubation period of length  become Infec-

tious. The outflows from Susceptible is the inflows into Exposed in each

period, and the outflows from Exposed is the inflows into Infectious.

Infectious falls into three groups: those with mild symptoms (),

those with severe symptoms ()  and those with fatal symptoms

()  The allocation to these groups is controlled by three probabili-

ties:
¡
1−  − 

¢
   Patients with mild symptoms recover

after a recovery period,  Patients with severe and fatal are Hos-

pitalized. All patients with symptoms that require hospitalization,

are hospitalized after a period of average duration  some hospi-

talized patients require intensive care unit with probability  Patient

with fatal symptoms succumb notwithstanding hospitalization, even in

intensive care, after the mean duration from the onset of symptoms to

death,  Patient with severe symptoms either recover or become fatal.

The recovered, with a mean duration of from the onset of symptoms

to hospital discharge of  , are those who do need intensive care unit

and those who need intensive care unit and find a place. The patients

with severe symptoms that need ICU and do not find availability are

Constrained and become fatalities. At the end of each period the pop-

ulation decreases because of the fatalities, while the stock of recovered

grows as a consequence from the new additions of recovered with mild

and severe symptoms.

After calibration, we shall compare model simulated data with ob-

served data from Lombardy to assess the potential of the model and its

explanation of the mortality in Lombardy.

.

3 The SEIHCRModel: a Calibration to data from

Lombardy

Model simulation requires numerical values for all the relevant parame-

ters. Given the availability of a sample of sufficient size of reliable data,

parameters can be estimated (see Cereda et al.(2020)). The daily data

made available on Lombardy by Protezione Civile cover a short sample

of about forty observations and are affected by a change in regime. In

fact, on March 8 2020 a full lockdown was legislated for the region and

the entire country.

Moreover, estimation of the model in a conventional sense, that is,

deriving parameter values by fitting equations using time series data,

is not possible because there are no data on Exposed, Infectious and

Recovered. In fact, there are no patients are not tracked and those with

Severe symptoms are recorded as positive only if they are tested and

with a lag. This lag depends on the duration of the time elapsed between
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symptoms and hospitalization, between hospitalization and testing, and

between the moment in which the swab is taken and the results become

available. Obtaining estimates of the Infectious would require ongoing

random testing of the population, which has not happened so far in

Lombardy. Similarly, the Recovered are underestimated because the

only Recovered observed are those Recovered from hospital. In principle

estimates of the total recovered could be obtained by ongoing random

sampling of tests for serum antibodies in response to the coronavirus,

however such tests are currently under development but not yet available.

Measurement error in the data has strong implications for the esti-

mation of the crucial model parameters and for the design of optimal

policies for them (see Stock(2020)).

These considerations led to the design and implementation of a cali-

bration strategy based on the exploitation of the data on hospitalization,

that we regard as the observed variable with the closest distance from

the theoretical variables in the model.

Our procedure allowed to select the dating of the lockdown in the

sample of simulated data and to estimate the impact of the lockdown on

the basic reproduction number 0 0 was set initially at 2.2 in line with

the international evidence, reflected in the baseline parameterization in

the epidemic calculator available online (https://gabgoh.github.io/COVID/index.html).

Also all the other parameters that determines the transmission dy-

namics and the clinical dynamics were chosen in line with the interna-

tional evidence. The calibration of these parameters is summarized in

Table 1.

INSERT TABLE 1 HERE

To set the value of 0 after the intervention the model was simulated

first in a pre-lockdown scenario, when the capacity constraint in terms

of ICU was still irrelevant, with an initial population of 10 millions, and

all duration parameters set in line with the international evidence. The

lockdown was then dated in the model simulated data to match the

number of hospitalized patients observed on the March 8 2020. This

procedure dates March 8th as day 95 of our 730 (2 years) of simulated

data. Having dated the lockdown, the post lockdown 0 was calibrated

to match the observed number of hospitalized patients two weeks after

the lockdown. This procedure delivered a 0 post lockdown of 0.95.

Finally, the probability with which of an hospitalized patient needs

intensive care was calibrated at 0.2. As Figure 2-3 suggest, this is the

value around which the share of hospitalized patients in ICU stabilizes

over time in Veneto, the nearby region that recorded a much lower daily

deaths than Lombardy.
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4 The SEIHCR Model: Simulations

The model has been simulated under two scenarios. In the baseline

scenario the IC capacity is set to 400 beds before the lockdown (the

maximum of the observed utilization) and to the observed number of

occupied ICU beds reported by Protezione civile that grows constantly

to reach a total size of 1500, with a batch of 200 new units released

simultaneously toward the end of the sample (this jump in the series is

generated by the availability of the new Fiera Hospital in Milan). In the

alternative scenario the capacity constraint has been removed, making

counterfactually available to Lombardy a number of ICU beds equal to

20 per cent of hospitalized patients.

The most interesting results from the model extension is reported

in Figure 5. Figure 5 clearly illustrates that the capacity constraint is

essential to replicate the pattern of mortality observed in Lombardia.

The model with the ICU constraint imposed generates a number of sim-

ulated daily deaths very close to the number of observed daily deaths in

Lombardy. When the constraint is counterfactually removed, the sim-

ulated data provide a very close match for the pattern of daily deaths

observed in Veneto and are nowhere near to the daily deaths observed

in Lombardy.

INSERT FIGURE 5 HERE

The results of these simulations point to a crucial role for the expan-

sion of ICU capacity to save lives in Lombardy and to the importance

of the NPI policy implemented in Venteto. These policies were capable

of keeping the diffusion of the disease under control and therefore the

hospitalization rate much lower than that observed in Lombardy .

Figure 6 reports the pattern of model simulated total recovered,

model simulated hospital recovered and tracked patients recovered (guar-

iti).

INSERT FIGURE 6 HERE

The model based variables that tracks well the observed recovered

patient is the patients recovered from hospital while the effective number

of recoveries is much higher because of the relevance of patients with

mild symptoms which were not tested. However, the model simulated

number of total recovered patients at the end of May 2020 is of about

half a million, which is five per cent of the total population in Lombardy.

Finally Figure 7.1 and 7.2 report the pattern of model based exposed

and observed exposed (total cases- death-fatalities), looking at their level

and their daily changes.

52
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 4

7-
61



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

INSERT FIGURE 7.1-7.2 HERE

The figure shows that the observed daily exposed are also in line with

the model prediction. In fact, while Susceptible becomes Exposed in-

stantaneously in the model, their observation in the data requires testing

which is implemented only some time after hospitalization. The model

based pattern of the change in Exposed, which again is followed with

a lag by the actual data, might be of help in designing optimal inter-

polant for reduced form data based prediction of the dynamics of the

virus.(Peracchi(2020))

5 Conclusions and Policy Implications

A SEIHCR Model used for simulation of the fatality of the COVID

disease in Lombardy is capable of explaining the high mortality rate

observed in this region.

The main innovation of the model is the endogeneization of the fatal-

ity rate, that becomes higher than the CFR of 0.0138 when the demand

of ICU beds exceeds their available supply.

Data simulated from the model with endogenous mortality can ex-

plain the high number of deaths observed in Lombardy and the striking

difference in observed COVID mortality bewteen Lombardy and Veneto.

The impact of different NPI approaches to reduce hospitalization is

amplified when mortality increases because of excess demand of ICU

beds.

The cost of not implementing NPI interventions aimed at "flattening

the curve" becomes higher when the curve becomes "more humpy" as a

consequence of the strain on healthcare and Intensive Unit Care capacity.

The model also shows that the number of actual recovered patients

in Lombardy is much higher than the observed number of patients re-

covered from hospitalization. However, the estimate of model simulated

recovered subjects by the end of May 2020 stands only half a million in-

dividuals (under a parameterization in which the lockdown has brought

R0 to 0.95).

The importance of the ICU constraint in increasing fatality should

be taken into account in the design of exit strategies from the lockdown.

NPI measures that have brought R0 close to one have greatly relieved

the strain of healthcare capacity. In their removal strategy the benefits of

a growing proportion of the immune indivduals in the population should

be carefully weighted against the risk that the number of new infections

saturates again healthcare capacity.
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6 Appendix: The SEIRHC Model Specification

We report in this appendix the full model specification equation by equa-

tion. The model is made of 16 equations. It allows to simulate the dy-

namics of the virus diffusion starting from an initial period in which the

total Population () of N individuals is divided in 1 Infectious ()

and N-1 Susceptible (). In each period (day) some Susceptible be-

come Exposed (), their number is determined by the basic reproduc-

tion number 0that determines the number of secondary infections each

infected individual produces, by the probability with which Susceptible

meets Infectious,
³

−1
−1

´
 and by the average duration of the period in

which a patient is infectious inf  Exposed after an incubation period of

length  become Infectious. The outflows from Susceptible is the in-

flows into Exposed in each period, and the outflows from Exposed is the

inflows into Infectious. Infectious falls into three groups: those with mild

symptoms (), those with severe symptoms ()  and those

with fatal symptoms ()  The allocation to these groups is controlled

by three probabilities:
¡
1−  − 

¢
   Patients with mild

symptoms recover after a recovery period,  The daily change in

Mild patients stock is determined by the share
¡
1−  − 

¢
of the

outflows from Infectious, and the outflows from the share of Mild who

recover that depends on the average duration form symptoms to recov-

ery for mild patients,  . Patients with severe and fatal symptoms

require hospitalization, both these group are hospitalized after a period

between developing symptoms and hospitalization of average duration

 hospitalized. The daily change in Fatal patients is determined

by the share  of the outflows from Infectious and the outflows by

the share of Fatal who are hospitalized. Patient with fatal symptoms

succumb notwithstanding hospitalization, even in intensive care, after

the mean duration from the onset of symptoms to death,  The daily

change in Severe patients is determined by the share  of the out-

flows from Infectious and the outflows by the share of Severe who are

hospitalized. Patients in hospital, independently from their initial sta-

tus, require intensive care  unit with probability  Patient with

severe symptoms either recover or become fatal. The recovered, with

a mean duration of from the onset of symptoms to hospital discharge

of  , are those who do need intensive care unit and those who need

intensive care unit and find a place. The patients with severe symptoms

that need ICU and do not find availability become fatal. At the end

of each period the population decreases because of the fatalities, while

the stock of recovered grows as a consequence from the new additions of

recovered with mild and severe symptoms.
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∆=

µ
− 0

inf

−1
−1

¶
−1

∆=

µ
0

inf

−1
−1

¶
−1 −

µ
1



¶
−1

∆=

µ
1



¶
−1 −

µ
1

inf

¶
−1

∆= 

µ
1

inf

¶
−1 −

µ
1



¶
−1

∆_=

µ
1



¶
−1

∆= 
µ
1

inf

¶
−1 −

µ
1



¶
−1

∆_=

µ
1



¶
−1 −

µ
1

 − inf − 

¶
_−1 −∆_

∆_=  ()
¡
_ −

¡
 − _

¢¢ _



∆_=

µ
1

 − inf − 

¶
_−1

∆= 
µ
1

inf

¶
−1 −

µ
1



¶
−1

∆_=

µ
1



¶
−1 −

µ
1

 − inf − 

¶
_−1

∆_=

µ
1

 − inf − 

¶
_−1

=_ + _

_=_ + _

 =_ +_

∆=−∆_

 ()=

½
1    0

0 

¾
= _ + _ − 
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7 Table and Figures

Table1: Calibration of the SEIRHC model for Lombardy

Parameter Pre-lockdown Post-Lockdown Source PreL Source PostL

0 2.2 0.95 EC Calibrated1

inf 2.9 days 2.9 days EC EC

 5.2 days 5.2 days EC EC

 11.1 days 11.1 days EC EC

 5 days 5 days EC EC

 17.8 days 17.8 days Verity et al. Verity et al.

 22.6 days 22.6 days Verity et al. Verity et al.

 0.0138 0.0138 Verity et al. Verity et al.

 0.1 0.1 IE IE

 0.2 0.2 PC PC

EC (Epidemic Calculator): https://gabgoh.github.io/COVID/index.html

IC (International Evidence) https://www.worldometers.info/coronavirus/#countries

PC (Protezione Civile data on Lombardy) https://github.com/pcm-

dpc/COVID-19

1The value is chosen to generate a match between model simulated hospitalization

and observed hospitalization in Lombardy two weeks after the lockdown date.
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Figure 2: COVID in Lombardy and Veneto. Daily Fatalities
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Figure 3: COVID in Lombardy and Veneto. Share of total COVID

hospitalized patients in ICU

Figure 4: The SEIRHC model dependency graph
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Figure 5: Actual and Simulated Fatalities in Lombardy and Veneto

Figure 6: Model Simulated Recovered patients and observed recovered

(guariti)
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Figure 7.1: model simulated and observed exposed

Figure 7.2: Model Simulated and Observed Change in Esposed
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The economic downturn caused by the current Covid-19 outbreak has 
substantial implications for gender equality, both during the downturn and 
the subsequent recovery. Compared to 'regular' recessions, which affect men’s 
employment more severely than women’s employment, the employment drop 
related to social distancing measures has a large impact on sectors with high 
female employment shares. In addition, closures of schools and daycare centers 
have massively increased child care needs, which has a particularly large 
impact on working mothers. The effects of the crisis on working mothers are 
likely to be persistent, due to high returns to experience in the labour market. 
Beyond the immediate crisis, there are opposing forces which may ultimately 
promote gender equality in the labour market. First, businesses are rapidly 
adopting flexible work arrangements, which are likely to persist. Second, 
there are also many fathers who now have to take primary responsibility for 
child care, which may erode social norms that currently lead to a lopsided 
distribution of the division of labour in house work and child care.
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1 Introduction

It has by now become clear that the COVID-19 pandemic is not only a global
health emergency, but is also leading to a major global economic downturn. In
this paper, we provide some first results on how this economic downturn is going
to affect women and men differently, and what the main long-run repercussions
for gender equality may be.

We start by providing evidence that the effects of the current crisis on women ver-
sus men are likely to be sharply distinct from those of other economic downturns.
In recent recessions such as the one in 2008, job losses for men were much higher
than for women. One reason is that relatively more men work in industries heav-
ily affected by a “standard” downturn (such as manufacturing and construction),
while women’s employment is concentrated in less cyclical sectors such as health
care and education. In contrast, the current crisis has a big impact on service oc-
cupations with high female employment shares, such as restaurants and hospi-
tality.

An even more important channel for differential impacts on women and men is
that in the course of the pandemic, most US states along with other countries
have decided to close schools and daycare facilities. Worldwide more than 1.5
billion children are out of school right now.1 This has dramatically increased the
need for childcare. In addition, grandparent-provided childcare is now discour-
aged due to the higher mortality rate for the elderly, and given social distanc-
ing measures, sharing childcare with neighbors and friends is very limited also.
Thus, most families have no choice but to watch their kids themselves. Based on
the existing distribution of child care duties in most families, mothers are likely
to be more affected than fathers. Single mothers, of which there are many in the
United States, and who are often in a disadvantaged economic position to begin
with, will take the biggest hit.

Taken together, these factors suggest that the COVID-19 pandemic will have a
disproportionate negative effect on women and their employment opportuni-
ties.2 The effects of this shock are likely to outlast the actual epidemic. A sizeable

1Estimated by UNESCO, as of March 25, 2020.
2In terms of mortality from the disease itself, it appears men are slightly more at risk than
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literature documents that earnings losses from job losses are highly persistent
(Stevens 1997) and much more severe when they occur in recessions (Davis and
von Wachter 2011). Workers who lose jobs now forgo returns to experience and
are likely to have less secure employment in the future (Jarosch 2015). The con-
sequences are not just limited to those who lose jobs, but also those who were
about to enter the labor market for the first time.3

Despite this gloomy outlook, we also believe that the COVID-19 crisis can bring
about some changes that have the potential to reduce gender inequality in the
labor market in the long term. We start by noting that today, a large part of
gender inequality in the labor market is related to an unequal division of labor in
the household. Even though the labor force participation rate of women is now
close to or equal to that of men in most industrialized countries, women continue
to provide a disproportionate share of housework (such as cooking and cleaning)
and childcare. A recent literature in labor economics has documented that the
gender pay gap is closely related to (expected and actual) child birth.4 From this
perspective, long-run progress towards more gender equality is likely to stem
primarily from changes in social norms and expectations that lead towards a
more equal division of labor within the home.

We can identify at least two channels through which the COVID-19 pandemic
is likely to accelerate changing social norms and expectations. One is on the
side of employers. Many businesses are now becoming much more aware of the
childcare needs of their employees and responding by rapidly adopting more
flexible work schedules and telecommuting options. Through learning by doing
and changing norms, some of these changes are likely to prove persistent. As a
result, in many places mothers and fathers alike will gain flexibility in meeting
the combined demands of having a career and running a family. Since currently
women are more exposed to these competing demands, they stand to benefit
disproportionately.

women (Global Health 50/50 ). If current efforts to contain the spread of the epidemic are success-
ful, however, many more people will be affected by the economic repercussions of the pandemic
rather than the disease itself.

3See, for example, Altonji, Kahn, and Speer (2016), Oreopoulos, von Wachter, and Heisz (2012),
and Schwandt and von Wachter (2019).

4See, for example, Kleven, Landais, and Søgaard (2019), Kleven et al. (2019), and Gallen (2018).
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A second channel runs through social norms and role models in individual fam-
ilies. While in many cases mothers will pick up a large share of the additional
childcare (and home schooling) during the crisis, there will also be a sizeable
fraction of families where role models will be reversed. Many medical doctors
are women, as are most nurses. Other critical businesses that will continue op-
erating during the crisis include grocery stores and pharmacies, both of which
feature high female employment shares. A sizeable fraction of women working
in such areas are married to men who will either lose employment during the cri-
sis or will be able to work from home (e.g., many office workers). In such families,
many men will inevitably turn into the main providers of child care. The litera-
ture on policy changes that engineer a similar change (e.g., “daddy months” and
other forms of paternity leave) suggest that such a reallocation of duties within
the household is likely to have persistent effects on gender roles and the division
of labor.5

In this paper, we use data on the distribution of women, men, and couples across
occupations as well as time-use data on the division of labor in the household to
shed more light on the channels through which the COVID-19 pandemic affects
gender inequality. Even though we identify at least some channels that could
ultimately have beneficial effects, we emphasize that the short-run challenges
posed by the crisis are severe, and especially so for single mothers and other
families with a lack of ability to combine work with caring for children at home.
We conclude by discussing policy options that could be used to deal with these
specific challenges.

2 The Effect of COVID-19 on Employment

The social distancing measures and stay-at-home orders imposed in many US
states and other countries during the COVID-19 crisis are having a large impact
on employment, leading to a sharp rise in unemployment and other workers
being given reduced hours or temporarily furloughed.

5See for example Farré and González (2019) for evidence from Spain and for evidence from
Tamm (2019) for Germany that paternity leave leads a persistent increase in fathers’ involve-
ment in childcare. However, Ekberg, Eriksson, and Friebel (2013) do not find an effect of “daddy
months” in Sweden in father’s likelihood to take medical leave to care for children.
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In economic downturns preceding the current crisis, including the financial cri-
sis of 2007–2009, the employment of male workers was affected more strongly
than the employment of female workers. Doepke and Tertilt (2016) summarize
evidence on how employment varies over the business cycle for women and for
men. They show that in the period 1989–2014, men account for more than three
quarters of overall cyclical fluctuations in employment (i.e., the component of
overall volatility in employment that is correlated with aggregate economic fluc-
tuations), and women for less than one quarter.6

One reason for the lower cyclical volatility of female employment is insurance
in the family—women’s employment may be less affected by downturns pre-
cisely because some married women increase their labor supply to compensate
for unemployment or higher unemployment risk of their husbands.7 A second
important channel is the different sectoral composition of female and male em-
ployment. In typical recessions, sectors such as manufacturing and residential
construction are much more severely affected compared to, say, education and
health care. Men’s employment is on average more concentrated in sectors with
a high cyclical exposure, whereas women are highly represented in sectors with
relatively stable employment over the cycle.8

2.1 Gender Differences Based on Sectors Most Affected by COVID-19

The evidence suggests that the impact of the current downturn during the COVID-
19 pandemic on women’s versus men’s employment will be unlike previous re-
cessions. A principal difference is which sectors of the economy are likely to be
most affected. Two factors are especially important:

1. Whether demand for the sector’s output is affected by stay-at-home orders
(e.g., no impact on sectors deemed “critical,” such as pharmacies and gro-
cery stores; large negative effect on sectors such as travel and hospitality).

6The role of women in aggregate fluctuations has changed substantially over time due to rising
female labor force participation; see, e.g., Albanesi (2020) and Fukui, Nakamura, and Steinsson
(2019).

7See Ellieroth (2019) for a study documenting the quantitative importance of this mechanism.
8These facts are documented in a recent paper by Coskun and Dalgic (2020).
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2. Whether the nature of the work in the sector allows for telecommuting or
not (e.g., larger impact on manufacturing vs. higher education and business
services).

To assess how women and men in the labor market are exposed to the crisis,
Table 1 provides an overview of how the dimensions of “critical” and “telecom-
mutable” matter for male and female workers. Using data from the American
Time Use Survey (ATUS) in 2017 and 2018, the table gives the fraction of workers
in a given occupation that say that they are able to telecommute and whether
they actually do telecommute. Occupations vary immensely by whether people
say they are able to telecommute—ranging from 3% for transportation and mate-
rial moving to 78% for computer and mathematical. The effective actual time that
people do telecommute in normal times is small, however, as the third column in
the table shows. For the current situation, however, the ability to telecommute is
a lot more relevant than past behavior.

To get a sense of what fraction of men and women work in telecommutable jobs,
consider occupations where at least 50 percent of workers state they are able to
telecommute. We find that that 28 percent of male workers but only 22 percent of
female workers are employed in these highly telecommutable occupations. These
numbers suggests that in terms of their occupations, more men than women will
easily adapt to the changed work environment during the crisis. Conversely,
more women will potentially face loss of employment, which is the opposite of
the pattern in normal economic downturns.

The picture is less clear if we use a lower threshold for telecommutable jobs. For
example, consider occupations where at least 25 percent of workers state that
they are able to telecommute. 49 percent of male employees but 63 percent of
female workers work in these occupations. Thus, if all workers in these occu-
pations could carry on during the crisis, women would have the advantage. In
reality, in each occupation only a fraction of jobs will be able to continue remotely,
and this fraction is likely to correlate with the fraction of workers who stated in
the pre-crisis survey that they have the ability to telecommute.

We also classified occupations by whether they are critical in the current situa-
tion, especially health care workers. According to this (rough) classification, 17
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Table 1: Labor Force Across “Critical” and “Telecommutable” Occupations.
Occupation Able to TC Effective Annual TC Employed Men Employed Women Critical Occupation

Transportation and Material Moving 3% 1 10% 2% X

Food Preparation and Serving 4% 2 4% 6%

Building and Grounds Cleaning and Maintenance 4% 4 4% 3%

Production 4% 4 8% 3%

Healthcare Support 8% 13 1% 4% X

Construction 10% 4 8% 0%

Farming, Fishing, and Forestry 11% 1 1% 0% X

Installation, Maintenance, and Repair 11% 10 6% 0% X

Extraction 13% 1 0% 0%

Personal Care and Service 13% 21 2% 6%

Protective Service 14% 4 3% 1% X

Healthcare Practitioners and Technicians 16% 17 3% 10% X

Technicians 18% 3 0% 0%

Office and Administrative Support 26% 24 7% 19%

Sales and Related 33% 35 10% 10%

Education, Training, and Library 37% 36 3% 10%

Community and Social Services 46% 46 1% 2%

Life, physical, and social science 54% 24 1% 1%

Arts, Design, Entertainment, Sports, and Media 57% 45 2% 2%

Management,business, science, and arts 63% 44 13% 9%

Legal 64% 35 1% 1%

Business operations specialists 66% 60 2% 3%

Architecture and engineering 67% 36 3% 1%

Financial specialists 68% 37 2% 3%

Computer and Mathematical 78% 66 4% 2%

Note: The table reports the share of individuals in each occupation reporting they were able to work from
home (column 1); the effective total days a year they actually did work from home (column 2); the share
of all employed men and women in each occupation (column 3-4); and whether the occupation seems
critical during the COVID-19 crisis. Data Source: American Time Use Survey 2017-2018; American
Community Survey 2017-2018.

percent of employed women work in critical occupations, compared to 24 per-
cent of all employed men. Hence, this second channel suggests once again that,
unlike in usual economic downturns, women will be less protected from employ-
ment loss during the downturn. It is possible that this classification overstates
women’s exposure. The true share for women in critical occupations is likely
higher once grocery store clerks are taken into account. The true share of men,
on the other hand, may be somewhat smaller since we classified men working in
“transportation and material moving” as critical. Clearly, some transportation is
needed to provide basic necessities such as food, and employment in food and
online business delivery is rising. But public transportation is being scaled back
in many places.
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The bottom line is that based on ability to telecommute and working in criti-
cal occupations, we do not observe the pattern of usual recessions that women
are more protected than men from employment loss. In fact, there are indica-
tions that women’s employment will suffer more during the crisis based on these
two factors. Even if the exposure of women and men in terms of their current
occupations should turn out to be about the same, this would still be a big devia-
tion from other recessions, where the employment consequences fell much more
heavily on men.

3 The Effect of COVID-19 on Child Care Needs

The effect of the COVID-19 pandemic on a worker’s employment depends on
factors beyond sector and occupation. Another salient aspect of the COVID-19
crisis is that it involves large-scale closures of daycare centers and schools, imply-
ing that children stay at home, where they have to be cared for and (if possible)
educated. This poses particularly severe challenges for single parents. For par-
ents who raise their children together, the division of childcare will depend on
how much work flexibility each parent has in terms of working from home while
also taking care of children. It will likely also depend on the current division of
childcare within each family. These factors suggest that women’s employment
will be affected more severely by the sudden rise in child care needs.

3.1 Household Arrangements and Single Mothers’ Exposure to School and
Daycare Closures

To assess how many households are affected by the rise in childcare needs, Ta-
bles 2 and 3 summarize the distribution of living arrangements prior to the crisis.
There are almost 130 million households in the United States. Slightly less than
half are married couples (with and without children), 17 percent are single-parent
households (i.e., “Family, Female Householder” and “Family, Male Householder”)
and 35 percent are non-family households, who are mostly singles living by
themselves. There are around 15 million single mothers, accounting for just un-
der 70 percent of all single parent households.9

9Note that in Table 2 the “Family” categories include families with children of all ages, includ-
ing those over 18 years old, as long as children live in the same household as the parent.
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Table 2: Households by Type in United States

Total # of Households 128,579 100%

Married Couples 61,959 48%

Family, Male Householder 6,480 5%

Family, Female Householder 15,043 12%

Non-family, Male Householder 21,582 17%

Non-family, Female Householder 23,515 18%

Note: Thousands in 2019. Source: US Census Bureau, Table HH-1.

The sudden spike in childcare needs during the crisis will affect all households
with school-age children or below. Single parents (17 percent of all households)
will be particularly hard hit, and as Table 2 shows, there are more than 8.5 million
more single mothers than single fathers in the United States today.

Table 3: Living Arrangements of Children in the United States

Total children under 18 73,525 100%

Two parents 51,561 70%

Mother only 15,764 21%

Father only 3,234 4%

Other relatives 2,319 3%

Non-relatives 647 1%

Note: Thousands in 2019. Source: US Census Bureau, Table ch1.

To get a clearer picture of the importance of school closures, note that there are
currently 73.5 million children under 18 in the United States (see Table 3). Of
these, 70 percent live in two-parent families, while most of the others live in
single-parent households. 21 percent of all children live only with their mother,
compared to 4 percent living with their father only. Thus, the current crisis will
affect mothers disproportionately. If all schools in the US are closed for a pro-
longed period, so that single mothers cannot work, then 21 percent of all chil-
dren are at risk of living in poverty. In normal times, many alternative forms of

70
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 6

2-
85



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

childcare arrangements are used. However, many daycare centers have been or-
dered closed. Informal care performed by grandparents, other relatives, friends,
or neighbors is being discouraged or prevented by shelter-in-place orders to slow
down the spread of the virus. There is little room for alternative arrangements in
the COVID-19 crisis.

3.2 Childcare Provision Within Married Couples

Among married couples, who is likely to bear the majority of increased childcare
needs due to school and daycare closures? First, the current work arrangements
of married couples (i.e., single vs. dual earner) will play a role. Second, the di-
vision of the increased childcare needs will also likely mirror existing disparities
between men and women in hours spent on childcare. Third, among dual-earner
couples, the ability to telecommute and whether one or both members of the
couple work in critical sectors will also matter.

Table 4 summarizes the distribution of family types across work arrangements
in the American Community Survey for married couples with children. Dual
full-time earner couples account for 44 percent of all couples with children. This
group is heavily affected by the rise in child care needs. Families with the tradi-
tional division of labor of the husband having a full-time job and the wife staying
at home will have to make fewer adjustments to respond to the school closures.
However, today this group accounts for only 25 percent of married couples with
children. Only 5 percent of couples are in the opposite arrangement of the hus-
band staying at home and the wife working full time, underlining once again that
more women than men will be strongly affected by the rise in child care needs.

Even among couples who both work, one spouse often provides the majority of
child care. It is likely that any increase in child care needs will fall dispropor-
tionately on this main provider. Survey data from the ATUS shows that married
women provide more childcare than married men on average. Among all mar-
ried couples with children, the husbands provide 7.4 hours of child care per week
on average, versus 13.3 hours for the wives.10 Households with young children
have higher childcare needs, but the male vs. female ratio is almost the same:

10These numbers are based on time use data for the 16–65 population.
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Table 4: Distribution of couples with children by employment status

Married Couples Wives

Not Employed Part-Time Full-Time

Not Employed 4% 1% 5%

Husbands Part-Time 1% 1% 2%

Full-Time 25% 15% 44%

Note: The table reports the share of couples by employment and full-time, part-time status of each spouse.
Not Employed includes unemployed individuals and those not in the labor force. Source: American Com-
munity Survey, 2017-2018.

conditional on children up to the age of 5, married men provide 10.9 hours of
childcare, versus 19.8 hours per week for married women. Of course, some of
this gap arises because there are more stay-at-home moms than stay-at-home
dads. But even if we condition on both spouses being employed full time, a large
gap remains. Among the full time employed, married men provide 7.2 hours of
child care per week versus 10.3 hours for married women. Conditional on having
at least one child up to the age of 5, the numbers are 10.6 hours for married men
versus 16.8 hours for married women. Thus, married women provide close to 60
percent of child care even among couples who work full time, and an even higher
share if they have young children, when childcare needs are the highest.11 Simi-
larly, if attention is restricted to the division of childcare hours performed during
typical working hours for children of all ages (8AM-6PM, Monday through Fri-
day), women provide an even larger fraction, around 70 percent, of childcare
during working hours (Schoonbroodt 2018).

It is likely that this uneven distribution of the burden of childcare will persist
during the current crisis; many of the factors that initially led to this arrange-
ment (which could include relative income, relative bargaining power, and the
influence of traditional social norms and role models) will continue to apply. If
the relative distribution of the burden stays at 60-40 and childcare needs rise by

11The observation that women provide the majority of childcare even if both spouses are work-
ing holds true across industrialized countries. However, the size of the gap between women’s and
men’s contributions varies substantially (Doepke and Kindermann 2019).
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20 hours/week during the crisis, full-time working women would need to in-
crease their childcare hours by 12 hours vs. 8 for men. In the absence of flexible
work arrangements, another likely outcome is that one spouse will temporarily
have to quit work, which based on the existing division of labor would again be
much more likely to be the wife.

3.3 Employment Flexibility for Men vs. Women

In addition to the existing division of the burden of childcare, the impact of the
crisis will also depend on the relative flexibility of men’s and women’s work ar-
rangements, in particular the ability to telecommute. Table 5 shows that among
all individuals with kids, married women spent the most time telecommuting
in 2017 and 2018, averaging 41 days per year. Married men are best-equipped
to telecommute (45% are able to) but spend fewer days actually telecommuting
than married women. Married women are the group most likely to report work-
ing from home for personal reasons, which includes managing childcare. Single
parents, both women and men, are much less able to telecommute, driving home
our earlier point that school closures will be extremely difficult for single parents,
most of whom are women, to navigate while continuing to work.

Table 5: Telecommuting, for those with children by marital status and gender

Can Telecommute Did Telecommute Days Telecommute

single men 17% 14% 15

single women 21% 18% 19

married men 45% 39% 30

married women 42% 38% 41
Note: Table reports those who said they are able to telecommute (column 1); those that were able and did
telecommute (column 2); and the approximate days per year telecommuting, for those which were able.
Source: American Time Use Survey, 2017-2018.

In summary, the evidence suggests that women will be vastly more affected by
the rise in childcare needs that follows from closures of schools and daycare cen-
ters during the crisis. The 15 million single mothers in the United States will
be the most severely affected, with little potential for accessing other sources of
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childcare under social isolation orders, and little possibility to continue working
during the crisis.

Even among couples raising their children together, there are clear indications
that women will be much more affected by rising childcare requirements. There
are already many more married women than men who are stay-at-home parents
and who are likely to pick up most of the increase in the workload. And among
the many couples with children who both work full time (44 percent of the total),
the women provide about 60 percent of childcare hours. In times of high child-
care needs (i.e. when children are young), the women’s share is even higher. It
is likely that much of this division of labor will persist. For some working mar-
ried women, this will mean that they will temporarily drop out of the labor force.
Others will continue to work from home—including, for example, mothers on
the tenure track at an academic institution—but they will be more impaired in
their ability to actually get work done compared to married men in the same sit-
uation. While these women are in a more favorable situation compared to single
mothers, they may still face severe setbacks in terms of career progression and
their future earnings potential.

4 The Effect of COVID-19 on Workplace Flexibility and Gender

Norms

The discussion so far shows that the COVID-19 shock is likely to place a dispro-
portionate burden on women. Nevertheless, there are also countervailing forces
that may promote gender equality during the recovery from the current crisis.
We believe that two channels are likely to be important:

1. More flexible work arrangements: Many businesses are currently adopt-
ing work-from-home and telecommuting options at a wide scale for the first
time. It is likely that some of these changes persist, leading to more work-
place flexibility in the future. Given that mothers currently carry a dispro-
portionate burden in combining work and child care duties, they stand to
benefit relatively more than men from these changes. Goldin (2010) points
to lack of flexibility in work arrangements and hours, particularly in finan-
cial and business services, as one of the last sources of the gender pay gap.
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2. Changes in social norms and role models: Many fathers will now also
shoulder additional child care and home-schooling responsibilities. In a
sizeable number of families, fathers will temporarily turn into primary child
care providers. These changes are likely to push social norms towards more
equality in the provision of child care and house work.

4.1 The Role of Workplace Flexibility

Consider the role of more flexible work arrangements. If there is a persistent in-
crease in the ability to work from home for women and men alike, how will the
division of labor in the household change? We can get a sense of the potential im-
pact by comparing the time spent on child care between parents who can work
from home and those who cannot. Table 6 provides evidence on this by compar-
ing the average weekly childcare hours of husbands and wives conditional on the
occupation type of each spouse. Occupations are split into “Critical" (same clas-
sification as Table 1), “Tele", non-critical occupations where at least 50% of ATUS
respondents reported being able to telecommute, and “Non-Tele", non-critical
occupations where fewer than 50% reported being able to telecommute.

We observe that if husbands who don’t work are married to women who do, they
carry the majority of childcare duties in their households (first three rows of the
last panel). They do a lot less childcare than women in the same situation (rows
4, 8, 12)—social norms still matter—but still, the result shows that availability for
child care has a large impact on the actual distribution.

More importantly, we observe a similar effect when we look at the impact of
telecommuting. Consider couples where the wife is not able to telecommute and
is either in the “Non-Tele” or “Critical” groups. In this case, if the husband is in
an occupation with a high ability to telecommute, weekly childcare hours of the
husband are about two hours higher per week compared to husbands in “Non-
Tele” occupations (6 vs. 4 hours, i.e. a 50 percent difference). Notice that being in
such an occupation does not imply that most of these men actually telecommute
on a regular basis. Nevertheless, the added flexibility of these jobs is reflected
in a much higher participation of men in childcare, as long as their wives do not
have the same flexibility.
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Table 6: Childcare by Family Occupational Group

Family Group

(husband, wife)

Husbands Childcare

(weekly hours)

Wives Childcare

(weekly hours)

Husbands High Childcare

(percent of group)

(Non-Tele, Non-Tele) 4 7 17%

(Non-Tele, Tele) 6 8 20%

(Non-Tele, Critical) 4 7 20%

(Non-Tele, Not Employed) 6 12 26%

(Tele, Non-Tele) 6 8 21%

(Tele, Tele) 6 7 23%

(Tele, Critical) 6 5 24%

(Tele, Not Employed) 6 12 24%

(Critical, Non-Tele) 3 5 12%

(Critical, Tele) 6 7 18%

(Critical, Critical) 5 8 18%

(Critical, Not Employed) 4 17 14%

(Not Employed, Non-Tele) 8 6 25%

(Not Employed, Tele) 9 6 27%

(Not Employed, Critical) 9 4 21%

(Not Employed, Not Employed) 4 11 13%

Note: The table reports the average childcare hours per week by spouse for each family occupation group for
all married couples. Groups are reported in column one as (husband, wife) pairs. The final column ("High
Husband Childcare") reports the share of husbands in this family group which provide childcare hours in
excess of the average married woman in the economy. TC classifications by 50% cutoff, see Table 1. Source:
American Time Use Survey 2017-2018; American Community Survey 2017-2018.
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Right now, many businesses are adopting work-from-home options on a large
scale. It is likely that a sizeable fraction of this additional flexibility will stay in
place after the actual crisis. Once businesses have invested in remote-working
technology and the learning-by-doing that is involved in the transition has taken
place, going back all the way to the status quo is not attractive. As a result, many
workers will benefit from added flexibility in combining career and child care
needs. This change will be a benefit to both mothers and fathers, but given that
currently mothers carry the majority of the burden of child care, in relative terms
they are likely to gain more, both because of added flexibility in their own work
and because of more contributions from their husbands.

4.2 Existing Evidence on Persistent Changes to Gender Norms

One central force behind the uneven division of the burden of childcare between
women and men is persistent social norms. Is there a possibility that the COVID-
19 shock will push these norms towards more gender equality? To assess this
possibility, we can draw a parallel between the COVID-19 crisis and the last
major shock to women in the labor market, namely World War II. During the
war, millions of women entered the labor force to replace men in factories and
other workplaces. The impact of the war shock was particularly large for mar-
ried women with children, who in the pre-war economy had very low labor force
participation rates. A large literature documents that the shock of World War II
had a large and persistent effect on female employment.12

While some of this impact was at the individual level (i.e., women who entered
the labor force during the war increased their employment also after the war),
another component works through shifting cultural norms. Fernández, Fogli,
and Olivetti (2004) show that boys who grow up in a family where the mother is
working are more likely to eventually be married to women who also work (they
use the World-War-II shock to identify the size of this effect). This observation
is suggestive of an impact on social norms: these boys observed a more equal
sharing of duties at home and in the labor market between their parents com-

12See for example Acemoglu, Autor, and Lyle (2004) and Goldin and Olivetti (2013). Doepke,
Hazan, and Maoz (2015) argue that the persistent impact of World War II on the female labor
market was also one of the root causes of the post-war baby boom.
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pared to single-earner families, which had repercussions for which they desired
in their own families.13 There is also evidence that shifting social norms and be-
liefs were one cause of the secular rise in the labor force participation of married
women from the 1960s to the 1990s. Fernández (2013) and Fogli and Veldkamp
(2011) argue that women gradually learned, by observing other working women
in their family and neighborhoods, about the true costs and benefits of being in
the working force (including potential effects of working on children). As more
women worked, there were more observations to learn from, which accelerated
the transition to higher levels of female labor force participation.

4.3 Fathers’ Childcare Responsibilities During the COVID-19 Crisis and the
Evolution of Gender Norms

The example of World War II suggests that temporary changes to the division
of labor between the sexes have long-run effects. How is this likely to play out
during the COVID-19 crisis? Here an important question is how much fathers’
child care responsibilities will increase. Many fathers will be working from home
during the crisis while also taking on child care responsibilities. The mere fact of
being at home rather than at a workplace is likely to increase men’s child care
responsibilities. This effect is likely to be large during the crisis, because given
that schools and daycare centers are closed, the overall need for child care is
much higher. Hence, even if (as is likely) on average women will shoulder the
majority of the increase, many fathers will still experience a large increase in their
child care hours. It is likely that this higher exposure will have at least some
persistent effect on future contributions to child care, be it through learning by
doing, more information about what kids are actually doing all day, or through
increased attachment to children.

We would expect even bigger effects within families where the COVID-19 crisis
also results in a shift in the relative distribution of childcare hours towards men.
One group for which this is likely to be the case is families where the mother is
already staying at home, but the father previously worked out of the house and is
now either working at home or not employed. The biggest impact on the division

13See Grosjean and Khattar (2018) for evidence of persistence in gender norms over even longer
periods.
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of labor will occur among couples where, because of the COVID-19 crisis, fathers
temporarily turn into the main provider of child care. This is likely to be the case
for couples where both parents are currently in the labor force, and where the
father is able/forced to work from home during the crisis, while the mother is
not. An example are couples where the mother is in a “critical” occupation (such
as a medical doctor or other healthcare professional who can’t work from home),
whereas the father is in an occupation that switches to telecommuting during the
crisis (such as education and a lot of non-critical office work).

Table 7: Employment Flexibility of Married Couples with Children

Wife Non-Tele Wife Tele Wife Crit Wife Non-Emp Total

Husb Non-Tele 17% 5% 5% 11% 38%

Husb Tele 9% 7% 3% 8% 28%

Husb Critical 8% 2% 4% 6% 21%

Husb Non-Emp 4% 1% 1% 7% 13%

Total 38% 16% 13% 33% 100%
Note: The table reports the share of couples by husband-wife occupation types. Telecommuting classi-
fications are made according to the TC 50% cut-off. Source: American Time Use Survey 2017-2018;
American Community Survey 2017-2018.

Table 7 provides an impression of the magnitudes involved. The table describes
the distribution of married couples with children among employment vs. non-
employment for each spouse, where employment is further broken down in crit-
ical occupations and, among the non-critical ones, occupations with a low and
high ability to telecommute. During a stay-at-home order with only critical occu-
pations exempt, we expect all non-critical workers to be at home. In nine percent
of households, the wife is in a critical occupation (such as medical doctor) while
the husband is not. In these households, we expect the husbands to temporarily
turn into the main providers of childcare. While this group is obviously a minor-
ity, it still consists of millions of households, suggesting that during the height
of the crisis seeing men as the main providers of child care will be much more
common than previously.

We can also consider what happens if workplaces resume but schools remain
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closed. In this case, we would expect most workers with the ability to telecom-
mute to continue working from home. We see that in 12 percent of married cou-
ples with children the husband is in an occupation with a high ability to telecom-
mute, while the wife is not (“Non-Tele” or “Critical”). Hence, in this scenario the
number of men turning into main providers of child care is even higher.

We therefore see that the crisis is likely to generate a large, if temporary, upward
shift in men’s participation in child care, with a sizeable fraction of married men
taking the main responsibility, in most cases for the first time. Based on the per-
sistent effects of other shocks to the household distribution of labor in the past,
we expect this shift to lead to a substantial increase in men’s future participation
in child care.

In assessing these effects, it bears emphasizing that the changes imposed on
households by the current crisis are very large. The existing literature on the
effects of paternity leave (i.e., parental leave reserved exclusively for fathers)
finds effects for relatively small changes; for example, Farré and González (2019)
provide evidence that the introduction of just two weeks of paternity leave for
fathers in Spain had persistent effects on the division of labor within couples.
During the current crisis, many millions of men are on a form of forced paternity
leave for a much longer period, and a sizeable fraction will be the main providers
of childcare during this time. Hence, even while women carry a higher burden
during the crisis, it is still highly likely that we will observe a sizeable impact of
this forced experiment on social norms, and ultimately on gender equality, in the
near future.

5 Outlook and Policy Options

We conclude with thoughts on policy options. Although in the last section we
pointed out channels that may ultimately lead to a reduction in gender inequal-
ity, we should keep in mind that the challenges for families during the current
crisis are unprecedented, severe, and falling disproportionately on those least
able to respond, such as low-income single mothers. The immediate challenge is
to formulate policy responses that acknowledge the specific challenges women
are likely to face during the coming crisis.
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We therefore recommend the following policies:

1. Government subsidies to replace 80% of employee pay for workers who
need to provide child care during the crisis due to school and daycare clo-
sures and are therefore unable to work, conditional on a continued em-
ployment relationship (i.e., workers can return to work immediately after
the crisis).

2. Work requirements for government assistance programs such as Temporary
Assistance for Needy Families (TANF) and Medicaid should be removed
until school and daycare centers re-open, and time off work now should
not count towards future work requirements. Unemployment insurance
should remove the requirement to be actively seeking work over the same
period.

3. Unemployment benefits should be extended to workers voluntarily sepa-
rating from employment to provide child care.

4. Universities should extend tenure clocks for faculty members with children
under age 14, with similar provisions for other employers with up-or-out
promotion systems.

5. Companies should be encouraged to waive billable hours targets tied to
bonus pay for 2020 for women with children under age 14.

This is not a comprehensive list, but it deals with some of the specific challenges
posed by the COVID-19 crisis. Items (1), (4), and (5) deal with women who can
retain their jobs during the crisis but will lose many hours due to shouldering
the majority of childcare provision for very young children and children out of
school. Item (1) is particularly important in light of the evidence that job loss has
large, persistent negative effects on human capital accumulation and earnings.
Allowing women to keep their jobs will avoid these consequences that would
otherwise follow them for many years. Countries like Germany and Denmark
have already taken aggressive steps along this line to allow workers to remain
on their employers’ payrolls during the crisis despite working zero or reduced
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hours. In the United States, the Families First Coronavirus Response Act also in-
cludes provisions for paid family leave, but is limited to certain employers (pri-
vate employers with 50–500 employees).

Many universities are already extending tenure clocks for both mothers and fa-
thers. But recent evidence from Antecol, Bedard, and Stearns (2018) suggests that
gender blind tenure clock extensions actually reduce female tenure rates and in-
crease male tenure rates, likely because of differences in time spent on childcare.
Given the unavailability of other forms of childcare, during the crisis the gap
between the ability of junior faculty with and without children to get research
done will be extremely large. While faculty without children may still suffer
from stress during this period, their time available to work is likely to actually
increase, given that time use for other activities, such as socializing with others,
declines during social isolation.14 Extending the tenure clock indiscriminately for
all current junior faculty, as a number of universities have already implemented,
will not address this disparity, which hits women stronger than men. Similar
mechanisms are at work in corporate settings where bonuses are tied to hours
worked: mothers will likely find it harder to meet these targets because of child-
care provision during the crisis while most men will not, exacerbating the gender
wage gap.

Section 2.1 argues that women are more likely to become unemployed during this
crisis than previous ones. Policies (2) and (3) are meant to address this group.
Some women, especially single mothers, will have no choice but to leave their
jobs to care for their children and should be eligible for unemployment benefits.
California has already taken this step by extending UI to cover parents who stop
working due to school closures. While caring for children, unemployed parents
will not be able to resume working so the requirement to be actively seeking
employment should be waived. Work requirements for other social assistance
programs such as food stamps and Medicaid in some states should be lifted for
the same reason and time limits on duration of receipt of these services should
be lifted.

Finally, there will be other consequences of the current crisis that will fall dis-

14Aguiar et al. (2018) report that young men spend about eight hours per week socializing.
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proportionately on women that are outside the scope of this paper that we leave
to future research. In normal recessions, incidents of domestic violence increase
(Siflinger, Tertilt, and van den Berg 2012). With families cooped up inside, these
risks will further increase and women are much more likely than men to be the
victims of domestic violence. Further, some states are restricting access to abor-
tions during the crisis, and the impact of the pandemic on fertility more broadly
remains to be seen. We plan to expand our analysis to some of these dimensions
in future research.
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We combine GPS data on changes in average distance travelled by individuals 
at the county level with Covid-19 case data and other demographic 
information to estimate how individual mobility is affected by local disease 
prevalence and restriction orders to stay at home. We find that a rise of local 
infection rate from 0% to 0.003%4 is associated with a reduction in mobility 
by 2.31%. An official stay-at-home restriction order corresponds to reducing 
mobility by 7.87%. Counties with larger shares of population over age 65, 
lower share of votes for the Republican Party in the 2016 presidential election, 
and higher population density are more responsive to disease prevalence and 
restriction orders.

1	 PhD student in Economics, University of Wisconsin-Madison.
2	 PhD student in Economics, University of Wisconsin-Madison.
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4	 This is the median infection rate (number of confirmed cases divided by county population) across counties 

with positive number of confirmed cases as of 20 March 2020.
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1 Introduction

In the face of the rapidly growing threat posed by the COVID-19 pandemic, public health

experts and economists alike are relying on epidemic models to make predictions and evaluate

policies. In the standard SEIR model (e.g. Wang et al. (2020)), the effective reproduction

rate Rt measures the actual average number of secondary cases per infected case at time t.

It is widely acknowledged that Rt reflects both the nature of the virus (including the basic

reproduction rate R0), as well as the effectiveness of various protective measures taken by

individuals and governments in response to available information. In the case of COVID-

19, the key policy measure to reduce Rt is a restriction order to stay-at-home. To date,

this policy has been promoted by governments across the globe. It is an open question,

however, to what extent individuals alter their mobility in response to government orders. It

is also little known how they adjust traveling behaviour when perceived risks of COVID-19

increases, but the government has not yet announced a restriction order.

Mobility statistics provide invaluable information as to whether people are actively reduc-

ing their exposure to COVID-19 by reducing distances traveled and avoiding social contact,

and by how much. In this paper, we use a novel dataset from Unacast, a location data

firm. Their dataset includes a measure of daily average changes in distance traveled (∆it) in

every U.S. county. Their measurement of distance travelled is a relative change to a baseline

measure of distance travelled based on historical data, so ∆it is an important measure of

changing behaviours in response to the COVID-19 pandemic. We use this data to estimate

how the average change in distance traveled is related to perceived risk of contracting the

disease (Ωit) and restriction orders Iit. We also investigate how these relationships depend on

demographic characteristics (Xi). The methodology here is similar to that in Auld (2006),

where the author estimates elasticities of risky behavior to local prevalence of AIDS, and

explored heterogeneity across observable characteristics.

The estimates obtained here contribute to the current discussion in three ways. First,

our results provide an estimate of how much human behavior, in our case average distance
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traveled, responds to perceived risks of contracting the disease. Second, the results give us

a sense of how important government announcements are in affecting people’s behaviour.

Lastly, by considering demographics, political attitude and population density, we evaluate

whether characteristics of the underlying population play a role in determining the effec-

tiveness of restriction orders and responses to disease prevalence. In particular, since older

individuals are at higher risk2, we would be interested in whether counties with relatively

high elderly populations have altered their behavior more than younger counties. There

has also been some discussion that political partisanship is an indicator of skepticism in

the legitimacy of the COVID-19 outbreak 3. We also evaluate whether counties with higher

population density adjust behavior more due to the fact that the virus is spreading mainly

through interpersonal interactions. To summarize, the novel data and careful analysis in

this paper contributes to the understanding of mobility changes amid COVID-19 epidemic

while focusing on levels of travel distance and raw percentage change without considering

confounding factors such as local disease prevalence and population density could paint an

incomplete picture.4

Another paper in this issue, Painter and Qiu (2020), also investigates how political be-

liefs affect compliance with COVID-19 restriction orders. They define a social distancing

measure using the fraction of mobile users completely staying at home with location data

from SafeGraph Inc. Their panel regression results support our finding that counties with a

lower share of votes for the Republican Party in the 2016 Presidential Election respond less

to restriction orders. They also use party misalignment to argue that faith in the credibility

of government officials affects adherence to those policies. Our paper differs from theirs in

three ways. First, besides political affiliation, we also demonstrate the importance of other

heterogeneities such as age structure and population density. Second, we focus on people’s

2See, e.g. the CDC guidelines: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-
precautions/people-at-higher-risk.html

3e.g. https://www.nytimes.com/interactive/2020/03/21/upshot/coronavirus-public-opinion.html
4e.g. https://www.nytimes.com/interactive/2020/04/02/us/coronavirus-social-distancing.

html
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reduction in mobility to factors beyond restriction orders, such as confirmed cases in both

local and neighboring counties. This is important since as we show in Figure 7, average

mobility starts to decrease long before restriction orders were announced. Lastly, we build

a model of individual behavior; our estimates aim at providing a benchmark value for indi-

vidual responses to overall perceived COVID-19 risks that can be used in other studies (e.g.

Kaplan et al. (2020)). We view Painter and Qiu (2020) as complementary to our paper.

In the rest of the paper, we outline a simple model in section 2. In section 3 we discuss

our novel data source on daily travel patterns and how we have augmented it with COVID-19

data. In section 4 we present our preliminary results and argue that even the simple model

provides a solid baseline. We finish with section 5 where we summarize our current progress

and outline our plan for current and future work.

2 Simple Model

In this section, we present a simple model that relates an individual’s travel decision to

perceived disease prevalence. This model provides theoretical motivation for the estimation

strategy in Section 4.

Consider an individual that derives utility U(d) = dσ/σ from distance traveled (d) with

0 < σ < 1. The cost of traveling each unit of distance is composed of one component that is

independent of the epidemic Π, and one component that is the product of a linear perceived

risk index of contracting the disease (Ω > 0) and the utility cost of contracting the disease

(Z). An individual’s utility is given by:

U(d) = dσ/σ − Πd− ΩZd

= dσ/σ − Π

(
1 + Ω

Z

Π

)
d

≈ dσ/σ − Πe
Z
Π

Ωd

(1)
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The solution of the utility maximization problem is therefore:

d∗ =
(

Πe
Z
Π

Ω
) 1
σ−1

(2)

As can be seen, when an individual perceives a higher risk level, corresponding to higher Ω,

individuals decide to travel less, i.e. by reducing d. We will carefully define Ω later.

If we compare an individual’s decision to travel at time t under perceived risk index Ωt

versus some benchmark date t0 with Ω0, we get a measure of change in distance traveled:

∆t =
d∗t
d∗0
− 1 = e

Z
(σ−1)Π

(Ωt−Ω0) − 1 ≡ eκΩt − 1 (3)

since before the outbreak Ω0 = 0.

Equation (3) is suggestive of a strategy to estimate how the index of perceived risk, Ω,

affects the percentage change in distance traveled from date t relative to date 0. We propose

to estimate κ via nonlinear least squares, after we consider an appropriate definition of Ωt

below in Section 4.5

3 Data

We construct a county-level panel data for the contiguous United States. with dates covering

2/24/2020 to 3/25/2020. Our data includes the following information:

1. Daily confirmed coronavirus cases compiled by The New York Times.6

2. Daily changes in average distance traveled relative to the same weekday pre-COVID-

19, provided by Unacast. Unacast use GPS signals from mobile devices to calculate

5Since change in distance traveled (∆t) is large in the data, we do not approximate it by log(d∗t /d
∗
0).

6We also compared this data to case data compiled by the Johns Hopkins University Center for Systems
Science and Engineering and found the data to be essentially identical. Our results are robust to both
sources.
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average distance traveled by device-holders in each county at a daily frequency.7

3. Enacted social-distancing policies (stay-at-home restriction orders) as of 3/28/2020 as

compiled by the New York Times.

4. Demographic data is sourced from the MIT Election Data and Science Lab (MEDSL).

MEDSL data conveniently matches demographic information from the 2012-2016 5-

year ACS, to county-level 2016 Presidential Election Results.

In total, our data covers 3142 U.S. counties with 94,116 observations. The summary statistics

are given in Table 1.

Figure 1 plots the changes in average distance traveled relative to the same weekday pre-

COVID-19 on 2/24/2020. The overall light color in the figure indicates that at the beginning

of the epidemic when there were very few cases confirmed (see Figure 3), there was not much

change in population mobility.

When we turn to a more recent date, 3/23/2020, Figure 2 shows that average distance

traveled decreases significantly in most counties across the U.S., with particularly large drop

in New York, California, Colorado and Florida. Figure 4 shows that these are also places

with relatively large number of reported COVID-19 cases.

Figure 5 and 6 show the share of counties and population that is under a stay-at-home

order respectively. Both measures start to grow on 3/19 as national cases surpass 10,000. As

of 3/25/2020, more than 30% of the counties and 55% of the national population is under

government orders to stay-at-home unless for essential activities.

Figure 7 shows the 10th quantile, median, and 90th quantile of the changes in average

distance traveled across counties in our sample. We can see that mobility starts to decrease

for median counties at around 3/10, well before the announcements of restriction orders as

shown in Figure 5 and 6.

7For more information on methods of data collection and aggregation, visit unacast.com and Unacast
COVID-19 Social Distancing Scoreboard.
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Figure 1: Change in distance traveled relative to the same weekday pre-COVID-19, 2/24/2020
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Figure 2: Change in distance traveled relative to the same weekday pre-COVID-19, 3/23/2020
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Figure 3: Number of confirmed cases, 2/24/2020
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Figure 4: Number of confirmed cases, 3/23/2020
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Figure 5: Share of Counties under Stay-at-Home
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Figure 6: Share of Pop under Stay-at-Home
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Figure 7: Quantiles of Changes in Average Distance Traveled Across Counties

Table 1: Summary Statistics of Pooled Dataset

Statistic Mean St. Dev. Min Max

Total Cases 3.004 61.546 0.000 6, 154.000
Cases, Share of Pop 0.001% 0.01% 0.00% 0.5%
Neighbor Cases, Weighted 0.005% 0.01% 0.00% 0.2%
Pct Chg in Distance Travelled −0.079 0.158 −0.879 1.388
Share of Pop Over Age 65 17.502 4.319 3.855 53.106
Share of Republican Votes, 2016 0.629 0.156 0.041 0.916
Population Size, Thousands 104.648 330.248 1.233 10, 057.160
Density: Thousands per Sq. Mile 0.268 1.753 0.001 69.468

Note: See Section 4 for formal definition of the Neighbor Cases variable.
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4 Empirical Results

Motivated by the model outlined in (3), our baseline regression model is given by:

∆it = β0 + β1 exp(β2Ωit) + β3Iit + β4 exp(β2Ωit)× Iit + βXIit ×Xi + ρ∆i,t−1 + εit (4)

where the variables are defined as follows:

Dependent variable (∆it)(∆it)(∆it) Mobility change is measured by the percentage difference in

average daily distance in county i at time t, compared to the average in the four weeks

before COVID-19 outbreak, by weekday.

Perceived risk index of contracting COVID-19 (Ωit)(Ωit)(Ωit) We assume that individuals’ per-

ception of risk is affected by COVID-19 prevalence in both local and neighboring coun-

ties, as well as population demographics. We propose using a linear index, Ωit, defined

as:

Ωit = Ci,t−1 + γ
∑
j 6=i

wijCj,t−1 + γXX + γCI

[
Ci,t−1,

∑
j 6=i

wijCj,t−1

]
×X (5)

where each term in (5) denotes

1. Ci,t−1, is total confirmed cases divided by population at county i at time t − 1.

To ease interpretation of coefficients, we then normalize the median prevalence

level for counties with positive COVID-19 cases on 3/20/2020 to be one (0.003%

- Mecklenburg, North Carolina).

2.
∑

j 6=iwijCj,t−1, a weighted average of confirmed cases at neighboring counties

measured at time t − 1. For simplicity, we let weight be proportional to the

inverse of distance between county centroids with
∑

j 6=iwij = 1.We adopted the

same normalization as in Ci,t−1.

3. Xi, County-level demographics include age structure (share of population over

65), political attitude (share of the population that voted Republican in the 2016
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Presidential Election), and population density (thousand people per square mile).

In this baseline model, we interpret Ωit as a linear approximation perceived risk.

Restriction orders (Iit)(Iit)(Iit) Restriction order Iit is a dummy variable that takes the value of

one if an order to stay-at-home is in effect in county i at date t; zero otherwise.

In (4), we allow individuals’ response to perceived risk to differ depending on whether

the government have announced restriction or not. We also consider the possibility that

responses to a restriction order might vary based on demographic characteristics. In (5),

perceived risk index Ωit is affected by both local and neighborhood COVID-19 confirmed

cases, as well as underlying population characteristics. We also include an interaction term

to study how population characteristics affect individuals’ perceived risks as the disease

become more widespread. Note that the coefficient in front of Ci,t−1 in Equation (5) is

normalized to 1, since the overall scale of the γ’s cannot be separately identified from β2 in

Equation 4.

Our main results are shown in Table 2. The top-half of the table shows estimates of

the parameters in Equation (4) while the bottom-half shows coefficients in the perceived

risk equation (5). In subscripts of coefficients, we use {P,O,D} to represent the share of

population that voted Republican in the 2016 Presidential Election, share of population with

age over 65, and population density (in thousands of people per square mile) respectively.

Subscripts {L,N} refer to the interaction terms of population characteristics with local

confirmed cases Ci,t−1 and neighborhood confirmed cases
∑
j 6=i

wijCj,t−1.

We start the interpretation of the main results from the top. The positive value of β̂1

combined with negative β̂2 implies that an increase in perceived risk index Ωit reduces leads

to a decrease in ∆it.

To get a sense of the magnitude of the effect of restriction orders on mobility, we consider

the case where the government announces a stay-at-home order in a county with median

demographic characteristics (P̄ , Ō, D̄) and our median estimate of perceived risk index,
¯̂
Ω.
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Table 2: Main Results

∆
Estimate SE

β0 −0.1222∗∗∗ (0.0011)
β1 0.1349∗∗∗ (0.0031)
β2 −1.5616∗∗∗ (0.2554)
β3 −0.0685∗∗∗ (0.0106)
β4 −0.0890∗ (0.0439)
βPI 0.1810∗∗∗ (0.0141)
βDI −0.0025∗∗∗ (0.0006)
βOI −0.0034∗∗∗ (0.0005)
ρ 0.5141∗∗∗ (0.0029)
ΩΩΩ
γ 0.2132∗ (0.0952)
Political Affiliation
γP −0.0056 (0.0180)
γPC −1.1557∗∗∗ (0.1118)
γPN −0.4063∗∗∗ (0.1267)

Population Density
γD 0.0034 (0.0029)
γDC −0.0959∗ (0.0430)
γDN 0.5541∗∗∗ (0.1153)

At Risk Share
γO 0.0033∗∗∗ (0.0008)
γOC −0.0069 (0.0094)
γON 0.0439∗∗∗ (0.0076)

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Num. Obs = 91080
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Based on our estimates from Table 2, we find that the restriction order would reduce mobility

by 7.87% for a county with characteristics P̄ , Ō, D̄, and perceived risk index
¯̂
Ω.

The coefficients from interacting restriction order with population demographics tell an

interesting story. We illustrate this point with the hypothetical county with characteristics

(P̄ , Ō, D̄) and perceived risk index
¯̂
Ω) as before. If we perturb the characteristics {P,O,D}

one at a time by increasing each in turn by one standard deviation of that characteristic, how

would the effect of the restriction order change? Recall that this baseline effect is a 7.87%

decrease. The estimates suggest that the effect of a restriction order would be of smaller

magnitude, going to a 5.05% decrease with a 15.6 percentage point increase in the share of

the population that voted Republican in the 2016 Presidential Election; the effects would be

stronger when the share of the population over age 65 increases by 4.3 percentage points, with

the effect size of a 9.33% decrease. Lastly, when population density increases by 1000 people

per square mile, we would expect the effect of a restriction order to be stronger, an 8.30%

decrease. These results suggests that the effects of restriction order are highly heterogeneous

depending on the underlying population, with the direction of the effect being consistently

negative, as expected.

The coefficient of the interaction between Ω and I, β4, is negative with an absolute value

smaller than β1. This implies that an increase in perceived risk index of contracting the

disease Ω still decreases mobility when restriction order is announced, but with a smaller

impact.

Now we turn to the bottom half of Table 2 to interpret the estimates of coefficients in

Equation (5) determining perceived risks. Parameter γ measures the relative importance of

cases in neighboring counties relative to local cases. The estimate γ̂ shows that an increase

in COVID-19 confirmed cases in neighboring counties would indeed raise the perceived risk

locally, but individuals discount that increase at rate 0.2. This implies that spillover of risks

across regions are potentially important, but the magnitude is not very large in the data

relative to local cases.
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To study the magnitude of these estimates, we consider again the county with median

characteristics {P̄ , Ō, D̄}. If the county starts out with zero confirmed cases locally, and

with neighboring confirmed cases at the sample median, suppose there is a unit increase8

in local cases. How much would individuals reduce traveling without government imposing

any restriction order? By combining estimates of parameters, our results suggest that the

mobility reduction is 2.31%. These estimates suggests that decreases in mobility could take

place well before the official announcement of restriction orders, which is in line with the

findings in Figure 7 and evidence from OpenTable reservations in Kaplan et al. (2020).

The direct effects of demographic characteristics, and their interactions with confirmed

cases, on perceived risk, shown in the bottom half of Table 2, lead to a very similar conclusion

to the one we reached on the their effects on restriction order. Counties with a lower share

of the population that voted Republican in the 2016 Presidential Election, higher share of

elderly population, and higher population density have higher perceived risk in levels, and

are more responsive to increases of disease prevalence.

5 Discussion and Conclusion

In this paper, we combine a novel GPS location dataset with COVID-19 cases and population

characteristics at the county level to estimate the effects of disease prevalence and restriction

orders on individual mobility. We find that population mobility reacts strongly to changes

in perceived disease prevalence and government stay-at-home announcements: a rise of local

infection rate from 0% to 0.003% reduces mobility by 2.31%, and a government restriction

order to stay-at-home reduces mobility by 7.87%. Additionally, we find that these effects of

information on individual behaviour depends on characteristics of the underlying population.

In particular, counties with larger shares of population over age 65, lower share of population

voted Republican in the 2016 Presidential Election, and higher population density are more

8Due to the normalization, we could interpret the unit increase as a shift to the median prevalence level
in counties with confirmed cases as of 3/20/2020, i.e. Mecklenburg, NC.
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responsive to disease prevalence and restriction orders.

There are a couple of important limitations to our work in its current iteration. First,

our perceived risk index Ωit does not line up with the exact interpretation of Ω in the

model; to be specific, we are providing a linear approximation to Ω, a strictly positive

quantity. Our model fits the data well, as Ω̂it is positive in over 99.9% of cases. Future work

could include a submodel for Ω so that we can directly interpret the estimated quantities as

perceived risk. Second, we have not yet included a model of endogeneity. Presumably, travel

decisions and perceived risk are simultaneously determined. We have begun to study how

to incorporate this into an extended model. Lastly, we plan to include more demographic

controls such as industry composition and share of workers in essential jobs. These could

affect the substitutability between on-site work and work-from-home, hence affecting changes

in mobility. and these will be included in future versions of the project being continuously

updated on SSRN.
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Social distancing is vital to mitigate the spread of the novel coronavirus. 
We use geolocation data to document that political beliefs present a significant 
limitation to the effectiveness of state-level social distancing orders. Residents 
in Republican counties are less likely to completely stay at home after a state 
order has been implemented relative to those in Democratic counties. We also 
find that Democrats are less likely to respond to a state-level order when it 
is issued by a Republican governor relative to one issued by a Democratic 
governor. These results are robust to controlling for other factors including 
time, geography, local Covid-19 cases and deaths, and other social distancing 
orders. We conclude that bipartisan support is essential to maximise the 
effectiveness of social distancing orders.
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I. Introduction

Both the World Health Organization and Center for Disease Control have recognized

social distancing as the most effective way to slow down the spread of the novel coronavirus.

Early evidence from China and the 1918 US flu pandemic also highlight the importance of

limiting travel time in fighting the disease (Kraemer et al. (2020); Correia et al. (2020)).

Observing the universal effectiveness of social distancing from Asia and Europe, many regions

in the US have also started to issue stay-at-home and shelter-in-place orders. Since March

19th of 2020, 33 states have issued explicit orders that urge their residents to stay home.

As of this writing roughly 84% of Americans are now disciplined by some level of social

distancing requirements.

It is important for the government to understand how effective these orders are for at least

two reasons. First, there are states that have not issued statewide social distancing orders,

and this analysis would help them make better-informed decisions going forward. Second,

understanding the effectiveness of current policies may allow states that have a policy in

place to make adjustments as necessary. In this paper, we leverage geolocation tracking data

sourced from smartphones to analyze the effectiveness of state-level social distancing policies

and show that political beliefs are an important limitation for whether people adhere to these

orders.

Potentially due to the recent increase in political polarization in the US (Boxell, Gentzkow,

and Shapiro, 2020), there are concerns regarding how political beliefs would heterogeneously

affect compliance with social distancing orders. For instance, a pastor from Arkansas told the

Washington Post that “in your more politically conservative regions, closing is not interpreted

as caring for you. It’s interpreted as liberalism, or buying into the hype.” The same report also

documents that people from more liberal areas show more distrust in President Trump’s initial

message and are more proactive about social distancing.1 The press has also highlighted that

1“Without guidance from the top, Americans have been left to figure out their own coronavirus solutions.”
Washington Post. March 15, 2020.
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President Trump initially downplayed the severity of the coronavirus pandemic, suggesting

that Republicans may not take social distancing orders seriously.2

Does this media coverage solely pick up extreme observations that are not representative of

how residents with differing political beliefs behave? Or is there some generalizability of these

anecdotes? These are important questions as the answers could help policymakers understand

the difference in the treatment effect of stay-home orders among different subpopulations

and better allocate precious time and resources in this challenging time.

To analyze these questions, we create a measure of social distance based on the location of

a sample of smartphones throughout the day. From this data we measure social distancing as

the percentage of people who stay home for an entire day relative to all people identified in a

census block group. This daily data covers February and most of March, 2020. We also collect

data on government-sanctioned social distancing orders, county-level demographics, and

county-level voting results from the 2016 presidential election. The union of these datasets

allows us to study whether partisanship affects adherence to social distancing orders through

a difference-in-differences framework.

We find that state-level social distancing orders are associated with a significant increase

in social distancing. Specifically, the change in the proportion of people who completely stay

at home is 5.1 percentage points (pps) higher in areas with a state-level policy relative to

areas without a policy. This finding is robust to the inclusion of county and date fixed effects

as well as controlling for other local policies (e.g., closing schools) and reports of county-level

coronavirus cases and deaths.

Next, analyzing differential responses to state policies, we find that Republican counties

respond less to social distancing orders relative to Democratic counties. A one standard

deviation increase in the county-level share of votes for Donald Trump in the 2016 election

is associated with a 3pps lower percentage of people who stay at home after a state social

distancing order relative to the average county. This finding is robust to subsample tests

2“Analyzing the Patterns in Trump’s Falsehoods About Coronavirus.” New York Times. March 27, 2020.
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designed to adjust for county population and density.

Our final tests focus on whether the political affiliation of the governor announcing a

state-level social distancing order affects compliance. If Republican’s lower response to social

distancing orders is due to President Trump’s early dismissal of the pandemic, we may likewise

find that Democrats’ response to orders may vary based on the political affiliation of who

gives the order. We identify “aligned” counties as those with the same political affiliation as

the governor and “misaligned” counties as those with conflicting political identities. We find

that misaligned counties have a 2.9pps lower response to state policy social distancing orders

relative to aligned counties. This difference is driven by misaligned democratic counties.

These results suggest that the difference in compliance to social distancing orders based

on partisanship is likely due to how credible residents find government officials and not an

information transmission channel.

Taken together, our results suggest that political polarization is a major roadblock on

the path to full compliance with social distance measures. Republicans and misaligned

Democrats are less likely to adhere to these orders, suggesting that bipartisan support for

social distancing measures is a key factor in how quickly we can mitigate the spread of the

novel coronavirus.

II. Related Literature

Our findings are related to the literature examining how political beliefs can influence

behavior. Examining politically-charged fake news, Long, Chen, and Rohla (2019) find that

conservative-media dismissals of the dangers of hurricane Harvey and Irma led to lower

evacuation rates for conservatives relative to liberals. Painter (2020) shows that consumers

respond along partisan lines when firms issue political statements. There is also evidence

that politics can influence economic expectations (Gerber and Huber (2010); McConnell et al.

(2018)). We extend this literature to the recent pandemic setting, showing that information

from political officials can influence responses to government orders.
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In contemporaneous independent work, Engle, Stromme, and Zhou (2020) also use

geolocation data to study how Americans respond to the threat of the coronavirus. Though

similar in spirit, their study differs from ours regarding both research focus and methodology.

Regarding focus, Engle et al. (2020) give a more general overview of factors associated with

geographic mobility amid the pandemic (including past cases, age, and political beliefs),

whereas we focus more in depth on the political beliefs factor and document more nuanced

behavior in that respect.

Regarding methodology, there are two significant differences between our paper and

Engle et al. (2020). First, we use data from SafeGraph and measure how often people stay

completely at home as our social distancing measure while Engle et al. (2020) use data

from Unacast and focus on how Americans change their average distance traveled. While

informative, a distance traveled measure may be confounded by people driving to work and

may also be upwardly biased in areas that have to drive further for essential goods like

groceries. This bias is especially problematic when studying political divides as rural areas

tend to be more Republican. Our social distancing measure is able to avoid these confounding

effects as the SafeGraph data identifies devices which are likely traveling for work and the

proportion of people who completely stay at home is not affected by how far they travel for

essential goods and services. Second, our model includes fixed effects for county and date

and double-clustering of standard errors by county and date. In contrast, the model of Engle

et al. (2020) does not appear to include either fixed effects or standard error adjustments.

Though they do include county-level controls for age, population, and density, their results

may still be influenced by unobserved heterogeneity at the county level (e.g., local economic

conditions like unemployment). In addition, the absence of clustering may lead to downward

biased standard errors if those errors are correlated by county or date. Having established

differences in our papers, we next turn to describing the data used in our study.
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III. Data

The primary datasets we use in this study are (1) geolocation data from SafeGraph, (2)

government-sanctioned social distancing orders, and (3) county-level election results from the

2016 Presidential election.

A. Geolocation Data

To create a measure of social distance compliance, we rely on anonymized location data

from SafeGraph Inc. SafeGraph partners with mobile application services that have opt-in

consent from users to collect location data. The partnerships allow SafeGraph to see location

data from approximately 35 million unique devices in a given month. To preserve anonymity,

the data is aggregated to the census block group (CBG) level and all CBG’s with fewer than

five observations are omitted. This geolocation data is advantageous as it allows us to see the

movement behavior of a large sample of Americans. Further, prior studies using SafeGraph

data find the data are generally representative of the US population (Chen, Haggag, Pope,

and Rohla, 2019) and in particular representative of voting patterns in the US (Chen and

Rohla, 2018).

From the SafeGraph data we create the following variable to track social distancing:

Social Distancec,t =
Completely Homec,t

Total Device Countc,t −Workingc,t
(1)

where Completely Homec,t is the number of devices in county c on day t that never left

home. Home is measured as the common nighttime location of each mobile device over a 6

week period to a Geohash-7 granularity (about 153 square meters). Total Device Countc,t is

the total number of devices identified in county c on day t, and Workingc,t is the number of

devices that leave home and go to another location for more than three hours during the

period of 8 am to 6 pm local time.3 A higher percentage of Social Distancec,t indicates more

3We use three hours in order to adjust for both part-time and full-time workers. Full documentation for the
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residents in the area are complying with the social distancing order.

Though the SafeGraph data is extensive and is useful for our setting, it does have some

limitations. The data is nationally representative but relies on smartphones to track location

and as of 2018 23% of American adults did not own a smartphone.4 Thus inferences can

only be drawn about those who own smartphones. Finally, the data is generated through

intermittent and somewhat random “pings” to smartphones and is not monitored continuously

throughout the day. This means short trips outside the home may be missed if the phone is

not pinged during that time. This could introduce bias as more densely populated areas -

which tend to be Democratic - are able to make short trips out of the house whereas rural

areas - which tend to be Republican - must make longer trips for daily necessities (e.g.,

groceries). We address this potential bias by analyzing subsamples of counties based on

population and population density.

B. Government Social Distancing Orders

There are a few sources that track the social distancing policies at varying geographical

levels. We choose to use the data assembled by the New York Times because it is compre-

hensive and provides precise information on both the timing and geography of the social

distancing order.5 Importantly for our study, it also provides official documentation for the

order, allowing us to identify the policy announcer in each case. California, the most populous

state, was the first to order a state-wide stay at home order effective March 19. Since then, a

total of 33 states have issued social distancing orders6. We merge the political affiliation of

all governors with the NYT data as it is not included in their report. We also gather daily

data on the number of reported cases and deaths in each county from the NYT.7

There are also instances of governors who refrain from issuing state-wide social distancing

SafeGraph social distancing data can be found here: https://docs.safegraph.com/docs/social-distancing-
metrics

4Mobile Fact Sheet. Pew Research Center. June, 2019.
5“See Which States and Cities Have Told Residents to Stay at Home.” New York Times. April 2, 2020.
6As of the current draft, with Maine (April 2nd) being the last on our list.
7“We’re Sharing Coronavirus Case Data for Every U.S. County.” New York Times. March 28, 2020.
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orders. These refusals often cite concern on the economy as the main reason. For instance,

Alabama Governor Kay Ivey said she will not issue a statewide order because she wanted to

“balance the health of the state’s residents with the health of the economy.” In these cases,

NYT also collects information at the city/county level. This data is not useful in our analysis

however, as most city/county level orders are not made by political officers. For example,

county level social distancing orders in Missouri have largely been made by public health

officials. For this reason, we exclude all counties that have implemented a county-level social

distancing order from our analysis.

C. Political Affiliation and Demographic Data

Our setting also requires a proxy for the political preference of US residents. We use

the results of the 2016 US Presidential election to measure a county’s political preference.

Specifically, we collect county-level voting data from the MIT Election Data and Science

Lab (MIT, 2018) and use the vote share won by Donald Trump to measure the degree to

which a county leans Republican or Democrat. Lastly, we collect county-level demographic

data - most notably population and population per square mile - from the 2018 American

Community Survey database.

IV. Results

A. Summary Statistics

We report summary statistics of social distancing compliance in panel A of Table 1. Our

social distancing data covers February 1st to March 29th of 2020. During this period, on

average 33.1% of residents are identified as staying completely at home. We observe the

univariate treatment effect of social distancing orders when we split this variable into before

and after a state announces a social distancing policy. After having a policy in place, the

completely at home rate increases to 46.4% from 32.6% (a 42% increase). Panel B of Table

1 reports summary statistics on county characteristics and highlights the importance of

adjusting for population characteristics. There are fewer Democratic counties in the US
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but they are both more populated and more densely populated than Republican counties.

The average Democratic (Republican) county has 290,000 residents (46,000) and 293 (30)

residents per square mile.

B. The Effects of State-Level Social Distancing Orders

We examine whether political beliefs affect the response to state-level social distancing

orders using the following generalized difference-in-differences estimation:

Social Distancingc,t = β ∗ (State Policy × Trump V ote) + δ′ ∗ controls+ γc + γt + εc,t

(2)

Where Social Distancingc,t is the percentage of smart devices that were completely at home

in county c on day t, State Policy = 1 if a state level social distancing order has gone into

effect,8 and Trump V ote is the county level vote share that went to Donald Trump in the 2016

election. We z-score Trump V ote to have a mean of zero and standard deviation of one. The

β coefficient on the interaction term will capture the marginal response to social distancing

orders based on how much a county leans Republican or Democrat. We include controls for

the one-day lag of the cumulative number of cases and deaths due to the coronavirus in a

county. We also include as controls dummy variables that identify when a state closed k-12

schools, day cares, gyms, and movie theatres and banned nursing home visits, non-essential

business, and sit-in restaurants.9 We include county fixed effects to control for time-invariant

local factors like the performance of the local economy. We also include date fixed effects to

control for common factors across time like the release of a coronavirus-related news on a

certain day. We double-cluster standard errors at the county and date level.

While we have taken careful steps to mitigate confounding factors, there still exists some

potential for endogeneity. In particular, the timing and strength of policy implementation

8We exclude from our analysis days where a state policy went into effect at 12pm or later.
9We thank Julia Raifman, Kristen Nocka, and their contributors for sharing this data.
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may be endogenous to the expectations of politicians regarding the effectiveness of other social

distancing strategies (e.g., loosely defined recommendations to practice social distancing).

Though our day fixed effects adjust for timing issues, we cannot completely rule out this

possibility.

We report the results of estimating equation (2) in Table 2. In column (1) we estimate a

baseline specification to examine how much social distancing increases after a state-policy

order at the aggregate level. We find that counties with state social distancing orders have a

completely-at-home rate that is 5.1 pps higher (16% increase from the unconditional mean)

than counties with no state policies in place. This finding highlights the importance of

implementing state-level policies, especially when considering this effect is after controlling for

county-level coronavirus cases and deaths as well as a host of other state-level business closures.

We next estimate equation (2) to analyze how political partisanship affects adherence to social

distancing orders (column 2). Consistent with the argument that Republicans were influenced

by Trump’s early dismissal of the pandemic, we find that a higher vote share to Trump is

associated with a lower proportion of people staying completely at home. Specifically, a one

standard deviation increase in the vote share to Trump is associated with a 3pps decrease

in proportion of people staying completely at home after a state policy relative to a county

with an average vote share to Trump.

We also analyze these effects in event-time in panels A and B of Fig. 1. We interact

our state policy variable with indicator variables for how far away a date is from the state

policy enactment and report the resulting coefficients. By construction, these coefficients

capture the time-series of differences in social distancing compliance between treated and

control counties. The baseline result (panel A) shows little difference between the social

distancing in our treatment and control counties before state policies are enacted and a large

jump in the difference once a state policy goes into effect. The partisan split event study

(panel B) also shows a significant difference in the response to state-policies when comparing

Republican counties (>50% Trump) and Democratic counties, with Democratic counties
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responding more.

There is also evidence in panel B that Democrats begin adopting social distancing behavior

prior to the announcement of state policies. To ensure that this difference in pre-trends is

not driving our results in Table 2 column (2), we re-estimate equation (2) while excluding

observations that occur greater than five days before a state policy is implemented. We also

exclude all observations before March 15th in our control sample. We continue to find a

significant difference in social distancing behavior based on the vote share to Trump (column

3), suggesting that pre-trends are not driving our results.

Because more populous areas are more at risk, there could be an increasing intensive

margin effect based on the population of the area. To test this hypothesis, we repeat the

previous regression but instead interact the state policy indicator with the population in

a county (z-scored to mean 0 and standard deviation one) and report results in column

(4) of Table 2. We find that population is indeed an important factor in social distancing

compliance: A one standard deviation increase in county population is associated with 10 pps

higher compliance rate. We find a similar - though somewhat muted - effect when including

population density (the z-score population per square mile) as the interaction term. We

also find that the population and density differences primarily occur on the date that the

state-policies are implemented (panels C and D of Fig. 1).

The population results highlight the need to adjust for county population when examining

differences in social distancing behavior in Republican and Democratic counties. This is

particularly important as Republican counties tend to be less populated, rural areas and

Democratic counties tend to be more populated, urban areas. To adjust for these differences,

we estimate equation (2) on subsamples of counties sorted into quintiles based on population

and population density and report results in Table 3.

Panel A of Table 3 reports results for the subsamples based on population. We find a

significant negative coefficient on State Policy × Trump V ote in all subsamples, suggesting

that the population of a county is not driving the difference in social distancing responses
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between Republican and Democratic counties. When sorting by population density (panel B),

we find a significant coefficient on the interaction term in the top three quintiles but no effect in

the bottom two quintiles. The absence of a significant effect in more sparsely populated areas

is intuitive as these areas are naturally less exposed to the quick spread of the coronavirus.

Taken together, these results suggest that Republicans located in relatively densely populated

areas are less like to adhere to social distancing orders relative to Democrats.

There are two possible channels that may explain our results thus far. First, an “in-

formation” channel would suggest that Democrats are more informed about the potential

spread of coronavirus and thus react more intensely when government measures are put in

place. Second a “credibility” channel would suggest that Republicans, who may rely on

President Trump’s word more than more local government officials, do not find the state

policy warnings credible and therefore react less to social distancing orders.

To distinguish between these two potential channels, we create the variable misalignment

which indicates whether the political affiliation of a county is misaligned with the political

affiliation of the person who issues a state policy order. For example, misalignment = 1 for

a Republican county in Colorado, where the Democratic Governor Jared Polis issued a stay

at home order. On the other hand, misalignment = 0 for a Democratic county in Colorado.

Our final tests examine equation (2) but instead interact the state policy indicator with

the misalignment variable. If the results are driven by the information channel, we would

expect to find no difference based on misalignment. If the results are driven by the credibility

channel, we would expect a lower response in misaligned counties relative to aligned counties

as the misaligned counties would find the social distancing order less credible.

Table 4 reports the misalignment results. Consistent with the credibility channel, we find

that misaligned counties respond less to social distancing orders relative to aligned counties.

After a state policy is enacted, the proportion of people who completely stay home is 2.9pps

lower in misaligned counties relative to aligned counties. To further examine the credibility

channel, we repeat the misalignment tests on subsamples of Republican and Democratic
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counties. We find no difference in behavior between aligned and misaligned Republican

counties (column 2) but a significant difference in behavior in Democratic counties (column

3).

We find consistent results when examining these subsamples in event time (Fig. 2). Inter-

estingly, the event-time studies show that misaligned Democratic counties’ social distancing

difference is similar to those of all Republican counties and the difference in partisan response

to social distancing orders is driven by Democratic counties responding to orders made by

Democratic governors.

V. Conclusion

Social distancing is vital to mitigate the spread of the novel coronavirus. In this paper, we

study political limitations to government-mandated orders intended to get people to practice

social distancing. Our results suggest that faith in the credibility of officials issuing government

orders affects adherence to those policies. In particular, Republican and politically-misaligned

Democratic counties respond significantly less to social distancing policies. Our results

highlight the need for bipartisan support of the effectiveness of social distancing in order to

mitigate the spread of the coronavirus.
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Fig. 1
Changes in Social Distancing around State Policies
This figure plots coefficients of βj from the following regression of social distancing on the
interaction of state policies for shelter in place in event time, where day 0 is the first date the
state order went into effect. Panel A plots the entire sample. Panel B plots subsamples for
Republican and Democratic counties, where Republican counties are those where Trump
received over 50% of the vote in the 2016 Presidential election. Panel C plots the highest
and lowest quintiles of counties based on population. Panel D plots the highest and lowest
quintiles based on population density. Controls include the lag number of cases and deaths
from COVID19 at the county level as well as state level indicators for when a state closed k-12
schools, day cares, gyms, and movie theatres and banned nursing home visits, non-essential
business, and sit-in restaurants. County and date fixed effects are included. Standard errors
are double-clustered at the county and date level.

Social Distancingc,t =
∑
j

βj(State Policy×days to treatment) + δ′ ∗ controls+γc +γt + εc,t

118
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 1

03
-1

23



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4+

0

0.05

0.1

0.15

Days from State Policy Enactment

D
iff

er
en

ce
in

S
o
ci

al
D

is
ta

n
ci

n
g

(p
p

s)

Panel A: Democratic Misalignment

Dem Aligned Dem Misaligned

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4+

0

0.05

0.1

0.15

Days from State Policy Enactment

D
iff

er
en

ce
in

S
o
ci

al
D

is
ta

n
ci

n
g

(p
p

s)

Panel B: Republican Misalignment
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Fig. 2
Changes in Social Distancing based on Political Alignment
This figure plots coefficients of βj from the following regression of social distancing on the
interaction of state policies for shelter in place in event time, where day 0 is the first date
the state order went into effect. Panel A plots subsamples for democratic counties where a
democratic governor issued the order (aligned) and a Republican governor issued the order
(misaligned). Panel B plots analagous subsamples for Republican counties. Controls include
the lag number of cases and deaths from COVID19 at the county level as well as state level
indicators if a state had closed k-12 schools, day cares, gyms, and movie theatres and banned
nursing home visits, non-essential business, and sit-in restaurants. County and date fixed
effects are included. Standard errors are double-clustered at the county and date level.

Social Distancingc,t =
∑
j

βj(State Policy×days to treatment) + δ′ ∗ controls+γc +γt + εc,t
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Table 1

Summary statistics
This table reports summary statistics of our data. The unit of observation is a county-day
and covers February 1st to March 29th, 2020. Panel A reports summary statistics on social
distancing behavior for all observations as well as split on before and after government
sanction. Panel B reports summary statistics on population and population density for all
observations as well as split on political affiliation. Data source: smartphone geolocation data
from SafeGraph Inc and county demographics from the 2018 American Community Survey.

Panel A: Social Distancing Behavior

All Before State Policy After State Policy

Mean SD Mean SD Mean SD

Social Distance 0.331 0.077 0.326 0.072 0.464 0.080

Observations 170480 163970 6510

Panel B: County Population

All Dem Counties Rep Counties

Mean SD Mean SD Mean SD

Population (000s) 90.74 309.62 289.95 664.49 45.57 80.27
Population/SQMI 79.26 896.66 293.02 2054.34 30.06 69.27

Observations 170480 31511 138969
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Table 2

Resident Response to Social Distancing Orders
This table reports regression results from estimating equation (2). The unit of observation is
a county-day. State Policy equals one if the underlying county is in a state that has a social
distancing order in place on the day of observation and equals zero otherwise. Column (1)
reports the baseline difference-in-differences estimation of the effect of government sanctioned
social distancing orders. Column (2) includes an interaction term between State Policy and
Trump Vote Share in the 2016 election from the underlying county. Column (3) repeats the
same analysis as Column (2) while excluding observations that occur greater than five days
before a state policy is implemented. We also exclude all observations before March 15th
in our control sample in Column (3). In Columns (4) and (5) we interact State Policy with
Population and Population per Square Mile from the underlying county, respectively. All
continuous interaction variables are z-scored to a mean of zero and standard deviation of
one. County and date fixed effects are included. Standard errors are double-clustered at the
county and date level. *** p<0.01, ** p<0.05, * p<0.1

Social Distancing
(1) (2) (3) (4) (5)

State Policy 0.051∗∗∗ 0.034∗∗∗ 0.017∗∗∗ 0.046∗∗∗ 0.050∗∗∗

(9.51) (7.76) (3.56) (8.85) (9.61)

State Policy×Trump Vote Share -0.030∗∗∗ -0.012∗∗∗

(-11.94) (-6.15)

State Policy×Population 0.010∗∗

(2.27)

State Policy×Pop/SQMI 0.004∗

(1.87)

County FE Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes

R2 0.654 0.658 0.772 0.655 0.690
Observations 167,479 167,479 32,423 167,479 162,170
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Table 3

Resident Response to Social Distancing Orders: Population Splits
This table reports results of estimating equation (2) on subsamples based on county population
statistics. The unit of observation is a county-day. In Panel A (Panel B), we sort the universe
of observations into quintiles based on population (population density) of the county. Quintile
5 is the most populous (densest). State Policy equals one if the underlying county is in a
state that has a social distancing order in place on the day of observation and equals zero
otherwise. County and date fixed effects are included. Standard errors are double-clustered
at the county and date level. *** p<0.01, ** p<0.05, * p<0.1

Panel A: Subsamples based on County Population

Social Distancing
(1) (2) (3) (4) (5)

Pop1 Pop2 Pop3 Pop4 Pop5

State Policy 0.021∗∗ 0.025∗∗∗ 0.026∗∗∗ 0.032∗∗∗ 0.031∗∗∗

(2.39) (4.68) (5.65) (6.44) (4.83)

State Policy×Trump Vote Share -0.013∗∗ -0.019∗∗∗ -0.011∗∗ -0.011∗∗∗ -0.016∗∗∗

(-2.20) (-3.51) (-2.54) (-2.72) (-5.42)

County FE Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes

R2 0.469 0.714 0.793 0.833 0.879
Observations 34,818 34,483 34,433 33,807 29,938

Panel B: Subsamples based on County Population Density

Social Distancing
(1) (2) (3) (4) (5)

Density1 Density2 Density3 Density4 Density5

State Policy 0.035∗∗∗ 0.051∗∗∗ 0.036∗∗∗ 0.027∗∗∗ 0.024∗∗∗

(4.46) (9.14) (7.90) (5.36) (2.75)

State Policy×Trump Vote Share -0.004 -0.002 -0.023∗∗∗ -0.024∗∗∗ -0.027∗∗∗

(-0.84) (-0.55) (-4.92) (-4.97) (-6.42)

County FE Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes

R2 0.546 0.741 0.783 0.800 0.826
Observations 33,561 33,179 33,431 32,783 29,216
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Table 4

The Effect of Misaligned Political Beliefs on Adherence to Social Distancing
Orders
This table reports the impact of misaligned political belief between residents and the policy
announcer (the governor) on the social distancing behavior. The unit of observation is a
county-day. Misalign equals one if the county is Democratic (Republican) and the governor is
Republican (Democratic) and equals zero otherwise. State Policy equals one if the underlying
county is in a state that has a social distancing order in place on the day of observation and
equals zero otherwise. Column (1) reports result for the full sample. Column (2) and (3)
report results for Republican and Democratic subsamples, respectively. County and date
fixed effects are included. Standard errors are double-clustered at the county and date level.
*** p<0.01, ** p<0.05, * p<0.1

Social Distancing
(1) (2) (3)

Full Sample Rep Dem

State Policy 0.066∗∗∗ 0.035∗∗∗ 0.075∗∗∗

(10.88) (5.70) (9.28)

State Policy×Misalign -0.029∗∗∗ -0.006 -0.015∗

(-5.69) (-0.97) (-1.69)

County FE Yes Yes Yes

Date FE Yes Yes Yes

R2 0.655 0.639 0.733
Observations 167,479 136,523 30,956
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