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Abstract

We study stochastic choice as the outcome of deliberate randomization. We derive a general
representation of a stochastic choice function where stochasticity allows the agent to achieve
from any set the maximal element according to her underlying preferences over lotteries. We
show that in this model stochasticity in choice captures complementarity between elements
in the set, and thus necessarily implies violations of Regularity/Monotonicity, one of the
most common properties of stochastic choice. This feature separates our approach from
other models, e.g., Random Utility.
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1 Introduction

A robust finding in the study of individual decision-making is the presence of stochas-
tic, or random, choice: when subjects are asked to choose from the same set of options
multiple times, they often make different choices.! An extensive literature has doc-
umented this pattern in many experiments, in different settings and with different
populations, both in the lab and in the field. It often involves a significant fraction of
the choices, even when subjects have no value for experimentation (e.g., when there
is no feedback), or when there are no bundle or portfolio effects (e.g., when only one
choice is paid).? It thus appears incompatible with the typical assumption in eco-
nomics that subjects have a complete and stable preference ranking over the available
alternatives and consistently choose the option that maximizes it.3

A large body of theoretical work has developed models to capture stochastic be-
havior. Most of these models can be ascribed to one of two classes. First, models of
“Random Utility /Preferences,” according to which subjects’ answers change because
their preferences change stochastically.* Second, models of “bounded rationality,” or
“mistakes,” according to which subjects have stable and complete preferences, but
may fail to always choose the best option and thus exhibit a stochastic pattern.®

While according to the interpretations above the stochasticity of choice happens
involuntarily, a third possible interpretation is that stochastic choice is a deliberate
decision of the agent: she may choose to report different answers from the same menu.
The goals of this paper are to develop axiomatically a model in which stochastic
choice follows this interpretation, and to identify whether, and how, such a model of
deliberate randomization generates different behaviors and can be distinguished from
other models of stochastic choice.

A small existing literature has suggested why subjects may wish to report stochas-

ITo avoid confusion, these terms are used to denote two different phenomena: 1) one person
faces the same question multiple times and gives different answers; 2) different subjects answer the
same question only once, but subjects who appear similar, given the available data, make different
choices. In this paper we focus on the first one.

2The pattern of stochastic choice was first reported in Tversky (1969). A large literature followed:
focusing on choices between risky gambles (as in our model), see Camerer (1989), Starmer and
Sugden (1989), Hey and Orme (1994), Ballinger and Wilcox (1997), Hey (2001), Regenwetter et al.
(2011), Regenwetter and Davis-Stober (2012), and Agranov and Ortoleva (2017).

3This behavior is obviously consistent whenever there are multiple alternatives that maximize
preferences and the individual uses different rules to break indifferences.

4Thurstone (1927), Luce (1959), Harsanyi (1973), Falmagne (1978), Cohen (1980), Barbera and
Pattanaik (1986), McFadden and Richter (1991), Loomes and Sugden (1995), Clark (1996), McFad-
den (2006), Gul and Pesendorfer (2006), Ahn and Sarver (2013), Fudenberg and Strzalecki (2015).

5Models of this kind appear in economics, psychology and neuroscience, including the well-known
Drift Diffusion model: among many, Busemeyer and Townsend (1993), Harless and Camerer (1994),
Hey and Orme (1994), Camerer and Ho (1994), Wu and Gonzalez (1996), Ratcliff and McKoon
(2008), Gul et al. (2014), Manzini and Mariotti (2014), Woodford (2014), Fudenberg and Strzalecki
(2015), Baldassi et al. (2018). For surveys, Ratcliff and Smith (2004), Bogacz et al. (2006), Johnson
and Ratcliff (2013).



tic answers. Machina (1985) notes that this is precisely what the agent may wish to
do if her preferences over lotteries or acts are convez (i.e., quasiconcave in proba-
bility mixtures), which implies affinity towards randomization between equally good
options. Crucially, convexity is a property shared by many existing models of deci-
sion making under risk, and it captures ambiguity aversion in the context of decision
making under uncertainty. Convexity of preferences also has experimental support
(Becker et al., 1963; Sopher and Narramore, 2000). Different reasons for stochastic
choice to be deliberate were suggested by Marley (1997) and Swait and Marley (2013),
who follow lines similar to Machina (1985); Dwenger et al. (2016), that suggest it may
be due to a desire to minimize regret; and Fudenberg et al. (2015), who connect it to
uncertain taste shocks. In Section 4 we discuss these papers in detail.

Recent experimental evidence supports the interpretation of stochastic choice as
deliberate. Agranov and Ortoleva (2017) show how subjects give different answers
also when the same question is asked three times in a row and subjects are aware of
the repetition; they seem to explicitly choose to report different answers.® Dwenger
et al. (2016) find that a large fraction of subjects choose lotteries between available al-
locations, indicating an explicit preference for randomization. They also show similar
patterns using the data from a clearinghouse for university admissions in Germany;,
where students must submit multiple rankings of the universities they would like to at-
tend. These are submitted at the same time, but only one of them (chosen randomly)
matters. They find that a significant fraction of students report inconsistent rank-
ings, even when there are no strategic reasons to do so. A survey among applicants
supports the interpretation that these random allocations are chosen intentionally,
and show that they are correlated with an explicit preference for randomization.”

We develop axiomatically a general model of stochastic choice over lotteries as
the outcome of a deliberate desire to randomize. We aim to capture and formalize
the intuition of Machina (1985) that such inclination may be a rational reaction if
the underlying preferences over lotteries are (at least locally) convex. We consider a
stochastic choice function over sets of lotteries over monetary outcomes, which assigns
to any menu a probability distribution over its elements. We focus on lotteries not
for technical reasons, but because we are interested in linking stochastic choice to
features of preferences over lotteries in general, and violations of Expected Utility in
particular. The focus on lotteries over monetary outcomes is inessential, as similar
results are available for arbitrary prize spaces. We confine attention to monetary
prizes for simplicity and since most of our leading examples use them (see Section 2).

We begin our analysis with a representation theorem: we show that a rationality-

6In a survey conducted at the end of the experiment, most subjects report choosing different
answers deliberately. These results hold true also in robustness tests with unusually high stakes.

"Kircher et al. (2013) consider a version of the dictator game in which dictators can choose
between 7.5 euros for themselves and 0 to the recipient, 5 to both, or a lottery between them.
About one third of the subjects chooses to randomize. Similarly, Miao and Zhong (2018) find that
substantial proportions of subjects in dictator games chose to randomize between allocations.



type condition on stochastic choice, reminiscent of known acyclicity conditions, guar-
antees that it can be represented as if the agent had a preference relation over the
final monetary lotteries, and chose the optimal mixing over the available options. In
this model the stochasticity has a purely instrumental value for the agent: she does
not value the randomization per se, but rather because it allows her to obtain the lot-
tery over final outcomes she prefers. Implicit in our approach is that agents evaluate
mixtures of lotteries by looking at the distribution over final outcomes they induce.

Next, we show that our model has some stark implications. Possibly the most well-
known property of stochastic choice, widely used in the literature, is Regularity (also
called Monotonicity): it posits that the probability of choosing p from a set cannot
decrease if we remove elements from it. It is often seen as the stochastic equivalent
of independence of irrelevant alternatives (IIA), and it is satisfied by many models in
the literature — most prominently, models of Random Utility — albeit it is well-known
that it is often empirically violated. We show that our model of deliberate stochastic
choice will necessarily lead to some violations of Regularity (unless the stochastic
choice is degenerate, i.e., there is no stochasticity). Intuitively, our agent may choose
from a set A two options that, together, allow her to “hedge.” But this holds only
if they are both chosen: they are complementary to each other. If either option is
removed from A, the possibility of hedging disappears and the agent no longer has
incentive to pick the remaining one, which in turn generates a violation of Regularity.
The key observation is that the agent considers all the elements chosen as a whole,
for the general hedging they provide together. By contrast, Regularity is based on
the assumption that the appeal of each option is independent from the other options
present in the menu or in the choice. Thus, a violation of Regularity is an essential
feature of the hedging behavior that we aim to capture — as we formally show.®

That our model is inconsistent with Regularity has direct implications on its
relation with existing models, most prominently models of Random Utility. Since it
is well-known that the latter must satisfy Regularity, the only behavior that can be
represented by both models is one that can always be described as if the agent had only
one utility and randomization occurred only in the case of indifference — a degenerate
random utility. In other words, the conceptual difference between the two models is
reflected in a substantial behavioral difference, via the property of Regularity, which
is very easily testable in experiments. Since also the models in Fudenberg et al. (2015)
satisfy Regularity, the same relation holds between our model and theirs.

The remainder of the paper is organized as follows. Section 2 presents the general
Deliberate Stochastic Choice model. Section 3 establishes that our model is incompat-
ible with Regularity and studies its other behavioral implications. Section 4 discusses
the relation with the existing literature. All proofs appear in the appendices.

8In Section 3 we explore other implications of the model, beyond Regularity. For example, we
show that it necessarily implies a version of stochastic intransitivity.



2 A General Model of Deliberate Stochastic Choice

2.1 Framework and Foundations

Let [w,b] € R be a non-trivial interval of monetary prizes and let A be the set of
lotteries (Borel probability measures) over [w, b], endowed with the topology of weak
convergence. We use x, y, z and p, ¢, r for generic elements of [w, b] and A, respectively.
Denote by 6, € A the degenerate lottery (Dirac measure at x) that gives the prize
x € [w, b] with certainty. If p and ¢ are such that p strictly first order stochastically
dominates ¢, we write p >rosp ¢.

Denote by A the collection of all finite and nonempty subsets of A. Forany A € A,
co(A) denotes the convex hull of A, that is, co(A) = {d>_;a;p; : p; € A and q; €
[0, 1],2]. a; =1}

The primitive of our analysis is a stochastic choice function p over A, i.e., a map p
that associates to each A € A a probability measure p(A) over A. For any stochastic
choice function p, A € A, and p € A, supp,(A) denotes the support of p(A4), and we
write p(A)(p) to denote the probability p assigns to p in menu A.

As a final bit of notation, since p(A) is a probability distribution over lotteries,
thus a compound lottery, we can compute the induced lottery over final monetary
outcomes. Denote it by p(A) € A, that is,

p(A) = p(A)(a)a.

qgeA

By construction, the convex hull of a set A, co(A), will also correspond to the set of
all monetary lotteries that can be obtained by choosing a specific p and computing
the distribution it induces over final prizes.’

We can now discuss our first axiom. Our goal is to capture behaviorally an agent
who is deliberately choosing her stochastic choice function following an underlying
preference relation over lotteries. When asked to choose from a set A, she considers
all lotteries that can be obtained from A by randomizing: using our notation above,
she considers the whole co(A), and the lottery p(A) can be seen as her ‘choice.’

Our axiom is a rationality-type postulate for this case. Consider two sets A; and
A,, and suppose that p(As) € co(A;). This means that the lottery chosen from A
could be obtained also from A;. Standard rationality posits that the ‘choice’ from A,
p(A1), must then be at least as good as anything that can be obtained from A,. Since
we do not observe preferences, we cannot impose this; but at the very least we can say
that there cannot be anything in A, that strictly first order stochastically dominates
p(Ay). This is the content of our axiom, extended to any sequence of length k of sets.

Axiom 1 (Rational Mixing). For each k € N\{1} and Ay,..., Ay € A, if

p(As) € co(Ay), ... ,m € co(Ag_1),

9That is, by construction co(A) = {p € A : p = p(A) for some stochastic choice function p}.



then q € co(Ay) implies ¢ # rosp p(A1).

Rational Mixing is related to conditions of rationality and acyclicity typical in the
literature on revealed preference with limited observations, along the lines of Afriat’s
condition and the Strong Axiom of Revealed Preferences (see, e.g., Chambers and
Echenique, 2016). Intuitively, the ability to randomize allows the agent to choose any
option in the convex hull of all sets; thus, it is as if we could only see the choices from
convex sets, and posit a rationality condition for this case.

Note that Rational Mixing implicitly 1) includes a form of coherence with strict
first order stochastic dominance, and 2) assumes that the agent cares only about
the induced distribution over final outcomes, rather than the procedure in which it is
obtained. That is, for the agent the stochasticity is instrumental to obtain a better
distribution over final outcomes, rather than being valuable per se. This implies a
form of reduction of compound lotteries, which we will maintain throughout.

2.2 Deliberate Stochastic Choice Model

Definition 1. A stochastic choice function p admits a Deliberate Stochastic Choice
representation if there exists a complete preorder (a transitive and reflexive binary
relation) 2~ over A such that:

1. For every A€ A

p(A) 7z q for every q € co(A);
2. For every pair p,q € A, p >rosp q implies p > q.

Theorem 1. A stochastic choice function p satisfies Rational Mixing if and only if
it admits a Deliberate Stochastic Choice representation.

A Deliberate Stochastic Choice model captures a decision maker who has a prefer-
ence relation 77 over lotteries and chooses deliberately the randomization that gener-
ates the optimal mixture among existing options. This procedure is most prominent
in regions where 77 is strictly convex and, in particular, if there exist some p,q € A
and o € (0,1) such that ap + (1 — a)q > p,q. When faced with the choice from
{p,q}, she would strictly prefer to randomly choose rather than to pick either of the
two options. The stochasticity is thus an expression of the agent’s preferences.

Prominent examples of preferences with this property are the Rank Dependent Ex-
pected Utility (RDU) model with the common inverse S-shaped probability weighting
function (overweight small probabilities and underweight large probabilities, where
the former implies convexity),!” and strictly convex versions of Quadratic Utility

10Tf we order the prizes in the support of a finite lotter;i p, with 1 < z9 < ... < z,, then the func-
tional form for RDU is: V (p) = u(wn) f(p (xn)) + 201 ul@)[f 2] p(x5) — FC) i p (25))];
where f :[0,1] — [0,1] is strictly increasing and onto and u : [w,b] — R is increasing. Regions
where f(p) > p imply affinity to randomization.



(Chew et al., 1991).'" Another example is when = follows the Cautious Expected
Utility model of Cerreia-Vioglio et al. (2015); these preferences are convex (albeit not
strictly convex everywhere), and may exhibit stochastic choice. In Cerreia-Vioglio
et al. (2018) we show that the corresponding Cautious Stochastic Choice model
tightly links stochasticity of choice and the Certainty Bias, as captured by both Al-
lais paradoxes (Common-Ratio and Common-Consequence effects), one of the most
prominently observed violations of Expected Utility. Both stem from the presence of
multiple utilities and the use of caution.!> The general class of convex preferences
over lotteries was studied in Cerreia-Vioglio (2009).

On the other hand, the model does not restrict preferences to have any region of
strict convexity. It also permits indifference to randomization, e.g., when - follows
Expected Utility, or, more generally, when it satisfies Betweenness;'? or even aversion
to randomization, e.g., if 77 is RDU with convex probability weighting function: in
these cases the agent has no desire to mix and we should observe no stochasticity
(except for indifferences).

Note also that the model puts no restriction on the way the agent resolves indif-
ferences: when multiple alternatives maximize the preference relation, any could be
chosen. Although it is a typical approach not to rule how indifferences are resolved,
following it may lead to discontinuities.'* This implies that, for each preference rela-
tion -, there is potentially more than one stochastic choice function derived from it
— depending on how indifferences are resolved. In general, we say that a stochastic
choice function p is consistent with a preference relation - if and only if for each

Ae A, p(A) g for all ¢ € co(A).

As we pointed out in the Introduction, Theorem 1 does not require the lotteries to
be over monetary outcomes; they could be over an arbitrary set of prizes, as long as

HFor example, such preferences over lotteries are convex if they are represented by the product of
two positive expected utility functionals, that is, V(p) = E,(u) x E,(v), where v and v are positive,
continuous, and strictly increasing.

12 Preferences admit a Cautious Expected Utility representation if there exists a set W of strictly
increasing and continuous (Bernoulli) utility functions over monetary outcomes, such that the value
of any lottery p is given by V(p) = 11}211;\1} v~ Y(E,(v)). That is, the agent has a set of utility functions

over outcomes, and evaluates each lottery p by first computing the certainty equivalent of p with
respect to each possible function in the set, and then picking the smallest one. Cerreia-Vioglio et al.
(2018) show that as long as there are finitely many utilities, agents have a strict desire to randomize
if and only if they violate Expected Utility in line with the Certainty Bias.

13Betweenness requires that p ~ ¢ = ap + (1 — a)g ~ ¢ for all p,q € A, a € (0,1). It is satisfied
by any Expected Utility maximizer. Utility theories with the Betweenness property were studied by
Dekel (1986) and Chew (1989). See also an earlier axiomatization developed by Fishburn (1983).

14While with choice correspondences the continuity of the underlying preference relation implies
continuity of the choice correspondence (i.e., satisfies the closed graph property), here it is as if
we observed also the outcome of how indifference is resolved (which may be stochastic). This
will necessarily imply discontinuities of p, following standard arguments. An alternative, although
significantly less appealing, approach would be to consider a stochastic choice correspondence, which
could be fully continuous.



there is some natural dominance relation (a partial order) t> over the space of lotteries
that one can use to replace >rpgp in the statement of the Rational Mixing axiom.
This can be a generalization of the concept of first order stochastic dominance, or
any other partial order that satisfies the additional property that p > ¢ implies that
p>ap+ (1 —a)q for every a € [0,1) and for every pair p and g.

Remark 1. Our framework implicitly assumes that we observe the stochastic choice
function p for all sets in 4. This is very demanding, and a natural question is what
tests are required if we observe only limited data. In fact, the Rational Mixing axiom
is necessary and sufficient in any dataset that includes all doubletons {p, ¢} such that
p >rosp q- Consider any B C A such that {p,q} € B whenever p >rosp ¢ and
denote by pp the restriction of p on B. Then, pg satisfies Rational Mixing if and
only if ps admits a Deliberate Stochastic Choice representation. (The proof follows
exactly the same steps as the proof of Theorem 1.)

Remark 2. The preference relation - in a Deliberate Stochastic Choice model need
not admit a utility representation — e.g., if it is lexicographic.'® As usual, to guarantee
the existence of a utility representation we need 77 to be continuous. We call this case
a Continuous Deliberate Stochastic Choice model. Proposition 3 in Appendix A
gives an axiomatic characterization of it, obtained by strengthening Rational Mixing
with a continuity requirement. In words, consider the binary relation R, defined as
pRq if p = p(A) for some A such that ¢ € co(A). Rational Mixing simply posits
that the transitive closure of R is consistent with >rosp. To obtain a continuous
representation, we need to extend this requirement to the closed transitive closure of
R (i.e., the minimal continuous and transitive relation that contains R).

3 Regularity and Deliberate Randomization

In this section we study the relation of the Deliberate Stochastic Choice model with
the Regularity property we mentioned in the Introduction. As we explained there,
Regularity, also called Monotonicity, is a well known and extensively used property
in the stochastic choice literature. Formally,

Axiom 2 (Regularity). For each A,B € A andp € A, if A C B, then p(B)(p) <
p(A)(p)-

5For example, consider the binary relation =, defined by: p =1 ¢ if either E,(z®) > E,(z%)
or E,(23) = Ey(2*) and E,(z) > E,(z). This binary relation is complete, transitive, and sat-
isfies Independence, but fails Continuity. Note that for any (finite) menu of lotteries A € A,
argmax (=1, A) # ). Define p to be such that p(A4)(q) yp for all ¢ € argmax (=r,A).

= Targmax(FL A
Since 3=, satisfies Independence, W =1 q for all ¢ € co(A), and since 3=, strictly preserves first
order stochastic dominance, all the requirements of Theorem 1 are met. Yet clearly =7, (and thus
p) does not admit a utility representation.




Intuitively, Regularity states that if we remove some elements from a set, the
probability of choosing the remaining elements cannot decrease. Conceptually, it is
related to notions of independence of irrelevant alternatives applied to a stochastic
setting: the removal of any element, chosen or unchosen, cannot ‘hurt’ the chances of
choosing any of the remaining ones. In other words, the attractiveness of an option
should not depend on the availability of other ones. Crucially, the property of Reg-
ularity is one of the characterizing features of models of Random Utility. We should
note that despite its widespread use and normative appeal, substantial experimental
evidence has been collected that shows how Regularity is violated: see Rieskamp et al.
(2006) for a survey.

To analyze this property in our model, it will be useful to formally define when is
the individual exhibiting stochastic choice. Recall that in our model this may happen
either when there is a genuine desire to randomize, or in the case of indifferences. We
say that an agent exhibits a non-degenerate stochastic choice function if stochasticity
is present beyond indifference: if we can find some p and ¢ such that the agent
randomizes between them and also does so when either is made a “little bit worse”
by mixing with ¢,, (the worst possible outcome).

Definition 2. A stochastic choice function p is non-degenerate if there exist p,q € A
with [supp,({p,q})| # 1 and A € (0,1) such that

supp,({Ap + (1 = A)dw, q})| # 1 and |supp,({p, A\g + (1 = A)du})| # 1.
Endowed with these definitions, we have the following theorem.

Theorem 2. Let p be a stochastic choice function that admits a Continuous Deliberate
Stochastic Choice representation 2-. The following statements are equivalent:

(i) p is non-degenerate;
(ii) p and any other p consistent with 7 violates Regularity;

(iii) 7~ has a point of strict convexity, that is, there exist p,q € A and A € (0,1)
such that
Ap+(1=A)g>pq

Theorem 2 shows that the Deliberate Stochastic Choice model must lead to vio-
lations of Regularity, unless the Stochastic Choice is degenerate (no stochasticity, or
purely to break indifferences). That is, whenever there is even a single instance in
which the individual makes a non-degenerate stochastic choice, then there necessarily
is some other instance where her choices violate Regularity. In fact, the result is
stronger: violations of Regularity and stochasticity imply one another; and both oc-
cur if and only if the underlying preferences have points of strict convexity. Without
them, under the model there should never be any stochasticity (except possibly in



the case of indifference), as the agent does not have a desire to randomize; but with
them, we also have violations of Regularity.

One important implication of the result above is to distinguish our model from
models that satisfy Regularity, which include most popular models such as Random
Utility and Luce (1958)’s model. Thus, the desire to randomize not only is concep-
tually different, but also leads to a behavior that violates the core property of many
models in the literature.

To gain an intuition, consider some p, ¢ where preferences are strictly convex, i.e.,
there exists A € (0, 1) such that A\p+(1—X)g > p, q, as in item (iii) of the theorem. For
simplicity, suppose that r = 5\p+ (1— 5\)q is the unique 7—-optimal mix between p and
q. Let r. be a lottery within distance € > 0 of r but strictly first order stochastically
dominated by it. First observe that p will be chosen with probability A from {p,q,r:}:
in the face of both p and ¢, the presence of r. is of no value to the agent. But suppose
q is removed: then, as long as ¢ is small enough (7. is close to 7), p will be chosen with
very small probability from {p,r.}: the value of p decreases significantly without ¢,
and the agent now puts most weight on r.. This pair of choices violates Regularity.
The idea behind this construction is that p and q are complementary to each other.
But if ¢ is removed, the agent can no longer hedge between them; r., which was
inferior to their mixture, then becomes an attractive alternative in the face of p.
Overall, the crucial aspect is that the ability of choosing both p and ¢ at the same
time renders them appealing, while they would not be appealing in isolation. This
is a fundamental aspect of when hedging is advantageous: the whole set of chosen
elements is relevant for the agent, for the hedging opportunities it provides. Such
complementarity between alternatives violates standard independence of irrelevant
alternatives arguments, according to which chosen elements should be appealing in
isolation, which is also reflected in the Regularity axiom. For that reason, violations
of Regularity are a “structural” feature of our model.

The result of Theorem 2 has an additional conceptual implication. From the
point of view of our model, violations of Regularity should not be seen as mistakes
or as forms of bounded rationality. On the contrary, our model entails a strong form
of “rationality:” individuals are endowed with well-defined, stable, and monotone
preferences over lotteries, and select the combination of options from all possible
ones to maximize them, reducing compound lotteries. With the exception of possibly
violating Expected Utility, our agents are thus as close as possible to the standard
rational economic decision-maker. Our results show that despite all this, not only
they may exhibit stochastic choice, but when they do they also — as a manifestation
of their preferences — violate the property of Regularity, often described as the
counterpart of ‘rationality’ for stochastic choice. (This interpretation may thus be
put in question.)

We conclude this section by discussing which violations of Regularity and of other
properties are compatible with, or even implied by, our model. On the one hand,
our model is compatible with many violations — including documented ones, as well

10



as others that are yet to be explored experimentally — beyond those of the form
identified in the constructive proof of Theorem 2 above. For example, consider some
p,q,7 € A such that some mixture of p and ¢ is ranked above r, but r is better than
p and any mixture between p and r. (Such examples are easy to construct when
preferences are strictly convex. In the Cautious Stochastic Choice model discussed
in Footnote 12, these will be present whenever the set W is finite, with r being a
degenerate lottery.) In this case, from the set {r,p}, p would never be chosen, but
it will be chosen with strictly positive probability from {p,q,r}. Our model is also
consistent with situations where r lies above the line segment connecting p and g,
and violations of Regularity take the form p({p, ¢, 7})(r) > p({p,7})(r). Violations of
this kind have been widely documented and referred to as versions of the compromise
effect or of the attraction effect without dominance (see Simonson, 1989; Tversky and
Simonson, 1993; Rieskamp et al., 2006; Soltani et al., 2012; see also the discussion in
Natenzon, 2018).

On the other hand, the Deliberate Stochastic Choice model is not compatible with
violations of Regularity due to the addition of a (strictly) first order stochastically
dominated option. For example, suppose that p is chosen more frequently in {p, ¢, }
than in {p, ¢}, where r is dominated by p but not by ¢. These violations of Regularity
have been documented empirically, and referred to as either the asymmetric domi-
nance effect or the attraction effect with a dominated option (see Ok et al., 2015;
Soltani et al., 2012). They are incompatible with our model because no dominated
option can ever be part of an optimal mixture, thus its addition cannot modify the
optimal combination — violations of this type may occur only because of indifferences.
For similar reasons, our model satisfies a weaker version of Regularity that posits that
choice probabilities do not decrease if we remove elements that are never chosen —
again, except for indifferences.

Two other known properties of stochastic choice are Weak and Strong Stochastic
Transitivity. Take any p,q,r with p({p,¢})(p) > 0.5 and p({q,r})(q) > 0.5. Weak
Stochastic Transitivity is satisfied if p({p,7})(p) > 0.5; Strong Stochastic Transitivity
requires p({p,r})(p) > max{p({p, ¢})(p), p({q,7})(¢)}. Both properties are known to
be independent of Regularity, and substantial evidence has shown that they are often
violated, especially the stronger version. It is easy to construct examples of similar
violations in our model (e.g., the evidence discussed in Rieskamp et al., 2006, p.
636) — in general, our model is consistent with violations of both forms. It is worth
noting that Machina (1985) already alluded to the idea that with strictly convex
preferences, one may expect either version of Stochastic Transitivity to be violated,
and thus — unlike violations of transitivity of the underlying preference relation 77 —
such violations should be perceived as neither normatively disturbing nor descriptively
rare. Our next result establishes that not only these violations are compatible with
our model, but that any non-degenerate stochastic choice function that admits a
Continuous Deliberate Stochastic Choice representation necessarily violates Strong
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Stochastic Transitivity.!®

Proposition 1. Let p be a stochastic choice function that admits a Continuous De-
liberate Stochastic Choice representation 7. The following statements are equivalent:

(i) p is non-degenerate;
(ii) p and any other p consistent with = violates Strong Stochastic Transitivity.

In other words, violations of Strong Stochastic Transitivity, just like those of
Regularity, are core features of our model whenever the stochastic choice is non-
degenerate. Indeed, an immediate corollary of the last two results is that under the
continuous version of our model, detecting a violation of either of the two properties
implies that a violation of the other can be found as well.

Finally, our model makes some new empirical predictions on stochastic choice via
the Rational Mixing Axiom. For example, it is easy to see that the addition of an
option within the convex hull of a set should not change the final distribution of prizes
that the agent receives: because it does not provide any new hedging opportunity,
it should not affect what final distribution the agent is able to achieve, thus the
stochastic choice may change only due to indifferences.

4 Relation with Models in the Literature

Random Utility. As we discussed, Theorem 2 can be used to easily compare the
Deliberate Stochastic Choice model with models of Random Utility. Formally, we say
that a stochastic choice function p admits a Random Utility representation if there
exists a probability measure over utilities such that for each alternative s in a choice
problem A, the probability of choosing s from A, p(A)(s), equals the probability of
drawing a utility function u such that s maximizes u in A.'7

It is well-known that a stochastic choice function that admits a Random Utility
representation must satisfy Regularity. This is intuitive: if an option is the best ac-
cording to one utility, its choice cannot be made less likely by removing alternatives.

16For some special cases, also violations of Weak Stochastic Transitivity are implied. For example,
reconsider the Cautious Stochastic Choice model with a finite set V. Violations of Weak Stochastic
Transitivity can always be constructed whenever there are p,q € A such that both p ~ ¢ and
argmax V (up + (1 — p)q) is unique.
neE0,1]

17Stochastic choice functions over a finite space of alternatives that admit a Random Utility
representation were axiomatized by Falmagne (1978) (see also Barberd and Pattanaik, 1986). An
issue arises when the utility functions allow for indifferences; assumptions are needed on how they
are resolved. Two approaches have been suggested. First, to impose that the set of utility functions
such that the maximum is not unique has measure zero for every choice problem — as is the case,
for example, for logit or probit. Second, to impose a tie-breaking rule, that may vary with each
utility, but that selects one of the maximizers coherently and independently of the choice problem
(e.g., satisfying Sen’s «). In what follows we assume that one of these two approaches is adopted.
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(In models of Random Utility, there is no complementarity between the chosen el-
ements.) But then, following Theorem 2 we have a sharp distinction between our
model and models of Random Utility: the only behavior that can be represented by
both models is one compatible with a degenerate Random Utility model — i.e., with
only one utility possible — in which the agent exhibits stochastic behavior only when
she is indifferent. Another immediate implication is that observing a violation of Reg-
ularity — an easily testable condition — implies that the agents’ behavior cannot be
represented by Random Utility, while it may be represented by Deliberate Stochastic
Choice.

Random Ezpected Utility. Gul and Pesendorfer (2006) axiomatize the Random
Expected Utility model, a version of Random Utility where all the utility functions
involved are of the Expected Utility type. One of the conditions that characterize
this model is Linearity:

Axiom 3 (Linearity). For each A€ A, pe A, g€ A, and X € (0,1),

p(A)(p) = p(AA + (1 = N)g)(Ap + (1 = A)g).

We now show that if p admits a Continuous Deliberate Stochastic Representation
and in addition satisfies Linearity, then p is a degenerate Random Expected Utility
model, i.e., again a model with only one utility. Formally:

Proposition 2. Let p be a stochastic choice function that admits a Continuous De-
liberate Stochastic Choice representation and satisfies Linearity. Then, there exists a
continuous function u : [w,b] — R such that, for any choice problem A,

supp,(A) C{p € A:E,(u) > E,(u) Vq € A}.

Other Models of Deliberate Randomization. A small existing literature has
suggested models of stochastic choice as deliberate randomization. As we have dis-
cussed, our own model formalizes and extends the intuition of Machina (1985) (see
also Marley, 1997 and Swait and Marley, 2013) in a fully axiomatic setup.'® Dwenger
et al. (2016) propose a model in which agents choose to randomize following a desire
to minimize regret. Their key assumption is that the regret after making the wrong
choice is smaller if the choice is stochastic rather than deterministic.

Fudenberg et al. (2015) provide conditions under which stochastic choice corre-
sponds to the maximization of Expected Utility and a perturbation function that

18 Machina (1985) suggests the following condition: if A, A’ € A are such that co(A) C co(4’) and
p(A’) € co(A), then p(A’) = p(A). (This condition is related to Sen’s « axiom.) While naturally
related to our Rational Mixing axiom, this condition is not sufficient to characterize our model.
(Unless preferences are strictly convex, it is also not necessary, because of indifferences: for example,
A and A’ may differ only for the inclusion of some strictly dominated option that is never chosen in
either case, but the stochastic choice may not coincide as indifference may be resolved differently.)
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depends only on the choice probabilities. Formally, they axiomatize a stochastic
choice function p such that, for each choice problem A,

p(A) = argmax Y _[p(r)u() — c(p(x))], (1)

where A(A) is the set of probability measures on A, u is a von Neumann-Morgenstern
utility function and ¢ : [0,1] — R U {oc} is strictly convex and C' in (0,1). They
call this representation Weak Additive Perturbed Utility (Weak APU).' Because of
the strictly convex perturbation function ¢, this functional form gives the agent an
intrinsic incentive to randomize. However, there are two important differences with
our model.

A first difference is that we study a domain of menus of lotteries while Fudenberg
et al. (2015) study menus of final outcomes. This is not a mere technical difference, as
our goal is to study, in the spirit of Machina (1985), the link of stochastic choice with
non-Expected Utility behavior — and (deterministic) non-Expected Utility preferences
over lotteries must necessarily be present for a comparison to be possible.

A second, crucial difference between the models is that even though the model
in Fudenberg et al. (2015) rewards probabilistic choices and this sometimes gives the
individual an incentive to randomize, their model does satisfy Regularity (Fudenberg
et al., 2015, p. 2386). This is a crucial conceptual difference, as it implies that their
model does not include one of the main driving forces of ours, as we discussed above.
It also implies that the formal relation between their model and ours is the same as
with Random Utility: the only behavior compatible with both is one of an agent that
exhibits stochastic choice only when indifferent.?’

The results above are summarized in Figure 1.2

Other Related Literature. Our paper is related to various other strands of the
literature. First, it is related to models that connect violations of rationality (in the
form of the Weak Axiom of Revealed Preferences or Regularity) to various forms
of bounded rationality and costly information processing: among many, see for de-
terministic choice Manzini and Mariotti (2007); Masatlioglu et al. (2012); Ok et al.
(2015); for stochastic choice, Manzini and Mariotti (2014); Caplin and Dean (2015);

19Their paper also characterizes the case in which the function c satisfies the additional requirement
that limg_,¢ ¢/(¢) = —oo, which they call an Additive Perturbed Utility representation.

20 An alternative way to apply their paper to the case of lotteries is, instead of using their represen-
tation theorem directly, to use a continuous version of their functional form, > [p(x)u(z) — c(p(x))],
as a representation for the preferences in our Theorem 1. This would lead to a model that is a
hybrid of the two formulations.

21For preferences that satisfy Linearity but not Regularity, suppose that facing a menu A, the

agent considers two functions v and v, finds the sets argmax E,(u) and argmax E,(v), and splits
pEco(A) pEco(A)

the probability of choice evenly among all maximizers. This behavior satisfies Linearity, but violates

Regularity whenever one adds to a set an option that is the unique maximizer for one of the utility

functions for which, before the addition, there was more than one maximizer.
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Figure 1: Relation with other models

Matéjka and McKay (2015); Natenzon (2018), and many references therein. As we
have discussed, as opposed to these papers, in our model violations of Regularity
follow even if subjects are fully rational and are fully informed about the options, as
long as their underlying preferences are (at least locally) convex.

Stoye (2015) studies choice environments in which agents can randomize at will
(thus restricting observability to convex sets). Considering as a primitive the choice
correspondence of the agent in an Anscombe-Aumann setup,?? he characterizes var-
ious models of choice under uncertainty that include a desire to randomize. Unlike
Stoye, we take as a primitive the agent’s stochastic choice function, instead of the
choice correspondence; this not only suggests different interpretations, but also en-
tails substantial technical differences. In addition, we study a setup with risk, and
not uncertainty, and characterize the most general model of deliberate randomization
given a complete preference relation over monetary lotteries.

Finally, as we have mentioned, our general representation theorem (Theorem 1) is
related to the literature on revealed preference on finite datasets. By randomizing over
a set of alternatives, the agent can obtain any point of its convex hull. It is as if we
could only see individuals’ choices from convex sets, restricting our ability to observe

22The paper considers also a setup with pure risk, but in that case the analysis is mostly focused
on characterizing the case of Expected Utility, where there is no desire to randomize.
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the entire preferences. Our problem is then related to the issue of eliciting preferences
with limited datasets, originated by Afriat (1967), and for our first theorem we employ
techniques from this literature. Our results are particularly related to Chambers and
Echenique (2016) and Nishimura et al. (2017).
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Appendix A: Continuous Deliberate Stochastic Choice

In this section we extend the result of Theorem 1 to the case in which the underlying
preference relation admits a representation by a continuous utility function. For this
we need to strengthen the consistency condition in the Rational Mixing axiom to
apply not only to the transitive closure of the relation R defined in Remark 2, but to
its closed transitive closure. Formally, define the binary relation R on A as

pRq iff 3A € As.t. p = p(A) and ¢ € co(A).
Intuitively, pRq if it ever happens that p is chosen, either directly ({p} = supp,(A))

or as the outcome of randomization (p = p(A)), from a set A where ¢ could have also
been chosen (¢ € co(A)). Denote by tran(R) the minimal continuous and transitive
binary relation on A such that R C tran(R). We call tran(R) the closed transitive

closure of R. We can now write the following postulate:

Axiom 4 (Continuous Rational Mixing). If p,q € A are such that ptran(R)q, then
it cannot be the case that ¢ >rosp p-

We have the following result:

Proposition 3. A stochastic choice function p satisfies Continuous Rational Mixing
if and only if it admits a Deliberate Stochastic Choice representation - that can be
represented by a continuous utility function.

Proof of Proposition 3. Suppose first that p admits a Deliberate Stochastic Choice
representation 77 that can be represented by a continuous utility function. This
implies that =~ is a continuous preorder. Since, by the representation of p, R C,
this implies that tran(R) C25. But then, if p, ¢ € A are such that ptran(R)q, we also
have that p 7~ ¢, which implies that it is not true that ¢ >rosp p. That is, p satisfies
Continuous Rational Mixing.

Conversely, suppose p is a stochastic choice function that satisfies Continuous
Rational Mixing. Pick any pair of lotteries p and ¢ in A with ¢ >rosp p. This
implies that ¢ >rosp aq + (1 — a)p for every a € [0,1). By Continuous Rational
Mixing, we must have that p({p,q}) = ¢, which implies that ¢Rp. Moreover, again
by Continuous Rational Mixing, we cannot have that ptran(R)q. This shows that
tran(R) is an extension of the first order stochastic dominance relation. By Levin’s
Theorem, there exists a continuous function v : A — R such that ptran(R)q implies
u(p) > u(q), with strict inequality whenever it is not true that gtran(R)p. Now we
can proceed as in the proof of Theorem 1, using the preference relation the function
u induces, to conclude the proof. [ |

Appendix B: Proof of the Results in the Main Text

Proof of Theorem 1. It is clear that if p admits a Deliberate Stochastic Choice rep-
resentation, then p satisfies Rational Mixing. Suppose, thus, that p satisfies Rational
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Mixing and define the binary relation R the same way it is defined in the main text
(see Remark 2). Pick any pair of lotteries p and ¢ such that p >rosp g. This implies
that p >rosp (ap + (1 — a)q) for every a € [0,1). Define A, = {p, ¢} and A, = {p}.
Notice that Rational Mixing implies that we must have p(A;) = p. Consequently,
we have pRq. Moreover, if we have k € N and A, ..., Ay such that p(A;) = ¢ and
p(A;) € co(A;_y) fori = 2, ..., k, Rational Mixing implies that p ¢ co(Ay). This shows
that we cannot have gtran(R)p. We conclude that tran(R) is an extension of the first
order stochastic dominance relation. Now pick any complete extension - of tran(R).
By what we have just seen, 7 is also an extension of the first order stochastic domi-
nance relation. Moreover, by definition, we have that p(A)Rq for every g € co(A), for
every A € A. Consequently, we have p(A) 7 ¢ for every ¢ € co(A), for every A € A.

This proves Theorem 1. [ |

Proof of Theorem 2. (i) implies (iii). Assume that p is non-degenerate. Then,
there exist p,q € A and A € (0,1) with p 5 ¢ and [supp,({p, A\g + (1 — A)d,})| = 2.
Since 77 preserves strict first order stochastic dominance and is a Deliberate Stochastic
Choice representation of p, this implies that p, g = J,, and there exists v € (0, 1) with

w+ 1=y = p+ 1 =) Ag+ (1= N)dy)
p
q.

Y Y

That is, 7~ has a point of strict convexity.

(iii) implies (i). By assumption, there exist p,q € A and v € (0,1) such that

w+ (1 =7)q>pq (2)

Since 7~ is continuous, this implies that there exists A € (0,1) such that vy(Ap + (1 —
A)ow)+(1=7)q = Ap+(1—=X)0y, ¢ and yp+ (1 =) (Ag+ (1 = A)dw) = p, Ag+ (1 —A)dy.
Since 7 is a Deliberate Stochastic Choice representation of p, this can happen only
if [supp,({p, a})| = [supp,({Ap + (1 = A)dw, ¢})| = [supp,({p, Aq + (1 = A)du })| = 2.

(iii) implies (ii). Assume that there exist p,¢ € A and A € (0,1) such that
Ap + (1 — X)g = p,q. Since 7 strictly preserves first order stochastic dominance, we
must have p # 6, and g # 0,,. By continuity of 7, there exist maximal and minimal
a™ and «,, in [0,1] such that a™p+ (1 — a™)g ~ app+ (1 — ayn)q = ap+ (1 — a)g
for every a € [0,1]. Note that we must have 0 < «a,,, < o™ < 1. By construction,
aAMp+(1—aM)g = Ap+(1-=X)(aMp+(1—a)q) for every A € [y, 1]. Continuity of
>~ and the fact that 77 strictly preserves first order stochastic dominance now imply
that there exists ¢ € (0, 1) such that

edy+(L—e)(ap+(1-a")g) = p+ (1= p+(1-a")g)
2 A+ (L= Nedy + (1 —e)(ap+ (1 —a)g)]
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for all A € [, 1]. Let r = &6, +(1—¢)(a™p+(1—a™M)q) and fix any p consistent with
7. The observation above implies that p({p,7})(p) < a,,. However, the definition of
oy, and the fact that = strictly preserves first order stochastic dominance imply that
supp,({p, ¢:7}) € {p,q} and p({p,q,7})(p) = am, which is a violation of Regularity.

(ii) implies (iii). By contradiction, assume that 77 does not have a point of strict
convexity. That is, suppose that for all p,q € A with p 7 ¢, we have p 22 Ap+ (1 —X)g
for every A € [0,1]. Since 77 is a complete preorder, this is equivalent to say that -
has convex lower contour sets. That is, the set

{peA:rzp}

is convex for all r € A. Now, let > be any linear order (a complete, transitive and
antisymmetric binary relation) on A (the existence of > is guaranteed by the Well
Ordering Principle, for example). Define B> to be the relation that applies 7~ and >
lexicographically. That is, for every p,q € A, p &> ¢ if and only if p > ¢ or p ~ ¢ and
p > q. Note that > is also a linear order on A. Finally, let p be the stochastic choice
function that, for each A € A, assigns probability one to the unique maximizer of
> in A. It is clear that p satisfies Regularity. Moreover, by the definition of >, if
p € A is such that {p} = supp,(A), then p 7 g for every ¢ € A. Since 2 has convex
lower contour sets, this implies that, in fact, p 77 ¢ for every g € co(A). That is, p
is a stochastic choice function consistent with >~ that satisfies Regularity, which is a
contradiction.

Proof of Proposition 1. Given the equivalence result in Theorem 2, we may show
that (ii) is equivalent to 7Z having a point of strict convexity.

Suppose, then, that - has a point of strict convexity. That is, suppose there
exist p,g € A and A € (0,1) such that Ap + (1 — X)g > p,q. Since Z preserves
strict first order stochastic dominance, this implies that p, ¢ > d,,. Now, let p be any
stochastic choice function consistent with 7~. Without loss of generality, suppose that
p({p,q})(p) > 0.5. Since = preserves strict first order stochastic dominance, we also
have that p({q,vq + (1 — ), })(¢) = 1. Finally, by the continuity of 7, there exists
v € (0,1) such that Ap + (1 — A)(yq + (1 — ¥)dy) > p. Since p is consistent with
7, this implies that p({p,vq + (1 — 7)dw})(p) < 1, which violates Strong Stochastic
Transitivity.

Conversely, suppose that 7~ does not have a point of strict convexity. Let p and >
be defined as in the proof of Theorem 2. By the argument there, p is a stochastic choice
function consistent with 7. Now suppose p, ¢, € A are such that p({p,q})(p) > 0.5
and p({q,7})(q) > 0.5. By construction, this is equivalent to p > ¢ and ¢ > r, which
implies that p > 7. This now implies that p({p,7})(p) = 1. This shows that p satisfies
Strong Stochastic Transitivity. [ |

Proof of Proposition 2. Let 7~ be the Continuous Deliberate Stochastic Choice
representation of a stochastic choice function p and suppose that p satisfies Linearity.
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Fix any pair of lotteries p and ¢ such that p > ¢. We claim that we must have
that p({p,q})(p) = 1. To see that, let A* be the minimum value in [0, 1] such that
Np+(1—=X)g 7z Ap+ (1 — N)g for every X € [0,1]. Since 7 represents p, we must
have that p({\*p + (1 — A*)q,q})(A*p + (1 — X*)q) = 1. By Linearity, we get that
p({p,q})(p) = 1. Now fix any pair of lotteries p and ¢ in A with p = ¢. Since
strictly preserves first order stochastic dominance, we have that, for any A € (0,1),
Ap+ (1 =X = Mg+ (1 — A\)d,. By what we have just proved, this implies that
p({Ap+ (1 = XNy, Ag+ (1 — N)dw})(Ap + (1 — X\)dp) = 1. By Linearity, we have that,
for any o € (0,1) and r € A, p({a(Ap+ (1 — N)d) + (1 — a)r,a(Ag + (1 — X\)dy) +
(1—a)rP)(a(Ap+ (1 —A)d) + (1 —a)r) = 1. Since 77 represents p, this implies that
a(Ap+ (1 =X)d) + (1 —a)r Z a(Ag+ (1 = N)dy,) + (1 — a)r. Since this is true for any
A € (0,1), continuity of 27 implies that ap+ (1 — a)r 75 ag + (1 — «)r. We have just
shown that, for any p,q € A with p - ¢, we have ap + (1 — a)r = ag + (1 — a)r, for
every a € (0,1) and » € A. Since 7 is continuous, it is well-known that this implies
that it admits an expected-utility representation. That is, there exists a continuous
function w : [w,b] — R such that, for every pair of lotteries p and ¢ in A, p 7 q if,
and only if, E,(u) > E,(u). The proposition is now an immediate consequence of this
observation. |
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