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Abstract

Bayesian binary probit regression and its extensions to time-dependent observations and

multi-class responses are popular tools in binary and categorical data regression due to

their high interpretability and non-restrictive assumptions. Although the theory is well

established in the frequentist literature, such models still face a florid research in the

Bayesian framework. This is mostly due to the fact that state-of-the-art methods for

Bayesian inference in such settings are either computationally impractical or inaccurate

in high dimensions and in many cases a closed-form expression for the posterior distri-

bution of the model parameters is, apparently, lacking. The development of improved

computational methods and theoretical results to perform inference with this vast class

of models is then of utmost importance.

In order to overcome the above-mentioned computational issues, we develop a novel

variational approximation for the posterior of the coefficients in high-dimensional probit

regression with binary responses and Gaussian priors, resulting in a unified skew-normal

(SUN) approximating distribution that converges to the exact posterior as the number

of predictors p increases. Moreover, we show that closed-form expressions are actually

available for posterior distributions arising from models that account for correlated bi-

nary time-series and multi-class responses. In the former case, we prove that the filtering,

predictive and smoothing distributions in dynamic probit models with Gaussian state vari-

ables are, in fact, available and belong to a class of SUN distributions whose parameters

can be updated recursively in time via analytical expressions, allowing to develop an i.i.d.

sampler together with an optimal sequential Monte Carlo procedure. As for the latter

case, i.e. multi-class probit models, we show that many different formulations developed

in the literature in separate ways admit a unified view and a closed-form SUN posterior

distribution under a SUN prior distribution (thus including the Gaussian case). This

allows to implement computational methods which outperform state-of-the-art routines

in high-dimensional settings by leveraging SUN properties and the variational methods

introduced for the binary probit.

Finally, motivated also by the possible linkage of some of the above-mentioned models

to the Bayesian nonparametrics literature, a novel species-sampling model for partially-

exchangeable observations is introduced, with the double goal of both predicting the class

(or species) of the future observations and testing for homogeneity among the different

available populations. Such model arises from a combination of Pitman-Yor processes and

leverages on the appealing features of both hierarchical and nested structures developed

in the Bayesian nonparametrics literature. Posterior inference is feasible thanks to the

implementation of a marginal Gibbs sampler, whose pseudo-code is given in full detail.
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Chapter 1

Introduction

Regression models for dichotomous and categorical data are facing a considerable interest,

due to their wide range of possible applications, spanning across many fields of research

(Agresti, 2013, 2018). Such models are suited to study how the probability mass function

of a categorical response variable y—that is, a variable whose measurement scale consists

in a set of categories—changes with a set of observed predictors x ∈ Rp. Such categorical

outcomes are widespread in health sciencies, social and political sciences, econometrics,

machine learning and statistics in general. Just to mention a few examples of practical

relevance (see Agresti (2018) for additional applications), y could represent the severity of

an injury (“none”, “mild”, “moderate”, “severe”), or the type of a tumor mass, including

both the dichotomous case “benignant” vs “malignant” or more granular outcomes as

“benignant”, “malignant type 1”, “malignant type 2”. In social sciences applications,

where the interest is in measuring attitudes and opinions, categorical responses regression

models are used to study political orientation (“Democrat” vs “Republican” or multi-

class) as well as preferences among different alternatives that customers face, in the so-

called discrete-choice scenarios (see Greene (2003) for a detailed overview). The range of

other possible applications is huge, as they can be used in standard classification tasks,

like email spam detection (“spam” vs “legitimate mail”), handwritten digit classification

(Rasmussen and Williams, 2006), or to model the occurrence of a certain event (yes, no),

like the presence of a certain disease or the rise of a stock price in a trading day.

Although the frequentist theory is now well-established (Agresti, 2013), Bayesian in-

ference for binary and categorical data regression models is still an open area of research,

both from a methodological and computational standpoint. Many of these models, includ-

ing the ones considered in the present thesis, admit an interpretation in terms of latent

(unobserved) continuous data, which can be used to get further insights on theoretical

properties of the model at hand and to perform Bayesian computations (Albert and Chib,

1993, 2001; Consonni and Marin, 2007; Andrieu and Doucet, 2002; McCulloch and Rossi,

1994; Imai and Van Dyk, 2005; Girolami and Rogers, 2006; Girolami and Zhong, 2007).
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In particular, the present thesis focuses on computational and methodological advances

in Bayesian inference for the binary probit model, together with more sophisticated con-

structions to account for correlated binary time series and categorical data. Considering

for the moment the probit model for binary outcomes for ease of exposition, each obser-

vation yi is a Bernoulli random variable with mean parameter pr(yi = 1 | β) = Φ(xᵀ
iβ),

being β ∈ Rp the parameter vector of the effects of each covariate on the output. Such a

model admits a dual interpretation in terms of partially observed latent Gaussian random

variables: it can indeed be rewritten as yi = 1[zi > 0], with zi ∼ N(xᵀ
iβ, 1) and 1[·] the

indicator function. See Chapter 2 for further details.

Such latent variables can be used as auxiliary variables or can have an interpretable

meaning: in the voting example reported above, they can for instance represent a contin-

uous measure of voter i’s preference towards one of the two parties, ending up in her/him

voting that party if such continuous-valued measure falls above zero. Similar concepts of

underlying continuous latent variables driving the observations are present also when one

considers extensions of the probit model to account for dependent binary time series or

multi-class responses. Such models are studied in detail in Chapters 3 and 4 of the present

thesis, respectively: the corresponding latent continuous-valued process is a multivariate

dynamic linear model (Petris et al., 2009) in the former case and a set of unobserved

utilities, one for each possible choice, in the latter case (Greene, 2003).

As apparent from the previous arguments, all these models arise from a hierarchical

construction. It comes then with no surprise that Bayesian hierarchical models have been

widely used in such contexts, as they represent a natural tool to interpret the model

construction and perform posterior inference. However, the apparent lack of a conjugate

prior distribution for all these classes of probit models motivated a rich literature for

computational methods in order to perform Bayesian inference in these settings, due to

their central role in binary and categorical Bayesian data analysis. See Chapters 2, 3

and 4 and references therein for more detailed literature reviews. Most of the available

methods rely on Markov-Chain Monte Carlo (mcmc) methods to sample from the pos-

terior distribution, exploiting the above-mentioned hierarchical constructions to develop

a Gibbs sampler (Albert and Chib, 1993; Holmes and Held, 2006; Pakman and Paninski,

2014; Imai and Van Dyk, 2005). Approximate methods have also been developed for the

binary and categorical probit models (Consonni and Marin, 2007; Chopin and Ridgway,

2017; Girolami and Rogers, 2006), while state-of-the-art sequential Monte-Carlo (smc)

routines (Andrieu and Doucet, 2002) provide the standard tool for online inference in the

univariate binary time-series setting. However, the available mcmc methods are imprac-

tical in large p scenarios, and approximate methods either suffer the same computational

problems (Chopin and Ridgway, 2017) or are inaccurate (Consonni and Marin, 2007).

A first solution to these methodological and computational bottlenecks was recently

given by Durante (2019), who showed a conjugacy result for the probit model for binary
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data with Gaussian priors on the coefficients. This finding, in addition to provide a deeper

theoretical understanding of the posterior distribution of the model parameters, allows to

implement computational strategies for posterior inference that outperform stat-of-the-art

routines in the large p small n scenario, though leaving the computation or approximation

of the posterior an open research question when p is large and n is moderate-to-large. Such

a problem is tackled in Chapter 2, where a novel variational approximation of the poste-

rior distribution of the binary probit model under Gaussian priors is developed. Durante

(2019) showed that, within such a framework, the posterior distribution for the p probit

coefficients has a unified skew-normal (SUN) kernel (Arellano-Valle and Azzalini, 2006;

Azzalini and Capitanio, 2014), which can be expressed via a convolution of a p-variate

normal and an n-variate truncated normal with full covariance matrix. As the latter part

is the main reason for the computational inefficiency as n increases, we propose a varia-

tional approximation for the SUN posterior distribution, which factorizes the multivariate

truncated normal density via a product of univariate truncated normal densities. Such a

result can be formally interpreted as a partially factorized mean-field variational Bayes

strategy (Bishop, 2006; Blei et al., 2017) which provides a tighter approximation to the

posterior distribution for the probit coefficients, compared to state-of-the-art solutions

in Bayesian variational inference (Consonni and Marin, 2007), while crucially preserving

skewness. Such a method is proven to be asymptotically exact as the number of covari-

ates p diverges: in such a case, the Kullback-Leibler divergence (Kullback and Leibler,

1951) between the variational approximation and the exact posterior goes to zero with

probability one.

Motivated by the above-mentioned methodological and computational advances, other

interesting research questions involve the extension of such results to the frameworks of

time-dependent binary observations and multi-class probit models mentioned above. We

address these questions in Chapters 3 and 4, respectively. Considering the binary time

series case, studied in Chapter 3, it admits an interpretation in terms of a partially-

observed dynamic linear model (Petris et al., 2009; Durbin and Koopman, 2012). In

this framework, when one considers usual Gaussian-Gaussian dynamic linear models,

all the distributions of interest are available in closed-form, thanks to the well-known

Kalman filter (Kalman, 1960). However, when we move to the non-Gaussian binary case,

such a routine is lacking in the literature, leaving it an open research question, which

we successfully tackle. Indeed, even though smc methods are efficient in performing

online inference in binary time-series analysis, they are still sub-optimal with respect to

closed-form expressions or exact sampling methods. Moreover, they suffer from the well-

known problem of particle degeneracy (Durbin and Koopman, 2012) when one moves

from online, i.e. filtering and predictive, to batch, i.e. smoothing, inference, leaving the

joint and marginal smoothing an open research question. In Chapter 3, we prove that the

filtering, predictive and smoothing distributions of dynamic probit models with Gaussian
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state variables belong to the class of unified skew-normals (SUN) and that a closed-form

expression for the observation predictive probability is available. Leveraging on SUN

properties (Arellano-Valle and Azzalini, 2006; Azzalini and Capitanio, 2014; Durante,

2019), we propose methods to draw independent and identically distributed (i.i.d.) samples

from the joint smoothing distribution, which can easily be adapted to obtain i.i.d. samples

from filtering and predictive distributions, thereby improving state-of-the-art approximate

or sequential Monte Carlo inference in small-to-moderate dimensional dynamic models.

A scalable and optimal (in the sense of Doucet et al. (2000)) particle filter which exploits

sun properties is also developed in order to deal with online inference in large dimensional

dynamic models.

Extensions of the binary probit model do not stop to binary time series, but include a

large class of models for multi-class outputs. Many different constructions, with associated

mcmc procedures, have been proposed in the literature (Hausman and Wise, 1978; Tutz,

1991; Stern, 1992; McCulloch and Rossi, 1994; McCulloch et al., 2000; Albert and Chib,

2001; Imai and Van Dyk, 2005). However, a unified view on them is lacking at the

moment, as well as a closed-form expression for the corresponding posterior distributions.

The goal of Chapter 4 is indeed to provide such a unified view, together with theoretical

and computational advances, on models for categorical data that can be formulated as

extensions of the binary probit model, generally referred to as Multinomial Probit (MNP)

models. We focus in particular on the original formulation by Hausman and Wise (1978),

on an alternative model with class-specific parameters (Stern, 1992) and on a sequential

construction arising from initial formulations by Tutz (1991) and Albert and Chib (2001).

We show that all the three models, originally developed in a separate way for different

kinds of data, lead to a SUN posterior distribution of the parameters under a SUN (and

hence also Gaussian) prior distribution, developing an efficient sampling procedure which

outperforms state-of-the-art methods in the large p moderate n scenario. Such results are

then used as a starting point to develop variational inference techniques extending the

routine introduced in Chapter 2, allowing to get posterior estimates when both p and n

are large, with particular focus on the case p > n.

All the models discussed so far deal with probabilistic classification, so that predictions

about future observations will be given in the form of class probabilities and not only as

point class predictions: class guesses can then be obtained as solutions of a decision

problem, after the specification of a loss-function. A research area strictly related to this

probabilistic classification framework is given by the Bayesian nonparametrics approach

to species sampling problems, introduced in Lijoi et al. (2007), where the main interest is

in prediction of additional observations, conditionally on the available data. In particular,

key quantities to predict are the number of new species in an additional sample, which

can be seen as a measure of species diversity, or the rate of decay of the probability

of discovering new species. Frequentist analogs originated in connection with ecological
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problems (Good, 1953; Good and Toulmin, 1956). Since then, however, they have been

applied in various other fields, so that the term ‘species’ has actually gained a metaphoric

meaning and can indicate different possible types, genes, agents or categories, depending

on the context. In particular, these models are facing an increasing interest in the Bayesian

nonparametrics community, with a wide range of applications spreading across genetics

(Lijoi et al., 2007; Favaro et al., 2009, 2012), economics (Lijoi et al., 2016) and machine

learning (Teh, 2006). See also De Blasi et al. (2015) for an extensive overview. In this

framework, the most used model is arguably the Pitman Yor Process (PYP) (Pitman

and Yor, 1997), being it preferred to the popular Dirichlet Process (DP) (Ferguson, 1973)

mainly due to the fact that the probability that a new observation forms a new cluster,

conditionally on the available sample, depends on the number of already created clusters,

providing greater flexibility than the DP, where such probability depends only on the

overall sample size. This is also reflected in different asymptotic distributions for the

number of observed clusters as the population size diverges, with the PYP showing a

power-law behaviour, which is common in many empirical studies (Mitzenmacher, 2004;

Goldwater et al., 2006), contrary to the logarithmic growth observed for the DP, which

appears too restrictive.

When moving to the partially exchangeable framework, where multiple samples are

collected across different, but related, studies, Bayesian hierarchical models have proved

to be an effective tool, since they naturally allow to borrow information across groups

(Teh et al., 2006; Teh, 2006; Teh and Jordan, 2010; Camerlenghi et al., 2019b). Such hi-

erarchical constructions, although quite flexible, do not allow to have ties of distributions

of various groups, so that these will have different, but related, distributions. A popular

practice to specify a model that allows for ties among distributions of different groups is

to exploit nested structures (Rodŕıguez et al., 2008; Camerlenghi et al., 2019a). However,

these models either suffer from a degeneracy issue that does not allow ties in the obser-

vations across different groups without degenerating to the exchangeable case (Rodŕıguez

et al., 2008), or are computationally infeasible for more than two groups (Camerlenghi

et al., 2019a). For these reasons, none of them is suitable to perform population homo-

geneity testing in species sampling models with more than two groups.

Motivated by this methodological and computational lack, in Chapter 5 we introduce a

novel species-sampling model for the multiple-sample setting, allowing predictive inference

of future observations as well as clustering of the different population distributions, so to

perform population homogeneity testing. Such model arises by combining PYPs in a way

to exploit the advantages of both the hierarchical and nested constructions developed

in the Bayesian nonparametrics literature (Teh et al., 2006; Teh, 2006; Rodŕıguez et al.,

2008; Teh and Jordan, 2010; Camerlenghi et al., 2019a,b).

In order to do so, we extend the Hierarchical Pitman-Yor process (HPYP) (Teh, 2006)

by adding a latent structure on the population distributions, so that we allow ties across
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them and we can perform both the above-mentioned tasks at the same time. We then show

that the distribution of the induced random partition admits a closed-form expression,

which allows to gain a deeper insight on the theoretical properties of the model. Posterior

inference is feasible thanks to an mcmc routine which allows to evaluate the functionals

of interest and to perform homogeneity testing for different populations with multiple

groups.
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Chapter 2

Variational Bayes for

High-Dimensional Probit Models

2.1 Introduction

The absence of tractable posterior distributions in several Bayesian models, and the recent

abundance of high-dimensional datasets have motivated a growing interest in strategies

for scalable learning of approximate posteriors, beyond classical sampling-based Markov

chain Monte Carlo (mcmc) methods (e.g., Green et al., 2015). Deterministic approxi-

mations, such as variational Bayes (vb) (Blei et al., 2017) and expectation-propagation

(ep) (Minka, 2001), provide powerful approaches to improve computational efficiency in

posterior inference. However, in high-dimensional models these methods still face open

problems in terms of scalability and quality of the posterior approximation. Notably, such

issues also arise in basic predictor-dependent models for binary responses (Agresti, 2013),

which are routinely used and provide a building block in several hierarchical models (e.g.,

Chipman et al., 2010; Rodriguez and Dunson, 2011). Recalling a recent review by Chopin

and Ridgway (2017), the problem of posterior computation in binary regression is partic-

ularly challenging when the number of predictors p becomes large. Indeed, while standard

sampling-based algorithms and deterministic approximations can easily deal with small p

problems, these strategies are impractical when p is large; e.g., p > 1000.

Classical specifications of Bayesian regression models for binary data assume that

the dichotomous responses yi ∈ {0; 1}, i = 1, . . . , n, are conditionally independent re-

alizations from a Bernoulli variable Bern[g(xᵀ
iβ)], given a fixed p-dimensional vector

of predictors xi = (xi1, . . . , xip)
ᵀ ∈ Rp, i = 1, . . . , n, and the associated coefficients

β = (β1, . . . , βp)
ᵀ ∈ Rp. The mapping g(·) : R → (0, 1) is commonly specified to be

either the logit or probit link, thus obtaining pr(yi = 1 | β) = [1 + exp(−xᵀ
iβ)]−1 in

the first case, and pr(yi = 1 | β) = Φ(xᵀ
iβ) in the second, where Φ(·) is the cumulative

distribution function of a standard normal. In performing Bayesian inference under these
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models, it is common practice to specify Gaussian priors for the coefficients β, and then

update such priors with the likelihood of the observed data y = (y1, . . . , yn)ᵀ to obtain

the posterior p(β | y), which is used for point estimation, uncertainty quantification and

prediction. However, the apparent absence of conjugacy in this Bayesian updating moti-

vates the use of computational strategies relying either on Monte Carlo integration or on

deterministic approximations (Chopin and Ridgway, 2017).

A popular class of mcmc methods that has been widely used in applications of

Bayesian regression for binary data leverages augmented data representations which allow

the implementation of tractable Gibbs samplers relying on conjugate full-conditional dis-

tributions. In Bayesian probit regression this strategy exploits the possibility of expressing

the binary data yi ∈ {0; 1}, i = 1, . . . , n, as dichotomized versions of an underlying re-

gression model for Gaussian responses zi ∈ R, i = 1, . . . , n, thereby restoring conjugacy

between the Gaussian prior for the coefficients β and the augmented data, which are in

turn sampled from truncated normal full-conditionals (Albert and Chib, 1993). More re-

cently, Polson et al. (2013) proposed a related strategy for logit regression which is based

on a representation of the logistic likelihood as a scale mixture of Gaussians with respect

to Pólya-gamma augmented variables zi ∈ R+, i = 1, . . . , n. Despite their simplicity,

these methods face well-known computational and mixing issues in high-dimensional set-

tings, especially with imbalanced datasets (Johndrow et al., 2019). We refer to Chopin

and Ridgway (2017) for a discussion of related data-augmentation strategies (Holmes and

Held, 2006; Frühwirth-Schnatter and Frühwirth, 2007) and alternative sampling meth-

ods, such as adaptive Metropolis–Hastings (Roberts and Rosenthal, 2001; Haario et al.,

2001) and Hamiltonian Monte Carlo (Hoffman and Gelman, 2014), among others. While

these strategies address some disadvantages of data-augmentation Gibbs samplers, they

are still computationally impractical in large p applications (Chopin and Ridgway, 2017;

Nishimura and Suchard, 2018; Durante, 2019).

A possible solution to scale-up computations is to consider deterministic approxima-

tions of the posterior distribution. In binary regression contexts, two strategies that

have gained growing popularity are mean-field (mf) vb with global and local variables

(Jaakkola and Jordan, 2000; Consonni and Marin, 2007; Durante and Rigon, 2019), and ep

(Chopin and Ridgway, 2017). The first class of methods approximates the joint posterior

density p(β, z | y) for the global parameters β = (β1, . . . , βp)
ᵀ and the local augmented

data z = (z1, . . . , zn)ᵀ with an optimal factorized density q∗mf(β)
∏n

i=1 q
∗
mf(zi) which is the

closest in Kullback–Leibler divergence (Kullback and Leibler, 1951) to p(β, z | y), among

all the approximating densities in the mean-field family Qmf = {qmf(β, z) : qmf(β, z) =

qmf(β)qmf(z)}. Optimization typically proceeds via coordinate ascent variational inference

methods (cavi) which can scale easily to large p settings. However, mf-vb is known to

underestimate posterior uncertainty and often leads to Gaussian approximations which

affect the quality of inference if the actual posterior is non-Gaussian (Kuss and Ras-
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mussen, 2005). As we will show in Sections 2.2 and 2.3, this issue can have dramatic

implications in the setting considered in this chapter. Also ep provides Gaussian ap-

proximations (Chopin and Ridgway, 2017), but typically improves the quality of vb via

a moment matching of approximate marginals that have the same factorized form of the

actual posterior. These gains come, however, with a computational cost which makes

ep not practical for high-dimensional settings with, e.g., p > 1000. Indeed, recalling a

concluding remark by Chopin and Ridgway (2017), the lack of scalability to large p is

common to most state-of-the-art methods for Bayesian computation in binary regression

models. An exception is provided by the recent contribution of Durante (2019), which

proves that in Bayesian probit regression with Gaussian priors the posterior actually be-

longs to the class of unified skew-normal (SUN) distributions (Arellano-Valle and Azzalini,

2006). These variables have several closure properties which facilitate posterior inference

in large p settings. However, the calculation of relevant functionals for inference and pre-

diction requires the evaluation of cumulative distribution functions of n-variate Gaussians

or sampling from n-variate truncated normals, thus making these results impractical in a

variety of applications with sample size n greater than a few hundreds (Durante, 2019).

In this chapter we address most of the aforementioned issues by proposing a new

partially factorized mean-field approximation (pfm) for Bayesian probit regression which

avoids assuming independence between the global variables β and the augmented data z.

Unlike ep (Chopin and Ridgway, 2017), the proposed pfm-vb scales easily to p � 1000

settings, and, unlike for the computational strategies proposed in Durante (2019), it only

requires evaluation of distribution functions of univariate Gaussians. Moreover, despite

having a computational cost comparable to standard mf-vb for probit models (Consonni

and Marin, 2007), the proposed pfm-vb leads to a substantially improved approximation

of the posterior in large p settings, which reduces bias in locations and variances, and

crucially incorporates skewness. Optimization proceeds via a simple cavi algorithm and

provides a tractable SUN approximating density. The methodology is discussed in Sec-

tion 2.2, where we also provide theoretical results showing that the pfm-vb approximation

converges to the exact posterior as p → ∞, and that the number of iterations required

by the cavi to find the optimum converges to 1 as p→∞. Insightful negative results on

the accuracy of standard mf-vb approximations, that suggest caution against maximum

a posteriori inferences in high-dimensional contexts, are also provided. The proposed

methods are evaluated on an Alzheimer’s application with p = 9036 in Section 2.3. Con-

cluding remarks and proofs can be found in Section 2.4 and in Appendix 2.A, respectively.

Finally, Appendix 2.B discusses the computational complexity of the proposed inference

and optimization strategies which can crucially be performed at an O(pn ·min{p, n}) cost.

Codes and tutorials to implement the proposed methods and reproduce the analyses are

available at https://github.com/augustofasano/Probit-PFMVB.

https://github.com/augustofasano/Probit-PFMVB


CHAPTER 2. VARIATIONAL BAYES FOR HIGH-DIMENSIONAL PROBIT 10

2.2 Variational Bayesian Inference for Probit Models

Recalling Section 2.1, we focus on posterior inference for the classical Bayesian probit

regression model defined as

(yi | β)
ind∼ Bern[Φ(xᵀ

iβ)], i = 1, . . . , n,

β ∼ Np(0, ν
2
pIp).

(2.1)

In (2.1), each yi is a binary variable whose success probability depends on a p-dimensional

vector of observed predictors xi = (xi1, . . . , xip)
ᵀ under a probit mapping. The coeffi-

cients β = (β1, . . . , βp)
ᵀ regulate the effect of each predictor and are assigned independent

Gaussian priors βj ∼ N(0, ν2
p), for every j = 1, . . . , p. Although our contribution can

be naturally generalized to a generic multivariate Gaussian prior for β, we consider here

the simpler setting with β ∼ Np(0, ν
2
pIp) to ease notation, and allow the prior variance

ν2
p to possibly change with p. This choice incorporates not only routine implementa-

tions of Bayesian probit models relying on constant prior variances ν2
p = ν2 for the co-

efficients (e.g., Chopin and Ridgway, 2017), but also more structured formulations for

high-dimensional problems which define ν2
p = ν2/p to control the prior variance of the en-

tire linear predictor and induce increasing shrinkage (e.g., Simpson et al., 2017; Fuglstad

et al., 2018). The prior variance coefficient ν2
p is allowed to vary with p, in order to ac-

commodate for most common routine implementations of Bayesian probit models, where

either ν2
p = ν2 and hence the coefficients are considered a priori independent with con-

stant variance (e.g., Chopin and Ridgway, 2017) or ν2
p = ν2/p so that the variance of

the linear predictor is kept constant (e.g., Fuglstad et al., 2018). Details on the technical

assumptions for the asymptotic behavior of ν2
p are stated in Assumption A2.

Model (2.1) also has a simple constructive representation based on Gaussian aug-

mented data, which has been broadly used in the development of mcmc (Albert and

Chib, 1993) and vb (Consonni and Marin, 2007) methods. More specifically, (2.1) can be

obtained by marginalizing out the augmented data z = (z1, . . . , zn)ᵀ in the model

yi = 1(zi > 0),

(zi | β)
ind∼ N(xᵀ

iβ, 1), i = 1, . . . , n,

β ∼ Np(0, ν
2
pIp).

(2.2)

Recalling Albert and Chib (1993), the above construction leads to closed-form full-

conditionals for β and z, thus allowing the implementation of a Gibbs sampler where

p(β | z,y) = p(β | z) is a Gaussian density, and each p(zi | β,y) = p(zi | β, yi)
is the density of a truncated normal, for i = 1, . . . , n. We refer to Albert and Chib

(1993) for more details regarding such a strategy. Our focus here is on large p settings

where classical mcmc is often impractical, thus motivating more scalable methods relying
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on approximate posteriors. In Section 2.2.1, we discuss standard mf-vb strategies for

Bayesian probit models (Consonni and Marin, 2007) which rely on representation (2.2),

and prove that in large p settings these approaches lead to poor approximations of the

exact posterior that underestimate not only the variance but also the location, thus leading

to unreliable inference and prediction. In Section 2.2.2, we address these issues via a new

partially factorized variational approximation that has substantially improved practical

and theoretical performance in large p settings, especially when p� n.

2.2.1 Mean-field variational Bayes

Recalling Blei et al. (2017), mean-field vb with global and local variables aims at pro-

viding a tractable approximation for the joint posterior density p(β, z | y) of the global

parameters β = (β1, . . . , βp)
ᵀ and the local variables z = (z1, . . . , zn)ᵀ, within the mf

class of factorized densities Qmf = {qmf(β, z) : qmf(β, z) = qmf(β)qmf(z)}. The optimal vb

solution q∗mf(β)q∗mf(z) within this family is the one that minimizes the Kullback–Leibler

(kl) divergence (Kullback and Leibler, 1951) defined as

kl[qmf(β, z) || p(β, z | y)] = Eqmf(β,z)[log qmf(β, z)]− Eqmf(β,z)[log p(β, z | y)], (2.3)

with qmf(β, z) ∈ Qmf. Alternatively, it is possible to obtain q∗mf(β)q∗mf(z) by maximizing

elbo[qmf(β, z)] = Eqmf(β,z)[log p(β, z,y)]− Eqmf(β,z)[log q(β, z)], (2.4)

with qmf(β, z) ∈ Qmf, since the elbo coincides with the negative kl up to an additive

constant. Recall also that the kl divergence is always non-negative and refer to Armagan

and Zaretzki (2011) for the expression of elbo[qmf(β, z)] under (2.2). The maximization

of (2.4) is typically easier than the minimization of (2.3), and can be performed via a

simple coordinate ascent variational inference algorithm (cavi) (e.g., Blei et al., 2017)

cycling among the two steps below

q
(t)
mf(β) ∝ exp{E

q
(t−1)
mf (z)

log[p(β | z,y)]},

q
(t)
mf(z) ∝ exp{E

q
(t)
mf (β)

log[p(z | β,y)]},
(2.5)

where q
(t)
mf(β) and q

(t)
mf(z) are the solutions at iteration t. We refer to Blei et al. (2017)

for why the updating in (2.5) iteratively optimizes the elbo in (2.4), and highlight here

how (2.5) is particularly simple to implement in Bayesian models having tractable full-

conditional densities p(β | z,y) and p(z | β,y). This is the case of the augmented-data

representation (2.2) for the probit model in (2.1). Indeed, recalling Albert and Chib

(1993) it easily follows that the full-conditionals under model (2.2) are

(β | z,y) ∼ Np(VXᵀz,V), V = (ν−2
p Ip + XᵀX)−1,

(zi | β,y)
ind∼

TN[xᵀ
iβ, 1, (0,+∞)], if yi = 1,

TN[xᵀ
iβ, 1, (−∞, 0)], if yi = 0,

for i = 1, . . . , n,
(2.6)



CHAPTER 2. VARIATIONAL BAYES FOR HIGH-DIMENSIONAL PROBIT 12

Algorithm 1: cavi algorithm to obtain q∗mf(β, z) = q∗mf(β)
∏n

i=1 q
∗
mf(zi)

for t from 1 until convergence of elbo[q
(t)
mf(β, z)] do

[1] Set

q
(t)
mf(β) = φp(β − β̄(t); V), with β̄(t) = VXᵀz̄(t−1),

where z̄(t−1) has elements z̄
(t−1)
i = xᵀ

i β̄
(t−1) + (2yi − 1)φ(xᵀ

i β̄
(t−1))Φ[(2yi − 1)xᵀ

i β̄
(t−1)]−1 for

every i = 1, . . . , n. In the above expression, φp(β − µ; Σ) is the density of a generic p-variate
Gaussian for β with mean µ and variance-covariance matrix Σ.

[2] Set

q
(t)
mf(zi) =

φ(zi − xᵀ
i β̄

(t))

Φ[(2yi − 1)xᵀ
i β̄

(t)]
1[(2yi − 1)zi > 0] .

for every i = 1, . . . , n.

Output: q∗mf(β, z) = q∗mf(β)
∏n

i=1 q
∗
mf(zi).

where X is the n × p design matrix with rows xᵀ
i , whereas TN[µ, σ2, (a, b)] denotes a

generic univariate normal distribution having mean µ, variance σ2, and truncation to the

interval (a, b). An important consequence of the conditional independence of z1, . . . , zn

given β and y, is that q
(t)
mf(z) =

∏n
i=1 q

(t)
mf(zi) and thus the optimal mf-vb solution always

factorizes as q∗mf(β)q∗mf(z) = q∗mf(β)
∏n

i=1 q
∗
mf(zi). Replacing the densities of the above full-

conditionals in the cavi outlined in (2.5), it can be easily noted that q
(t)
mf(β) and q

(t)
mf(zi),

i = 1, . . . , n, are Gaussian and truncated normal densities, respectively, with parameters

as in Algorithm 1 (Consonni and Marin, 2007). Note that the actual parametric form of

the optimal approximating densities follows directly from (2.5), without pre-specifying it.

Algorithm 1 relies on simple steps which basically require only updating of β̄ via

matrix operations, and, unlike for ep, is computationally feasible in high-dimensional

settings; see e.g., Table 2.1. Due to the Gaussian form of q∗mf(β) also the calculation of

the approximate posterior moments and predictive probabilities is straightforward. The

latter quantities can be easily expressed as

prmf(ynew = 1 | y) =

∫
Φ(xᵀ

newβ)q∗mf(β)dβ

= Φ[xᵀ
newβ̄

∗(1 + xᵀ
newVxnew)−1/2],

(2.7)

where xnew ∈ Rp are the covariates of the new unit, and β̄∗ = Eq∗mf(β)(β). However, as

shown by the asymptotic results in Theorem 2.1, mf-vb can lead to poor approximations

of the posterior in high dimensions as p→∞, causing concerns on the quality of inference

and prediction. Throughout the paper, the asymptotic results are derived under the

following random design assumption.

A 1. Assume that the predictors xij, i = 1, . . . , n, with j = 1, . . . , p, are independent

random variables with E(xij) = 0, E(x2
ij) = σ2

x and supij E(x4
ij) <∞.
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The above random design assumption is common to asymptotic studies of regression

models (see e.g., Brown et al., 2002; Reiß, 2008; Qin and Hobert, 2019). Moreover,

the zero mean and the constant variance assumption is a natural requirement in the

context of binary regression, where the predictors are typically standardized following the

recommended practice in the literature (e.g., Gelman et al., 2008; Chopin and Ridgway,

2017). In Section 2.3, we will show how empirical evidence on a real dataset, where this

assumption might not hold, is still coherent with the theoretical results stated below.

To rule out pathological cases, we also require the following mild technical assumption

on the behavior of ν2
p as p→∞.

A 2. Assume that supp{ν2
p} <∞, and that α = limp→∞ pν

2
p exists and belongs to (0,∞].

Observe that Assumption 2 includes the two elicitations for ν2
p of interest in these

settings as discussed in Section 2.2 — i.e., ν2
p = ν2 and ν2

p = ν2/p, with ν2 < ∞. In

the following, we use the convention ασ2
x(1 + ασ2

x)
−1 = 1 = (1 + ασ2

x)(ασ
2
x)
−1, whenever

α =∞.

Theorem 2.1. Under A1 and A2, we have that lim infp→∞ kl[q∗mf(β) || p(β | y)] > 0

almost surely (a.s.). Moreover, ν−1
p ||Eq∗mf(β)(β)|| a.s.→ 0 as p → ∞, where || · || is the usual

Euclidean norm. On the contrary, ν−1
p ||Ep(β|y)(β)|| a.s.→ [ασ2

x(1 + ασ2
x)
−1]1/2c

√
n > 0 as

p→∞, where c = 2
∫∞

0
zφ(z)dz is a strictly positive constant.

According to Theorem 2.1, mf-vb causes over-shrinkage of the approximate posterior

means, which can result in an unsatisfactory approximation of the entire posterior density

p(β | y) in high-dimensional settings. For instance, recalling the expression of the ap-

proximate predictive probabilities in (2.7), the over-shrinkage of β̄∗ towards 0 may cause

rapid concentration of prmf(ynew = 1 | y) around 0.5, thereby inducing bias. As shown

in Section 2.3, the magnitude of such a bias can be dramatic, making (2.7) unreliable in

high-dimensional settings. In addition, although as p→∞ the prior plays a progressively

more important role in the Bayesian updating, Theorem 2.1 suggests that even few data

points can induce non–negligible differences between prior and posterior moments such

as, for example, the expected values.

As discussed in the proof of Theorem 2.1 and in Armagan and Zaretzki (2011), β̄∗ is

also the mode of the actual posterior p(β | y). Hence, the above results suggest that,

despite its popularity (Chopin and Ridgway, 2017; Gelman et al., 2008), the posterior

mode should be avoided as a point estimate in large p settings. As a consequence, also

Laplace approximation would provide unreliable inference since this approximation is

centered at the posterior mode. These results are in apparent contradiction with the fact

that the marginal posterior densities p(βj|y) often exhibit negligible skewness and their

modes arg max p(βj|y) are typically close to the corresponding mean Ep(βj |y)(βj); see e.g.,

Figure 2.2. However, the same is not true for the joint posterior density p(β|y), where
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little skewness is sufficient to induce a dramatic difference between the joint posterior

mode, arg max p(β|y), and the posterior expectation; see e.g., Figure 2.3. In this sense, the

results in Theorem 2.1 point towards caution in assessing Gaussianity of high-dimensional

distributions based on the shape of their marginal distributions.

Motivated by the above considerations, in Section 2.2.2 we develop a new pfm-vb

with global and local variables that solves the aforementioned issues without increasing

computational costs. In fact, the cost of our procedure is the same of mf-vb but, unlike

for such a strategy, we obtain a substantially improved approximation that provably

converges to the exact posterior as p → ∞. The magnitude of these improvements is

outlined in the empirical studies in Section 2.3.

2.2.2 Partially factorized variational Bayes

A natural strategy to improve the performance of mf-vb is to relax the factorization

assumptions on the approximating densities in a way that still allows simple optimiza-

tion and inference. To accomplish this goal, we consider a partially factorized rep-

resentation Qpfm = {qpfm(β, z) : qpfm(β, z) = qpfm(β | z)
∏n

i=1 qpfm(zi)} which does

not assume independence among the parameters β and the local variables z, thus pro-

viding a more flexible family of approximating densities. This new enlarged family

Qpfm allows to incorporate more structure of the actual posterior relative to Qmf, while

retaining tractability. In fact, following Holmes and Held (2006) and recalling that

V = (ν−2
p Ip + XᵀX)−1, the joint density p(β, z | y) under the augmented model (2.2)

can be factorized as p(β, z | y) = p(β | z)p(z | y), where p(β | z) = φp(β − VXᵀz; V)

and p(z | y) ∝ φn(z; In + ν2
pXXᵀ)

∏n
i=1 1[(2yi − 1)zi > 0] denote the densities of a p-

variate Gaussian and an n-variate truncated normal, respectively. The main source of

intractability in this factorization of the posterior is the truncated normal density, which

requires the evaluation of cumulative distribution functions of n-variate Gaussians with

full variance-covariance matrix for inference (Genz, 1992; Horrace, 2005; Chopin, 2011;

Pakman and Paninski, 2014; Botev, 2017; Durante, 2019). The independence assumption

among the augmented data in Qpfm avoids the intractability that would arise from the

multivariate truncated normal density p(z | y), while being fully flexible on qpfm(β | z).

Crucially, the optimal mf-vb approximation q∗mf(β, z) belongs to Qpfm and thus, by min-

imizing kl[qpfm(β, z) || p(β, z | y)] in Qpfm, we are guaranteed to obtain an improved

approximation of the joint posterior density relative to mf-vb, as stated in Proposition

2.2.

Proposition 2.2. Let q∗pfm(β, z) and q∗mf(β, z) be the optimal approximations for p(β, z|y)

from (2.2), under pfm-vb and mf-vb, respectively. Since q∗mf(β, z) ∈ Qpfm and q∗pfm(β, z)

minimizes kl[q(β, z) || p(β, z | y)] in Qpfm, then it follows kl[q∗pfm(β, z) || p(β, z | y)] ≤
kl[q∗mf(β, z) || p(β, z | y)].
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This result suggests that pfm-vb may provide a promising direction to improve

quality of posterior approximation. However, to be useful in practice, the solution

q∗pfm(β, z) should be simple to derive and the approximate posterior distribution q∗pfm(β) =∫
Rn q

∗
pfm(β|z)

∏n
i=1 q

∗
pfm(zi)dz = Eq∗pfm(z)[q

∗
pfm(β | z)] of direct interest should be available

in tractable form. Theorem 2.3 and Corollary 2.4 show that this is possible.

Theorem 2.3. Under the augmented model in equation (2.2), the kl divergence between

qpfm(β, z) ∈ Qpfm and p(β, z | y) is minimized at q∗pfm(β | z)
∏n

i=1 q
∗
pfm(zi) with

q∗pfm(β | z) = p(β | z) = φp(β −VXᵀz; V), V = (ν−2
p Ip + XᵀX)−1,

q∗pfm(zi) =
φ(zi − µ∗i ;σ∗2i )

Φ[(2yi − 1)µ∗i /σ
∗
i ]
1[(2yi − 1)zi > 0], σ∗2i = (1− xᵀ

iVxi)
−1,

(2.8)

for i = 1, . . . , n,where µ∗ = (µ∗1, . . . , µ
∗
n)ᵀ solves the system µ∗i − σ∗2i xᵀ

iVXᵀ
−iz̄
∗
−i = 0,

i = 1, . . . , n, with X−i denoting the design matrix without the ith row, while z̄∗−i is an

n− 1 vector obtained by removing the ith element z̄∗i = µ∗i + (2yi − 1)σ∗i φ(µ∗i /σ
∗
i )Φ[(2yi −

1)µ∗i /σ
∗
i ]
−1, i = 1, . . . , n, from the vector z̄∗ = (z̄∗1 , . . . , z̄

∗
n)ᵀ.

Algorithm 2: cavi algorithm to obtain q∗pfm(β, z) = q∗pfm(β | z)
∏n

i=1 q
∗
mf(zi)

[1] Set q∗pfm(β | z) = φp(β −VXᵀz; V) with V = (ν−2p Ip + XᵀX)−1, and initialize µ
(0)
i ∈ R,

i = 1, . . . , n.

[2] for t from 1 until convergence of elbo[q
(t)
pfm(β, z)] do

for i from 1 to n do

Set

q
(t)
pfm(zi) =

φ(zi − µ(t)
i ;σ∗2i )

Φ[(2yi − 1)µ
(t)
i /σ∗i ]

1[(2yi − 1)zi > 0],

with σ∗2i = (1− xᵀ
i Vxi)

−1, and µ
(t)
i = σ∗2i xᵀ

i VXᵀ
−i(z̄

(t)
1 , . . . , z̄

(t)
i−1, z̄

(t−1)
i+1 , . . . , z̄

(t−1)
n )ᵀ

where the generic z̄
(t)
i is defined as z̄∗i in Theorem 2.3 replacing µ∗i with µ

(t)
i .

Output: q∗pfm(β, z) = q∗pfm(β | z)
∏n

i=1 q
∗
pfm(zi) and, as a consequence of Corollary 2.4, also

q∗pfm(β).

In Theorem 2.3, the solution for q∗pfm(β | z) follows by noting that kl[qpfm(β, z) ||
p(β, z | y)] = kl[qpfm(z) || p(z | y)] + Eqpfm(z){kl[qpfm(β | z) || p(β | z)]} due to the

chain rule for the kl divergence. Thus, the second summand is 0 if and only if q∗pfm(β |
z) = p(β | z). The expressions for q∗pfm(zi), i = 1, . . . , n, are instead a direct consequence

of the closure under conditioning property of multivariate truncated Gaussians (Horrace,

2005) which allows to recognize the kernel of a univariate truncated normal in the optimal

solution exp[Eq∗pfm(z−i)(log[p(zi | z−i,y)])] (Blei et al., 2017) for q∗pfm(zi); see Appendix 2.A

for the detailed proof. Algorithm 2 outlines the steps of the cavi to obtain q∗pfm(β, z).

As for classical cavi (Blei et al., 2017), this routine optimizes the elbo sequentially with
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respect to each density qpfm(zi), keeping fixed the others at their most recent update, thus

producing a strategy that iteratively solves the system of equations for µ∗ in Theorem 2.3

via simple expressions. Indeed, since the form of the approximating densities is already

available as in Theorem 2.3, the steps in Algorithm 2 reduce to update the vector of

parameters µ∗ via simple functions and matrix operations.

As stated in Corollary 2.4, the optimal q∗pfm(β) of interest can be easily derived from

q∗pfm(β | z) and
∏n

i=1 q
∗
pfm(zi), and coincides with the density of a tractable SUN (Arellano-

Valle and Azzalini, 2006).

Corollary 2.4. Let Ȳ = diag(2y1 − 1, . . . , 2yn − 1) and σ∗ = diag(σ∗1, . . . , σ
∗
n), then,

under (2.8), the approximate density q∗pfm(β) for β coincides with that of the variable

u(0) + VXᵀȲσ∗u(1), (2.9)

where u(0) ∼ Np(VXᵀµ∗,V), and u(1) = (u
(1)
1 , . . . , u

(1)
n )ᵀ denotes an n-dimensional ran-

dom vector of independent univariate truncated normals u
(1)
i ∼ TN[0, 1, [−(2yi−1)µ∗i /σ

∗
i ,+

∞]], i = 1, . . . , n. Hence, recalling Arellano-Valle and Azzalini (2006) and Azzalini and

Capitanio (2014), q∗pfm(β) is the probability density of the unified skew-normal distribution

SUNp,n(ξ,Ω,∆,γ,Γ), with parameters

ξ = VXᵀµ∗, Ω = ωΩ̄ω = V + VXᵀσ∗2XV,

∆ = ω−1VXᵀȲσ∗, γ = Ȳσ∗
−1

µ∗, Γ = In,

where ω denotes a p × p diagonal matrix containing the square roots of the diagonal

elements in the covariance matrix Ω, whereas Ω̄ denotes the associated correlation matrix.

The results in Corollary 2.4 follow by noticing that, under (2.8), the approximate den-

sity for β is the convolution of a p-variate Gaussian and an n-variate truncated normal,

thereby producing the density of a SUN (Arellano-Valle and Azzalini, 2006; Azzalini and

Capitanio, 2014). This class of random variables generalizes the multivariate Gaussian

family via a skewness-inducing mechanism controlled by the matrix ∆ which weights

the skewing effect produced by an n-variate truncated normal with covariance matrix

Γ (Arellano-Valle and Azzalini, 2006; Azzalini and Capitanio, 2014). Besides introduc-

ing asymmetric shapes in multivariate Gaussians, the SUN has several closure properties

which facilitate inference. However, the evaluation of functionals requires the calculation

of cumulative distribution functions of n-variate Gaussians (Arellano-Valle and Azzalini,

2006; Azzalini and Capitanio, 2014), which is prohibitive when n is large, unless Γ is di-

agonal. Recalling Durante (2019), this issue makes Bayesian inference rapidly impractical

under the exact posterior p(β | y) when n is more than a few hundreds, since p(β | y)

is a SUN density with non-diagonal Γpost. Instead, the factorized form
∏n

i=1 qpfm(zi) for



CHAPTER 2. VARIATIONAL BAYES FOR HIGH-DIMENSIONAL PROBIT 17

qpfm(z) leads to a SUN approximate density for β in Corollary 2.4, which crucially relies

on a diagonal Γ = In. Such a result allows approximate posterior inference for every n

and p via tractable expressions. In particular, recalling the stochastic representation in

(2.9), the first two central moments of β and the predictive distribution are derived in

Proposition 2.5.

Proposition 2.5. If q∗pfm(β) is the SUN density in Corollary 2.4, then

Eq∗pfm(β)(β) = VXᵀz̄∗,

varq∗pfm(β)(β) = V + VXᵀC∗XV,
(2.10)

where C∗ = diag[σ∗21 − (z̄∗1 −µ∗1)z̄∗1 , . . . , σ
∗2
n − (z̄∗n−µ∗n)z̄∗n], and z̄∗i , µ∗i and σ∗i , i = 1, . . . , n

are defined as in Theorem 2.3. Moreover, the posterior predictive probability prpfm(ynew =

1 | y) =
∫

Φ(xᵀ
newβ)q∗pfm(β)dβ for a new unit with covariates xnew is

prpfm(ynew = 1 | y) = Eq∗pfm(z){Φ[xᵀ
newVXᵀz(1 + xᵀ

newVxnew)−1/2]}, (2.11)

where, according to Theorem 2.3, q∗pfm(z) can be expressed as the product
∏n

i=1 q
∗
pfm(zi) of

univariate truncated normal densities q∗pfm(zi) = φ(zi−µ∗i ;σ∗2i )Φ[(2yi−1)µ∗i /σ
∗
i ]
−1
1[(2yi−

1)zi > 0], i = 1, . . . , n.

Hence, unlike for inference under the exact posterior (Durante, 2019), calculation

of relevant approximate moments such as those in equation (2.10), only requires the

evaluation of cumulative distribution functions of univariate Gaussians. Similarly, the

predictive probabilities in equation (2.11) can be easily evaluated via efficient Monte Carlo

methods based on samples from n independent univariate truncated normals with density

q∗pfm(zi), i = 1, . . . , n. Moreover, leveraging (2.9), samples from the approximate posterior

q∗pfm(β) can directly be obtained via a linear combination between realizations from a

p-variate Gaussian and from n univariate truncated normals, as shown in Algorithm 3.

This strategy allows to study complex approximate functionals of β through simple Monte

Carlo methods. If instead the focus is only on q∗pfm(βj), j = 1, . . . , p, one can avoid the

cost of simulating from the p-variate Gaussian in Algorithm 3 and just sample from the

marginals of u(0) in the additive representation of the SUN to get samples from q∗pfm(βj)

for j = 1, . . . , p at an O(pn ·min{p, n}) cost.

Algorithm 3: Strategy to sample from the approximate SUN posterior in Corollary 2.4

[1] Draw u(0) ∼ Np(VXᵀµ∗,V).

[2] Draw u
(1)
i ∼ TN[0, 1, [−(2yi − 1)µ∗i /σ

∗
i ,+∞]], i = 1, . . . , n. Set u(1) = (u

(1)
1 , . . . , u

(1)
n )ᵀ.

[3] Compute β = u(0) + VXᵀȲσ∗u(1).

Output: a draw β from the approximate posterior with density as in (2.9).
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We conclude the presentation of pfm-vb by studying its properties in high-dimensional

settings as p → ∞. As discussed in Section 2.2.1, mf-vb (Consonni and Marin, 2007)

provides poor Gaussian approximations of the posterior density in high dimensions, which

do not include asymmetric shapes usually found in Bayesian binary regression (Kuss

and Rasmussen, 2005), and affect quality of inference and prediction. By relaxing the

mf assumption we obtain, instead, an approximate density which includes skewness and

matches the exact posterior for β when p→∞, as stated in Theorem 2.6.

Theorem 2.6. Under A1 and A2, we have that kl[q∗pfm(β) || p(β | y)]
a.s.→ 0 as p→∞.

Hence, in the high dimensional settings where current computational strategies are

impractical (Chopin and Ridgway, 2017), inference and prediction under the approxima-

tion provided by pfm-vb is practically feasible, and provides essentially the same results

as those obtained under the exact posterior. For instance, Corollary 2.7 states that, un-

like for mf-vb, pfm-vb is guaranteed to provide increasingly accurate approximations of

posterior predictive probabilities as p→∞.

Corollary 2.7. Let pr(ynew = 1 | y) =
∫

Φ(xᵀ
newβ)p(β|y)dβ denote the exact posterior

predictive probability for a new observation with predictors xnew ∈ Rp, then, under A1

and A2, we have that supxnew∈Rp |prpfm(ynew = 1 | y)− pr(ynew = 1 | y)| a.s.→ 0 as p→∞.

On the contrary, lim infp→∞ supxnew∈Rp |prmf(ynew = 1 | y)− pr(ynew = 1 | y)| > 0 almost

surely as p→∞.

Corollary 2.7 implies that, under A1 and A2, the error made by pfm-vb in terms

of approximation of posterior predictive probabilities goes to 0 as p → ∞, regardless of

the choice of xnew ∈ Rp. On the contrary, under mf-vb there always exists, for every p,

some xnew such that the corresponding posterior predictive probability is not accurately

approximated.

Finally, as stated in Theorem 2.8, the number of iterations required by the cavi in

Algorithm 2 to produce the optimal solution q∗pfm(β) converges to 1 as p→∞.

Theorem 2.8. Let q
(t)
pfm(β) =

∫
Rn q

(t)
pfm(β | z)

∏n
i=1 q

(t)
pfm(zi)dz denote the approximate

density for β produced at iteration t by Algorithm 2. Then, under A1 and A2, kl[q
(1)
pfm(β) ||

p(β | y)]
a.s.→ 0 as p→∞.

According to Theorem 2.8, the cavi in Algorithm 2 converges essentially in one itera-

tion as p→∞. Thus the computational complexity of the entire pfm-vb routine is prov-

ably equal to that of a single cavi iteration, which is dominated by an O(pn ·min{p, n})
pre-computation cost discussed in detail in Appendix 2.B, where we also highlight how

the calculation of the functionals in Proposition 2.5 can be achieved at the same cost.

More complex functionals of the joint approximate posterior can be instead obtained at

higher costs via Monte Carlo methods based on Algorithm 3.
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Finally, we shall emphasize that also the computational complexity of approximate

inference under mf-vb is dominated by the same O(pn ·min{p, n}) pre-computation cost.

However, as discussed in Sections 2.2.1 and 2.2.2, pfm-vb produces substantially more

accurate approximations relative to mf-vb. In Section 2.3, we provide further evidence

for these arguments and discuss how the theoretical results presented in Sections 2.2.1

and 2.2.2 match closely the empirical behavior observed in a real-world application to

Alzheimer’s data.

2.3 High-Dimensional Probit Regression Application

to Alzheimer’s Data

As shown in Chopin and Ridgway (2017), state-of-the-art computational methods for

Bayesian binary regression, such as Hamiltonian Monte Carlo (Hoffman and Gelman,

2014), vb (Consonni and Marin, 2007) and ep (Chopin and Ridgway, 2017) are feasible

and powerful procedures in small-to-moderate p settings, but become rapidly impractical

or inaccurate in large p contexts, such as p > 1000. The overarching focus of the present

chapter is to close this gap and, consistent with this aim, we consider a large p study

to quantify the drawbacks encountered by the aforementioned strategies along with the

improvements provided by the proposed pfm-vb method.

Following the above remarks, we focus on an application to model presence or absence

of Alzheimer’s disease in its early stages as a function of demographic data, genotype and

assay results. The original dataset is available in the R library AppliedPredictiveModeling

and arises from a study of the Washington University to determine if biological mea-

surements from cerebrospinal fluid are useful in modeling and predicting early stages of

Alzheimer’s disease (Craig-Schapiro et al., 2011). In the original chapter, the authors

consider a variety of machine learning procedures to improve the flexibility relative to a

basic binary regression model. Here, we avoid excessively complex black-box algorithms

and rely on an interpretable probit regression (2.1), which improves flexibility by simply

adding pairwise interactions, thus obtaining p = 9036 predictors collected for 333 indi-

viduals. Following Gelman et al. (2008) and Chopin and Ridgway (2017) the original

measurements have been standardized to have mean 0 and standard deviation 0.5, before

entering such variables and their interactions in the probit regression. In general, we

recommend to always standardize the predictors when implementing pfm-vb since this

choice typically reduces the correlation between units and thus also between the associ-

ated latent variables zi, making the resulting variational approximation more accurate.

We shall also emphasize that the sample size of this study is low relative to those that

can be easily handled under pfm-vb. In fact, this moderate n is required to make infer-

ence under the exact posterior, which serves here as a benchmark, still feasible (Durante,
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2019).

Figure 2.1: For mf-vb and pfm-vb, histograms of the log-Wasserstein distances between the p = 9036

approximate marginal densities provided by the two vb methods and the exact posterior marginals.

These distances are computed via Monte Carlo based on 20000 samples from the approximate and exact

marginals. To provide insights on Monte Carlo error, the dashed vertical lines represent the quantiles

2.5% and 97.5% of the log-Wasserstein distances between two different samples of 20000 draws from the

exact posterior marginals.

In performing Bayesian inference under the above probit model, we follow the guide-

lines in Gelman et al. (2008) and rely on independent weakly informative Gaussian priors

with mean 0 and standard deviation 5 for each coefficient βj, j = 1, . . . , 9036. These priors

are then updated with the likelihood of n = 300 units, after holding out 33 individuals to

study the behavior of the posterior predictive probabilities in such large p settings, along

with the performance of the overall approximation of the posterior. Table 2.1 provides

insights on the computational time of mf-vb and pfm-vb, and highlights the bottlenecks

encountered by relevant routine-use competitors. These include the rstan implementa-

tion of Hamiltonian Monte Carlo, the ep algorithm in the R library EPGLM, and the Monte

Carlo strategy based on 20000 independent draws from the exact SUN posterior using

the algorithm in Durante (2019). As expected, these strategies are clearly impractical in

such settings. In particular, stan and ep suffer from the large p, whereas sampling from

the exact posterior is still feasible, but requires a non-negligible computational effort due

to the moderately large n. Variational inference under mf-vb and pfm-vb is orders of

magnitude faster and, hence, provides the only viable approach in such settings. These

results motivate our main focus on the quality of mf-vb and pfm-vb approximations in

Figures 2.1–2.3, taking as benchmark Monte Carlo inference based on 20000 independent

samples from the exact SUN posterior. In this example pfm-vb requires only 7 cavi

iterations to converge, instead of 212 as for mf-vb. This result is in line with Theorem

2.8, and with the subsequent considerations.
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Figure 2.2: Quality of marginal approximation for the coefficients associated with the highest and lowest

Wasserstein distance from the exact posterior under mf-vb and pfm-vb, respectively. The shaded grey

area denotes the density of the exact posterior marginal, whereas the dotted and dashed lines represent

the approximate densities provided by mf-vb and pfm-vb, respectively.

Table 2.1: Computational time of state-of-the-art routines in the Alzheimer’s application.

This includes the running time of the sampling or optimization procedure and the time to

compute means, standard deviations and predictive probabilities, for those routines that

were feasible.

stan ep SUN mf-vb pfm-vb

Running time in minutes > 360.00 > 360.00 92.71 0.05 0.05

Figure 2.1 shows the histograms of the log-Wasserstein distances among the p = 9036

exact posterior marginals and the associated approximations under mf-vb and pfm-vb.

Such quantities are computed with the R function wasserstein1d, which uses 20000 values

sampled from the approximate and exact marginals. According to these histograms, pfm-

vb improves the quality of mf-vb and, in practice, it matches almost perfectly the exact

posterior since it provides distances within the range of values obtained by comparing two

different samples of 20000 draws from the same exact posterior marginals. Hence, most

of the variability in the pfm-vb histogram is arguably due to Monte Carlo error.

These results are in line with Theorems 2.1 and 2.6, and are also confirmed by Figure

2.2 which compares graphically the quality of the marginal approximation for the coeffi-

cients associated with the highest and lowest Wasserstein distance from the exact posterior
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Figure 2.3: Scatterplots comparing the posterior expectations, standard deviations and predictive

probabilities computed from 20000 values sampled from the exact SUN posterior, with those provided by

the mf-vb (light grey circles) and pfm-vb (dark grey triangles). Each row represents a different scenario,

respectively ν2p = 25, 25 · 100/p, 25 · 10/p.

under mf-vb and pfm-vb. As is clear from Figure 2.2, pfm-vb produces approximations

which perfectly overlaps with the exact posterior in all cases, including also the worst-case

scenario with the highest Wasserstein distance. Consistent with Theorem 2.1, mf-vb has

instead a reduced quality mostly due to a tendency to shrink, sometimes dramatically,

towards zero the locations of the actual posterior. This behavior is studied more in detail

in Figure 2.3, where posterior expectations and standard deviations are shown, together

with the predictive probabilities for the held-out observations, for the scenarios ν2
p = 25

considered so far and also for ν2
p = 25 ·100/p and ν2

p = 25 ·10/p. These two last values for

ν2
p correspond to fixing the total variance of the linear predictor as if there were respec-

tively 100 and 10 coefficients with prior standard deviation 5, in line with Gelman et al.

(2008), while the others were fixed to zero. The over-shrinkage of the posterior means

can be seen in the first column of Figure 2.3, which compares the posterior expectations

computed from 20000 values sampled from the exact SUN posterior with those provided
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by the closed-form expressions under mf-vb and pfm-vb reported in Section 2.2. We can

notice that such a behavior is dramatic for the case of constant prior variance, and still

remains significant when ν2
p is allowed to decrease with p. Also the standard deviations

are slightly under-estimated relative to pfm-vb that notably removes bias also in the sec-

ond order moments. Consistent with the results in Figures 2.1–2.2, the slight variability

of the pfm-vb estimates in the second column of Figure 2.3 is arguably due to Monte

Carlo error. We conclude by assessing quality in the approximation of the exact posterior

predictive probabilities for the 33 held-out individuals. These measures are fundamental

for prediction and, unlike for the first two marginal moments, their evaluation depends

on the behavior of the entire posterior since it relies on a non-linear mapping of a linear

combination of the parameters β. In the third column of Figure 2.3, the proposed pfm-

vb essentially matches the exact posterior predictive probabilities, thus providing reliable

classification and uncertainty quantification. Instead, as expected from the theoretical

results in Corollary 2.7, mf-vb over-shrinks these quantities towards 0.5.

2.4 Discussion and Future Research Directions

This chapter highlights notable issues in state-of-the-art methods for approximate Bayesian

inference in high-dimensional binary regression, and proposes a partially factorized mean-

field variational Bayes strategy which provably covers these open gaps. Our basic idea

is to relax the mean-field assumption in a way which approximates more closely the fac-

torization of the actual posterior, but still allows simple optimization and inference. The

theoretical results confirm that the proposed strategy is an optimal solution in large p set-

tings, especially when p� n, and the empirical studies suggest that the theory provides

useful insights also in applications not necessarily meeting the assumptions.

While our contribution provides an important advancement in a non-Gaussian regres-

sion context where previously available Bayesian computational strategies are unsatisfac-

tory (Chopin and Ridgway, 2017), the results in this chapter open new avenues for future

research. For instance, the theoretical issues of mf-vb and map estimators presented

in Section 2.2.1 for large p settings point to the need of further theoretical studies on

the use of mf-vb and map estimators in high-dimensional regression with non-Gaussian

responses. In these contexts, our general idea of relying on a partially factorized ap-

proximating family could provide a viable strategy to solve potential issues of current

approximations, as long as simple optimization is possible and the approximate poste-

rior density for the global parameters can be derived in closed-form via marginalization

of the local variables. This strategy could be also useful in Bayesian models relying on

hierarchical priors for β that facilitate variable selection and improved shrinkage. Albeit

interesting, this setting goes beyond the scope of the contribution.
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Finally, it would be certainly relevant to extend the asymptotic results in Theorems 2.1,

2.6 and 2.8 to settings in which n grows with p at some rate. In particular, we conjecture

that n growing sublinearly with p is a sufficient condition to obtain asymptotic-exactness

results analogous to Theorem 2.6.

2.A Appendix: Proofs

We start by proving some general lemmas that will be useful for the proofs of Theorems

2.1, 2.6 and 2.8. A key one is a variant of the strong law of large numbers, which

is a classical result that follows from Khintchine–Kolmogorov convergence theorem and

Kronecker’s lemma. In the following, when we use the notation o(pd) in a matrix context,

we indicate a matrix whose entries are all o(pd).

Lemma 2.9. Let (wj)j≥1 be a sequence of independent random variables with mean 0 and

variance bounded over j. Then p−1/2−δ∑p
j=1wj

a.s.→ 0 as p→∞ for every δ > 0.

Lemma 2.10. Under A1 and A2, for any δ > 0 we have (σ2
xp)
−1XXᵀ a.s.

= In + o(p−1/2+δ)

and (1 + σ2
xpν

2
p)−1(In + ν2

pXXᵀ)
a.s.→ In as p→∞.

Proof. By A1, (x2
ij)j≥1 are independent random variables with mean σ2

x and variance

bounded over j. Thus, p1/2−δ[(σ2
xp)
−1XXᵀ − In]ii = p−1/2−δ∑p

j=1(σ−2
x x2

ij − 1)
a.s.→ 0 by

Lemma 2.9. Similarly, when i 6= i′, (xijxi′j)j≥1 are independent random variables with

mean 0 and variance σ4
x <∞. Thus

p1/2−δ[(σ2
xp)
−1XXᵀ − In]ii′ = σ−2

x p−1/2−δ
∑p

j=1
xijxi′j

a.s.→ 0

as p → ∞ by Lemma 2.9. It follows that (σ2
xp)
−1XXᵀ a.s.

= In + o(p−1/2+δ) as p → ∞.

Finally, since by A2 pν2
p converges to a positive constant or goes to infinity, in both cases

we have that, as p→∞,

(1 + σ2
xpν

2
p)−1(In + ν2

pXXᵀ) = (1 + σ2
xpν

2
p)−1In + (1 + σ2

xpν
2
p)−1(σ2

xpν
2
p)(σ2

xp)
−1XXᵀ a.s.→ In.

Lemma 2.11. Let H = XVXᵀ, then, under A1 and A2, it holds (1 +σ2
xpν

2
p) (In −H)

a.s.→
In as p → ∞. In particular, for p → ∞, we have H

a.s.→ ασ2
x

1+ασ2
x
In when α ∈ (0,∞), while

H
a.s.
= [1− (σ2

xpν
2
p)−1]In + o(p−1) when α =∞.

Proof. Since V = (ν−2
p Ip + XᵀX)−1, by applying the Woodbury’s identity to (In +

ν2
pXXᵀ)−1, we obtain (In + ν2

pXXᵀ)−1 = In − ν2
pX(Ip + ν2

pX
ᵀX)−1Xᵀ = In −X(ν−2

p Ip +

XᵀX)−1Xᵀ = In −H. Thus [(1 + σ2
xpν

2
p)(In −H)]−1 = (1 + σ2

xpν
2
p)−1(In + ν2

pXXᵀ)
a.s.→ In

as p→∞ by Lemma 2.10 and the thesis follows by the continuity of the inverse operator

over the set of non-singular n× n matrices.
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Lemma 2.12. Let µ
(p)
l → 0 and Σ

(p)
l → In as p→∞ for l = 1, 2, where µ

(p)
l ∈ Rn and

Σ
(p)
l ∈ Rn2

, l = 1, 2. Then kl[tn(µ
(p)
1 ,Σ

(p)
1 ,A) || tn(µ

(p)
2 ,Σ

(p)
2 ,A)]→ 0 as p→∞, where

A is an orthant of Rn.

Proof. By definition, kl[tn(µ
(p)
1 ,Σ

(p)
1 ,A) || tn(µ

(p)
2 ,Σ

(p)
2 ,A)] is equal to

log[(ψ
(p)
1 )−1ψ

(p)
2 ] +

1

2
log[det(Σ

(p)
1 )−1 det(Σ

(p)
2 )]

+(ψ
(p)
1 2π)−n/2 det(Σ

(p)
1 )−1/2

∫
A
fp(u)du ,

where ψ
(p)
l = pr(u

(p)
l ∈ A) with u

(p)
l ∼ Nn(µ

(p)
l ,Σ

(p)
l ), for l = 1, 2, and

fp(u) = gp(u) exp[−0.5(u− µ(p)
1 )ᵀ(Σ

(p)
1 )−1(u− µ(p)

1 )], with

gp(u) = −0.5[(u− µ(p)
1 )ᵀ(Σ

(p)
1 )−1(u− µ(p)

1 )− (u− µ(p)
2 )ᵀ(Σ

(p)
2 )−1(u− µ(p)

2 )].

Since µ
(p)
l → 0 and Σ

(p)
l → In as p → ∞, we have that Nn(µ

(p)
l ,Σ

(p)
l ) → Nn(0, In) in

distribution and ψ
(p)
l → 2−n by Portmanteau theorem, which implies log[(ψ

(p)
1 )−1ψ

(p)
2 ] →

0. In addition, by the continuity of det(·), we have det(Σ
(p)
l ) → det(In) = 1 as p → ∞,

and thus

log[det(Σ
(p)
1 )−1 det(Σ

(p)
2 )]→ 0

as p → ∞. Moreover, Σ
(p)
l → In implies that all the eigenvalues of Σ

(p)
l converge

to 1 as p → ∞ for l = 1, 2, and thus are eventually bounded away from 0 and ∞.

Therefore, there exist positive, finite constants m, M and k such that m‖u − µ(p)
l ‖2 ≤

(u − µ(p)
l )ᵀ(Σ

(p)
l )−1(u − µ(p)

l ) ≤ M‖u − µ(p)
l ‖2 for l = 1, 2 and p ≥ k. Calling b =

supp≥1, l∈{1,2} ‖µ
(p)
l ‖ <∞, and using standard properties of norms, we obtain, for l = 1, 2

and p ≥ k,

m(‖u‖2 − 2b‖u‖) ≤ (u− µ(p)
l )ᵀ(Σ

(p)
l )−1(u− µ(p)

l ) ≤ (M‖u‖2 +Mb),

from which we immediately obtain that, for p ≥ k, |fp(u)| ≤ (M‖u‖2+Mb) exp(−m‖u‖2/2+

b‖u‖), where the latter is an integrable function on Rn. Therefore we can apply the dom-

inated convergence theorem and obtain limp→∞
∫
A fp(u)du =

∫
A limp→∞ fp(u)du = 0 as

desired.

2.A.1 Proof of Theorem 2.1

Let β̄∗ = arg maxβ∈Rp `(β), where `(β) = −(2ν2
p)−1‖β‖2 +

∑n
i=1 log Φ[(2yi − 1)xᵀ

iβ] de-

notes the log-posterior up to an additive constant under (2.1). Note that β̄∗ is unique

because `(β) is strictly concave (Haberman, 1974).

Lemma 2.13. Under A1, we have ν−1
p ‖β̄∗‖

a.s.→ 0 as p→∞.
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Proof. Since log Φ[(2yi−1)xᵀ
iβ] < 0 for every i = 1, . . . , n, we obtain `(β) < −(2ν2

p)−1‖β‖2

and thus ν−2
p ‖β‖2 < −0.5`(β) for any β ∈ Rp. It follows that ν−2

p ‖β̄∗‖2 < −0.5`(β̄∗) =

−0.5 supβ∈Rp `(β). We now prove that supβ∈Rp `(β)
a.s.→ 0 as p→∞. Define β̃ = (β̃j)

p
j=1 ∈

Rp as

β̃j = p−2/3(2ydnj/pe − 1)xdnj/pe,j, j = 1, . . . , p ,

where dae denotes the smallest integer larger or equal to a. It follows that

p−1/3xᵀ
i β̃ = p−1(2yi − 1)

∑
j∈Di

x2
ij + p−1

∑
j /∈Di

ζij,

whereDi = {j ∈ {1, . . . , p} : (i−1)p/n < j ≤ ip/n} and we defined ζij = xijxdnj/pe,j(2ydnj/pe−
1). Since (x2

ij)j∈Di and (ζij)j /∈Di are independent variables with bounded variance, the

size of Di is asymptotic to n−1p as p → ∞ and E(ζij) = 0 for j /∈ Di, Lemma 2.9

implies that limp→∞ p
−1/3xᵀ

i β̃
a.s.
= n−1(2yi − 1)σ2

x. Assuming σ2
x > 0 without loss of

generality (when σ2
x = 0 it holds β̄∗

a.s.
= 0) it follows that xᵀ

i β̃
a.s.→ +∞ if yi = 1

and xᵀ
i β̃

a.s.→ −∞ if yi = 0 as p → ∞ and therefore
∑n

i=1 log Φ[(2yi − 1)xᵀ
i β̃]

a.s.→ 0 as

p→∞. Moreover ‖β̃‖2 = p−1/3(p−1
∑p

j=1 x
2
dnj/pe,j)

a.s.→ 0 as p→∞ by Lemma 2.9. Thus

0 ≥ supβ∈Rp `(β) ≥ `(β̃)
a.s.→ 0 as p→∞ as desired.

Lemma 2.14. Let q1 and q2 be probability distributions on Rp. Then, for any xnew ∈ Rp,

we have kl[q1 || q2] ≥ 2
∣∣prq1 − prq2

∣∣2, where prql =
∫

Φ(xᵀ
newβ)ql(β)dβ for l = 1, 2.

Proof. By Pinsker’s inequality, kl[q1 || q2] ≥ 2tv[q1, q2]2 where tv[·, ·] denotes the total

variation distance between probability distributions. Recall that it holds tv[q1, q2] =

suph:Rp→[0,1] |
∫
Rp h(β)q1(β)dβ−

∫
Rp h(β)q2(β)dβ|. Taking h(β) = Φ(xᵀ

newβ) in the above

equation we obtain the desired statement.

Proof of Theorem 2.1. As noted in Armagan and Zaretzki (2011), the cavi algorithm for

mf-vb is equivalent to an em algorithm for p(β|y) with missing data z, which in this

case is guaranteed to converge to the unique maximizer of p(β|y) by, e.g., Theorem 3.2 of

McLachlan and Krishnan (2007) and the fact that p(β|y) is strictly concave (Haberman,

1974). Therefore Eq∗mf(β)(β) = β̄∗ and Lemma 2.13 implies that ν−1
p ‖Eq∗mf(β)(β)‖ a.s.→ 0 as

p→∞.

We now show that ν−2
p ‖Ep(β|y)(β)‖2 a.s.→ (ασ2

x)
(1+ασ2

x)
c2n as p → ∞. By the law of to-

tal expectation Ep(β|y)(β) = VXᵀEp(z|y)(z). It follows that we have ‖Ep(β|y)(β)‖2 =

Ep(z|y)(z)ᵀXVᵀVXᵀEp(z|y)(z). Applying the Woodbury’s identity to V we have VXᵀ =

ν2
pX

ᵀ(In+ν2
pXXᵀ)−1. Thus, we can write XVᵀVXᵀ = (1+σ2

xpν
2
p)−2σ2

xpν
4
pS

ᵀ(σ2
xp)
−1XXᵀS

with S = (1 + σ2
xpν

2
p)(In + ν2

pXXᵀ)−1. Since Sᵀ(σ2
xp)
−1XXᵀS

a.s.→ In as p → ∞ from

Lemma 2.10. Multiplying and dividing by the appropriate terms in the expression for

‖Ep(β|y)(β)‖2, it also follows that limp→∞ ν
−2
p ‖Ep(β|y)(β)‖2 a.s.

= limp→∞
(σ2
xpν

2
p)

(1+σ2
xpν

2
p)
‖Ep(z|y)[(1+
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σ2
xpν

2
p)−1/2z]‖2. Since it holds (z | y) ∼ tn[0, (In+ν2

pXXᵀ),A], we obtain [(1+σ2
xpν

2
p)−1/2z |

y] ∼ tn[0, (1 + σ2
xpν

2
p)−1(In + ν2

pXXᵀ),A]. Then,

Ep(zi|y)[(1 + σ2
xpν

2
p)−1/2zi] =

1

ψ̃(p)

∫
A
ũiφn[ũ; (1 + σ2

xpν
2
p)−1(In + ν2

pXXᵀ)]dũ,

where ψ̃(p) = pr(u(p) ∈ A) for u(p) ∼ Nn[0, (1 + σ2
xpν

2
p)−1(In + ν2

pXXᵀ)]. Thus, Lemma

2.10 together with a domination argument similar to the one used in the proof of Lemma

2.12 imply that, as p→∞,

Ep(zi|y)[(1 + σ2
xpν

2
p)−1/2zi]

a.s.→ 2n
∫
A
ũiφn(ũ; In)dũ = c(2yi − 1),

where c = 2
∫∞

0
uφ(u)du. Therefore, limp→∞ ν

−2
p ‖Ep(β|y)(β)‖2 a.s.

= (ασ2
x)

(1+ασ2
x)

∑n
i=1 c

2 =
(ασ2

x)
(1+ασ2

x)
c2n.

Finally, we show that lim infp→∞ kl[q∗mf(β) || p(β | y)]
a.s.
> 0. Lemma 2.14 im-

plies kl[q∗mf(β) || p(β | y)] ≥ 2 |prmf − prsun|
2, where prsun =

∫
Φ(xᵀ

newβ)p(β|y)dβ

and prmf =
∫

Φ(xᵀ
newβ)q∗mf(β)dβ. To accomplish this goal, we consider xnew = (1 +

σ2
xpν

2
p)−1/2XᵀH−1δ, with δ = (2y1−1, 0, . . . , 0)ᵀ, and show that limp→∞ |prmf − prsun| > 0.

Here we can assume without loss of generality that H is invertible because H
a.s.→ In as

p→∞ by Lemma 2.11 and the set of n× n non-singular matrices is open. This implies

that H is eventually invertible as p→∞ almost surely. By definition of xnew we have

ν2
p‖xnew‖2 = ν2

px
ᵀ
newxnew

=
σ2
xpν

2
p

1 + σ2
xpν

2
p

δᵀH−1(σ2
xp)
−1XXᵀH−1δ

a.s.→ 1 + ασ2
x

ασ2
x

as p→∞,

because H−1 a.s.→ 1+ασ2
x

ασ2
x

In and (σ2
xp)
−1XXᵀ a.s.→ In as p → ∞ by Lemmas 2.11 and 2.10,

respectively, and ‖δ‖ = 1. By (2.7) we have prmf = Φ[xᵀ
newβ̄

∗(1 + xᵀ
newVxnew)−1/2], and

by combining Cauchy-Schwarz inequality and xᵀ
newVxnew ≥ 0 we have that

|xᵀ
newβ̄

∗(1 + xᵀ
newVxnew)−1/2| ≤ ‖xnew‖‖β̄∗‖

a.s.→ 0,

as p→∞, where the latter convergence follows from νp‖xnew‖
a.s.→ [(1 + ασ2

x)/ασ
2
x]

1/2 ∈ (0,∞)

and ν−1
p ‖β̄∗‖

a.s.→ 0. Thus prmf
a.s.→ 0.5 as p→∞.

Consider now prsun. With derivations analogous to those of equation (2.11), we can

express prsun as prsun = Ep(z|y){Φ[xᵀ
newVXᵀz(1 + xᵀ

newVxnew)−1/2]}. By definition of

xnew, we have that xᵀ
newVxnew = (1 + σ2

xpν
2
p)−1δᵀH−1δ and, as p→∞, H−1a.s.→ 1+ασ2

x

ασ2
x

In

by Lemma 2.11 and ‖δ‖ = 1. Thus, xᵀ
newVxnew

a.s.→ 0 if pνp → ∞, while xᵀ
newVxnew

a.s.→
(ασ2

x)
−1 if pνp → α ∈ (0,∞). Moreover, xᵀ

newVXᵀz = δᵀ[(1 + σ2
xpν

2
p)−1/2z] and (1 +

σ2
xpν

2
p)−1/2z → tn(0, In,A) in distribution as p → ∞, almost surely. Combining these

results with Slutsky’s lemma and the fact that Φ(·) is bounded and continuous, it follows
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that Ep(z|y){Φ[xᵀ
newVXᵀz(1 + xᵀ

newVxnew)−1/2]} a.s.→ Ep(z̃){Φ[ασ2
x(1 + ασ2

x)
−1δᵀz̃]} with

z̃ ∼ tn(0, In,A). Thus prsun
a.s.→ Ep(z̃1){Φ[(2y1 − 1)ασ2

x(1 + ασ2
x)
−1z̃1]} =

∫∞
0

Φ[ασ2
x(1 +

ασ2
x)
−1z]2φ(z)dz > 0.5 as p → ∞. It follows that lim infp→∞ kl[q∗mf(β) || p(β | y)] ≥

2 limp→∞ |prmf − prsun|
2 > 0 almost surely as p→∞.

2.A.2 Proof of Theorem 2.3, Corollary 2.4 and Proposition 2.5

Proof of Theorem 2.3. Leveraging the chain rule of the kl divergence we obtain that

kl[qpfm(β, z) || p(β, z | y)] = kl[qpfm(z) || p(z | y)] + Eqpfm(z){kl[qpfm(β | z) || p(β | z)]},
where qpfm(β|z) appears only in the second summand. This quantity is always non-

negative and coincides with zero, for every qpfm(z), if and only if q∗pfm(β | z) = p(β | z) =

φp(β −VXᵀz; V).

The expression for q∗pfm(z) =
∏n

i=1 q
∗
pfm(zi) is instead a direct consequence of the

closure under conditioning property of the multivariate truncated Gaussian (Horrace,

2005; Holmes and Held, 2006). In particular, adapting the results in Holmes and Held

(2006), it easily follows that

p(zi | z−i,y) ∝ φ[zi − (1− xᵀ
iVxi)

−1xᵀ
iVXᵀ

−iz−i; (1− xᵀ
iVxi)

−1]1[(2yi − 1)zi > 0],

for i = 1, . . . , n, where X−i is the design matrix without row i. To obtain the expression for

q∗pfm(zi), i = 1, . . . , n, note that, recalling e.g., Blei et al. (2017), the optimal solution for

qpfm(z) which minimizes kl[qpfm(z) || p(z | y)] within family of distributions that factorize

over z1, . . . , zn can be expressed as
∏n

i=1 q
∗
pfm(zi) with q∗pfm(zi) ∝ exp[Eq∗pfm(z−i)(log[p(zi |

z−i,y)])] for every i = 1, . . . , n. Combining such a result with the above expression for

p(zi | z−i,y) we have that exp[Eq∗pfm(z−i)(log[p(zi | z−i,y)])] is proportional to

exp

[
−
z2
i − 2zi(1− xᵀ

iVxi)
−1xᵀ

iVXᵀ
−iEq∗pfm(z−i)(z−i)

2(1− xᵀ
iVxi)−1

]
1[(2yi − 1)zi > 0],

for i = 1, . . . , n.. The above quantity coincides with the kernel of a Gaussian distribution

having variance σ∗2i = (1 − xᵀ
iVxi)

−1, expectation µ∗i = σ∗2i xᵀ
iVXᵀ

−iEq∗pfm(z−i)(z−i) and

truncation below zero if yi = 1 or above zero if yi = 0. Hence, each q∗pfm(zi) is the density

of a truncated normal with parameters specified in Theorem 2.3. The proof is concluded

after noticing that the expression for z̄∗i = Eq∗pfm(zi)(zi), i = 1, . . . , n, in Theorem 2.3 follows

directly from the mean of truncated normals.

Proof of Corollary 2.4. From (2.8), we have that q∗pfm(β) coincides with the density of a

random variable that has the same distribution of ũ(0) + VXᵀũ(1), where ũ(0) ∼ Np(0,V)

and ũ(1) is from an n-variate Gaussian with mean vector µ∗, diagonal covariance matrix

σ∗2 and generic ith component truncated either below or above zero depending of the

sign of (2yi − 1), for i = 1, . . . , n. Since ũ(1) has independent components, by standard
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properties of univariate truncated normal variables we obtain

ũ(0) + VXᵀũ(1) d
= u(0) + VXᵀȲσ∗u(1), with Ȳ = diag(2y1 − 1, . . . , 2yn − 1),

where u(0) ∼ Np(VXᵀµ∗,V) and u(1) is an n-variate Gaussian with mean vector 0, co-

variance matrix In, and truncation below −Ȳσ∗
−1
µ∗. Calling ξ = VXᵀµ∗, Ω = ωΩ̄ω =

V + VXᵀσ∗2XV, ∆ = ω−1VXᵀȲσ∗, γ = Ȳσ∗
−1
µ∗ and Γ = In, as in Corollary 2.4, we

have that

u(0) + VXᵀȲσ∗u(1) d
= ξ + ω(ū(0) + ∆Γ−1ū(1)),

with ū(0) ∼ Np(0, Ω̄ −∆Γ−1∆ᵀ), and ū(1) distributed as a n-variate Gaussian random

variable with mean vector 0, covariance matrix Γ, and truncation below −γ. Recalling

Arellano-Valle and Azzalini (2006) and Azzalini and Capitanio (2014) such a stochas-

tic representation coincides with the one of the unified skew-normal random variable

SUNp,n(ξ,Ω,∆,γ,Γ).

Proof of Proposition 2.5. To prove Proposition 2.5, first notice that by the results in

equation (2.8) and in Theorem 2.3, z = (z1, . . . , zn)ᵀ denotes a vector whose entries

have independent truncated normal approximating densities. Hence, Eq∗pfm(zi)(zi) = z̄∗i
and varq∗pfm(zi)(zi) = σ∗2i [1− (2yi− 1)η∗i µ

∗
i /σ

∗
i − η∗2i ] with ηi = φ(µ∗i /σ

∗
i )Φ[(2yi− 1)µ∗i /σ

∗
i ]
−1

for i = 1, . . . , n. Using the parameters defined in Theorem 2.3, varq∗pfm(zi)(zi) can be

also re-written as varq∗pfm(zi)(zi) = σ∗2i − (z̄∗i − µ∗i )z̄
∗
i . Therefore, Eq∗pfm(z)(z) = z̄∗ and

varq∗pfm(z)(z) = diag[σ∗21 −(z̄∗1−µ∗1)z̄∗1 , . . . , σ
∗2
n −(z̄∗n−µ∗n)z̄∗n], where z̄∗i , µ

∗
i and σ∗i , i = 1, . . . , n

are defined in Theorem 2.3 and Corollary 2.4. Combining these results with equation (2.8),

and using the law of iterated expectations we have

Eq∗pfm(β)(β) = Eq∗pfm(z)[Ep(β|z)(β)] = Eq∗pfm(z)(VXᵀz)

= VXᵀEq∗pfm(z)(z) = VXᵀz̄∗,

varq∗pfm(β)(β) = Eq∗pfm(z)[varp(β|z)(β)] + varq∗pfm(z)[Ep(β|z)(β)]

= V + VXᵀvarq∗pfm(z)(z)XV

= V + VXᵀdiag[σ∗21 − (z̄∗1 − µ∗1)z̄∗1 , . . . , σ
∗2
n − (z̄∗n − µ∗n)z̄∗n]XV,

thus proving equation (2.10).

To prove equation (2.11) it suffices to notice that prpfm(ynew = 1 | y) = Eq∗pfm(β)[Φ(xᵀ
newβ)].

Hence, by applying again the law of iterated expectations we have

Eq∗pfm(β)[Φ(xᵀ
newβ)] = Eq∗pfm(z){Ep(β|z)[Φ(xᵀ

newβ)]}
= Eq∗pfm(z){Φ[xᵀ

newVXᵀz(1 + xᵀ
newVxnew)−1/2]}.

The last equality follows from the fact that p(β | z) is a Gaussian density and hence

Ep(β|z)[Φ(xᵀ
newβ)] can be derived in closed-form; see e.g., Lemma 7.1 in Azzalini and

Capitanio (2014).
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2.A.3 Proof of Theorem 2.6 and Corollary 2.7

Proof of Theorem 2.6. As a consequence of the discussion after the statement of The-

orem 2.3, the density q∗pfm(z) minimizes the kl divergence to p(z|y) within the family

of distributions that factorize over z1, . . . , zn. Thus kl[q∗pfm(z)||p(z|y)] ≤ kl[tn(0, (1 +

σ2
xpν

2
p)In,A)||p(z|y)]. Since the kl divergence is invariant with respect to bijective trans-

formations and p(z|y) = tn(0, In + ν2
pXXᵀ,A), then rescaling each zi by (1 + σ2

xpν
2
p)−1/2

we have

kl[tn(0, (1+σ2
xpν

2
p)In,A)||p(z|y)] = kl[tn(0, In,A)||tn(0, (1+σ2

xpν
2
p)−1(In+ν2

pXXᵀ),A].

Lemma 2.10 shows that (1 + σ2
xpν

2
p)−1(In + ν2

pXXᵀ)
a.s.→ In and thus Lemma 2.12 implies

that kl[tn(0, In,A)||tn(0, (1 + σ2
xpν

2
p)−1(In + ν2

pXXᵀ),A)]
a.s.→ 0 as p → ∞. From this

result it follows that limp→∞ kl[q∗pfm(z)||p(z|y)]
a.s.
= 0 as desired.

Corollary 2.7. Lemma 2.14 and Theorem 2.6 also imply that

sup
xnew∈Rp

|prpfm − prsun| ≤ {kl[q∗pfm(β) || p(β | y)]/2}1/2 a.s.→ 0

as p → ∞. Moreover, in the proof of Theorem 2.1 it has been shown that setting

xnew = (1 + σ2
xpν

2
p)−1/2XᵀH−1δ for every p leads to

lim inf
p→∞

|prmf − prsun| > 0,

almost surely, from which it follows the second part of the corollary.

2.A.4 Proof of Theorem 2.8

Lemma 2.15. Let y ∈ {0; 1} be a generic binary response and call z̄∗ = µ∗ + (2y −
1)σ∗φ(µ∗/σ∗)Φ[(2y − 1)µ∗/σ∗]−1, with µ∗ ∈ R and σ∗ ≥ 0. Then we have supµ∗,σ∗(|µ∗| +
σ∗)−1|z̄∗| <∞.

Proof. By the triangle inequality

(|µ∗|+ σ∗)−1|z̄∗| ≤ 1 + (|µ∗|+ σ∗)−1σ∗φ(|µ∗|/σ∗)/Φ(−|µ∗|/σ∗).

If |µ∗| ≤ σ∗ then |z̄∗|/(|µ∗| + σ∗) ≤ 1 + 1 × φ (0) /Φ (−1) < ∞. If |µ∗| > σ∗, setting

t = |µ∗|/σ∗ and using the bound Φ(−t) ≥ (2π)−1/2t(t2 + 1)−1 exp(−t2/2), which holds for

every t > 0, we have

(|µ∗|+ σ∗)−1|z̄∗| ≤ 1 + |µ∗|−1σ∗φ(t) /Φ (−t)
≤ 1 + t−1 exp(−t2/2)[(t2 + 1)−1t exp(−t2/2)]−1

= 1 + t−2(t2 + 1) < 3

where in the last inequality we used t > 1. Combining the above results it follows that

supµ∗,σ∗(|µ∗|+ σ∗)−1|z̄∗| <∞ as desired.
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Lemma 2.16. Under A1 and A2, for every i = 1, . . . , n, we have (1+σ2
xpν

2
p)−1/2µ

(1)
i

a.s.→ 0

as p→∞, where µ
(1)
i is defined as in Algorithm 2.

Proof. Case a) α = ∞. We show p−1/2µ
(1)
i

a.s.→ 0 as p → ∞, from which the desired

result is immediate. Lemma 2.15 implies supσ∗i |z̄
(0)
i |/σ∗i < ∞ and, since σ∗i is almost

surely asymptotic to p1/2 as p → ∞ by Lemma 2.11, it follows supp≥1 p
−1/2|z̄(0)

i |
a.s.
< ∞

for every i = 1, . . . , n. Note that we are implicitly assuming Algorithm 2 to have fixed

initialization µ
(0)
i ∈ R, i = 1, . . . , n. We now prove that limp→∞ p

−1/2µ
(1)
i

a.s.
= 0 and

supp≥1 p
−1/2|z̄(1)

i |
a.s.
< ∞ for every i = 1, . . . , n by induction on i. When i = 1, recalling

the definition of µ
(1)
1 in Algorithm 2, we have that |p−1/2µ

(1)
1 | = |σ∗21

∑n
i′=2 H1i′p

−1/2z̄
(0)
i′ | ≤∑n

i′=2 σ
∗2
1 |H1i′|p−1/2|z̄(0)

i′ |. Lemma 2.11 and the fact that σ∗21 is almost surely asymptotic

to p imply that σ∗21 |H1i′|
a.s.→ 0 for every i′ ≥ 2 as p → ∞. Combining the latter with

supp≥1 p
−1/2|z̄(0)

i′ |
a.s.
< ∞ we obtain p−1/2µ

(1)
1

a.s.→ 0 as p → ∞. Combining the latter with

Lemma 2.15, we obtain supp≥1 p
−1/2|z̄(1)

1 |
a.s.
< ∞. We thus proved the desired statement

for i = 1.

When i > 1, by simple manipulations of the expressions in Algorithm 2, we can express

µ
(1)
i /σ∗i as

p−1/2µ
(1)
i =

∑i−1

i′=1
σ∗2i Hii′p

−1/2z̄
(1)
i′ +

∑n

i′=i+1
σ∗2i Hii′p

−1/2z̄
(0)
i′ .

Now, for i′ > i we have |σ∗2i Hii′p
−1/2z̄

(0)
i′ |

a.s.→ 0 by the same arguments of the i = 1 case

above. For i′ < i we have |σ∗2i Hii′p
−1/2z̄

(1)
i′ |

a.s.→ 0 by Lemma 2.11, the fact that σ∗2i is

almost surely asymptotic to σ2
xν

2
pp and supp≥1 p

−1/2|z̄(1)
i′ | < ∞ for i′ < i by the inductive

hypothesis. It follows that limp→∞ p
−1/2µ

(1)
i

a.s.
= 0 and thus, by Lemma 2.15, also that

supp≥1 p
−1/2|z̄(1)

i | <∞ a.s.. The thesis follows by induction.

Case b) α ∈ (0,∞). In such a case the stronger result µ
(1)
i

a.s.→ 0 as p → ∞
holds. The proof follows the same steps of the previous case. First, Lemma 2.15 im-

plies supσ∗i |z̄
(0)
i |/σ∗i < ∞ and, since σ∗i is almost surely asymptotic to (1 + ασ2

x)
1/2 as

p→∞ by Lemma 2.11, it follows supp≥1 |z̄
(0)
i |

a.s.
< ∞ for every i = 1, . . . , n. Then, adapt-

ing the proof of the previous case, one can show by induction that limp→∞ µ
(1)
i

a.s.
= 0 and

supp≥1 |z̄
(1)
i |

a.s.
< ∞ for every i = 1, . . . , n, and the proof is concluded.

Proof of Theorem 2.8. The chain rule for kl divergences and the fact that q
(1)
pfm(β|z) =

p(β|y, z) imply that kl[q
(1)
pfm(β)||p(β|y)] ≤ kl[q

(1)
pfm(β, z)||p(β, z|y)] = kl[q

(1)
pfm(z)||p(z|y)].

Since q
(1)
pfm(z) = tn(µ(1),σ∗2,A) and p(z|y) = tn[0, (In + ν2

pXXᵀ),A], then, calling kp =

(1 + σ2
xpνp), if we rescale by k

−1/2
p we get

kl[q
(1)
pfm(z)||p(z|y)] = kl[tn(k−1/2

p µ(1), k−1
p σ

∗2,A)||tn[0, k−1
p (In + ν2

pXXᵀ),A]].

Lemma 2.16 implies that k
−1/2
p µ(1) a.s.→ 0, while Lemmas 2.10 and 2.11 imply that both

k−1
p (In + ν2

pXXᵀ) and k−1
p σ

∗2 converge a.s. to In as p → ∞. Therefore, we obtain
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kl[tn(k
−1/2
p µ(1), k−1

p σ
∗2,A)||tn[0, k−1

p (In + ν2
pXXᵀ),A]]

a.s.→ 0 by Lemma 2.12, implying

kl[q
(1)
pfm(β)||p(β|y)]

a.s.→ 0 as desired.

2.B Appendix: Computational cost of PFM-VB

We now discuss the computational cost of pfm-vb, showing that the whole routine re-

quires matrix pre-computations with O(pn · min{p, n}) cost and iterations with O(n ·
min{p, n}) cost.

Consider first Algorithm 2. When p ≥ n, one can pre-compute XVXᵀ at O(pn2) cost

by applying the Woodbury’s identity to V, and then perform each iteration at O(n2) cost.

Instead, when p < n, one can pre-compute XV at O(p2n) cost, and then perform each

iteration at O(pn) cost noting that

µ
(t)
i = σ∗2i

∑p

j=1
(XV)ijα

(t,i)
j , with α

(t,i)
j =

∑i−1

i′=1
xi′j z̄

(t)
i′ +

∑n

i′=i+1
xi′j z̄

(t−1)
i′ ,

where the vector α(t,i) = (α
(t,i)
1 , . . . , α

(t,i)
p )ᵀ can be computed at O(p) cost from α(t,i−1)

exploiting the recursive equations α
(t,i)
j = α

(t,i−1)
j − xijz

(t−1)
i + xi−1,jz

(t)
i−1. Therefore,

computing µ
(t)
i for i = 1, . . . , n, which is the most expensive part of Algorithm 2, can

be done in O(np) operations using XV and α(t,i). With simple calculations one can

check that also computing elbo[q
(t)
pfm(β, z)] requires O(n · min{p, n}) operations, as it

involves quadratic forms of n × n matrices with rank at most min{p, n}; see https:

//github.com/augustofasano/Probit-PFMVB for the full elbo expression.

Given the output of Algorithm 2, the mean of β under pfm-vb can be computed

at O(pn · min{p, n}) cost noting that, by (2.10), Eq∗pfm(β)(β) = VXᵀz̄∗ and that VXᵀ

can be computed at O(pn · min{p, n}) cost using either its definition, when p ≤ n, or

the equality VXᵀ = ν2
pX

ᵀ
(
In + ν2

pXXᵀ
)−1

, when p > n. Given VXᵀ, one can compute

the covariance matrix of β under pfm-vb at O(p2n) cost using (2.10), and applying

Woodbury’s identity to V when p > n. On the other hand, the marginal variances

varq∗pfm(βj)(βj), j = 1, . . . , p, can be obtained at O(pn ·min{p, n}) cost by first computing

VXᵀ, and then exploiting (2.10) along with Vjj = ν2
p [1−

∑n
i=1(VXᵀ)jixij], which follows

from V(Ip + ν2
pX

ᵀX) = ν2
pIp.

Finally, the Monte Carlo estimates of the approximate predictive probabilities prpfm(ynew =

1 | y) in (2.11) can be computed at O(pn · min{p, n} + nR) cost, where R denotes the

number of Monte Carlo samples. Indeed, simulating i.i.d. realizations z(r), r = 1, . . . , R,

from q∗pfm(z) for has an O(nR) cost, while computing Φ[xᵀ
newVXᵀz(r)(1+xᵀ

newVxnew)−1/2]

for r = 1, . . . , R has O(pn · min{p, n} + nR) cost because, given VXᵀ, the compu-

tation of xᵀ
newVXᵀz(r) for r = 1, . . . , R requires O(pn + nR) operations, while the

computation of xᵀ
newVxnew can be done in O(pn · min{p, n}) operations using either

https://github.com/augustofasano/Probit-PFMVB
https://github.com/augustofasano/Probit-PFMVB
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its definition, when p ≤ n, or Woodbury’s identity on V, when p > n, leading to

xᵀ
newVxnew = ν2

p‖xnew‖2 − ν2
p(Xxnew)ᵀ(In + ν2

pXXᵀ)−1(Xxnew).
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Chapter 3

A Closed-Form Filter for Binary

Time Series

3.1 Introduction

Despite the availability of several alternative approaches for dynamic inference and pre-

diction of binary time series (MacDonald and Zucchini, 1997), state-space models provide

a source of continuous interest due to their flexibility in accommodating a variety of rep-

resentations and dependence structures via an interpretable formulation (West and Har-

rison, 2006; Petris et al., 2009; Durbin and Koopman, 2012). Let yt = (y1t, . . . , ymt)
ᵀ ∈

{0; 1}m denote a vector of binary event data at time t and define with βt = (β1t, . . . , βpt)
ᵀ ∈

Rp the corresponding vector of state variables. Adapting the notation in Petris et al.

(2009) to our setting, we aim to provide closed-form expressions for the filtering, predic-

tive and smoothing distributions in the multivariate dynamic probit model

p(yt | βt) = Φm(BtFtβt; BtVtBt), (3.1)

βt = Gtβt−1 + εt, εt ∼ Np(0,Wt), t = 1 . . . , n, β0 ∼ Np(a0,P0), (3.2)

with dependence structure as defined by the directed acyclic graph displayed in Fig-

ure 3.1. In (3.1), Φm(BtFtβt; BtVtBt) is the cumulative distribution function of the

Nm(0,BtVtBt) evaluated at BtFtβt, with Bt = diag(2y1t − 1, . . . , 2ymt − 1) denoting the

m × m sign matrix associated with yt, which defines the multivariate probit likelihood

in equation (3.1). Model (3.1)–(3.2) is a natural generalization of univariate probit mod-

els to multivariate settings, as we will clarify in equations (3.3)–(3.5). The quantities

Ft,Vt,Gt,Wt, a0 and P0 define, instead, known matrices controlling the location, scale

and dependence structure in the state-space model (3.1)–(3.2). Estimation and infer-

ence for these matrices is, itself, a relevant problem which can be addressed both from a

frequentist and a Bayesian perspective. Yet our focus is on providing exact results for in-

ference on state variables and prediction of future binary events under (3.1)–(3.2). Hence,
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β0 β1 β2 · · · βt · · · βn−1 βn

ε1 ε2 · · · εt · · · εn−1 εn

y1 y2 · · · yt · · · yn−1 yn

Figure 3.1: Representation of model (3.1)–(3.2). Dashed circles, solid circles and grey squares denote

Gaussian errors, Gaussian states and observed binary data, respectively.

β0 β1 β2 · · · βt · · · βn−1 βn

ε1 ε2 · · · εt · · · εn−1 εn

z1 z2 · · · zt · · · zn−1 zn

y1 y2 · · · yt · · · yn−1 yn

Figure 3.2: Representation of model (3.3)–(3.5). Dashed circles, solid circles, white squares and grey

squares denote Gaussian errors, Gaussian states, latent Gaussian data and observed binary data, respec-

tively.

consistent with the classical Kalman filter (Kalman, 1960), we rely on known system ma-

trices Ft,Vt,Gt,Wt, a0 and P0. Nonetheless, results on marginal likelihoods, which can

be used in parameter estimation, are provided in Section 3.3.2.

Model (3.1)–(3.2) provides a general representation encompassing a variety of formu-

lations. For example, setting Vt = Im in (3.1) yields a standard probit regression, for

t = 1, . . . , n, which includes the classical univariate dynamic probit model when m = 1.

These representations have appeared in several applications, especially within the econo-

metrics literature, due to a direct connection between (3.1)–(3.2) and dynamic discrete

choice models (Keane and Wolpin, 2009). This is due to the fact that representation (3.1)–

(3.2) can be alternatively obtained via the dichotomization of an underlying state-space

model for the m-variate Gaussian time series zt = (z1t, . . . , zmt)
ᵀ ∈ Rm, t = 1, . . . , n, which

is regarded, in econometric applications, as a set of time-varying utilities. Indeed, adapt-

ing the classical results from probit regression (Albert and Chib, 1993), model (3.1)–(3.2)

is equivalent to

yt = (y1t, . . . , ymt)
ᵀ = 1(zt > 0) = [1(z1t > 0), . . . ,1(zmt > 0)]ᵀ, t = 1, . . . , n, (3.3)



CHAPTER 3. A CLOSED-FORM FILTER FOR BINARY TIME SERIES 36

with z1, . . . , zn evolving in time according to the Gaussian state-space model

p(zt | βt) = φm(zt − Ftβt; Vt), (3.4)

βt = Gtβt−1 + εt, εt ∼ Np(0,Wt), t = 1 . . . , n, β0 ∼ Np(a0,P0), (3.5)

having dependence structure as defined by the directed acyclic graph displayed in Figure

3.2. In (3.4), φm(zt−Ftβt; Vt) denotes the density function of the Gaussian Nm(Ftβt,Vt)

at point zt ∈ Rm. To clarify the connection between (3.1)–(3.2) and model (3.3)–(3.5),

note that the generic element ylt = 1(zlt > 0) of yt is 1 or 0 depending on whether zlt > 0

or zlt ≤ 0. Therefore, p(yt | βt) = pr(Btzt > 0) = pr[−Bt(zt − Ftβt) ≤ BtFtβt] =

Φm(BtFtβt;BtVtBt), provided that −Bt(zt − Ftβt) ∼ Nm(0,BtVtBt) under (3.4).

As is clear from model (3.4)–(3.5), if z1:t = (z1, . . . , zt) were observed, dynamic in-

ference on the states βt, for t = 1, . . . , n, would be possible via direct application of the

Kalman filter (Kalman, 1960). Indeed, exploiting Gaussian-Gaussian conjugacy and the

conditional independence properties displayed in Figure 3.2, filtering p(βt | z1:t) and pre-

dictive p(βt | z1:t−1) distributions are also Gaussian and have parameters which can be

computed recursively via simple expressions relying on the previous updates. Moreover,

also the smoothing distribution p(β1:n | z1:n) and its marginals p(βt | z1:n), t ≤ n, can be

obtained in closed-form leveraging the Gaussian-Gaussian conjugacy. However, in (3.3)–

(3.5) only a dichotomized version yt of zt is available. Therefore the filtering, predictive

and smoothing distributions of interest are p(βt | y1:t), p(βt | y1:t−1) and p(β1:n | y1:n),

respectively. Recalling model (3.1)–(3.2) and Bayes rule, the calculation of these quanti-

ties proceeds by updating the Gaussian distribution for the states in (3.2) with the probit

likelihood in (3.1), thereby providing conditional distributions which seem not available

in closed-form (Albert and Chib, 1993).

When the focus is online inference for filtering and prediction, a common solution to the

above issue is to rely on approximations of model (3.1)–(3.2) which allow the implemen-

tation of standard Kalman filter updates, thus leading to approximate dynamic inference

on the state variables via extended (Uhlmann, 1992) or unscented (Julier and Uhlmann,

1997) Kalman filters, among others. However, in different studies these approximations

may lead to unreliable inference (Andrieu and Doucet, 2002). Markov chain Monte Carlo

(mcmc) strategies (Carlin et al., 1992; Shephard, 1994; Soyer and Sung, 2013) address this

problem, but, unlike the classical Kalman filter updates, these methods are suitable for

batch learning of the smoothing distribution. Moreover, as discussed by Johndrow et al.

(2019), common mcmc strategies face mixing or time-inefficiency issues, especially for im-

balanced binary datasets. Sequential Monte Carlo solutions (Doucet et al., 2001) partially

address mcmc issues and are specifically developed for online inference via particle-based

representations of the conditional states distributions, which are propagated in time for

dynamic filtering and prediction (Gordon et al., 1993; Kitagawa, 1996; Liu and Chen,

1998; Pitt and Shephard, 1999; Doucet et al., 2000; Andrieu and Doucet, 2002). These
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methods provide state-of-the-art solutions in non-Gaussian state-space models, and can

be also adapted to provide batch learning of the smoothing distribution; see Doucet and

Johansen (2009) for a discussion on particle degeneracy issues that may arise in this set-

ting. Nonetheless, sequential Monte Carlo is clearly still sub-optimal compared to the

case in which p(βt | y1:t), p(βt | y1:t−1) and p(β1:n | y1:n) are available in closed-form and

belong to a tractable class of distributions whose parameters can be sequentially updated

in time via simple analytical expressions.

In Section 3.3, we prove that for the dynamic probit model defined in (3.1)–(3.2) the

quantities p(βt | y1:t), p(βt | y1:t−1) and p(β1:n | y1:n) are unified skew-normal (sun)

distributions (Arellano-Valle and Azzalini, 2006) having tractable expressions for the re-

cursive computation of the corresponding parameters. To the best of our knowledge, this

result provides the first closed-form filter and smoother for binary time series, and allows

improvements both in online and in batch inference within this framework. As high-

lighted in Section 3.2, the multivariate sun distribution has several closure properties

(Arellano-Valle and Azzalini, 2006; Azzalini and Capitanio, 2014) in addition to explicit

formulas—involving the cumulative distribution function of multivariate normals—for the

moments (Azzalini and Bacchieri, 2010; Gupta et al., 2013) and the normalizing constant

(Arellano-Valle and Azzalini, 2006). In Sections 3.3, we exploit these properties to derive

closed-form expressions for key functionals of p(βt | y1:t), p(βt | y1:t−1) and p(β1:n | y1:n),

including, in particular, the observations’ predictive distribution p(yt | y1:t−1) and the

marginal likelihood p(y1:n). Besides these analytical results, we further propose in Sec-

tion 3.4.1 an exact Monte Carlo scheme to compute complex functionals of the smoothing

distribution. This routine relies on a stochastic representation of the sun via a linear

combination of Gaussians and truncated Gaussians (Arellano-Valle and Azzalini, 2006),

and can be also applied effectively to calculate complex functionals of filtering and predic-

tive distributions when the dimension of the time series is small-to-moderate, a common

situation in several studies. As discussed in Section 3.4.2, the aforementioned strategies

face computational bottlenecks in higher dimensional settings (Botev, 2017), due to chal-

lenges in computing cumulative distribution functions of multivariate Gaussians and in

sampling from multivariate truncated normals. In these contexts, we propose a novel

particle filter which exploits the sun properties to obtain an optimal (Doucet et al., 2000)

sequential Monte Carlo which effectively scales with t; see Section 3.4.2. As outlined in an

illustrative study in Section 3.5, the methods developed in this chapter improve current

strategies for batch and online inference in dynamic probit models. Future directions of

research are discussed in Section 3.6.
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3.2 The Unified Skew-Normal Distribution

Before deriving the filtering, predictive and smoothing distributions of model (3.1)–(3.2),

let us first briefly review the sun random variable. Arellano-Valle and Azzalini (2006)

proposed this class to unify different generalizations (Arnold and Beaver, 2000; Arnold

et al., 2002; Gupta et al., 2004; González-Faŕıas et al., 2004) of the original multivariate

skew-normal (Azzalini and Dalla Valle, 1996), whose density is obtained as the product

of a multivariate Gaussian density and the cumulative distribution function of a standard

normal evaluated at a value which depends on a skewness inducing vector of parameters.

Motivated by the success of this formulation and of its various generalizations (Azzalini

and Capitanio, 1999), Arellano-Valle and Azzalini (2006) developed a unifying represen-

tation, namely the unified skew-normal distribution. A random vector β ∈ Rp has a

unified skew-normal distribution, β ∼ SUNp,h(ξ,Ω,∆,γ,Γ), if its density function can

be expressed as

p(β) = φp(β − ξ; Ω)
Φh[γ + ∆ᵀΩ̄−1ω−1(β − ξ); Γ−∆ᵀΩ̄−1∆]

Φh(γ; Γ)
, (3.6)

where the covariance matrix of the Gaussian density φp(β − ξ; Ω) is obtained as Ω =

ωΩ̄ω, that is by re-scaling a correlation matrix Ω̄ via a positive diagonal scale matrix

ω = (Ω ◦ Ip)
1/2, with ◦ denoting the element-wise Hadamard product. Observe that

the quantities p and h are not parameters, but define the dimensions of the multivariate

Gaussian density and cumulative distribution function appearing in (3.6), respectively.

Moreover, the dimensionality of the former coincides with that of the vector θ. In (3.6),

the skewness inducing mechanism is driven by the cumulative distribution function of

the Nh(0,Γ−∆ᵀΩ̄−1∆) computed at γ + ∆ᵀΩ̄−1ω−1(β − ξ), whereas Φh(γ; Γ) denotes

the normalizing constant obtained by evaluating the cumulative distribution function of a

Nh(0,Γ) at γ. Arellano-Valle and Azzalini (2006) added a further identifiability condition

which restricts the matrix Ω∗, with blocks Ω∗[11] = Γ, Ω∗[22] = Ω̄ and Ω∗[21] = Ω∗ᵀ[12] = ∆,

to be a full–rank correlation matrix.

To clarify the role of the parameters in expression (3.6), let us discuss a generative

representation of the sun. In particular, if z0 ∈ Rh and β0 ∈ Rp characterize two

random vectors jointly distributed as a Nh+p(0,Ω
∗), then ξ + ω(β0 | z0 + γ > 0) ∼

SUNp,h(ξ,Ω,∆,γ,Γ) (Arellano-Valle and Azzalini, 2006). Hence, ξ and ω control loca-

tion and scale, respectively, whereas Γ, Ω̄ and ∆ define the dependence within z0 ∈ Rh,

within β0 ∈ Rp and between these two random vectors, respectively. Finally, γ controls

the truncation in the partially observed Gaussian vector z0 ∈ Rh. The above representa-

tion provides also key insights on our closed-form filter for the dynamic probit model (3.1)–

(3.2). Indeed, according to (3.3)–(3.5), the filtering, predictive and smoothing distribu-

tions induced by model (3.1)–(3.2) can be also defined as p[βt | 1(z1 > 0), . . . ,1(zt > 0)],

p[βt | 1(z1 > 0), . . . ,1(zt−1 > 0)] and p[β1:n | 1(z1 > 0), . . . ,1(zn > 0)], respec-
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tively, with (zt,βt) from the Gaussian state-space model (3.4)–(3.5) for t = 1, . . . , n,

thus highlighting the direct connection between these distributions and the generative

representation of the sun.

Another fundamental stochastic representation of the sun distribution relies on linear

combinations of Gaussian and truncated Gaussian random variables, thereby facilitating

sampling from the sun. In particular, recalling Azzalini and Capitanio (2014, Chapter

7.1.2) and Arellano-Valle and Azzalini (2006), if β ∼ SUNp,h(ξ,Ω,∆,γ,Γ), then

β
d
= ξ + ω(U0 + ∆Γ−1U1), U0 ⊥ U1, (3.7)

with U0 ∼ Np(0, Ω̄ −∆Γ−1∆ᵀ) and U1 from a Nh(0,Γ) truncated below −γ. As we

will clarify in Section 3.4, this result can facilitate efficient Monte Carlo inference on

complex functionals of filtering, predictive and smoothing distributions in model (3.1)–

(3.2), based on sampling from the corresponding sun variable. Indeed, although key

moments can be explicitly derived via direct differentiation of the sun moment generating

function (Arellano-Valle and Azzalini, 2006; Gupta et al., 2013), such a strategy requires

tedious calculations in the unified skew-normal framework, when the focus is on complex

functionals. Moreover, recalling Azzalini and Bacchieri (2010) and Gupta et al. (2013),

the first and second order moments further require the evaluation of h-variate Gaussian

cumulative distribution functions Φh(·), thus affecting computational tractability in large

h settings (Botev, 2017). In these situations, Monte Carlo integration provides an effective

solution, especially when independent samples can be generated efficiently. Therefore, we

mostly focus on improved Monte Carlo inference in model (3.1)–(3.2) exploiting the sun

properties, and refer to Azzalini and Bacchieri (2010) and Gupta et al. (2013) for a closed-

form expression of the expectation, variance and cumulative distribution function of sun

variables. As clarified in Section 3.3, h increases linearly with time t in the sun filtering

and predictive distributions.

Before concluding our overview, we shall emphasize that unified skew-normal random

variables are also closed under marginalization, linear combinations and conditioning (Az-

zalini and Capitanio, 2014). These properties facilitate the derivation of the sun filtering,

predictive and smoothing distributions in model (3.1)–(3.2).

3.3 Filtering, Prediction and Smoothing

In this section, it is shown that all the distributions of interest admit a closed-form sun

representation. In particular, in Section 3.3.1 we prove that closed-form filters—meant

here as exact updating schemes for predictive and filtering distributions based on simple

recursive expressions for the associated parameters—can be derived for model (3.1)–(3.2),

whereas in Section 3.3.2 we present the form of the sun smoothing distribution and some
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important consequences. The associated computational methods are then discussed in

Section 3.4.

3.3.1 Filtering and Predictive Distributions

To obtain the exact form of the filtering and predictive distributions under (3.1)–(3.2),

let us start from p(β1 | y1). This first quantity characterizes the initial step of the filter

recursion, and its derivation in Lemma 3.1 provides key intuitions to obtain the state

predictive p(βt | y1:t−1) and filtering p(βt | y1:t), for every t ≥ 2. Lemma 3.1 states

that p(β1 | y1) is a sun distribution. In the following, consistent with the notation of

Section 3.2, whenever Ω is a p × p covariance matrix, the associated matrices ω and Ω̄

are defined as ω = (Ω ◦ Ip)
1/2 and Ω̄ = ω−1Ωω−1, respectively. All proofs can be found

in the Appendix and consider conjugacy properties of the sun in probit models. Early

findings on this result have been explored by Durante (2019) in the context of static

univariate Bayesian probit regression. Here, we take a substantially different perspective

by focusing on online inference in both multivariate and time–varying probit models that

require novel and non–straightforward extensions. As seen in Soyer and Sung (2013) and

Chib and Greenberg (1998), the increased complexity of this endeavor typically motivates

a separate treatment relative to the static univariate case.

Lemma 3.1. Under the dynamic probit model (3.1)–(3.2), the first-step filtering distri-

bution is

(β1 | y1) ∼ SUNp,m(ξ1|1,Ω1|1,∆1|1,γ1|1,Γ1|1), (3.8)

with parameters ξ1|1 = G1a0, Ω1|1 = G1P0G
ᵀ
1 + W1, ∆1|1 = Ω̄1|1ω1|1F

ᵀ
1B1s

−1
1 , γ1|1 =

s−1
1 B1F1ξ1|1 and Γ1|1= s−1

1 B1(F1Ω1|1F
ᵀ
1+V1)B1s

−1
1 , where

s1= [(F1Ω1|1F
ᵀ
1+V1) ◦ Im]

1
2 .

Hence p(β1 | y1) is a sun distribution and its parameters can be obtained via tractable

arithmetic expressions applied to the quantities characterizing model (3.1)–(3.2). Exploit-

ing the results in Lemma 3.1, the general filter updates for the multivariate probit model

can be obtained by induction for t ≥ 2 and are presented in Theorem 3.2.

Theorem 3.2. Let (βt−1 | y1:t−1) ∼ SUNp,m·(t−1)(ξt−1|t−1,Ωt−1|t−1,∆t−1|t−1,γt−1|t−1,Γt−1|t−1)

be the filtering distribution at t− 1 under (3.1)–(3.2). Then the one-step-ahead state pre-

dictive distribution at t is

(βt | y1:t−1) ∼ SUNp,m·(t−1)(ξt|t−1,Ωt|t−1,∆t|t−1,γt|t−1,Γt|t−1), (3.9)

with ξt|t−1 = Gtξt−1|t−1, Ωt|t−1 = GtΩt−1|t−1G
ᵀ
t + Wt,

∆t|t−1 = ω−1
t|t−1Gtωt−1|t−1∆t−1|t−1, γt|t−1 = γt−1|t−1 and Γt|t−1 = Γt−1|t−1. Moreover, the

filtering distribution at time t is

(βt | y1:t) ∼ SUNp,m·t(ξt|t,Ωt|t,∆t|t,γt|t,Γt|t), (3.10)
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with ξt|t = ξt|t−1, Ωt|t = Ωt|t−1, ∆t|t = [∆t|t−1, Ω̄t|tωt|tF
ᵀ
tBts

−1
t ], γt|t = [γᵀ

t|t−1, ξ
ᵀ
t|tF

ᵀ
tBts

−1
t ]ᵀ

and Γt|t characterizes a full-rank correlation matrix with blocks Γt|t[11] = Γt|t−1, Γt|t[22] =

s−1
t Bt(FtΩt|tF

ᵀ
t+Vt)Bts

−1
t and Γt|t[21] = Γᵀ

t|t[12] = s−1
t BtFtωt|t−1∆t|t−1, where st is defined

as st = [(FtΩt|tF
ᵀ
t + Vt) ◦ Im]

1
2 .

Consistent with Theorem 3.2, online prediction and filtering in the multivariate dy-

namic probit model (3.1)–(3.2) proceeds by iterating between equations (3.9) and (3.10)

as new observations stream in with time t. Both steps are based on closed-form distri-

butions and rely on analytical expressions for recursive updating of the corresponding

parameters as a function of the previous ones, thus providing an analog of the classical

Kalman filter.

We also provide closed-form results for the predictive distribution of the multivariate

binary data. Indeed, the prediction of future events yt ∈ {0; 1}m given the current data

y1:t−1, is a primary goal in applications of dynamic probit models. In our setting, this

task requires the derivation of the predictive distribution p(yt | y1:t−1) which coincides

with
∫

Φm(BtFtβt; BtVtBt)p(βt | y1:t−1)dβt in model (3.1)–(3.2), where p(βt | y1:t−1) is

the state predictive distribution in (3.9). Corollary 3.3 shows that this quantity has an

explicit form.

Corollary 3.3. Under model (3.1)–(3.2), the observation predictive distribution p(yt |
y1:t−1) is

p(yt | y1:t−1) =
Φm·t(γt|t; Γt|t)

Φm·(t−1)(γt|t−1; Γt|t−1)
, (3.11)

for every time t, with parameters γt|t, Γt|t, γt|t−1 and Γt|t−1, defined as in Theorem 3.2.

Hence, the evaluation of probabilities of future events is possible via explicit calcula-

tions after marginalizing out analytically the predictive distribution of the states. As is

clear from (3.11), this approach requires the calculation of Gaussian cumulative distri-

bution functions whose dimension increases with t and m. Efficient evaluation of these

integrals is possible for small-to-moderate t and m via recent minimax tilting (Botev,

2017). However, these methods are impractical when t and m are large. In Section 3.4,

we develop new Monte Carlo methods based on independent samples and sequential Monte

Carlo strategies to overcome this issue and allow scalable inference exploiting Theorem

3.2 to improve current solutions.

3.3.2 Smoothing Distribution

We now turn our focus to the smoothing distribution. In this case, the whole data y1:n

are available and the interest is on the distribution of either the whole sequence of the

states β1:n or a subset of it, given y1:n. Theorem 3.4 shows that also the smoothing
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distribution p(β1:n | y1:n) belongs to the sun family, and direct consequences of such a

result, involving marginal smoothing and marginal likelihoods are reported in Corollaries

3.5 and 3.6, respectively.

Before stating the result, let us first introduce two block-diagonal matrices, D and V,

having dimensions (m ·n)× (p ·n) and (m ·n)× (m ·n) respectively, with diagonal blocks

D[t,t] = BtFt ∈ Rm×p and V[t,t] = BtVtBt ∈ Rm×m, for every t = 1, . . . , n. Moreover,

let ξ and Ω denote the mean and covariance matrix of the multivariate Gaussian for

β1:n induced by the state equations. Under (3.2), ξ is a (p · n) × 1 vector obtained by

stacking the p-dimensional blocks ξ[t] = E(βt) = Gt
1a0 ∈ Rp for every t = 1, . . . , n, with

Gt
1 = Gt · · ·G1. Similarly, letting Gt

q = Gt · · ·Gq, also the (p·n)×(p·n) covariance matrix

Ω has a block structure with (p × p)-dimensional blocks Ω[t,t] = var(βt) = Gt
1P0G

tᵀ
1 +∑t

q=2 Gt
qWq−1G

tᵀ
q + Wt, for t = 1, . . . , n, and Ω[t,q] = Ωᵀ

[q,t] = cov(βt,βq) = Gt
q+1Ω[q,q],

for t > q.

Theorem 3.4. Under model (3.1)–(3.2), the joint smoothing distribution is

(β1:n | y1:n) ∼ SUNp·n,m·n(ξ1:n|n,Ω1:n|n,∆1:n|n,γ1:n|n,Γ1:n|n), (3.12)

where ξ1:n|n = ξ, Ω1:n|n = Ω, ∆1:n|n = Ω̄ωDᵀs−1, γ1:n|n = s−1Dξ, Γ1:n|n = s−1(DΩDᵀ +

V)s−1 and s = [(DΩDᵀ + V) ◦ Im·n]1/2.

Since the sun is closed under marginalization and linear combinations, it follows from

Theorem 3.4 that the smoothing distribution for any combination of states is still a sun.

In particular, direct application of the results in Azzalini and Capitanio (2014, Chapter

7.1.2) provides the marginal smoothing distribution for any state βt reported in Corollary

3.5.

Corollary 3.5. Under model (3.1)–(3.2), the marginal smoothing distribution at time t

is

(βt | y1:n) ∼ SUNp,m·n(ξt|n,Ωt|n,∆t|n,γt|n,Γt|n), (3.13)

where ξt|n = ξ[t], Ωt|n = Ω[t,t], γt|n = γ1:n|n, Γt|n = Γ1:n|n and ∆t|n = ∆1:n|n[t] denotes the

t-th block of p rows in ∆1:n|n. When t = n, (3.13) gives the filtering distribution at time

n.

Another important consequence of Theorem 3.4 is the availability of a closed-form

expression for the marginal likelihood p(y1:n), which is provided in Corollary 3.6.

Corollary 3.6. Under model (3.1)–(3.2), the marginal likelihood has the form p(y1:n) =

Φm·n
(
γ1:n|n; Γ1:n|n

)
, with γ1:n|n and Γ1:n|n as in Theorem 3.4.

The above result can be useful in several contexts, including empirical Bayes and

estimation of unknown system parameters via maximization of the marginal likelihood.
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3.4 Inference via Monte Carlo Methods

As discussed in Sections 3.2 and 3.3, inference without sampling from (3.9)–(3.10) or

(3.12) is, theoretically, possible. Indeed, since the sun densities of the filtering, predictive

and smoothing distributions are available from Theorems 3.2 and 3.4, the main function-

als of interest can be computed either via closed-form expressions (Arellano-Valle and

Azzalini, 2006; Azzalini and Bacchieri, 2010; Gupta et al., 2013; Azzalini and Capitanio,

2014) or by relying on numerical integration. However, these strategies require multiple

evaluations of multivariate Gaussian cumulative distribution functions. Hence, they tend

to be impractical as t increases or when the focus is on complex functionals.

In these situations, Monte Carlo integration provides a tractable solution which allows

accurate evaluation of generic functionals E[g(βt) | y1:t], E[g(βt+1) | y1:t] and E[g(β1:n) |
y1:n] for the filtering, predictive and smoothing distribution via

1

R

R∑
r=1

g(β
(r)
t|t ),

1

R

R∑
r=1

g(β
(r)
t+1|t), and

1

R

R∑
r=1

g(β
(r)
1:n|n),

where β
(1)
t|t , . . . ,β

(R)
t|t , β

(1)
t+1|t, . . . ,β

(R)
t+1|t and β

(1)
1:n|n, . . . ,β

(R)
1:n|n denote random samples from

p(βt | y1:t), p(βt+1 | y1:t) and p(β1:n | y1:n), respectively. For example, the observations

predictive distribution can be computed as
∑R

r=1 Φm(Bt+1Ft+1β
(r)
t+1|t; Bt+1Vt+1Bt+1)/R if

the evaluation of (3.11) is computationally demanding.

Clearly, to be implemented, the above approach requires an efficient strategy to sample

from (3.9)–(3.10) and (3.12). Exploiting the sun properties and recent results in Botev

(2017), an algorithm to draw independent and identically distributed samples from the

exact sun distributions in (3.9)–(3.10) and (3.12) is developed in Section 3.4.1. As illus-

trated in Section 3.5, this technique is more accurate than state-of-the-art computational

methods and can be efficiently implemented in a variety of small-to-moderate dimensional

time series. In Section 3.4.2 we develop, instead, a scalable sequential Monte Carlo scheme

for high dimensional settings, which has optimality properties.

3.4.1 Independent and Identically Distributed Sampling

As discussed in Section 3.1, mcmc and sequential Monte Carlo methodologies to sample

from p(βt | y1:t), p(βt+1 | y1:t) and p(β1:n | y1:n) are available. However, the optimal solu-

tion, when possible, is to rely on independent and identically distributed (i.i.d.) samples.

Here, we develop a Monte Carlo algorithm to address this goal with a main focus on the

smoothing distribution, and discuss immediate modifications to allow sampling also in

the filtering and predictive case. Indeed, Monte Carlo inference is particularly suitable

in batch settings, although, as discussed later, the proposed routine is useful, in practice,

also when the focus is on filtering and predictive distributions, since i.i.d. samples are

simulated rapidly, for each t, in small-to-moderate dimensional time series.
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Algorithm 4: Independent and identically distributed sampling from p(β1:n | y1:n)

1. Sample U
(1)
0 1:n|n, . . . ,U

(R)
0 1:n|n independently from a Np·n(0, Ω̄1:n|n −∆1:n|nΓ−11:n|n∆ᵀ

1:n|n).

2. Sample U
(1)
1 1:n|n, . . . ,U

(R)
1 1:n|n independently from a Nm·n(0,Γ1:n|n) truncated below −γ1:n|n.

3. Compute β
(1)
1:n|n, . . . ,β

(R)
1:n|n via β

(r)
1:n|n = ξ1:n|n + ω1:n|n(U

(r)
0 1:n|n + ∆1:n|nΓ−11:n|nU

(r)
1 1:n|n) for each r.

Exploiting the closed-form expression of the smoothing distribution in Theorem 3.4

and the additive representation (3.7) of the sun, independent realizations β
(1)
1:n|n, . . . ,β

(R)
1:n|n

from the smoothing distribution (3.12) can be obtained via a linear combination between

independent samples from (p ·n)-variate Gaussians and (m·n)-variate truncated normals.

Algorithm 4 provides the pseudo-code for this novel routine, whose outputs are i.i.d. sam-

ples from the joint smoothing distribution. Here, the most computationally intensive step

is the sampling from the multivariate truncated normal. In fact, although efficient Hamil-

tonian Monte Carlo solutions are available (Pakman and Paninski, 2014), these strategies

do not provide independent samples. More recently, an accept-reject method based on

minimax tilting has been proposed by Botev (2017) to improve the acceptance rate of clas-

sical rejection sampling, while avoiding convergence and mixing issues of mcmc. Such a

routine is available in the R library TruncatedNormal and allows efficient sampling from

multivariate truncated normals having a dimension of few hundreds, thereby providing

effective Monte Carlo inference via Algorithm 4 in small-to-moderate dimensional time

series.

Clearly, the availability of i.i.d. sampling schemes from the smoothing distribution

overcomes the need of mcmc methods and particle smoothers. The first set of strate-

gies face mixing or time-inefficiency issues, especially for imbalanced binary datasets

(Johndrow et al., 2019), whereas the second class of routines tend to be computation-

ally intensive and subject to particles degeneracy (Doucet and Johansen, 2009).

When the focus is on Monte Carlo inference for the marginal smoothing distribution

p(βt | y1:n) at a specific time t, Algorithm 4 requires minor adaptations relying again

on the additive representation of the sun in equation (3.13), under similar arguments

considered for the joint smoothing setting. This latter routine can be also used to sample

from the filtering distribution by applying such a scheme with n = t to obtain i.i.d.

samples β
(1)
t|t , . . . ,β

(R)
t|t from p(βt | y1:t). Based on these realizations, i.i.d. samples from the

predictive distribution can be simply generated via direct application of equation (3.2) to

obtain β
(1)
t+1|t = Gt+1β

(1)
t|t +ε

(1)
t+1, . . . ,β

(R)
t+1|t = Gt+1β

(R)
t|t +ε

(R)
t+1, with ε

(1)
t+1, . . . , ε

(R)
t+1 denoting

independent samples from a Np(0,Wt+1). Therefore, efficient Monte Carlo inference in

small-to-moderate dimensional dynamic probit models is possible also for the filtering and

predictive distributions.
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3.4.2 Optimal Particle Filtering

When the dimension of the dynamic probit model (3.1)–(3.2) increases, sampling from

multivariate truncated Gaussians in Algorithm 4 can face computational bottlenecks

(Botev, 2017). This is particularly likely to occur in series monitored on a fine time

grid. Indeed, in several applications, the number of time series m is small-to-moderate,

whereas the length of the time window can be large. To address this issue and allow

scalable online inference for filtering and prediction also in large t settings, we propose a

particle filter which exploits the sun results to obtain optimality properties.

The proposed algorithm is in the class of sequential importance sampling-resampling

(sisr) algorithms which provide default strategies in particle filtering (e.g., Doucet et al.,

2000, 2001; Durbin and Koopman, 2012). For each time t, these routines sample R

trajectories β
(1)
1:t|t, . . . ,β

(R)
1:t|t, known as particles, conditioned on those produced at t − 1,

by iterating, in time, between the two steps summarized below.

Importance sampling. Let β
(1)
1:t−1|t−1, . . . ,β

(R)
1:t−1|t−1 be the particles’ trajectories at

t−1, and denote with π(βt|t | β1:t−1,y1:t) the proposal. Then, for each r = 1, . . . , R,

(a) Sample β̄
(r)
t|t from π(βt|t | β(r)

1:t−1|1:t−1,y1:t) and set β̄
(r)
1:t|t = (β

(r)ᵀ
1:t−1|t−1, β̄

(r)ᵀ
t|t )ᵀ.

(b) Compute

w
(r)
t = wt(β̄

(r)
1:t|t) ∝ p(yt | β̄(r)

t|t )
p(β̄

(r)
t|t | β

(r)
t−1|t−1)

π(β̄
(r)
t|t | β

(r)
1:t−1|1:t−1,y1:t)

and normalize these weights to ensure that their sum is 1.

Resampling. For r = 1, . . . , R, sample new particles β
(1)
1:t|t, . . . ,β

(R)
1:t|t from the

discrete distribution
∑R

l=1w
(l)
t δβ̄(l)

1:t|t
.

Based on these particles, functionals of the filtering distribution p(βt | y1:t) can be com-

puted exploiting the terminal values β
(1)
t|t , . . . ,β

(R)
t|t of each trajectory β

(1)
1:t|t, . . . ,β

(R)
1:t|t.

As is clear from the above steps, the performance of sisr relies on the proposal

π(βt|t | β1:t−1,y1:t). This importance function should allow tractable sampling along with

efficient evaluation of the importance weights, and should be also carefully specified to pro-

pose effective candidate samples. Recalling Doucet et al. (2000), the optimal importance

density is π(βt|t | β1:t−1,y1:t) = p (βt | βt−1,yt) with weights wt(β1:t) ∝ p (yt | βt−1). In-

deed, this choice minimizes the variance of the importance weights, thereby limiting degen-

eracy issues and improving mixing. Unfortunately, in several dynamic models, tractable

sampling from p(βt | βt−1,yt) and direct calculation of p(yt | βt−1) is not possible (Doucet

et al., 2000). As outlined in Corollary 3.7, this is not the case for multivariate dynamic

probit models. In particular, as a direct consequence of Theorem 3.2 and of the closure
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Algorithm 5: Optimal particle filter to sample from p(βt|y1:t), for t = 1, . . . , n

for t from 1 to n do

for r from 1 to R do

1. Propose a value β̄
(r)
t|t by sampling from (3.14) conditioned on βt−1 = β

(r)
t−1|t−1, via

1.1. Sample U
(r)
0 t|t from a Np(0, Ω̄t|t,t−1 −∆t|t,t−1Γ

−1
t|t,t−1∆

ᵀ
t|t,t−1).

1.2. Sample U
(r)
1 t|t from a Nm(0,Γt|t,t−1) truncated below −γ(r)

t|t,t−1 = −c−1t BtFtGtβ
(r)
t−1|t−1.

1.3. Compute β̄
(r)
t|t = Gtβ

(r)
t−1|t−1 + ωt|t,t−1(U

(r)
0 t|t + ∆t|t,t−1Γ

−1
t|t,t−1U

(r)
1 t|t).

2. Calculate the associated importance weight w
(r)
t via (3.15) and normalize them.

3. Obtain β
(1)
t|t , . . . ,β

(R)
t|t by resampling from β̄

(1)
t|t , . . . , β̄

(R)
t|t with weights w

(1)
t , . . . , w

(R)
t .

properties of the sun, sampling from p(βt | βt−1,yt) is straightforward and p(yt | βt−1)

has a simple expression.

Corollary 3.7. Under model (3.1)–(3.2), the following results hold for each t = 1, . . . , n.

(βt | βt−1,yt) ∼ SUNp,m(ξt|t,t−1,Ωt|t,t−1,∆t|t,t−1,γt|t,t−1,Γt|t,t−1), (3.14)

p(yt | βt−1) = Φm(γt|t,t−1; Γt|t,t−1), (3.15)

with parameters ξt|t,t−1 = Gtβt−1, Ωt|t,t−1 = Wt, ∆t|t,t−1 = Ω̄t|t,t−1ωt|t,t−1F
ᵀ
tBtc

−1
t ,

γt|t,t−1 = c−1
t BtFtξt|t,t−1, Γt|t,t−1 = c−1

t Bt

(
FtΩt|t,t−1F

ᵀ
t+Vt

)
Btc

−1
t , having set ct =[

(FtΩt|t,t−1F
ᵀ
t+Vt) ◦ Im

]1/2
.

Algorithm 5 illustrates the pseudo-code of the proposed optimal filter, which exploits

the additive representation of the sun and Corollary 3.7. Comparing Algorithms 4 and

5 it can be noticed that now the computational complexity of the different steps does

not depend on t, thus facilitating scalable sequential inference in large t studies. Samples

from the predictive distribution can be obtained from those of the filtering as in Section

3.4.1.

3.5 Illustration on Financial Time Series

We study the performance of the methods in Sections 3.3 and 3.4 on a dynamic probit

regression for the daily opening directions of the French cac40 stock market index from

January 4th, 2018 to March 29th, 2019. Consistent with this focus, the variable yt is on

a binary scale, with yt = 1 if the opening value of the cac40 on day t is greater than

the corresponding closing value in the previous day, and yt = 0 otherwise. Financial

applications of this type have been a source of particular interest in past and recent years

(e.g., Kim and Han, 2000; Kara et al., 2011; Atkins et al., 2018), with common approaches

combining a wide variety of technical indicators and news information to predict stock
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Figure 3.3: Pointwise median and interquartile range for the smoothing distributions of β1t and β2t

under the dynamic probit regression in (3.16), for the time window from January 4th, 2018 to May 31st,

2018.

markets directions via complex machine learning methods. Here, we show how a similar

predictive performance can be obtained via a simple and interpretable dynamic probit

regression for yt, that combines past information on the opening directions of cac40 with

those of the nikkei225, regarded as binary covariates xt with dynamic coefficients. Since

the Japanese market opens before the French one, xt is available before yt and, hence,

provides a valid predictor for each day t.

Recalling the above discussion and leveraging default specifications in these settings

(e.g., Soyer and Sung, 2013), we rely on a dynamic probit regression for yt with two

independent random walk processes for the coefficients βt = (β1t, β2t)
ᵀ. Letting Ft =

(1, xt) and pr(yt = 1 | βt) = Φ(β1t + β2txt; 1), such a model can be expressed as in

equation (3.1) via

p(yt | βt) = Φ[(2yt − 1)Ftβt; 1],

βt = βt−1 + εt, εt
i.i.d.∼ N2(0,W), t = 1, . . . n, β0 ∼ N2(a0,P0),

(3.16)

where W is a time-invariant diagonal matrix. In (3.16), the element β1t of βt measures

the trend in the directions of the cac40 when the nikkei225 has a negative opening on

day t, whereas β2t characterizes the shift in such a trend if the opening of the nikkei225

index is positive, thereby providing an interpretable probit model for yt, with dynamic

coefficients.

To evaluate performance in smoothing, filtering and prediction, we consider a situation
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Figure 3.4: Ranking of the four sampling schemes in 100 replicated experiments according to the

Wasserstein distance between the empirical smoothing distribution computed, at time t = 97, from 105

particles and the one obtained by direct evaluation of the exact density (3.10) on two grids of 2000 equally

spaced values in [−2.5, 1.5] and [−1.5, 3] for β1t and β2t, respectively, with t = 97.

in which the analysis starts on May 31st, 2018, with daily batch data available for the time

window from January 4th, 2018 to May 31st, 2018, and online observations streaming in

from June 1st, 2018 to March 29th, 2019. This setting motivates smoothing techniques

for the first t = 1, . . . , 97 times and online filters for the subsequent t = 98, . . . , 299 days.

Figure 3.3 shows the pointwise median and interquartile range of the smoothing dis-

tribution for β1t and β2t, t = 1, . . . , 97, based on 105 samples from Algorithm 4. To

implement such a routine, we set a0 = (0, 0)ᵀ and P0 = diag(3, 3) following the guide-

lines in Gelman et al. (2008) and Chopin and Ridgway (2017) for probit regression. The

states variances in the diagonal matrix W are instead set equal to 0.01 as suggested by

a graphical search of the maximum for the marginal likelihood computed under different

combinations of (W11,W22) via the analytical formula in Corollary 3.6.

As shown in Figure 3.3, the dynamic states β1t and β2t tend to concentrate around neg-

ative and positive values, respectively, for the entire smoothing window, thus highlighting

a general concordance between cac40 and nikkei225 opening patterns. However, the

strength of this association varies in time, supporting our proposed dynamic probit over

static specifications. For example, it is possible to observe a decay in β1t and β2t on April–

May, 2018 which reduces the association among cac40 and nikkei225, while inducing

a general negative trend for the opening directions of the French market. Such a result

could be due to the overall instability in the Eurozone on April–May, 2018 caused by the

uncertainty after the Italian and British elections during those months.

To clarify the computational improvements provide by the methods in Section 3.4.1,

we also compare, in Figure 3.4 and in Table 3.1, their performance against the competing

strategies mentioned in Section 3.1. Here, the focus is on the marginal smoothing distri-

bution of β1t and β2t at the last day among those available for batch smoothing. Such a

distribution of interest coincides with the filtering at time t = 97, thereby allowing the
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State iid rb boot ekf

β1t at time t = 97 0.00173 0.00331 0.00670 0.01845

β2t at time t = 97 0.00221 0.00428 0.01010 0.06245

Table 3.1: For each sampling scheme, Wasserstein distance, averaged across 100 experiments, between

the empirical smoothing distribution computed, at time t = 97, from 105 particles and the one obtained

by direct evaluation of the exact density (3.10) on two grids of 2000 equally spaced values in [−2.5, 1.5]

and [−1.5, 3] for β1t and β2t, respectively, with t = 97. The lowest distance for each state is bolded.

implementation of the filters discussed in Section 3.1, to evaluate performance both in

terms of smoothing and filtering. The competing methods include the extended Kalman

filter (Uhlmann, 1992), the bootstrap particle filter (Gordon et al., 1993) and the Rao-

Blackwellized sequential Monte Carlo by Andrieu and Doucet (2002) which leverages the

hierarchical representation (3.3)–(3.5) of model (3.1)–(3.2). Although being a popular

solution in routine implementations, the extended Kalman filter relies on a quadratic ap-

proximation of the probit log-likelihood which leads to a Gaussian filtering distribution,

thereby affecting the quality of online learning when imbalances in the data induce skew-

ness. The bootstrap particle filter (Gordon et al., 1993) is, instead, motivated by the

apparent absence of a tractable optimal proposal distribution p(βt | β(r)
t−1|t−1,yt) (Doucet

et al., 2000) and, therefore, proposes values from p(βt|β(r)
t−1|t−1). Also Rao-Blackwellized

sequential Monte Carlo (Andrieu and Doucet, 2002) aims at providing an alternative par-

ticle filter, which addresses the apparent unavailability of an analytical expression for the

optimal proposal and the corresponding importance weights. The authors overcome this

key issue by proposing a sequential Monte Carlo strategy for the Rao-Blackwellized filter-

ing distribution p(zt | y1:t) of the partially observed Gaussian data zt in model (3.3)–(3.5)

and compute, for each trajectory z
(r)
1:t , relevant moments of p(βt | z(r)

1:t ) via classical Kalman

filter updates—applied to model (3.4)–(3.5)—which are then averaged across particles to

obtain Monte Carlo estimates for the moments of p(βt | y1:t).

Although the above methods provide state-of-the-art solutions, the proposed strategies

are motivated by the apparent absence of a closed-form filter for (3.1)–(3.2), which is, in

fact, available according to our results in Section 3.3. Figure 3.4 and Table 3.1 highlight

to what extent this novel finding improves the existing methods. More specifically, Figure

3.4 compares the rankings of the different sampling schemes, in 100 replicated experi-

ments, according to the Wasserstein distances (e.g., Villani, 2008) between the empirical

smoothing distribution induced by the particles generated from each sampling method

under analysis and the one obtained by direct evaluation of the exact density (3.10) on

an appropriate grid. Table 3.1 shows, instead, these distances averaged across the 100

replicated experiments. For the sake of clarity, with a little abuse of terminology, the

term particle is used to denote both the samples of the sequential Monte Carlo methods
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Figure 3.5: Median and interquartile range of the filtering and predictive distributions for Φ(β1t +

xtβ2t; 1) computed from 105 particles produced by the optimal particle filter in Algorithm 5. Black and

grey segments denote days in which xt = 1 and xt = 0, respectively.

and those obtained under i.i.d. sampling from the sun. The Wasserstein distance is com-

puted via the R function wasserstein1d. Note also that, although the extended Kalman

filter and the Rao-Blackwellized sequential Monte Carlo focus, mostly, on the first two

central moments of p(βt | y1:t), these strategies can be adapted to draw samples from an

approximation of the marginal smoothing density.

Figure 3.4 confirms that the sampling scheme in Section 3.4.1 over-performs all the

competitors, since its ranking is 1 in most of the 100 experiments. The averaged Wasser-

stein distances in Table 3.1 yield the same conclusion. Such a result is due to the fact

that the extended Kalman filter relies on an approximation of the filtering distribution,

whereas, unlike the proposed exact sampler, the bootstrap and the Rao-Blackwellized

particle filters consider sub-optimal dependent sampling strategies. Not surprisingly, the

Rao-Blackwellized particle filter is the second best choice. Nonetheless, as expected, ex-

act i.i.d. sampling remains the optimal solution and provides a viable strategy in any

small-to-moderate study.

Motivated by the accurate performance of the Monte Carlo methods based on sun

results, we also apply the optimal particle filter in Algorithm 5 to provide scalable on-

line filtering and prediction for model (3.16) from June 1st, 2018 to March 29th, 2019.

Following the idea of sequential inference, the particles are initialized with the marginal

smoothing distribution of May 31, 2018 from the batch analysis. Figure 3.5 outlines me-

dian and interquartile range for the filtering and predictive distribution of the probability
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that the cac40 index has a positive opening in each day of the window considered for

online inference. These two distributions can be easily obtained by applying the function

Φ(β1t + xtβ2t; 1) to the particles of the states filtering and predictive distribution. In line

with Figure 3.3, a positive opening of the nikkei225 provides, in general, an high esti-

mate for the probability that yt = 1, whereas a negative opening tends to favor the event

yt = 0. However, the strength of this result evolves over time with some periods showing

less evident shifts in the probabilities process when xt changes from 1 to 0. One-step-ahed

prediction, leveraging the samples of the predictive distribution for the probability pro-

cess, led to a correct classification rate of 66.34% which is comparable to those obtained

under more complex procedures combining a wide variety of input information to predict

stock markets directions via state-of-the-art machine learning methods (e.g., Kim and

Han, 2000; Kara et al., 2011; Atkins et al., 2018).

3.6 Discussion

This chapter shows that the filtering, predictive and smoothing distributions in a dy-

namic probit model for multivariate binary data have a sun kernel and the associated

parameters can be computed via tractable expressions. As discussed in Sections 3.3–3.5,

this result provides advances in online inference for dynamic binary data and facilitates

the implementation of tractable methods to draw i.i.d. samples from the exact filtering,

predictive and smoothing distributions, thus allowing improved Monte Carlo inference in

small-to-moderate time series. High-dimensional filtering can be, instead, implemented

via a scalable sequential Monte Carlo which exploits sun properties to provide a particle

filter with optimal proposal.

These results motivate additional future research. For instance, a relevant direction is

to generalize the derivations in Section 3.3 to dynamic tobit, binomial and multinomial

probit models, for which closed-form filters are unavailable. Joint filtering and prediction

of continuous and binary time series is also of interest (Liu et al., 2009). A natural state-

space model for these multivariate data can be obtained by generalizing (3.3)–(3.5) to

allow only the subset of Gaussian variables associated with the binary data to be partially

observed. Also in this case, closed-form filters are not available. By combining our results

in Section 3.3 with the classical Kalman filter for Gaussian state-space models, such a

gap could be possibly covered. As discussed in Sections 3.1 and 3.3.2, estimation and

inference for possible unknown parameters characterizing the state-space model in (3.1)–

(3.2) is another interesting problem which can be addressed by maximizing the marginal

likelihood derived in Section 3.3.2. Finally, additional quantitative studies beyond those in

Section 3.5 can be useful for obtaining a more comprehensive overview on the performance

of our proposed computational methods compared to state-of-the-art strategies.
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3.A Appendix: Proofs of the main results

3.A.1 Proof of Lemma 3.1

To prove Lemma 3.1, notice that, by applying the Bayes rule, we obtain p(β1 | y1) ∝
p(β1)p(y1 | β1), where we have p(β1) = φp(β1 −G1a0; G1P0G

ᵀ
1 + W1) and p(y1 | β1) =

Φm(B1F1β1; B1V1B1). The expression for p(β1) can be easily obtained by noticing that

β1 = G1β0 + ε1 in (3.2), with β0 ∼ Np(a0,P0) and ε1 ∼ Np(0,W1). The form for the

probability mass function of (y1 | β1) is instead a direct consequence of equation (3.1).

Hence, combining these expressions and recalling (3.6), it is clear that p(β1 | y1) is pro-

portional to the density of a sun with suitably–specified parameters, such that the kernel

of (3.6) coincides with φp(β1−G1a0; G1P0G
ᵀ
1+W1)Φm(B1F1β1; B1V1B1). In particular,

letting ξ1|1 = G1a0, Ω1|1 = G1P0G
ᵀ
1 + W1, ∆1|1 = Ω̄1|1ω1|1F

ᵀ
1B1s

−1
1 , γ1|1 = s−1

1 B1F1ξ1|1,

and Γ1|1 = s−1
1 B1(F1Ω1|1F

ᵀ
1+V1)B1s

−1
1 , we have that γ1|1 + ∆ᵀ

1|1Ω̄
−1
1|1ω

−1
1|1(β1 − ξ1|1) =

s−1
1 B1F1ξ1|1 + s−1

1 B1F1(β1 − ξ1|1) = s−1
1 B1F1β1, and, in addition, Γ1|1−∆ᵀ

1|1Ω̄
−1
1|1∆1|1 =

s−1
1 [B1(F1Ω1|1F

ᵀ
1+V1)B1−B1(F1Ω1|1F

ᵀ
1)B1]s−1

1 = s−1
1 B1V1B1s

−1
1 , with s−1

1 as in Lemma

3.1. Now, substituting these quantities in the kernel of the sun density (3.6), we have

φp(β1 −G1a0; G1P0G
ᵀ
1 + W1)Φm(s−1

1 B1F1β1; s−1
1 B1V1B1s

−1
1 )

= φp(β1−G1a0; G1P0G
ᵀ
1+W1)Φm(B1F1β1; B1V1B1)

= p(β1)p(y1 | β1) ∝ p(β1 | y1),

thus proving Lemma 3.1. To prove that Ω∗1|1 is a correlation matrix, replace the identity

Im with B1V1B1 in the proof of Theorem 1 by Durante (2019).

3.A.2 Proof of Theorem 3.2

Recalling (3.2), the proof for p(βt | y1:t−1) in (3.9) requires studying the variable Gtβt−1 +

εt, given y1:t−1, where

(βt−1 | y1:t−1) ∼ SUNp,m·(t−1)(ξt−1|t−1,Ωt−1|t−1,∆t−1|t−1,γt−1|t−1,Γt−1|t−1)

and εt ∼ Np(0,Wt), with εt ⊥ y1:t−1. To address this goal, first note that, by the

closure properties of the unified skew-normal under linear transformations (Azzalini and

Capitanio, 2014, Chapter 7.1.2), the variable (Gtβt−1 | y1:t−1) is still a unified skew-normal

and has parameters Gtξt−1|t−1, GtΩt−1|t−1G
ᵀ
t , [(GtΩt−1|t−1G

ᵀ
t )◦Ip]−1/2Gtωt−1|t−1∆t−1|t−1,

γt−1|t−1 and Γt−1|t−1. Hence, to conclude the proof of equation (3.9), we only need to

obtain the distribution of the sum among this variable and the noise εt ∼ Np(0,Wt). This

can be accomplished by considering the moment generating function of such a sum—as

done by Azzalini and Capitanio (2014, Chapter 7.1.2) to prove closure under convolution.

Indeed, it is straightforward to notice that the product of the moment generating functions
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for εt and (Gtβt−1 | y1:t−1) leads to the moment generating function of the unified skew-

normal variable having parameters ξt|t−1 = Gtξt−1|t−1, Ωt|t−1 = GtΩt−1|t−1G
ᵀ
t + Wt,

∆t|t−1 = ω−1
t|t−1Gtωt−1|t−1∆t−1|t−1, γt|t−1 = γt−1|t−1 and Γt|t−1 = Γt−1|t−1.

To prove (3.10) note that p(βt | y1:t) ∝ Φm(BtFtβt; BtVtBt)p(βt | y1:t−1) coincides

with the posterior distribution in a probit model with likelihood Φm(BtFtβt; BtVtBt)

and sun prior p(βt | y1:t−1) from (3.9). Hence, expression (3.10) can be derived from

Corollary 4 in Durante (2019), replacing the matrix Im in the classical probit likelihood

with BtVtBt.

3.A.3 Proof of Corollary 3.3

To prove Corollary 3.3, first notice that
∫

Φm(BtFtβt; BtVtBt)p(βt | y1:t−1)dβt can

be re-written as Φm·(t−1)(γt|t−1; Γt|t−1)−1
∫

Φm(BtFtβt; BtVtBt)K(βt | y1:t−1)dβt where

K(βt | y1:t−1) = p(βt | y1:t−1)Φm·(t−1)(γt|t−1; Γt|t−1) is the kernel of the predictive dis-

tribution in equation (3.9). Consistent with this expression, Corollary 3.3 follows after

noticing that Φm(BtFtβt; BtVtBt)K(βt | y1:t−1) is the kernel of the filtering distribution

in (3.10), whose normalizing constant
∫

Φm(BtFtβt; BtVtBt)K(βt | y1:t−1)dβt is equal to

Φm·t(γt|t; Γt|t).

3.A.4 Proof of Theorem 3.4

First notice that p(β1:n | y1:n) ∝ p(β1:n)p(y1:n | β1:n). Hence, p(β1:n | y1:n) can be inter-

preted as the posterior distribution in the Bayesian model having likelihood p(y1:n | β1:n)

and prior p(β1:n) for the (p · n) × 1 vector β1:n = (βᵀ
1 , . . . ,β

ᵀ
n)ᵀ. As already pointed out

in Section 3.3.2, it immediately follows from the model specification (3.2) that β1:n ∼
Np·n (ξ,Ω), with ξ and Ω as in Section 3.3.2. The form of p(y1:n | β1:n) can be instead

obtained from (3.1), by noticing that given β1:n the vectors y1, . . . ,yn are conditionally in-

dependent, thus providing the joint likelihood p(y1:n | β1:n) =
∏n

t=1 Φm(BtFtβt; BtVtBt).

Such a quantity can be also expressed as Φm·n(Dβ1:n; V) with D and V as in Section

3.3.2. Combining these results, the joint smoothing distribution p(β1:n | y1:n) is propor-

tional to φp·n(β1:n − ξ; Ω)Φm·n(Dβ1:n; V), which is the kernel of a unified skew-normal

random variable with parameters as in (3.12).

3.A.5 A.5. Proof of Corollary 3.6

The formula for the marginal likelihood follows easily after noticing that p(y1:n) coin-

cides with the normalizing constant of the joint smoothing distribution. Indeed, p(y1:n)

is formally defined as
∫
p(y1:n | β1:n)p(β1:n)dβ1:n. Hence, the integrand function coin-

cides with the kernel of the smoothing density, so that the whole integral is equal to

Φm·n(γ1:n|n; Γ1:n|n).
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3.A.6 Proof of Corollary 3.7

The proof of Corollary 3.7 is similar to the one of Lemma 3.1. Indeed, the proposal

p(βt | βt−1,yt) is the posterior distribution in a Bayesian probit regression with likelihood

p(yt | βt) = Φm(BtFtβt; BtVtBt) and prior p(βt | βt−1) = φp(βt−Gtβt−1; Wt). To derive

the expression of the importance weights in equation (3.15), it suffices to notice that the

marginal likelihood p(yt | βt−1) coincides with the normalizing constant of the sun in

(3.14).
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Chapter 4

Conjugate Bayes for Multinomial

Probit Models

4.1 Introduction

Regression models for categorical data are ubiquitous in various fields of application

and play a fundamental role in classification (e.g., Agresti, 2013). Within this frame-

work, the overarching goal is to learn how a vector of class probabilities, be it π(xi) =

[π1(xi), . . . , πL(xi)]
ᵀ = [p(yi = 1 | β,xi), . . . , p(yi = L | β,xi)]ᵀ, changes with a set of

p attributes xi observed for each statistical unit i, where β denotes a vector of param-

eters controlling the attribute effects. We refer to Maddala (1986); Greene (2003) and

Agresti (2013) for an overview of popular formulations to address such a goal, and focus

in this chapter on the class of multinomial probit models. Indeed, such a broad set of

formulations has gained vast popularity in social science, economics and machine learn-

ing applications, among others, due to their natural connection with Gaussian regression

models that act as latent predictor–dependent random utilities in a discrete choice set-

ting, and also allow improved interpretability (Hausman and Wise, 1978; Daganzo, 2014).

Moreover, expressing predictor–dependent class probabilities via correlated Gaussian la-

tent utilities facilitates improved flexibility, thus avoiding restrictive assumptions, such

as the independence of irrelevant alternatives (Hausman and Wise, 1978). Such desirable

properties have motivated various generalizations of the original formulation proposed by

Hausman and Wise (1978), to incorporate class–specific predictor effects (Stern, 1992)

and sequential discrete choices (Tutz, 1991), that have also featured successful imple-

mentations and extensions in machine learning (Girolami and Rogers, 2006; Rogers and

Girolami, 2007; Riihimäki et al., 2013; Johndrow et al., 2013; Agarwal et al., 2014; Kindo

et al., 2016).

The above benefits come, however, with computational difficulties in dealing with

integrals of multivariate Gaussian densities (Genz, 1992; Horrace, 2005; Chopin, 2011;
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Botev, 2017; Genton et al., 2018; Cao et al., 2019). These key challenges have stimu-

lated intensive research both in frequentist and Bayesian settings. In this chapter, we

aim to provide theoretical, methodological and computational advances for the second

class of approaches to inference. Indeed, while the frequentist methods for estimation,

inference and classification in multinomial probit models are relatively well–established

(McFadden, 1989; Stern, 1992; Börsch-Supan and Hajivassiliou, 1993; Geweke et al., 1994;

Natarajan et al., 2000), state–of–the–art Bayesian solutions rely either on Markov chain

Monte Carlo (mcmc) strategies (Albert and Chib, 1993; McCulloch and Rossi, 1994; No-

bile, 1998; McCulloch et al., 2000; Albert and Chib, 2001; Chen and Kuo, 2002; Imai

and Van Dyk, 2005; Zhang et al., 2006; Burgette and Nordheim, 2012; Johndrow et al.,

2013) or on approximations of the posterior (Girolami and Rogers, 2006; Girolami and

Zhong, 2007; Riihimäki et al., 2013; Knowles and Minka, 2011). Despite being widely

implemented, both solutions still raise open questions in terms of accuracy and compu-

tational tractability, especially in large p settings and in imbalanced situations where

some classes are relatively less frequent than others. Indeed, as discussed by Chopin and

Ridgway (2017); Johndrow et al. (2019); Durante (2019) and in Chapter 2 of the present

thesis, such issues arise even in simple univariate probit models. Moreover, mcmc and

approximate methods are still sub–optimal relative to situations in which the posterior is

analytically available from a tractable class of distributions.

In Sections 4.2–4.3, we prove that the entire class of unified skew–normal (sun) dis-

tributions (Arellano-Valle and Azzalini, 2006)—which encompasses a broad variety of

random variables, including classical Gaussian ones, as already pointed out in previous

chapters—is conjugate to various multinomial probit models (Hausman and Wise, 1978;

Stern, 1992; Tutz, 1991). Such a broad class of prior distributions has been originally

developed in seemingly unrelated contexts to introduce skewness in a multivariate Gaus-

sian density via the cumulative distribution function of another Gaussian vector, thus

retaining several probabilistic properties of multivariate Gaussian variables (Arellano-

Valle and Azzalini, 2006; Azzalini and Capitanio, 2014). Leveraging such properties, we

derive in Section 4.3 closed–form expressions for posterior predictive distributions and

marginal likelihoods which can be used for classification, variable selections and estima-

tion of fixed parameters. Evaluation of more complex functionals proceeds instead via

improved Monte Carlo methods which, unlike for state–of–the–art mcmc routines, rely

on independent and identically distributed samples from the exact posterior, thus avoid-

ing mixing issues and convergence diagnostics. As discussed in Section 4.3.2.1, such an

improved strategy deals with multivariate truncated normals and cumulative distribu-

tion functions of multivariate Gaussians whose dimension grows with the sample size n.

Therefore, the proposed strategy is particularly useful, in practice, in small–to–moderate

n situations, and massively improves state–of–the–art solutions in large p studies, a set-

ting which occurs in various applications but is computationally impractical under the
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available implementations (Chopin and Ridgway, 2017). To address the scalability issues

of the methods proposed in Section 4.3.2.1, we further improve and extend in Section

4.3.2.2 partially–factorized variational methods for univariate probit models (see Chapter

2) to devise novel blocked partially–factorized approximations of the posterior in multi-

nomial probit regression that easily scale to large p and n datasets, and almost perfectly

matches the exact posterior, especially when p > n. These findings are illustrated in a

gastrointestinal lesions application (Mesejo et al., 2016) in Section 4.4. Finally, Section 4.5

presents future directions of research which highlight how these novel results can motivate

applied, methodological and computational advances in multinomial probit models. All

proofs can be found in Appendix 4.A, and combine properties of multivariate Gaussians

and sun random variables. Early findings on this connection are presented in Durante

(2019) with a focus on Bayesian univariate binary probit models. Such results are special

cases of our broader derivations which require non–straightforward and novel extensions

to incorporate classical multinomial probit models (Hausman and Wise, 1978) and their

generalizations (Stern, 1992; Tutz, 1991). Relative to the univariate case, such models

rely on more complex latent variable representations, typically based on the maximum of

a multivariate vector of latent utilities that usually require a separate treatment relative

to the univariate case, as clarified in Section 4.2.

4.2 Multinomial Probit Models

In this section we review three widely–implemented multinomial probit models that

cover a large range of applications. These include the original formulation proposed

by Hausman and Wise (1978), and two subsequent generalizations which account for

class–specific predictor effects (Stern, 1992) and sequential discrete choices (Tutz, 1991).

Despite providing different generative mechanisms for the class probability vector π(xi) =

[π1(xi), . . . , πL(xi)]
ᵀ, as discussed in Sections 4.2.1–4.2.3, all these representations rely on

latent Gaussian random utilities and their likelihood can be expressed via the cumulative

distribution function of a multivariate Gaussian. This facilitates the derivation of the

conjugacy results in Section 4.3.

4.2.1 Classical Discrete Choice Multinomial Probit Models

Let us first focus on the classical discrete choice model as originally formulated by Haus-

man and Wise (1978). Recalling Greene (2003, sec.4 18.2.6), such a representation ex-

presses each class probability πl(xi) via a random utility model in which every unit i

chooses among L possible alternatives by maximizing a set of latent Gaussian utilities

zi1, . . . , ziL which depend on p–dimensional vectors xi1, . . . ,xiL of class–specific attributes

as perceived by unit i. More specifically, each πl(xi) in π(xi) = [π1(xi), . . . , πL(xi)]
ᵀ is
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expressed as

p(yi = l | β,xi) = p(zil > zik,∀k 6= l) = p(xᵀ
ilβ + εil > xᵀ

ikβ + εik,∀k 6= l), (4.1)

for each l = 1, . . . , L, where εi = (εi1, . . . , εiL)ᵀ ∼ NL(0,Σ), independently for i =

1, . . . , n; see Greene (2003) for indentifiability restrictions on Σ. In (4.1), the generic

vector xil = (xil1, . . . , xilp)
ᵀ of predictors has elements xilj measuring how the jth attribute

of the alternative l is perceived by unit i. For instance, in political studies (e.g. Dow

and Endersby, 2004), each xil can include both information on voter i and attributes

of candidate l as perceived by voter i. Hence, this specification assumes that to each

individual i are associated L vectors of p observed predictors whose linear combinations

xᵀ
i1β, . . . ,x

ᵀ
iLβ contribute to defining the class–specific latent utilities zi1, . . . , ziL. Each

individual i will then choose the alternative with the highest random utility zil = xᵀ
ilβ+εil

which is defined by a deterministic component xᵀ
ilβ with β = (β1, . . . , βp)

ᵀ, plus a Gaussian

noise εil. This term accounts for deviations from the deterministic part due to potential

unobserved attributes and, as stated in Proposition 4.1, it induces a joint likelihood for

the observed responses y = (y1, . . . , yn)ᵀ that coincides with the cumulative distribution

function of an n · (L− 1)–variate Gaussian.

Proposition 4.1. Let vl denote an L × 1 vector having value 1 in position l and 0

elsewhere, for every l = 1, . . . , L. Moreover, for every l = 1, . . . , L, denote with V[−l] and

Xi[−l] the (L−1)×L and (L−1)×p matrices whose rows are obtained by stacking vectors

(vk−vl)
ᵀ and (xil−xik)

ᵀ, respectively, for k = 1, . . . , l−1, l+1, . . . L. Then, under model

(4.1) with εi ∼ NL(0,Σ), independently for every unit i = 1, . . . , n, we have

p(y | β,X) =
n∏
i=1

p(yi | β,xi) =
n∏
i=1

ΦL−1(Xi[−yi]β; V[−yi]ΣVᵀ
[−yi]) = Φn·(L−1)(X̄β; Λ),

(4.2)

where X̄ is an n · (L− 1)× p block matrix with (L− 1)× p blocks X̄[i1] = Xi[−yi], for each

i = 1, . . . , n, whereas Λ denotes an n ·(L−1)×n ·(L−1) block diagonal covariance matrix

with (L − 1) × (L − 1) diagonal blocks Λ[ii] = V[−yi]ΣVᵀ
[−yi], for i = 1, . . . , n. In (4.2),

the generic function Φc(w; S) denotes the cumulative distribution function, evaluated at

w, of a c–variate Gaussian with mean vector 0 and covariance matrix S.

The above results follow from (4.1) after noticing that p(yi = l | β,xi) can be written

as p[εik−εil < (xil−xik)
ᵀβ,∀k 6= l] = p(V[−l]εi < Xi[−l]β) = ΦL−1(Xi[−l]β; V[−l]ΣVᵀ

[−l]),

where εi ∼ NL(0,Σ) and, hence, V[−l]εi ∼ NL−1(0,V[−l]ΣVᵀ
[−l]). The final equality in

(4.2) is instead a direct consequence of the properties of multivariate Gaussian random

variables. Indeed, since Λ is a block diagonal covariance matrix and X̄β is obtained by

stacking sub–vectors Xi[−yi]β for i = 1, . . . , n, it follows that Φn·(L−1)(X̄β; Λ) factorizes

as the product of n cumulative distribution functions of (L− 1)–variate Gaussians.
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As previously mentioned, this formulation has been originally developed in social sci-

ence and economic studies where there is a vector of predictors xil for each combination

of unit i and class l (Hausman and Wise, 1978). This is, however, not always the case in

general classification settings. Indeed, in such situations it is more common to observe a

single vector xi = (xi1, . . . , xip)
ᵀ of p predictors for each statistical unit i = 1, . . . , n and

the focus is on modeling the vector π(xi) = [π1(xi), . . . , πL(xi)]
ᵀ, to ultimately predict

the class yi of unit i. In Sections 4.2.2 and 4.2.3 we focus on two widely–implemented

representations (Stern, 1992; Tutz, 1991), which address this goal, while still relying on

Gaussian latent utilities.

4.2.2 Discrete Choice Multinomial Probit Models with Class–

Specific Effects

When a single vector xi = (xi1, . . . , xip)
ᵀ of p covariates is observed for each unit i =

1, . . . , n, an interpretable and common solution to model differences in the class proba-

bilities within π(xi) = [π1(xi), . . . , πL(xi)]
ᵀ is to introduce class–specific predictors effects

β1, . . . ,βL as in Stern (1992), and define again πl(xi) as a function of Gaussian utilities

zi1, . . . , ziL via

p(yi = l | β,xi) = p(zil > zik,∀k 6= l) = p(xᵀ
iβl + εil > xᵀ

iβk + εik,∀k 6= l), (4.3)

for each l = 1, . . . , L, where εi = (εi1, . . . , εiL)ᵀ ∼ NL(0,Σ), independently for every

unit i = 1, . . . , n, and βL = 0 for identifiability purposes (Johndrow et al., 2013). Rep-

resentation (4.3) and its interpretation are closely related to the classical discrete choice

multinomial probit model in Section 4.2.1, with the only key exception that the differences

in the class–specific latent utilities zi1, . . . , ziL, i = 1, . . . , n, are now driven by changes in

the coefficients vectors β1, . . . ,βL, rather than in the predictors’ vectors as in (4.1). For

instance, recalling the political example discussed in Section 4.2.1, although the age is an

attribute specific to voter i, it is reasonable to expect that such a covariate has a different

effect in producing the utilities zi1 = xᵀ
iβ1 + εi1, . . . , ziL = xᵀ

iβL + εiL that voter i assigns

to the different candidates l = 1, . . . , L. This property can be included by allowing the

coefficient associated with the age attribute to change across classes, thus providing a for-

mulation more similar to classical multinomial logit models (e.g. Greene, 2003), relative

to (4.1). As stated in Proposition 4.2, also under this representation the likelihood for the

observed responses y = (y1, . . . , yn)ᵀ coincides with the cumulative distribution function

of an n · (L− 1)–variate Gaussian.

Proposition 4.2. Denote with vl the L × 1 vector with value 1 in position l and 0

elsewhere, for each l = 1, . . . , L. Moreover, let xil = v̄l ⊗ xi, where v̄l is the (L− 1)× 1

vector obtained by the removing the L-th element from vl, and ⊗ denotes the Kronecker



CHAPTER 4. CONJUGATE BAYES FOR MULTINOMIAL PROBIT MODELS 60

product. Then, under model (4.3) with εi ∼ NL(0,Σ), independently for each unit i =

1, . . . , n, we have

p(y | β,X) =
n∏
i=1

p(yi | β,xi) =
n∏
i=1

ΦL−1(Xi[−yi]β; V[−yi]ΣVᵀ
[−yi]) = Φn·(L−1)(X̄β; Λ),

(4.4)

where β = (βᵀ
1 , . . . ,β

ᵀ
L−1)ᵀ, whereas Xi[−yi], V[−yi], X̄ and Λ are defined as in Proposition

4.1, setting xil = v̄l ⊗ xi for each i = 1, . . . , n and l = 1, . . . , L.

Proposition 4.2 follows as a directed consequence of Proposition 4.1, upon noticing that

model (4.3) can be re–written as a particular case of model (4.1) with working covariates

xil as defined in Proposition 4.2. Indeed, note that by setting xil = v̄l ⊗ xi, i = 1, . . . , n,

l = 1, . . . , L, the class probabilities in (4.3) can be expressed as p(yi = l | β,xi) = p(zil >

zik,∀k 6= l) = p(xᵀ
iβl + εil > xᵀ

iβk + εik,∀k 6= l) = p(xᵀ
ilβ + εil > xᵀ

ikβ + εik,∀k 6= l),

for l = 1, . . . , L, with βL = 0, where the last quantity is the expression for the class

probabilities in (4.1).

4.2.3 Sequential Discrete Choice Multinomial Probit Models

Before focusing on prior specification and posterior derivations, we consider also an ex-

tension of the sequential discrete choice multinomial probit model studied in Albert and

Chib (2001) and originally proposed by Tutz (1991). This model still relies on a set of

class–specific latent utilities but is conceptually different from those presented in Sec-

tion 4.2.1 and 4.2.2, since the choice among the L classes is modeled via a sequence of

binary decisions where the generic step l of this sequential decision process is reached

if individual i has not chosen classes 1, . . . , l − 1, and the binary decision at this step

will be to either pick class l with probability p(yi = l | yi > l − 1,β,xi) = Φ(xᵀ
iβl) or

to consider one of the subsequent alternatives l + 1, . . . , L with complement probability

p(yi > l | yi > l − 1,β,xi) = 1− Φ(xᵀ
iβl). Note that relative to the original formulations

in Albert and Chib (2001) and Tutz (1991), here we consider a slightly different repa-

rameterization and also allow the entire vector of coefficients, and not just the intercept,

to change with the different labels, thus providing a more general representation. As

discussed by Albert and Chib (2001) also this model has a latent utility representation

which expresses each πl(xi) in π(xi) = [π1(xi), . . . , πL(xi)]
ᵀ as

p(yi = l | β,xi) = p(zil > 0)
l−1∏
k=1

p(zik < 0) = p(xᵀ
iβl+εil > 0)

l−1∏
k=1

p(xᵀ
iβk+εik < 0), (4.5)

for l = 1, . . . , L− 1, and p(yi = L | β,xi) =
∏L−1

k=1 p(x
ᵀ
iβk + εik < 0), where εil ∼ N(0, 1)

independently for unit i = 1, . . . , n and class l = 1, . . . , L − 1. Equation (4.5) provides

a general representation in which each zil = xᵀ
iβl + εil denotes the utility of choosing
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alternative l against the subsequent ones l + 1, . . . , L, given that the classes 1, . . . , l − 1

have been discarded in the previous steps of the sequential decision process. Proposition

4.3 shows that, although conceptually different from the models in Sections 4.2.1 and

4.2.2, also such a formulation admits a very similar expression for the joint likelihood of

data y = (y1, . . . , yn)ᵀ.

Proposition 4.3. Define ȳi = (0ᵀ
yi−1, 1)ᵀ if yi ≤ L − 1, and ȳi = 0L−1 if yi = L,

where the generic 0c is a c × 1 vector of zeroes. Moreover, let n̄ = n1 + · · · + nn with

ni = min(yi, L − 1). Then, under (4.5) with εil ∼ N(0, 1) independently for i=1, . . . , n

and l=1, . . . , L− 1, we have

p(y | β,X) =
n∏
i=1

p(yi | β,xi) =
n∏
i=1

Φni(Xiβ; Ini) = Φn̄(X̄β; Λ), (4.6)

where β = (βᵀ
1 , . . . ,β

ᵀ
L−1)ᵀ, Λ = In̄ and X̄ is a n̄×(L−1)·p matrix with ni×(L−1)·p blocks

X̄[i1] = Xi, i = 1, . . . , n, where Xi = [diag(2ȳi−1) ⊗ xᵀ
i ,0ni×(L−1−ni)·p], for i = 1, . . . , n.

In (4.6), the generic quantity In refers to the n× n identity matrix.

To clarify Proposition 4.3, it suffices to re-write p(yi = l | β,xi), l = 1, . . . , L − 1,

in (4.5), as Φ(xᵀ
iβl)

∏l−1
k=1[1 − Φ(xᵀ

iβk)] =
∏l

k=1 Φ[(2ȳik − 1)xᵀ
iβk] = Φl(Xiβ; Il), where

ȳi is defined as in Proposition 4.3. The above result leverages standard properties of

multivariate Gaussians.

Combining Propositions 4.1–4.3 it is clear that, despite characterizing different utility–

based decision mechanisms, models (4.1), (4.3) and (4.5) have the same form for the joint

likelihood of the observed responses. The only difference among such likelihoods is their

dimension and the definition of the known matrices X̄ and Λ, which change depending

on the type of model. These results are fundamental for the novel conjugacy results in

Section 4.3.

4.3 Bayesian Inference for the Multinomial Probit

Models

Common Bayesian implementations of multinomial probit models consider a multivariate

Gaussian prior Nq(ξ,Ω) for the parameters in β, where q is equal to p in model (4.1) and

to p·(L−1) in models (4.3) and (4.5), whereas ξ and Ω denote the pre–specified prior mean

vector and covariance matrix, respectively (Albert and Chib, 1993; McCulloch and Rossi,

1994; Nobile, 1998; McCulloch et al., 2000; Albert and Chib, 2001; Chen and Kuo, 2002;

Imai and Van Dyk, 2005; Zhang et al., 2006; Burgette and Nordheim, 2012; Johndrow

et al., 2013). Besides providing a default specification in various Bayesian regression

models, this choice is also motivated by the Gaussian assumption for the latent utilities in
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models (4.1), (4.3) and (4.5) which implies an augmented–data representation facilitating

the implementation of mcmc (Albert and Chib, 1993, 2001; Imai and Van Dyk, 2005;

Holmes and Held, 2006; Chopin and Ridgway, 2017) and approximate methods (Girolami

and Rogers, 2006; Girolami and Zhong, 2007; Riihimäki et al., 2013; Knowles and Minka,

2011) for inference and prediction.

As discussed in Section 4.1, the above strategies have computational drawbacks—

especially in large p settings—and are motivated by the apparent absence of conjugacy

between multinomial probit likelihoods and Gaussian priors for the β parameters. In

Section 4.3.1, we show not only that the posterior in this setting is a sun, but also that

the whole sun family is conjugate to multinomial probits, thereby obtaining closed–form

posterior distributions under a broad variety of priors, which include also the default

Gaussian one and, as a byproduct, Gaussian processes. Leveraging the novel results

in Section 4.3.1, we develop in Section 4.3.2 improved Monte Carlo methods for full

Bayesian inference and classification, along with scalable and accurate approximations of

the posterior in high–dimensional settings.

Before providing an overview of the sun distribution (Arellano-Valle and Azzalini,

2006; Azzalini and Capitanio, 2014) and presenting our conjugacy results, we shall em-

phasize that some of the aforementioned contributions consider also priors for Σ in models

(4.1) and (4.3). Our focus in this chapter is on the posterior for β conditioned on Σ and,

hence, we avoid additional identifiability and computational complications which arise

when including a prior also for Σ. Nonetheless, as discussed in Section 4.5, the closed–

form expression for the marginal likelihood p(y | X) presented in Corollary 4.5, and the

i.i.d. sampler to generate values from the posterior p(β | y,X) outlined in Algorithm 6,

can be useful to estimate Σ via empirical Bayes, and to improve sampling of β and Σ

from their full–conditionals.

4.3.1 Conjugacy via unified skew–normal priors

Consistent with Section 4.3, and recalling Section 3.2, let us assume a sunq,h(ξ,Ω,∆,γ,Γ)

prior for β, whose density follows from (3.6) and, for ease of reading, has the form

p(β) = φq(β − ξ; Ω)
Φh(γ + ∆ᵀΩ̄−1ω−1(β − ξ); Γ−∆ᵀΩ̄−1∆)

Φh(γ; Γ)
.

See Section 3.2 and references therein for a more detailed overview about the SUN distri-

bution. Recall that, as specified in Section 3.2, when all the entries in ∆ are 0, p(β) coin-

cides with the density of a q–variate Gaussian with mean vector ξ and covariance matrix

Ω = ωΩ̄ω obtained via the quadratic combination among the correlation matrix Ω̄ and

the diagonal scale matrix ω = (Ω� Iq)
1/2, where � is the element–wise Hadamard prod-

uct. Such a class of Gaussian priors can be also obtained by setting h = 0. As discussed in

Arellano-Valle and Azzalini (2006), the multivariate Gaussian case is just an example of
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a broad variety of distributions which can be obtained from a sunq,h(ξ,Ω,∆,γ,Γ) prior

under suitable choices for its parameters. Priors of potential interest within this class

are independent univariate skew–normals (Azzalini, 1985) for the parameters in β and

classical multivariate skew–normals (Azzalini and Dalla Valle, 1996) for the entire vector

β. Therefore, our results allow tractable inference in Bayesian multinomial probit models

under a broad class of priors that include Gaussian specifications along with asymmet-

ric priors that may be useful in social science and econometric studies. Note that also

non–linear formulations via Gaussian processes induce multivariate Gaussian priors and,

hence, our results can be directly applied to the flexible classification strategies discussed

in Girolami and Rogers (2006) and Riihimäki et al. (2013).

The main roles of the parameters ξ,Ω,∆,γ and Γ is further clarified by the additive

representation (3.7), which, if β ∼ sunq,h(ξ,Ω,∆,γ,Γ), writes

β
d
= ξ + ω(U0 + ∆Γ−1U1), U0 ⊥ U1,

with U0 ∼ Nq(0, Ω̄ −∆Γ−1∆ᵀ) and U1 from a Nh(0,Γ) truncated below −γ, shortly

denoted as TNh(−γ; 0,Γ).

Besides clarifying the role of the prior parameters, this stochastic additive representa-

tion of the sun random variable is useful also for posterior inference since, as already shown

in Chapters 2 and 3 and as we will discuss in the following, it provides a direct strategy

to sample i.i.d. values from the sun distribution, thus improving upon state–of–the–art

mcmc methods for Bayesian multinomial probit models. Indeed, as shown in Theorem 4.4,

the sun prior sunq,h(ξ,Ω,∆,γ,Γ) is conjugate to the multinomial probit likelihoods re-

ported in (4.2), (4.4) and (4.6), meaning that also the posterior (β | y,X) has a sun distri-

bution. In particular we show that (β | y,X) ∼ sunq,h+m(ξpost,Ωpost,∆post,γpost,Γpost).

Theorem 4.4. Let p(β) be a sunq,h(ξ,Ω,∆,γ,Γ) prior density function and denote with
Φm(X̄β; Λ) the generic multinomial probit likelihood in equations (4.2), (4.4) and (4.6),
with m, X̄ and Λ defined as in Propositions 4.1, 4.2 or 4.3 depending on whether the focus
is on model (4.1), (4.3) or (4.5), respectively. Then, the posterior density p(β | y,X) of
β is

p(β | y,X) = φq(β−ξpost; Ωpost)
Φh+m(γpost+∆ᵀ

postΩ̄
−1
postω

−1
post(β − ξpost); Γpost−∆ᵀ

postΩ̄
−1
post∆post)

Φh+m(γpost; Γpost)
,

(4.7)

with ξpost = ξ, Ωpost = Ω, ∆post = (∆, Ω̄ωX̄ᵀs−1), γpost = (γᵀ, ξᵀX̄ᵀs−1)ᵀ and Γpost is an

(h+m)×(h+m) covariance matrix with blocks Γpost[11] = Γ, Γpost[22] = s−1(X̄ΩX̄ᵀ+Λ)s−1

and Γpost[21] = Γᵀ
post[12] = s−1X̄ω∆, where s = [(X̄ΩX̄ᵀ +Λ)�Im]1/2. Note that in (4.7),

the dimension q is equal to p under model (4.1) and to p · (L− 1) under models (4.3) and

(4.5).

As a consequence of Theorem 4.4, it follows that also the common multivariate Gaus-

sian prior for β—which is a special case of unified skew–normal—leads to a sun posterior
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when updated with the multinomial probit likelihoods in (4.2), (4.4) and (4.6). In partic-

ular, if p(β) = φq(β − ξ; Ω) it immediately follows from Theorem 4.4 that the posterior

distribution is a sun having density as in (4.7), with h = 0 and posterior parameters

ξpost = ξ, Ωpost = Ω, ∆post = Ω̄ωX̄ᵀs−1, γpost = s−1X̄ξ, Γpost = s−1(X̄ΩX̄ᵀ + Λ)s−1,

where s = [(X̄ΩX̄ᵀ + Λ)� Im]1/2.

Theorem 4.4 provides novel results with important implications in Bayesian inference

for multinomial probit models. As discussed by Arellano-Valle and Azzalini (2006) and

Azzalini and Capitanio (2014), sun distributions share several common properties with

multivariate Gaussians. A key one is that such a family is closed under marginaliza-

tion, linear combinations and conditioning. Within our context, this means that the

marginal posteriors for each coefficient and linear combinations of interest—such as those

defining the latent utilities—are still sun and their parameters can be obtained via sim-

ple transformations of those in Theorem 4.4 (Arellano-Valle and Azzalini, 2006; Azzalini

and Capitanio, 2014). According to (4.7), also the normalizing constant of the poste-

rior is available in closed form and coincides with the cumulative distribution function

Φh+m(γpost; Γpost) of a multivariate Gaussian with 0 mean and covariance matrix Γpost,

evaluated at γpost. As highlighted in Corollaries 4.5 and 4.6, this result is fundamental to

obtain closed–form expressions of marginal likelihoods and predictive distributions that

are useful for model selection and classification.

Corollary 4.5. Under the settings of Theorem 4.4, the marginal likelihood can be ex-

pressed as

p(y | X) =
p(y,β | X)

p(β | y,X)
=

Φh+m(γpost; Γpost)

Φh(γ; Γ)
, (4.8)

with γpost and Γpost defined as in Theorem 4.4.

Corollary 4.6. Consider the expanded dataset in which, besides the original data y and

X, we also have an additional unit with predictors xnew and response ynew = l. Moreover,

let ml, X̄l and Λl be defined as in Propositions 4.1, 4.2 or 4.3 depending on whether the

focus is on likelihoods (4.2), (4.4) or (4.6), respectively, for the expanded data. Then,

under the settings of Theorem 4.4, we have that

pr(ynew = l | y,X,xnew) =
p(ynew = l,y | X,xnew)

p(y | X,xnew)
=

Φh+ml(γlpost; Γlpost)

Φh+m(γpost; Γpost)
, (4.9)

for each l = 1, . . . , L, with γpost and Γpost as in Theorem 4.4, while γlpost and Γlpost

coincide with γpost and Γpost, evaluated at X̄l and Λl.

Corollaries 4.5 and 4.6 facilitate closed–form Bayesian hypothesis testing, variable se-

lection and classification without the need to rely on mcmc. Exploiting the moment

generating functions of the sun in Section 2.3 of Arellano-Valle and Azzalini (2006) and
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the additional derivations in Azzalini and Bacchieri (2010); Gupta et al. (2013); Azza-

lini and Capitanio (2014); Durante (2019), closed–form expressions can be derived also

for the posterior mean of β, its covariance matrix and the cumulative distribution func-

tion, thus facilitating Bayesian estimation, uncertainty quantification and classification.

These closed–form expressions require, however, evaluation of high–dimensional cumu-

lative distribution functions and tedious derivations that do not facilitate calculation of

more complex functionals, thus motivating the alternative computational methods pre-

sented in Section 4.3.2.

4.3.2 Computational methods

This section provides new computational methods for Bayesian multinomial probit models

that exploit results in Section 4.3.1 to improve upon state–of–the–art solutions, especially

in large q settings. In particular, in Section 4.3.2.1 we focus on Monte Carlo methods that,

unlike current mcmc solutions, rely on independent and identically distributed samples

from the exact sun posterior. This strategy requires, however, to sample from (h + m)–

variate truncated normals with full covariance matrix and, hence, becomes impractical as

the sample size grows. To address this issue, we also propose in Section 4.3.2.2 a blocked

partially–factorized variational Bayes that relaxes various independence assumptions of

classical mean–field families to obtain improved and computationally efficient approxima-

tions, that almost perfectly match the exact posterior in large q settings, especially when

q > h+m.

4.3.2.1 Monte Carlo methods via independent samples from the posterior

Complex functionals of the posterior can be effectively evaluated via Monte Carlo meth-

ods leveraging the stochastic representation of the sun reported in equation (3.7) and

recalled in Section 4.3.1. This equivalent construction allows to sample independent and

identically distributed values from the sun posterior in Theorem 4.4, via linear combi-

nations among samples from multivariate Gaussians and multivariate truncated normals.

Such a routine is described in Algorithm 6 and crucially avoids mcmc strategies, thus cir-

cumventing convergence and mixing issues commonly seen in Bayesian multinomial probit

models (Johndrow et al., 2013), while allowing for parallel computing. One possible com-

putational drawback of Algorithm 6 is the need to sample from multivariate truncated

normals. Recent advances relying on minimax tilting methods (Botev, 2017) have made

this task possible and computationally feasible for multivariate truncated normals with

a dimension of few hundreds, thus making Algorithm 6 a computationally efficient strat-

egy in small–to–moderate h + m and large, potentially huge, q studies. As discussed

by Chopin and Ridgway (2017), these large q settings are actually those where state–

of–the–art mcmc methods, including efficient STAN implementations of the Hamiltonian
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Algorithm 6: Strategy to sample from the sun posterior in Theorem 4.4

for t=1,. . . ,T do

[1] Sample U
(t)
0 ∼ Nq(0, Ω̄post−∆postΓ

−1
post∆

ᵀ
post) [in R use the function rmvnorm]

[2] Sample U
(t)
1 ∼ TNh+m(−γpost; 0,Γpost) [in R use the function rtmvnorm]

[3] Compute β(t) = ξpost + ωpost(U
(t)
0 + ∆postΓ

−1
postU

(t)
1 )

Output: Independent and identically distributed samples β(1), . . . ,β(T ) from the

posterior in Theorem 4.4. Based on such samples, posterior functionals

E[g(β) | y,X] can be computed, via Monte Carlo, as
∑T

t=1 g(β(t))/T .

no–u–turn sampler (Hoffman and Gelman, 2014), are computationally unfeasible. The

results in Botev (2017) are also useful to evaluate efficiently cumulative distribution func-

tions of multivariate Gaussians, and hence are practically relevant to calculate marginal

likelihoods (4.8) and predictive probabilities (4.9) in small–to–moderate h+m settings.

4.3.2.2 Blocked partially–factorized variational Bayes

As discussed in Section 4.3.2.1, when h + m is large, sampling from (h + m)–variate

truncated normals with full covariance matrix becomes computationally unfeasible (Botev,

2017), thus making Algorithm 6 impractical in such settings. Typically, h is either 0—

when Gaussian priors are considered—or a small value, whereas m depends on the sample

size n and on the number of classes L. Hence, it is necessary to devise more scalable

methods, especially in common settings where n is larger than a few hundreds.

A possible solution to the above problem is to consider approximations of the posterior

density, with variational Bayes providing a well–established procedure, especially in those

models admitting simple augmented data representations (Blei et al., 2017). As clarified

in Section 4.2, this is the case of multinomial probit models relying on Gaussian latent

utilities. Such a property has motivated several variational strategies to approximate the

joint posterior p(β, z̄ | y,X) of β and the augmented data z̄, with a tractable density

q∗(β, z̄), which is the closest in Kullback–Leibler (kl) divergence (Kullback and Leibler,

1951) to p(β, z̄ | y,X)—among all the densities in a pre–specified approximating family

Q. As in the development of simple Gibbs samplers based on tractable full–conditionals

(Albert and Chib, 1993), the inclusion of the augmented data facilitates the implementa-

tion of simple coordinate ascent variational inference (cavi) routines (Bishop, 2006; Blei

et al., 2017) to minimize, with respect to q(β, z̄), the divergence kl[q(β, z̄)||p(β, z̄ | y,X)].

Clearly, the availability of simple optimization routines and strategies to derive the op-

timal marginal q∗(β) from q∗(β, z̄), depend also on how the family Q is defined. Common

solutions in binary (Consonni and Marin, 2007) and multinomial (Girolami and Rogers,

2006) probit settings rely on mean–field families Qmf = {q(β, z̄) : q(β, z̄) = q(β)q(z̄)}
that assume independence between β and z̄. These strategies come with simple cavi al-
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gorithms which scale easily to high–dimensional settings and, due to the factorized form of

q∗(β, z̄), provide directly the approximating density q∗(β) of interest. However, theoreti-

cal and empirical studies on simple univariate binary probit models considered in Chapter

2 show that this mean–field assumption often leads to low–quality approximations in high–

dimensional probit settings, that massively affect not only uncertainty quantification, but

also estimation and classification. To address this issue in the context of univariate bi-

nary probit models with Gaussian priors, in Chapter 2 we considered a partially factorized

mean–field approximating family Qpfm = {q(β, z̄) : q(β, z̄) = q(β | z̄)
∏h+m

r=1 q(z̄r)} which

avoids enforcing independence between β and z̄, and only assumes that q(z̄) factorizes

as the product of its marginals. Such a new class of approximating densities substan-

tially improves the quality of the original mean–field approximation and almost perfectly

matches the exact posterior in high–dimensional settings, especially when the number of

predictors is higher than the sample size, without sacrificing computational tractability.

Motivated by the above discussion, we develop a new blocked partially–factorized

mean–field approximation that extends the contribution of Chapter 2 in three main im-

portant directions. In particular, we [i] allow the inclusion of sun and not only Gaussian

priors, [ii] generalize the methods to multinomial probit models, and [iii] further enlarge

the class of approximating densities by replacing
∏h+m

r=1 q(z̄r) in Qpfm with
∏C

c=1 q(z̄c),

where z̄1, . . . , z̄C are distinct sub–vectors of z̄, such that z̄ = (z̄ᵀ
1, . . . , z̄

ᵀ
C)ᵀ. Hence, instead

of enforcing independence among all the augmented data, we only make this assumption

between pre–specified blocks. In fact, while in high–dimensional univariate binary set-

tings the independence among all the augmented data does not seem to have a major

impact on the quality of the approximation (see Chapter 2), this may not be the case

in multinomial probit models. For example, under the formulation presented in Section

4.2.2, each unit i enters the matrix X̄ multiple times and, hence, it is reasonable to ex-

pect a relatively strong dependence among unit–specific augmented data, which cannot

be accurately approximated by a fully factorized representation for q(z̄). Similar blocking

ideas have been considered by Chopin (2011); Genton et al. (2018) and Cao et al. (2019),

to simulate from multivariate truncated normals and compute cumulative distribution

functions of high–dimensional Gaussians. We adapt these ideas in the context of vari-

ational inference to obtain improved approximations of the posterior, without affecting

computational performance.

To introduce the blocked partially–factorized mean–field approximation, first note that

the kernel of the posterior density p(β | y,X) in (4.7) can be re–written as

p(β | y,X) ∝ φq(β − ξpost; Ωpost)

∫
φh+m[z̄− (ηpost + Xpostβ); Σpost]1(z̄ > 0)dz̄, (4.10)

with Xpost = ∆ᵀ
postΩ̄

−1
postω

−1
post, ηpost = γpost−Xpostξpost, and Σpost = Γpost−∆ᵀ

postΩ̄
−1
post∆post.

To clarify the connection between expression (4.7) and (4.10) it is sufficient to notice that
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the integral in (4.10) coincides with p(z̄ > 0), when z̄ ∼ Nh+m(ηpost + Xpostβ,Σpost).

In particular, p(z̄ > 0) = p[−(z̄ − ηpost − Xpostβ) < ηpost + Xpostβ] = Φh+m(ηpost +

Xpostβ; Σpost), which coincides with the cumulative distribution function in the numerator

of equation (4.7). Leveraging such an alternative representation and Gaussian–Gaussian

conjugacy, we can easily notice that

p(β | z̄,y,X) ∝ φq(β − ξpost; Ωpost)φh+m[z̄− (ηpost + Xpostβ); Σpost]

∝ φq(β −Vpost[X
ᵀ
postΣ

−1
post(z̄− ηpost) + Ω−1

postξpost]; Vpost),
(4.11)

with Vpost = (Xᵀ
postΣ

−1
postXpost + Ω−1

post)
−1. Thus,

(β | z̄,y,X) ∼ Nq(Vpost[X
ᵀ
postΣ

−1
post(z̄− ηpost) + Ω−1

postξpost],Vpost).

On the other hand, according to (4.10), the conditional density p(z̄ | β,y,X) of the aug-

mented data z̄ is a multivariate normal with mean ηpost +Xpostβ, covariance matrix Σpost

and truncation below 0. Hence, by marginalizing out β with density φq(β− ξpost; Ωpost),

we obtain

p(z̄ | y,X) ∝ φh+m[z̄− (ηpost + Xpostξpost); Σpost + XpostΩpostX
ᵀ
post]1(z̄ > 0)

∝ φh+m[z̄− (ηpost + Xpostξpost); Γpost]1(z̄ > 0),
(4.12)

where Σpost +XpostΩpostX
ᵀ
post = Γpost. Combining (4.11)–(4.12), and recalling our discus-

sion on variational Bayes, we aim to provide an accurate approximation q∗(β, z̄) of the

joint density

p(β, z̄ | y,X) = p(β | z̄,y,X)p(z̄ | y,X)

∝ φq(β−Vpost[X
ᵀ
postΣ

−1
post(z̄−ηpost)+Ω−1

postξpost]; Vpost)

× φh+m[z̄−(ηpost+Xpostξpost); Γpost]1(z̄>0),

(4.13)

such that q∗(β, z̄) minimizes the kl divergence kl[q(β, z̄)||p(β, z̄ | y,X)] within the

blocked partially–factorized mean–field family of distributions Qpfm-b = {q(β, z̄) : q(β, z̄) =

q(β | z̄)
∏C

c=1 q(z̄c)}, where z̄1, . . . , z̄C are pre–specified sub–vectors of z̄. Equation (4.13)

clarifies why Qpfm-b provides a particularly suitable family of approximating densities for

p(β, z̄ | y,X). In particular, since the exact conditional density p(β | z̄,y,X) has a

tractable Gaussian form, assuming independence between β and z̄ as in classical mean–

field variational Bayes seems an unnecessarily strong assumption in this case. On the other

hand, the main source of intractability in p(β, z̄ | y,X) arises from the high–dimensional

truncated normal density p(z̄ | y,X) with full covariance matrix Γpost, thus motivating

our attempt to approximate it via a set of C independent lower–dimensional truncated

normal densities q∗(z̄1) · · · q∗(z̄C). Each of these blocks must be sufficiently small to al-

low tractable inference under the associated truncated normal approximation, and should

be specified so as to group augmented data with strong correlations in Γpost. Remark

4.7 discusses and motivates a possible default strategy to define the different blocks in

multinomial probit models, when necessary.
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Remark 4.7. In multinomial probit models, when necessary, it is typically sufficient

to group the augmented data associated with the same unit i, provided that there may

be a strong overlap in the rows of X̄ referring to i, thus leading to high correlation

in Γpost. Such a choice is further motivated by the fact that optimal mean–field solu-

tions q∗mf(β, z̄) — which do not assume a factorized form for q(z̄) in Qmf = {q(β, z̄) :

q(β, z̄) = q(β)q(z̄)} — are defined as q∗mf(β, z̄) = q∗mf(β)
∏n

i=1 q
∗
mf(z̄i) (Girolami and

Rogers, 2006). Such a solution belongs also to Qpfm-b when blocking units i and, hence,

minq(β,z̄)∈Qpfm-bkl[q(β, z̄)||p(β, z̄ | y,X)] ≤ minq(β,z̄)∈Qmfkl[q(β, z̄)||p(β, z̄ | y,X)]. In ad-

dition, we have minq(β,z̄)∈Qpfm-bkl[q(β, z̄)||p(β, z̄ | y,X)] ≤ minq(β,z̄)∈Qpfmkl[q(β, z̄)||p(β, z̄ |
y,X)] since Qpfm ⊂ Qpfm-b for any blocking structure, . Therefore, when blocking across

statistical units, our optimal solution is guaranteed to improve both classical mean–field

variational Bayes and recent partially factorized solutions.

Besides providing a wider and more flexible class, the family Qpfm-b also allows straight-

forward optimization as shown in Proposition 4.8.

Proposition 4.8. The kl divergence kl[q(β, z̄)||p(β, z̄ | y,X)] between p(β, z̄ | y,X) in

(4.13) and q(β, z̄) ∈ Qpfm-b, is minimized at q∗(β, z̄) = q∗(β | z̄)
∏C

c=1 q
∗(z̄c), with

q∗(β | z̄) ∝ φq(β −Vpost[X
ᵀ
postΣ

−1
post(z̄− ηpost) + Ω−1

postξpost]; Vpost), (4.14)

q∗(z̄c) ∝ φnc [z̄c − η[c]post −W[c]post(Eq∗(z̄−c)(z̄−c)− η[−c]post); Γ[c]post]1(z̄c>0), ∀c,
(4.15)

where W[c]post = Γ[c,−c]postΓ
−1
[−c,−c]post and Γ[c]post = Γ[c,c]post−Γ[c,−c]postΓ

−1
[−c,−c]postΓ[−c,c]post,

with Γ[c,c]post, Γ[−c,−c]post, Γ[−c,c]post and Γ[c,−c]post denoting blocks of Γpost when partitioned

to highlight the sub–vector z̄c against all the others in z̄−c. Similarly, η[c]post and η[−c]post

denote the sub–vectors of ηpost corresponding to block c and to all the other blocks, respec-

tively. Finally,

Eq∗(z̄−c)(z̄−c) = [Eq∗(z̄1)(z̄1)ᵀ, . . . ,Eq∗(z̄c−1)(z̄c−1)ᵀ,Eq∗(z̄c+1)(z̄c+1)ᵀ, . . . ,Eq∗(z̄C)(z̄C)ᵀ]ᵀ,

where the expectations are taken with respect to the optimal truncated normal approxima-

tions.

The solution in equation (4.14) is a direct consequence of the chain rule for the kl

divergence. In fact, kl[q(β, z̄)||p(β, z̄ | y,X)] = kl[q(z̄)||p(z̄ | y,X)] + Eq(z̄){kl[q(β |
z̄)||p(β | z̄,y,X)]}, and hence the non–negative second summand is exactly zero for every

q(z̄) only when q∗(β | z̄) = p(β | z̄,y,X). To clarify equation (4.15) recall that the

optimal solution for q(z̄c) is proportional to exp[Eq∗(z̄−c)(log[p(z̄c | z̄−c,y,X)])] (Bishop,

2006; Blei et al., 2017). Hence, recalling Horrace (2005) and Holmes and Held (2006),

since (z̄ | y,X) has a multivariate truncated Gaussian density (4.12), it follows that also

each p(z̄c | z̄−c,y,X) is an nc–variate truncated normal density, whose log–kernel is linear



CHAPTER 4. CONJUGATE BAYES FOR MULTINOMIAL PROBIT MODELS 70

Algorithm 7: cavi for blocked partially–factorized approximation in Proposition 4.8

for t=1 until convergence do

for c=1, . . . , C do
Set Eq(t)(z̄c)(z̄c) equal to the expected value of an nc–variate Gaussian with

mean η[c]post + W[c]post(Eq(t−1)(z̄−c)(z̄−c)− η[−c]post), covariance matrix

Γ[c]post and truncation below 0, where the expectations Eq(t−1)(z̄−c)(z̄−c) are

defined as

[Eq(t)(z̄1)(z̄1)ᵀ, . . . ,Eq(t)(z̄c−1)(z̄c−1)ᵀ,Eq(t−1)(z̄c+1)(z̄c+1)ᵀ, . . . ,Eq(t−1)(z̄C)(z̄C)ᵀ]ᵀ.

[in R use the function MomTrunc to compute the mean of truncated

normals].

Output: Optimal truncated normal approximating densities q∗(z̄1), . . . , q∗(z̄C)

from (4.15), which are then combined with the closed–form solution for q∗(β | z̄)

(4.14), to provide the optimal joint approximating density

q∗(β, z̄) = q∗(β | z̄)
∏C

c=1 q
∗(z̄c).

in z̄−c and the remaining parameters are specified as in (4.15). As is clear from Proposition

4.8, the only unknown parameters are Eq∗(z̄c)(z̄c), c = 1, . . . , C, whose solution requires

solving a non–linear system of equations. Algorithm 7 summarizes the key steps of the

cavi to obtain such quantities via simple operations.

Once q∗(β | z̄) and q∗(z̄) =
∏C

c=1 q
∗(z̄c) are available, approximations of key functionals

of β can be easily derived leveraging the law of total expectation and results in Proposition

4.8. In particular, since Eq∗(β)(β) = Eq∗(z̄)[Eq∗(β|z̄)(β)], we have that

Eq∗(β)(β) = Vpost[X
ᵀ
postΣ

−1
post(Eq∗(z̄)(z̄)− ηpost) + Ω−1

postξpost], (4.16)

whereas, the equality varq∗(β)(β) = Eq∗(z̄)[varq∗(β|z̄)(β)] + varq∗(z̄)[Eq∗(β|z̄)(β)], leads to

varq∗(β)(β) = Vpost + VpostX
ᵀ
postΣ

−1
postvarq∗(z̄)(z̄)Σ−1

postXpostVpost. (4.17)

To evaluate (4.16) and (4.17), it is sufficient to compute Eq∗(z̄c)(z̄c) and varq∗(z̄c)(z̄c),

separately for each c = 1, . . . , C, since due to the independence assumption among the

C sub–vectors of z̄, the vector Eq∗(z̄)(z̄) has blocks Eq∗(z̄)(z̄)[c] = Eq∗(z̄c)(z̄c) for each c =

1, . . . , C, whereas varq∗(z̄)(z̄) is a block–diagonal matrix with varq∗(z̄)(z̄)[cc] = varq∗(z̄c)(z̄c).

As mentioned previously, in multinomial probit models such blocks typically refer to rows

in the design matrix X̄ corresponding to the same unit i and, hence, their dimensions

n1, . . . , nC are, by definition, equal or lower than the number of classes L, which is small

in most applications. This allows fast evaluation of Eq∗(z̄c)(z̄c) and varq∗(z̄c)(z̄c) via routine

R functions, such as MomTrunc.
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Although (4.16) and (4.17) are typically the main quantities of interest, other generic

functionals Eq∗(β)[g(β)] can be easily derived via simple Monte Carlo methods based on

samples from q∗(β). Combining equation (4.14)–(4.15), such draws can be obtained by

setting

β(t) = Vpost[X
ᵀ
postΣ

−1
post([z̄

(t)ᵀ
1 , . . . , z̄

(t)ᵀ
C ]ᵀ − ηpost) + Ω−1

postξpost] + ε(t), (4.18)

for t = 1, . . . , T , where ε(t) ∼ Nq(0,Vpost), and z̄
(t)
c ∼ TNnc [0;η[c]post+W[c]post(Eq∗(z̄−c)(z̄−c)−

η[−c]post),Γ[c]post] for c = 1, . . . , C. Also in this case, since nc is typically very small, sam-

ples from nc–variate truncated normal can be effectively obtained from common R func-

tions, such as rtmvnorm. Such a Monte Carlo strategy is particularly useful to compute

the predictive probabilities for a new unit with covariates xnew. To accomplish this goal,

it is sufficient to compute, for each sample β(t) of β, the latent utilities z(t)

newl, l = 1, . . . , L

defined either via (4.1), (4.3) or (4.5), depending on the type of multinomial probit model

considered. Then, if the focus is on models (4.1) and (4.3), a Monte Carlo estimate for

p(ynew = l | y,X,xnew) can be obtained by computing the relative frequency of samples in

which z(t)

newl > z(t)

newk for all k 6= l. If, instead, one considers the sequential representation

in (4.5), the Monte Carlo estimate for p(ynew = l | y,X,xnew) coincides with the relative

frequency of samples in which z(t)

newl > 0 and z(t)

newk < 0, for all k < l.

4.4 Gastrointestinal Lesions Application

To evaluate the performances of the methods developed in Section 4.3, we consider a

medical study by Mesejo et al. (2016) which focuses on 76 gastrointestinal lesions classified

as hyperplasic (l = 1), serrated adenoma (l = 2) and adenoma (l = 3), where the first

is benign, while the others are malignant. For each lesion, a vector of 1396 features is

available and comprises 2d textural, 2d color, and 3d shape data, measured with both

white light and narrow band imaging. In our analyses we standardized the predictors as

suggested by Gelman et al. (2008) and Chopin and Ridgway (2017), and removed features

that were always 0, thus obtaining p − 1 = 929 predictors xi ∈ Rp−1 with mean 0 and

standard deviation 0.5. To assess predictive performance, we also held out 15 randomly

chosen observations from the calculation of the posterior, roughly corresponding to 20%

of the dataset.

As already discussed in Section 4.1, Bayesian inference for such an high–dimensional

study may be computationally unfeasible under state–of–the–art mcmc methods (Chopin

and Ridgway, 2017), and hence it provides a useful setting for quantifying to what extent

the new methods developed in Sections 4.3 can cover such a gap. To do this, we first

focus on the sequential discrete choice multinomial probit model in Section 4.2.3 with

Gaussian priors, and compare the computational performance of the methods developed
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in Section 4.3.2 with the rstan implementation of the Hamiltonian no–u–turn sampler

in Hoffman and Gelman (2014). The choice of the sequential model is directly motivated

by the type of response of interest in our study. Indeed, it is plausible to first model

benign (l = 1) against malignant (l > 1) status, and then focus on comparing the two

sub–categories l = 2 and l = 3 of malignant lesions. Under this model, the vector β

has dimension 1860, corresponding to the two class–specific 929–dimensional parameter

vectors plus a class–specific intercept term. Consistent with Albert and Chib (2001), we

place a N1860(0, ω2I1860) prior on β, with ω = 5 in line with guidelines in Gelman et al.

(2008).

Figure 4.1 compares the Monte Carlo estimates for selected functionals of inter-

est based on 5000 mcmc samples from the Hamiltonian no–u–turn sampler (R pack-

age rstan), against those provided by the Monte Carlo and approximate methods dis-

cussed in Sections 4.3.2.1–4.3.2.2. In particular, we compute such functionals using

both 5000 i.i.d. samples from the exact sun posterior provided by Algorithm 6, and

also by leveraging the strategies associated with the blocked partially–factorized mean–

field approximation in Algorithm 7. In computing such an approximation under the

sequential discrete choice multinomial probit model, we follow the guidelines in Remark

4.7 and group those augmented data corresponding to the same unit i. We shall em-

phasize that when the coefficients are not shared across labels and have independent

priors, the overlap among rows of X̄ referring to the same unit i is absent in sequen-

tial discrete choice representations. Hence, in this very specific case, we have that

minq(β,z̄)∈Qpmf-bkl[q(β, z̄)||p(β, z̄ | y,X)] = minq(β,z̄)∈Qpfmkl[q(β, z̄)||p(β, z̄ | y,X)]. As we

will discuss in the following, this blocking approach is more crucial for the multinomial

probit models in Sections 4.2.1–4.2.2. To highlight the benefits of the blocked partially–

factorized approximation, we also compare results with classical mean–field variational

Bayes assuming independence between β and z̄ (Consonni and Marin, 2007; Girolami

and Rogers, 2006).

As highlighted in Figure 4.1, the two sampling–based methods provide comparable

results in terms of inference and prediction. However, Algorithm 6 produces almost 75

samples of β per second, whereas the Hamiltonian no–u–turn sampler can only draw one

sample every 3 seconds. This massive computational cost makes state–of–the–art mcmc

methods rapidly unfeasible in large p settings. We shall highlight that by relying on i.i.d.

samples, Algorithm 6 has also the advantage of avoiding the need of burn–in periods and

convergence checks. However, as discussed in Section 4.3.2, Algorithm 6 scales poorly

the with sample size and, hence, it becomes impractical in studies with n larger than a

few hundreds. This motivates the blocked partially–factorized approximation in Section

4.3.2.2, which notably matches almost perfectly the Monte Carlo estimates in such a high–

dimensional setting with p > n (see Figure 4.1) and requires only 0.25 seconds to converge

and 16 seconds to compute the different functionals. Classical mean–field variational
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Figure 4.1: Comparison between the estimates of key functionals obtained under the

methods discussed in Sections 4.3.2.1 and 4.3.2.2 (y–axis), against those provided by the

STAN implementation of the Hamiltonian no–u–turn sampler (y–axis). Red squares refer

to Monte Carlo estimates based on i.i.d. samples from the exact sun posterior produced

by Algorithm 6, whereas blue and green squares denote the estimates provided by classi-

cal mean–field variational Bayes and by our blocked partially–factorized approximation,

respectively.

Bayes has comparable running times, but the independence assumption between β and

z̄ induces notable overshrinkage of the locations and scales, which massively affects the

estimation of the predictive probabilities.

Before concluding our analysis, we also implement the multinomial probit model with

class–specific parameters presented in Section 4.2.2, assuming independent standard nor-

mal errors. Due to the form of the dataset, the classical discrete multinomial probit in

Section 4.2.1 is not appropriate, since it would require a vector of covariates for each

combination of unit i and lesion l, which is not the case for this study. Nonetheless,
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Figure 4.2: Comparison among the predictive probabilities provided by model (4.3) (y–

axis) and (4.5) (x–axis). The dataset has been divided into 6 folds, and for each fold

the predictive probabilities are computed using all the other available data as training

set. Red squares refer to Monte Carlo estimates based on i.i.d. samples from the exact

sun posterior produced by Algorithm 6, whereas the green squares denote the estimates

provided by our blocked partially–factorized approximation.

according to the results in Sections 4.2.1, 4.2.2, and 4.3, models (4.1) and (4.3) induce

posteriors with comparable dimensions and, hence, the performance of the multinomial

probit with class–specific coefficients is also indicative of the one associated with the clas-

sical specification in Section 4.2.1. Here, we focus on comparing the computational and

predictive performance between the already–implemented sequential formulation in (4.5)

and the one with class–specific coefficients in (4.3), considering the Monte Carlo and vari-

ational estimates discussed in Section 4.3.2. Under model (4.3), blocking across units i

was more crucial to obtain accurate variational inference. The Hamiltonian no–u–turn

sampler faced, instead, severe mixing and convergence issues under model (4.3), further

highlighting major issues of mcmc in such settings.

Figure 4.2 compares variational and Monte Carlo estimates of the predictive proba-

bilities for all the units, under the two models. To estimate the predictive probabilities

we split the dataset in six folds, four having 13 observations and two having 12 obser-

vations. Then, we compute the predictive probabilities for the observations in each fold,

using the units in the remaining five folds to obtain the posterior distribution. As it can

be noticed from Figure 4.2, the two models provide similar, but not identical, predictive

probabilities, whose values are almost the same when comparing Monte Carlo and varia-

tional estimates. This result confirms the excellent performance of the proposed blocked

partially–factorized approximation in high–dimensional settings, especially when p > n.

Indeed, by slightly increasing the dimension of the training set, the number of β sam-

ples per second produced by Algorithm 6 rapidly decreases from 75 to 50 in model (4.5),

whereas the variational strategy still requires about 0.25 seconds to converge and 16 sec-
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onds to compute the functionals. The overall out–of–sample predictive accuracy under

the two models is about 66.5%. Considering the simplicity of the multinomial probit

models implemented, these values are quite satisfactory when compared with the 73.68%

accuracy obtained under sophisticated black–box machine learning algorithms (Mesejo

et al., 2016).

4.5 Discussion

This contribution provides novel conjugacy results and computational methods for a large

class of multinomial probit models (Hausman and Wise, 1978; Stern, 1992; Tutz, 1991)

with Gaussian priors, and extends these properties to the entire class of sun (Arellano-

Valle and Azzalini, 2006) priors. As discussed in Sections 4.3 and 4.4, the availability of

a sun posterior allows major advances in terms of closed–form, Monte Carlo and approx-

imate variational inference which close a still unaddressed gap of mcmc methods in large

p studies. These are common settings in various fields, such as in medical applications

collecting a huge number of predictors via state–of–the–art imaging technologies.

Our results open also several avenues for future research. For example, although

Bayesian estimation and inference for the covariance matrix Σ of the errors goes beyond

the scope of our contribution, such a matrix can be possibly estimated via the maximiza-

tion of the closed–form marginal likelihood in Corollary 4.5. If instead Σ is assigned a

prior and the focus is on the entire posterior distribution, it could be of interest to in-

corporate Algorithm 6 within the Gibbs samplers by e.g. McCulloch and Rossi (1994);

McCulloch et al. (2000) and Imai and Van Dyk (2005), to improve mixing when sampling

from the full–conditional (β | y,X,Σ).

The results in this chapter can be also included in more complex formulations. For

instance, the sequential representation in model (4.5) has been used also within Bayesian

nonparametric hierarchical models for density regression based on probit stick-breaking

process (Rodriguez and Dunson, 2011). Our results could be useful in such settings

to improve the computational performance and the theoretical treatment of predictor–

dependent Bayesian nonparametric mixture models. Also extensions of our results to clas-

sification via Gaussian processes (Rasmussen and Williams, 2006; Girolami and Rogers,

2006) are straightforward. Finally, it would be interesting to exploit methods in Gen-

ton et al. (2018) to identify suitable blocks of augmented data in a more data–driven

way, which can be applied to perform highly accurate variational inference not only in

multinomial but also in binary probit regression.
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4.A Appendix: Proofs

4.A.1 Proof of Theorem 4.4

To prove Theorem 4.4, it suffices to apply the Bayes rule and recognize a sun density

in the kernel of p(β | y,X). In particular, note that p(β | y,X) ∝ p(β)p(y | β,X) ∝
φq(β−ξ; Ω)Φh(γ+∆ᵀΩ̄ −1ω−1(β−ξ); Γ−∆ᵀΩ̄ −1∆)Φm(X̄β; Λ) and re–write Φm(X̄β; Λ)

as

Φm[s−1X̄ξ + (Ω̄ωX̄ᵀs−1)ᵀΩ̄ −1ω−1(β − ξ); s−1(X̄ΩX̄ᵀ + Λ)s−1 − s−1X̄ωΩ̄Ω̄ −1Ω̄ωX̄ᵀs−1]

Replacing this quantity in the kernel of the posterior and leveraging known properties of

Gaussian cumulative distribution functions, it follows that

Φh(γ + ∆ᵀΩ̄ −1ω−1(β − ξ); Γ−∆ᵀΩ̄ −1∆)Φm(X̄β; Λ)

= Φh+m(γpost+∆ᵀ
postΩ̄

−1
postω

−1
post(β − ξpost); Γpost−∆ᵀ

postΩ̄
−1
post∆post),

with ξpost, Ωpost, ∆post, γpost and Γpost as in Theorem 4.4. Leveraging this equality and

recalling that ξpost = ξ, Ωpost = Ω, it can be easily noticed that p(β)p(y | β,X) coincides

with the kernel of the sun in (4.7), thus proving Theorem 4.4. To prove that Ω∗post is a

correlation matrix it suffices to replace In with Λ in the proof of Corollary 4 in Durante

(2019).

4.A.2 Proof of Corollary 4.5

To derive equation (4.8), note that according to the proof of Theorem 4.4, p(β)Φm(X̄β; Λ) =

p(y,β | X) = p(β | y,X)Φh+m(γpost; Γpost)/Φh(γ; Γ). Hence,

p(y | X) = [p(β | y,X)Φh+m(γpost; Γpost)/Φh(γ; Γ)]/p(β | y,X)

= Φh+m(γpost; Γpost)/Φh(γ; Γ).

4.A.3 Proof of Corollary 4.6

To prove Corollary 4.6 simply notice that equation (4.9) is the ratio between the marginal

likelihoods of the expanded dataset and the observed one—without the additional unit

with response ynew = l and covariates xnew. Hence, the expression for the predictive

probabilities follows directly from Corollary 4.5 after noticing that, due to the conditional

independence assumption in (4.1), (4.3) or (4.5), one has p(y | X,xnew) = p(y | X).
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Chapter 5

The Hidden Hierarchical Pitman-Yor

Process

5.1 Introduction

Species sampling models are a popular tool to face one of the most important problems in

Statistics: prediction. They owe their name to the seminal contributions by Good (1953)

and Good and Toulmin (1956), which originated from ecological applications, and were

first studied from a Bayesian nonparametrics perspective in Lijoi et al. (2007). In such a

setting, the main interest is in prediction of additional observations, conditionally on the

available data, with particular focus on the number of new species in an additional sample,

which can be seen as a measure of species diversity, or the rate of decay of the probability

of discovering new species. Since the original formulation, the term ‘species sampling

model’ has been broadly used for a wide range of discrete distributions, not necessarily

linked to the initial ecological and biological applications, while maintaining the original

terminology and denoting as ‘species’ the unique values that the observations can take

(Pitman, 1996). The term ‘species’ has then gained a metaphoric meaning which can

change depending on the context, denoting, for instance, different possible types, genes,

agents or categories,

Lately, species sampling models faced a growing interest from both applied and theo-

retical perspective, with applications in several fields such as genetics (Lijoi et al., 2007;

Favaro et al., 2009, 2012), economics (Lijoi et al., 2016), and machine learning (Teh,

2006) just to mention a few. See also De Blasi et al. (2015) for an extensive overview

on their use in the Bayesian nonparametrics framework and other possible applications.

In this Bayesian setting, these constructions have been further generalized to effectively

tackle the problem of prediction when the data arise from different related experiments or

populations, i.e. when we are in the so-called partially exchangeable framework. In such

a scenario, Bayesian hierarchical models can be successfully applied to naturally borrow
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information across the different populations to improve the predictive performance of the

model. This is the underlying idea of some of the most popular Bayesian nonparametrics

constructions as the hierarchical and nested formulations for the Dirichlet Process (DP)

(Ferguson, 1973) and their generalizations to the Pitman-Yor process (PYP) and beyond

(Teh, 2006; Teh et al., 2006; Rodŕıguez et al., 2008; Camerlenghi et al., 2017, 2019b).

Despite the availability of a large number of contributions in the literature to face the

species sampling problem in a single population framework, just a few of them consideres

the more challenging case of multiple populations. Battiston et al. (2018) and Camerlenghi

et al. (2017) exploit a hierarchical Pitman-Yor process (HPYP) construction to effectively

face the problem of prediction combining different populations. The choice of the HPYP

arises naturally in the species-sampling framework, as the random partition structure

induced by the PYP is governed by two parameters and is such that the probability of

observing a new species for an additional observation depends on the number of distinct

species observed so far, while in the DP case there is only one parameter governing the

clustering structure and the above mentioned probability depends only on the global

sample size.

This different behaviour gives rise to different asymptotic distributions for the number

of observed clusters as the population size diverges, with the PYP showing a power-law

behavior, which is observed in many empirical studies (Mitzenmacher, 2004; Goldwater

et al., 2006), while the DP shows only a logarithmic growth, which appears too restrictive.

However, the hierarchical construction exploited in the two above-mentioned contributions

does not allow to naturally test homogeneity of subpopulations and cluster the populations

with the same species distributions. Motivated by the above-mentioned issues we define

a novel hierarchical construction based on PYPs which allows to effectively face also the

aforementioned task. This model is obtained by adding a latent nonparametric discrete

prior distribution on the population distributions, so that ties among them are allowed.

In such a setting, testing for homogeneity of population distributions arises naturally, as

the model allows to perform probabilistic clustering of the distributions of the groups.

5.2 Preliminaries

Before presenting the proposed model in Section 5.3, we shortly review the literature

involved in such construction. Following Pitman (1996), a random probability P is said

to be distributed according to a proper species sampling process if it admits the series

representation

P =
∑
i≥1

πiδX∗i , (X∗i )i≥1
iid∼ H ⊥ (πi)i≥1,

with H non-atomic. The law of P is completely specified after one fixes the law of the

vector of weights (πi)i≥1. In particular, when the πi’s are such that πi = vi
∏i−1

l=1 vl, with
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vi ∼ Beta(1−σ, θ+iσ), i ≥ 1, σ ∈ [0, 1) and θ > −σ, then P is distributed according to a

PYP with parameters (θ, σ,H), denoted P ∼ pyp(θ, σ;H). This process is also called two-

parameter Poisson-Dirichlet process, and its particular case σ = 0 boils down to the DP.

Observe that, although in species sampling processes the base measure H is nonatomic, in

the general PYP formulation this is not required. A vector of weights (πi)i≥1 constructed

with the process just described is said to be gem(σ, θ) distributed, after Griffiths, Engen,

and McCloskey. A well-known urn scheme allows to sequentially sample observations

from P since if Un = (U1, . . . , Un) is a conditionally independent sample from P , i.e.

Ui | P
iid∼ P , then a new observation Un+1 will have predictive distribution

Un+1 | Un ∼
Kn∑
i=1

ni − σ
θ + n

δU∗i (·) +
θ +Knσ

θ + n
H(·), (5.1)

where Kn is the number of distinct values (U∗1 , . . . , U
∗
Kn

) in the sample Un, and ni are

their multiplicities, so that
∑Kn

i=1 ni = n.

This single–sample scenario is well established in the literature (see De Blasi et al.

(2015) for a review), however in many applications the data are collected in J different,

but related, experiments or populations. In the following we denote with X = {(Xj,i)i≥1 :

j = 1, . . . , J} the data matrix. In such a framework the assumption of a common under-

lying distribution (exchangeability) is too restrictive since it does not take into account

the possible differences of the populations. On the other hand, the assumption of inde-

pendence across populations does not allow to borrow information across experiments in

the Bayesian learning.

A natural compromise between the aforementioned extreme cases is partial exchange-

ability (de Finetti, Bruno, 1938), that entails exchangeability within but not across the

different groups. Thanks to de Finetti’s theorem, we can characterize the array X as aris-

ing from a vector of J dependent random probabilities. More precisely, for every vector

of population sample sizes (I1, . . . , IJ), it holds

Xj,i | (P1, . . . , PJ) ∼ Pj (i = 1, . . . , Ij; j = 1, . . . , J)

(P1, . . . , PJ) ∼ L,

where L takes the role of the prior in the Bayes-Laplace paradigm and controls the

dependence, thus the borrowing of information, across the different populations.

Many possible prior specifications for the vector (P1, . . . , PJ) are possible. When deal-

ing with species sampling problems, one of the most famous priors in a single–population

framework is arguably the PYP. This is due to the fact that, as apparent from equation

(5.1), when sampling a new out-of-sample observation, the probability to allocate it to a

new cluster depends on the number of already created cluster, and not only on the total

number of observations, as happens instead in the case of a DP prior. For this reason,

together with the asymptotic power law shown by the number of clusters as n diverges,
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the PYP is usually the first choice in species sampling problems, being the DP a valuable

choice for density estimation under mixture models, but not flexible enough for species

sampling processes. Consistently, a common prior specification in multiple-sample cases

for (P1, . . . , PJ) is the HPYP (Teh, 2006; Teh et al., 2006; Battiston et al., 2018; Camer-

lenghi et al., 2017). This construction is shortly reviewed in Section 5.2.1: although being

well-suited for multiple-sample prediction, it does not allow to test for distribution homo-

geneity across different populations. This is one of the two tasks of interest in the present

chapter, and, to the best of the authors’ knowledge, its treatment in the species sampling

framework is lacking, aside from early attempts by Lijoi et al. (2008). In order to achieve

this, a nested structure is added, allowing for possible ties in the group distributions Pj.

This is done exploiting a nested Pitman-Yor process (NPYP), which is introduced in Sec-

tion 5.2.2 and follows from the nested Dirichlet Process (NDP) (Rodŕıguez et al., 2008),

after replacing the DP with a PYP.

5.2.1 Hierarchical Pitman-Yor process

A well-known Bayesian nonparametric prior for a vector of dependent discrete random

probabilities (P1, . . . , PJ) is given by the hierarchical Pitman-Yor process (HPYP) (Teh,

2006; Teh and Jordan, 2010), which extends the definition of the hierarchical DP (Teh

et al., 2006).

The idea is to introduce dependence across the random probabilities P1, . . . , PJ via a

common random discrete base measure P0. More precisely we say that (P1, . . . , PJ) follows

a HPYP with parameter vector (σ, θ, σ0, θ0, H), denoted (P1, . . . , PJ) ∼ hpyp(σ, θ, σ0, θ0;H)

if

Pj | P0
iid∼ pyp(σ, θ;P0) j = 1, . . . , J, P0 ∼ pyp(σ0, θ0;H).

Thanks to the discreteness of Pj we will observe ties with positive probability between

the observations recorded in each population Xj = {Xj,i : i = 1, . . . , Ij}. Furthermore,

the discreteness of the common random base measure P0 allows to share species (cluster

observations) across the random probabilities. This feature is essential to perform clus-

tering with mixture models as well as species sampling under heterogeneous populations

(Teh et al., 2006; Camerlenghi et al., 2017).

This random partition structure induced by the ties is the core element of species sam-

pling models and from a statistical perspective it can be interpreted as a random cluster-

ing. The probability distribution of such a random partition structure can be characterized

via the partial exchangeable partition probability function (pEPPF) marginalizing out the

vector of random probabilities. The pEPPF is an essential object to understand the model

and perform inference. For instance, from the pEPPF we can derive closed-form results

for the joint moments of the observations, both in the same or different populations.
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Moreover, it can also be used to derive urn schemes that allow to develop marginal mcmc

routines which constitute the basis to perform predictive inference. See Camerlenghi et al.

(2019b) for results on the pEPPF for a large class of models.

However, when the goal is to test population homogeneity, the HPYP has a huge

drawback, as it does not allow two groups to share the same distribution. Indeed, in the

HPYP, pr(Pj 6= Pk) = 0 for any j 6= k. In order to allow for homogeneous subgroups

of populations we will rely on nested structures, extending the HPYP in order to allow

Pj = Pk, for j 6= k, with positive probability. Thus, before moving to the presentation of

the proposed model, we introduce the nested Pitman-Yor process (NPYP).

5.2.2 Nested Pitman-Yor process

The nested Dirichlet process (NDP) (Rodŕıguez et al., 2008) is arguably the most famous

Bayesian nonparametric prior to perform joint clustering of distributions and observations

under mixture models. However, as pointed out by Camerlenghi et al. (2019a) it suffers

from a degeneracy issue that makes it unsuitable to face our species sampling problem.

More precisely, it allows to naturally test for homogeneity of groups and to perform

probabilistic clustering of groups since, contrary to the HDP case, a priori we have pr(Pj 6=
Pk) ∈ (0, 1), for any j 6= k. However, given that a single species (cluster of observations) is

shared across groups j and k, i.e. Xj,i = Xk,l for some i, l ≥ 1, the species-populations Pj

and Pk are almost surely equal. On the other hand, given that the two species-populations

are not exactly equal they are independent and cannot share any species.

In order to overcome the restrictions not suitable for species sampling problems due

to a DP prior exposed in Section 5.2, we first extend the hierarchical definition of the

NDP to a composition of PYPs. However, also such nested Pitman-Yor process (NPYP)

suffers from the same degeneracy issue of the NDP. This will be overcome in Section 5.3,

where we introduce a novel prior for dependent species sampling processes that solves the

issue combining the NPY and the HDP, taking the advantages of the both of them.

We say that (P1, . . . , PJ) follows a NPYP distribution with vector of parameters

(α, γ, σ, θ,H), denoted (P1, . . . , PJ) ∼ npyp(α, γ, σ, θ;H), if

Pj | Q
iid∼ Q j = 1, . . . , J, Q ∼ pyp(α, γ;pyp(σ, θ;H)). (5.2)

In order to ease the understanding of the model we can rewrite the random distribution

on the space of distributions Q exploiting the well-known stick-breaking representation of

the Pitman-Yor process, so that

Q =
∑
k≥1

ω∗kδP ∗k ,

where the unique atoms P ∗k are random probabilities on the space of the observations and

are i.i.d. samples from pyp(σ, θ;H), independent of the weights (ω∗k)k≥1 ∼ gem(α, γ).
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The discreteness of Q induces a probabilistic clustering of the groups since pr(Pj = Pk) =
1−α
γ+1
∈ (0, 1). However, as for the NDP, given that a single atom is shared between the two

distributions, such probability to degenerate to the exchangeable case is 1. Indeed, given

that the two distributions Pj and Pk are different they are i.i.d. sampled from pyp(σ, θ;H)

and thus their random atoms are i.i.d. sampled from a non-atomic distribution H and are

almost surely different.

To overcome such an issue of the NDP in mixture models Camerlenghi et al. (2019a)

introduce a novel class of Bayesian nonparametrics priors named latent nested processes

(LNPs). LNPs have the merit to be the first proposal to solve the degeneracy issue of

the NDP. However, they are not suited for the study at hand, since computations become

infeasible when there are more than two groups and in addition they force the proportion

of species, i.e. the weights, to be the same across groups.

Other proposals are available in the literature, exploiting hidden hierarchical Dirichlet

process (HHDP) constructions for mixture models. However, in addition to having a

different focus, the theoretical results in such frameworks as well the proposed algorithms

are not suited for the scenario we are considering, since they rely on the conjugacy and the

finite dimensional approximations of the DP. See also Soriano and Ma (2019), Christensen

and Ma (2020) and Beraha et al. (2020) for stimulating contributions to this literature.

Notice that, even if for practical reason we restrict ourselves to the case of composition

of PYPs, the methodological arguments together with the algorithms developed in the

present work can be easily adapted to a more general class of priors that arise from the

composition of different Gibbs type priors, due to product form of their exchangeable

partition probability function (EPPF).

5.3 Hidden hierarchical Pitman-Yor process

After having addressed the limitations of the HPYP and NPYP for the scopes at hand, we

introduce a novel class of priors, called hidden hierarchical Pitman–Yor process (HHPYP),

arising from a composition of PYPs that overcomes the above mentioned issues. In par-

ticular, this construction is obtained combining the HPYP with the NPYP, as explained

in Section 5.3.1, and allows for ties in the population distributions, without suffering from

the aforementioned degeneracy issue of the NPYP, thus making homogeneity testing of

sub-groups effective, while simultaneously performing species sampling tasks borrowing

information across populations.

5.3.1 Definition and basic properties

The HHPYP is obtained by taking a NPYP with discrete base measure distributed ac-

cording to a PYP. This hierarchical construction allows different populations Pj and Pk,
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j 6= k, to possibly share the same atoms, so that a tie in two observations in these groups

does not imply Pj = Pk with probability 1.

In formulae, we say that (P1, . . . , PJ) ∼ hhpyp(α, γ, σ, θ, σ0, θ0;H) if

(P1, . . . , PJ) ∼ npyp(α, γ, σ, θ;P ∗0 )

P ∗0 ∼ pyp(σ0, θ0;H).
(5.3)

From now on we assume that the common probability on the sample space H is non-

atomic and for notational simplicity we just write (P1, . . . , PJ) ∼ hhpyp. Furthermore,

we assume the hyperparameters to be fixed, but in practice we can set a prior on them

and all the results hold given the hyperparameters and it is straightforward to adapt the

Gibbs sampler in Section 5.4 as for the usual species sampling under PYP prior in the

exchangeable case.

It follows from (5.2) that we can alternatively characterize the Pj’s to be i.i.d. sampled

from Q ∼ pyp(α, γ;pyp(σ, θ;P ∗0 )), given P ∗0 , which admits the representation

Q =
∑
k≥1

ω∗kδP ∗k ,

where the weights (ω∗k)k ∼ gem(α; γ) are independent from the distribution atoms. The

unique underlying distributions (P ∗k )k≥1 follow an infinite dimensional HPYP, that is

P ∗k | P ∗0
iid∼ pyp(θ, σ;P ∗0 ) (k ≥ 1), P ∗0 ∼ pyp(θ0, σ0;H).

The discreteness of Q allows to cluster the distributions. For instance, pr(Pj = Pk) =
1−α
γ+1
∈ (0, 1), as for the NPYP. However, thanks to the discreteness of the common random

base measure P ∗0 the unique random distributions P ∗k ’s are now dependent and share the

same countable set of atoms allowing to share species across populations which is essential

to overcome the aforementioned degeneracy issue.

In order to better understand the model, the role of the hyperparameters and the

borrowing of strength we can derive the moments of the random probability measures

(P1, . . . , PJ) ∼ hhpyp evaluated at an arbitrary measurable set A of the sample space X.

All the proofs are available in the appendix. The expected value is E[Pj(A)] = H(A), as

usual in species sampling processes, while the variance can be derived leveraging results

on hierarchical models (Camerlenghi et al., 2019b) and has the form

Var[Pj(A)] =
H(A)[1−H(A)]

θ0 + 1

[
(1− σ0) + (θ0 + σ0)

1− σ
θ + 1

]
. (5.4)

We can also derive the expression for the correlation between Pj and Pk, j 6= k, which

does not depend on the specific set A, and thus is often interpreted as a global measure

of dependence between the random probabilities in Bayesian nonparametrics. It holds

Cor[Pj(A), Pj′(A)] =
1− α
γ + 1

+
γ + α

γ + 1

1− σ0

(1− σ0) + (θ0 + σ0)
1− σ
θ + 1

. (5.5)
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It is interesting to notice the role played by the parameters α and γ, with the correlation

decreasing as α → 1 or γ → ∞: this is indeed consistent with the fact that in such

scenarios we are decreasing the probabilities of homogeneity between the two populations.

However, contrary to the NPYP (and its special case NDP), if j 6= k, Pj and Pk are not

independent, but follow a bi-dimensional HPYP and we can control their dependence via

the hyperparameters (σ, θ, σ0, θ0) as for the well-known HPYP.

Finally, if the focus is predict future observations it is better to study the dependence

directly in term of the observable random variables as de Finetti suggested. If the data

matrix X is drawn from (P1, . . . , PJ) ∼ hhpyp, then

Cor(Xj,i, Xk,l) = pr(Xj,i = Xk,l)

=


[(

1− σ
θ + 1

+
1− σ0

θ0 + 1

θ + σ

θ + 1

)
(1− α) +

1− σ0

θ0 + 1
(γ + α)

]
(γ + 1)−1 if j 6= k[

1− σ +
1− σ0

θ0 + 1
(θ + σ)

]
(θ + 1)−1 if j = k.

(5.6)

Notice that a priori the correlation between observations, i.e. the probability that the

observations belong to the same species, is larger when they arise from the same pop-

ulation, which is an appealing feature from a modeling perspective. The fact that the

correlation between two observations coincides with the probability that they are equal is

a very general result for species sampling models, both in the exchangeable and partially

exchangeable cases. See the proof in the Appendix for further insights.

This hierarchical representations of general dependent species sampling processes points

out that the dependence is controlled by the ties of the observations and the random parti-

tions they induce. Thus, in order to understand the model and develop sampling schemes,

we now study the random partitions structures of the distributions and populations in-

duced by the ties.

5.3.2 Partially Exchangeable Partition Probability Functions and

Urn Schemes

A priori, the discreteness of Q induces a random partition Ψ(J) of [J ] = {1, . . . , J} and

thus a clustering of the distributions P1, . . . , PJ . More precisely, if (P1, . . . , PJ) ∼ hhpyp

the probability law of Ψ(J) is characterized by the following EPPF, arising from the PYP,

φ
(J)
R (m1, . . . ,mR;α, γ) =

∏R−1
r=1 (γ + r α)

(γ + 1)J−1

R∏
r=1

(1− α)mr−1, (5.7)

where (x)J = x(x + 1) · · · (x + J − 1) is the Jth ascending factorial, R is the random

number of blocks of the partition of [J ] and mr is the cardinality of the rth block in order

of arrival of the unique Pj’s. Equation (5.7) immediately follows after recognizing that
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the underlying distributions P ∗1 , . . . , P
∗
R are almost surely different under the HHPYP,

although they can share the same atoms.

Denoting with S = (S1, . . . , SJ), S1 = 1, the cluster membership indicator vector

of the J populations in the Chinese restaurant process (CRP), the following Pölya urn

scheme characterizes the distribution of S = (S1, . . . , SJ):

pr(Sj+1 = S | S1, . . . , Sj) =

m
−(j+)
r −γ
m·+J

if S = r, for r = 1, . . . , R−(j+),

α+γR−(j+)

m·+J
if S = R−(j+) + 1,

(5.8)

where we use the · symbol to indicate a summation over an index set, (j+) = (j+1, . . . , J)

is the set of future populations not assigned to any restaurant yet, and a−(b) denotes the

quantity a without considering the elements in b.

In addition, the discreteness of the Pj’s induces a random partition of the observa-

tions X within and across populations. Calling D the overall number of unique values

(number of species) in X and nj = (nj,d : d = 1, . . . , D) the vector of cardinalities

of the species observed in population j, j = 1, . . . , J , the above mentioned partition

structure of X is characterized by the pEPPF Π
(n)
D (n1, . . . ,nJ). In order to have a

tractable form for it, in addition to the population assigment vector S, we also make use

of a further data augmentation, which corresponds to the usual table augmentation of

the Chinese restaurant franchise (CRF) (Teh, 2006; Teh and Jordan, 2010). More pre-

cisely, exploiting that culinary metaphor, we introduce the variables Tj,i, j = 1, . . . , J ,

i = 1, . . . , Ij, representing the table at which observation i in population j sits and de-

note T = {Tj,i : j = 1, . . . , J, i = 1, . . . , Ij}. Furthermore, we call qr,t,d the number of

customers in restaurant r sitting at table t eating dish d. Marginalizing out the previous

latent variables we obtain the following form for the pEPPF.

Theorem 5.3.1. If X is drawn from (P1, . . . , PJ) ∼ hhpyp(α, γ, σ, θ, σ0, θ0;H), then

the random partition structure induced by the samples is characterized by the following

pEPPF

Π
(n)
D (n1, . . . ,nJ) =

∑
φ

(J)
R (m1, . . . ,mR;α, γ)Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0),

where the sum is over all partitions of [J ], φ
(J)
R as in (5.7), and Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0)

is the pEPPF associated to an R-dimensional hpyp(σ, θ, σ0, θ0;H).

Exploiting the aforementioned variable augmentation based on T and S, and calling

X∗1 , . . . , X
∗
D the unique values in the sample X, it follows from Bayes Theorem that the

following urn scheme easily allows to sample from (5.3) in two steps:

(1) Assign the population to the different restaurant recursive from equation (5.8).

(2) Given the assignment of the populations to the restaurants via S, sample the

table assignments T and the observations values X recursively adapting the CRF (Teh,
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2006) from

pr(Xj,i = x, Tj,i = t | S,X−(ji+),T−(ji+)) =

θ0 +D−(ji+)σ0

θ0 + l
−(ji+)
·,·

θ + l
−(ji+)
r,· σ

θ + q
−(ji+)
r,·,·

if x = “new” and t = “new”,

ω
−(ji+)
d

θ0+l
−(ji+)
·,·

θ+l
−(ji+)
r,· σ

θ+q
−(ji+)
r,·,·

if x = X∗d
−(ji+) and t = “new” for d = 1, . . . , D−(ji+),

q
−(ji+)
r,t,d − σ
θ + q

−(ji+)
r,·,·

if x = X∗d
−(ji+) and t = T ∗r,d,l for l = 1, . . . , `

−(ji+)
r,d , d = 1, . . . , D−(ji+),

where (ji+) = {(jl) : l ≥ i} ∪ {(kl) : k ≥ j} is the index set associated to the future

random variables not sampled yet, and T ∗r,d,l denotes the value of the lth table in restaurant

r serving dish d. Finally, `r,d represents the number of tables in restaurant r serving dish

d. If we are interested not just in the clustering structure, but also in the specific values of

the observations, we can sample the “new” values of the observations from the non-atomic

base distribution H.

Notice that, contrary to the usual CRF characterizing the HPYP, a restaurant is not

identified by a unique population, but different populations can be assigned to the same

restaurant, thus sharing tables. On the other hand, if two populations are assigned to

two different restaurants, they will not share any table. Since this urn scheme naturally

extends the well-known CRF metaphor, with the additional property that a restaurant

can be composed by more than one group, we call such a Pölya urn scheme hidden

Chinese restaurant franchise (HCRF). Populations are clustered together when assigned

to the same restaurant. In testing the homogeneity among different groups, one can then

compute the posterior probability that two populations belong to the same cluster as

discussed in the next section.

5.3.3 Population homogeneity testing

One of the main goals of the present chapter is to introduce a valuable model that,

among usual inferential species sampling tasks, is able to assess which populations are

homogeneous. Since the clustering is probabilistic, the key quantity of interest is the

posterior probability of co-clustering for each couple of distributions Pj, Pk, j 6= k, namely

pr(Pj = Pk | X). These probabilities can be interpreted in terms of posterior evidence

of homogeneity between the distributions Pj and Pk. Considering the case of J = 2

populations for ease of interpretation, and denoting n1 and n2 the vectors of the counts

of the overall distinct D values in each of the two populations, the pEPPF characterising

the law of X can be written as

Π
(n)
D (n1,n2) =

1− α
γ + 1

Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0) +

α + γ

γ + 1
Φ

(n)
D (n1,n2;σ, θ, σ0, θ0), (5.9)
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with Φ
(n)
D as in Theorem 5.3.1. As expected by the model specification (5.3), the pEPPF

(5.9) can be seen as a convex combination of the probability laws of the random partitions

induced by different HPYPs, the first composed by a single population with n1+n2 vector

of multiplicities, while the second formed by two distinct populations having multiplicity

vectors n1 and n2 respectively. From (5.9) one can easily derive the posterior probability

to degenerate to the exchangeable case, that is of the event {P1 = P2}.

Proposition 5.3.2. If J = 2 and X is sampled from (P1, P2) ∼ hhpyp, then the posterior

probability of degeneracy is

pr(P1 = P2 |X) =
(1− α)Φ

(n)
D (n1 + n2;σ, θ, σ0, θ0)

(1− α)Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0) + (α + γ) Φ

(n)
D (n1,n2;σ, θ, σ0, θ0)

.

Notice that the HHPYP overcomes the degeneracy issue of the NDP and the NPYP

allowing for the presence of shared species across populations, without implying to de-

generate to exchangeability.

The above-mentioned task is strictly related with hypothesis testing procedures. In-

deed, assessing whether P1 = P2, can be rephrased as a test where

H0 : S1 = S2 vs. H1 : S1 6= S2. (5.10)

H0 and H1 specify two different models for the data matrix X. The correspondig Bayes

factor is then readily available and has the form

B01 =
p(X | H0)

p(X | H1)
=

Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0)

Φ
(n)
D (n1,n2;σ, θ, σ0, θ0)

.

For J > 2, the co-clustering posterior probabilities for each couple (j, k) can be easily

computed via the marginal Gibbs sampler described in Section 5.4. It will be sufficient

to count how many times out of the B Gibbs updates Sj = Sk to get an mcmc estimate

of pr(Pj = Pk | X). Moreover, the testing procedure (5.10) can be straightforwardly

extended to the generic null hypothesis

H0 : Sj1 = Sk1 , . . . , SjC = SkC , for some {j1, . . . jC}, {k1, . . . kC} ⊆ [J ],

with complementary alternative hypothesis H1. In such a case, the corresponding Bayes

factor follows by specifying the summation in (5.9) to the cases specified by the null

hypothesis and the alternative.

5.3.4 Inference on the number of species

Consistently with the above, let D be the overall random number of species (dishes) in

the sample X of size n =
∑J

j=1 Ij, and call R the number of heterogeneous populations
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among the J populations. To keep the notation lighter, we suppress the dependence on

n, J and qr,·,·. The probabilistic behavior of D and R both on finite samples and when

the overall numbers of observations n and populations J diverge is of utmost importance

to deeper understand key properties of the proposed species sampling model.

First, notice that (Tj,i | Sj = r, P ∗r )
iid∼ P ∗r , with P ∗r

iid∼ pyp(σ, θ,H), where H is a

non-atomic probability measure, so that, if we call Lr the number of distinct values in

Tr = (Tj,i : Sj = r), r = 1, . . . , R, these quantities are independent across restaurants.

We also denote by D0,` the random number of distinct values between ` exchangeable

values generated from P ∗0 . Notice that the distribution of R, Lr and D0,` can be derived

via marginalization from the EPPF induced by a PYP with non-atomic base measure.

More precisely,

p(R) =
1

R!

∑
m∈FR(J)

(
J

m1, . . . ,mR

)
φ

(J)
R (m1, . . . ,mR;α, γ)

=

∏R−1
r=1 (γ + r α)

(γ + 1)J−1

C (J,R;α)

αR
,

(5.11)

where FR(J) = {(m1, . . . ,mR) : mr ≥ 1,
∑R

r=1mR = J}. Here C (n, k;σ) represents the

generalized factorial coefficient (σt)n =
∑n

k=1 C (n, k;σ)(t)k and computable as C (n, k;σ) =
1

k!

∑k
j=0(−1)j

(
k
j

)
(−σj)n with the proviso C (0, 0;σ) = 1 and C (n, 0;σ) = 1 for any n > 0

and C (n, k;σ) = 0 for any k > n. For an exhaustive review of the generalized factorial

coefficients see Charalambides (2002).

Marginalizing out the corresponding EPPF we can also obtain:

p(D0,`) =

∏D0,`−1

d=1 (θ0 + d σ0)

(θ0 + 1)`−1

C (`,D0,`;σ0)

σ
D0,`

0

,

p(Lr) =

∏Lr−1
`=1 (θ + ` σ)

(θ0 + 1)`−1

C (qr,·,·, Lr);σ)

σLr
.

In the next Theorem we derive probability distribution of the overall number of species.

Theorem 5.3.3. If the data matrix X is drawn from (P1, . . . , PJ) ∼ hhpyp, then

p(D) =
∑
B∈ρ(J)

φ
(J)
R (m1, . . . ,mR;α, γ)

n∑
L=D

pr(D0,L = D) pr

(
J∑
j=1

Lr = L

)

=
∑
B∈ρ(J)

∏R−1
r=1 (γ + r α)

(γ + 1)J−1

R∏
r=1

(1− α)mr−1

×
n∑

L=D

∏D−1
d=1 (θ0 + d σ0)

(θ0 + 1)`−1

C (`,D;σ0)

σD0

∏L−1
`=1 (θ + ` σ)

(θ0 + 1)`−1

C (qr,·,·, L;σ)

σL
,

where ρ(J) is the space of the partitions of [J ].
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The distribution of the overall number of species D in Theorem 5.3.3 is quite involved.

However, from such analytical formula we can derive a simple algorithm to sample from

it after a variables augmentation.

From the composition structure points out in Theorem 5.3.3 we can also study the

asymptotic behavior of the number of species as the sample size n diverges, which boils

down to a simple analytical form. From now on, for an arbitrary function f(n), we write

Yn � f(n) if the limit of Yn/f(n) as n diverges is almost surely a positive and finite

random variable.

Theorem 5.3.4. If the data matrix X is drawn from (P1, . . . , PJ) ∼ hhpyp and D is

the overall number of distinct species in J populations of sample sizes I1 = . . . = IJ =

I = n/J . Then D � nσσ0 as n→∞.

Notice that the HHPYP can be used also to discover the number of heterogeneous

subpopulations R as the number of populations J grows. From (5.11) we have R � Jα,

as j → ∞. That is the number of heterogeneous subpopulations follows a polynomial

growth under model (5.3).

5.4 Marginal Gibbs sampler and predictive inference

Posterior inference can be efficiently performed thanks to the marginal Gibbs sampler

described in the following section. The full conditionals for the augmented variables Sj and

Tj have indeed a nice ratio expression, which is recovered exploiting Bayes theorem and

the fact that, with such variable augmentation, the pEPPF admits a product form that

simplifies between the numerator and the denominator. This results allow for interpretable

and computationally tractable inference for all quantities of interest. These include the

posterior distribution of the tables T and, more importantly, the posterior distribution of

the vector of cluster assignments S and the predictive distribution of future observations.

Such quantities can be used to perform population homogeneity testing, and, for instance,

to estimate the number of new species that are expected to be observed in an additional

sample of m = (m1, . . . ,mJ) observations.

5.4.1 Gibbs sampler

The proposed Gibbs sampler follows by extending the marginal Gibbs sampler for NDP

mixture models in Zuanetti et al. (2018) to the species sampling framework presented

in this chapter. The main idea is that, after having set an initial configuration for the

augmented variables S and T , at each iteration one first updates the table assigment Tj,i

for each individual, and then updates the population cluster membership indicators Sj,

j = 1, . . . , J , via a Metropolis-Hastings within Gibbs step. Due to the fact that Tj must
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be coherent with Sj, the update of Sj is done jointly with an update of Tj. The proposal

distribution of the Metropolis step is such that it is easy to sample from and allows a

fast evaluation of the acceptance probability. Performing homogeneity testing will then

be immediate, as it will be sufficient to count the fraction of times two populations are

clustered together out of the total number of iterations. In particular, the Gibbs sampler

to perform posterior inference on the latent variables S and T is reported below.

(0) At t = 0 start from an initial configuration S and T .

(1) At iteration t ≥ 1

(1.a) With Xj,i = X∗d sample latent variables Tj,i, for i = 1, . . . , Ij and j = 1, . . . , J

from

pr(Tj,i = t | T−(j,i),X,S) ∝q
−(ji)
r,t,d − σ if t = T ∗r,d,l for l = 1, . . . , `

−(ji)
r,d ,

ω
−(ji)
d

`
−(ji)
·,· +θ0

(θ + `
−(ji)
r,· σ) if t = “new”;

(5.12)

where ω
−(ji)
d = `

−(ji)
·,d − σ0 if `

−(ji)
·,d > 0 otherwise ω

−(ji)
d = 1.

(1.b) When updating Sj, we will have to update the Tj. This is done via the following

efficient Metropolis-Hastings within Gibbs step. Call Y = (Sj,Tj) the vector of the current

values for the jth population cluster assignment and the table assignments in there, the

proposed new values Y ′ = (S ′j,Tj
′) are sampled by the proposal distribution q(· | ·),

which is defined hierarchically exploiting the results for the importance sampling density

in (Maceachern et al., 1999):

q(Y ′ | Y ) = p(S ′j | S−j)
Ij∏
i=1

p(T ′j,i | T−j, T ′j,1, . . . , T ′j,i−1, S
′
j, Xj,i);

where p(S ′j | S−j) is defined as in (5.8) with (j+) replaced by (j) and, similarly, p(T ′j,i |
T−j, Tj,1

′, . . . , Tj,i−1
′, S ′j, Xj,i) as in (5.12) replacing (ji) with {(j, 1), . . . , (j, i)}.

The proposed state Y ′ is then accepted with probability min(1, A′), where A′ =
p(Y ′|T−j ,S−j ,X)q(Y |Y ′)
p(Y |T−j ,S−j ,X)q(Y ′|Y )

. Since the full conditional of Y can be expressed as

p(Sj,Tj |X,T−j,S−j) =
p(Sj,Tj,Xj |X−j,S−j,T−j)

p(Xj |X−j,T−j,S−j)
∝

∝ p(Sj | S−j)p(Tj,Xj |X−j,T−j,S−j, Sj),
(5.13)

we have

A′ =
p(T ′j ,Xj |X−j,T−j,S−j, S ′j)p(Tj |X,T−j,S−j, Sj)

p(Tj,Xj |X−j,T−j,S−j, Sj)p(T ′j |X,T−j,S−j, S ′j)
,

where the conditional distribution for (Tj,Xj) has the form p(Tj,Xj | X−j,T−j,S) =
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∏Ij
i=1 p(Tj,i,Xj |X−j,T−j, Tj,1, . . . , Tj,i−1S), with

pr(Tj,i = t,Xj,i = x |X−j,T−j,S) =

q
−(ji,...,jIj)

r,t,d −σ

θ+q
−(ji,...,jIj)
r,·,·

if t = T ∗r,d,l and x = X∗d

ω
−(ji,...,jIj)

d

θ0+l
−(ji,...,jIj)
·,·

θ+l
−(ji,...,jIj)
r,· σ

θ+q
−(ji,...,jIj)
r,·,·

if t = “new” and x = X∗d

θ0 +D−(ji,...,jIj)σ0

θ0 + l
−(ji,...,jIj)
·,·

θ + l
−(ji,...,jIj)
r,· σ

θ + q
−(ji,...,jIj)
r,·,·

if t = “new” and x = “new”.

Finally notice that the denominator in (5.13) is the same for Y and Y ′ and thus it cancels

out when computing A′ in the acceptance probability.

5.4.2 Predictive distribution

Consider now the case where we want to make inference about an additional sample of

m = (m1, . . . ,mJ) new observations, where mj is the number of new observations in

population j, for j = 1, . . . , J . Le us denote Xnew = {Xnew
j,i : j = 1, . . . , J, i = 1, . . . ,mj}

the values of such new observations and T new = {T new
j,i : j = 1, . . . , J, i = 1, . . . ,mj} the

latent tables allocations in the HCRF metaphor.

The following urn scheme allows obtain sample (Xnew,T new) exploiting the output of

the Gibbs sampler described in the previous section, since the sample can be obtained

sequentially, exploiting the fact that

p(Xnew,T new | S,T ,X) =
J∏
j=1

mj∏
i=1

p(Xnew
j,i , T

new
j,i | S,T ,X,Xnew−(ji+),T new−(ji+)),

where

pr(Xnew
j,i = x, T new

j,i = t | S,T ,X,Xnew−(ji+),T new−(ji+)) =

θ0 +D−(ji+)σ0

θ0 + l
−(ji+)
·,·

θ + l
−(ji+)
r,· σ

θ + q
−(ji+)
r,·,·

if x = “new” and t = “new”

ω
−(ji+)
d

θ0+l
−(ji+)
·,·

θ+l
−(ji+)
r,· σ

θ+q
−(ji+)
r,·,·

if x = X∗d
−(ji+) and t = “new” for d = 1, . . . , D−(ji+)

q
−(ji+)
r,t,d − σ
θ + q

−(ji+)
r,·,·

if x = X∗d
−(ji+) and t = T ∗r,d,l for l = 1, . . . , `

−(ji+)
r,d , d = 1, . . . , D−(ji+),

being (ji+) = {(jl) : l ≥ i}∪{(kl) : k ≥ j} the index set associated to the future random

variables not sampled yet.

Thus, for each configuration (S,T ) generated in the Gibbs sampler presented in Sec-

tion 5.4.1, one can obtain a sample from p(Xnew,T new | S,T ,X), so that, after the

burn-in period, samples from p(Xnew,T new |X) are obtained.
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5.A Appendix: Proofs

5.A.1 Proof of Equations (5.4) and (5.5)

Notice that Pj
d
= P ∗1 .

E[Pj(A)] = E[P ∗1 (A)] = H(A) since P ∗1 is a species sampling model

Var[Pj(A)] = Var[P ∗1 (A)]

We also know that Var[P ∗0 (A)] = H(A)[1−H(A)]
1− σ0

θ0 + 1
and

Var[P ∗1 (A)] =
H(A)[1−H(A)]

θ0 + 1

[
(1−σ0)+(θ0 +σ0)

1− σ
θ + 1

]
, see Camerlenghi et al. (2019b).

Moreover E[P ∗1 (A)P ∗2 (A)] = E[E[P ∗1 (A) | P ∗0 ]E[P ∗2 (A) | P ∗0 ]] = E[P ∗0 (A)2] and pr(Pj =

Pj′) =
1− α
γ + 1

for j 6= j′. Thus,

E[Pj(A)Pj′(A)] = E[P1(A)P2(A) | P1 = P2]pr(P1 = P2) + E[P1(A)P2(A) | P1 6= P2]pr(P1 6= P2)

=
1− α
γ + 1

E[P ∗1 (A)2] +
γ + α

γ + 1
E[P ∗1 (A)P ∗2 (A)]

=
1− α
γ + 1

E[P ∗1 (A)2] +
γ + α

γ + 1
E[P ∗0 (A)2].

From this we obtain

Cov[Pj(A), Pj′(A)] = E[Pj(A)Pj′(A)]−H(A)2 =
1− α
γ + 1

Var[P ∗1 (A)2] +
γ + α

γ + 1
Var[P ∗0 (A)2]

and

Cor[Pj(A), Pj′(A)] =
Cov[Pj(A), Pj′(A)]

Var[P ∗1 (A)]
=

1− α
γ + 1

+
γ + α

γ + 1

Var[P ∗0 (A)]

Var[P ∗1 (A)]

=
1− α
γ + 1

+
γ + α

γ + 1

1− σ0

(1− σ0) + (θ0 + σ0)
1− σ
θ + 1

=

1− α +
(α + γ)(−1 + σ0)(1 + θ)

−1 + (−1 + σ0)θ − θ0 + σ(σ0 + θ0)

1 + γ

5.A.2 Proof of Equation (5.6)

Notice that Xj,i
d
= X∗l . Thus,

Cov[Xj,i, Xj′,i′ ] = E[Cov(Xj,i = Xj′,i′ | 1(Xj,i = Xj′,i′))]pr(Xj,i = Xj′,i′) + 0

= pr(Xj,i = Xj′,i′)Var(X∗l )
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Therefore Cor[Xj,i, Xj′,i′ ] = pr(Xj,i = Xj′,i′), where

pr(Xj,i′ = Xj,i) = pr(Xj,i′ = Xj,i | Tj,i = Tj,i′)pr(Tj,i = Tj,i′)+

pr(Tj,i 6= Tj,i′)pr(Xj,i′ = Xj,i | Tj,i 6= Tj,i′)

=
1− σ
θ + 1

+
1− σ0

θ0 + 1

θ + σ

θ + 1

and, if j 6= j′,

pr(Xj,i′ = Xj,i) = pr(Xj,i = Xj′,i′ | Pj = Pj′)pr(Pj = Pj′)+

pr(Xj,i = Xj′,i′ | Pj 6= Pj′)pr(Pj 6= Pj′)

=

{[
1− σ
θ + 1

+
1− σ0

θ0 + 1

θ + σ

θ + 1

]
(1− α) +

1− σ0

θ0 + 1
(γ + α)

}
(γ + 1)−1

5.A.3 Proof of Theorem 5.3.1

In order to prove Theorem 5.3.1 we first show that the following lemma holds true.

Lemma 5.A.1. The random partition structure induced by the samples X drawn from

(P1, . . . , PJ) ∼ hhpyp given a particular partition of distributions Ψ(J) = {B1, . . . , BR}
is characterized by the pEPPF

Π
(n)
D

(
n1, . . . ,nJ | Ψ(J) = {B1, . . . , BR}

)
= Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0) ,

where Φ
(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0) denotes the pEPPF associated to an R-dimensional

hpyp(σ, σ0, θ, θ0;H).

Indeed,

Π
(n)
D

(
n1, . . . ,nJ | Ψ(J) = {B1, . . . , BR}

)
=

= E
[ ∫

XD∗

D∏
d=1

P
n1,d

1 (dxd) . . . P
nJ,d
J (dxd)

∣∣ Ψ(J) = {B1, . . . , BR}
]

=

= E
[ ∫

XD∗

D∏
d=1

P ∗1
q1,·,d(dxd) . . . P

∗
R
qr,·,d(dxd)

]
= Φ

(n)
D (n∗1, . . . ,n

∗
R;σ, θ, σ0, θ0),

where XD
∗ = XD \ {x : xi = xj for some i 6= j} and (P ∗1 , . . . , P

∗
R) ∼ hpyp(σ, σ0, θ, θ0;H).

Moreover, notice that the R unique values between (P1, . . . , PJ) are not necessary the

first (P ∗1 , . . . , P
∗
R) but since (P ∗k )k≥1 are exchangeable the third equality holds. Therefore,

applying Lemma 5.A.1

Π
(n)
D (n1, . . . ,nJ) =

∑
pr(Ψ(J) = {B1, . . . , BD})Π(n)

D (n1, . . . ,nJ | Ψ(J) = {B1, . . . , BD})

=
∑

φ
(J)
R (m1, . . . ,mR;α, γ)Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0)
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5.A.4 Proof of Proposition 5.3.2

In order to derive the posterior probability of degeneracy we rewrite the marginal likeli-

hood as

p(X) = Π
(n)
D (n1,n2)

D∏
d=1

H(dX∗d),

where {X∗1 , . . . ,X∗D} are the D unique values between X and Π
(n)
D (n1,n2) is the pEPPF

associated to the proposed model 5.9, that is

Π
(n)
D (n1,n2) = pr(P1 = P2)Φ

(n)
D (n1 + n2) + pr(P1 6= P2)Φ

(n)
D (n1,n2;σ, θ, σ0, θ0),

Finally we prove the proposition by applying Bayes theorem

pr(P1 = P2 |X) =
pr(P1 = P2)p(X | P1 = P2)

p(X)

=
(1− α)Φ

(n)
D (n1 + n2;σ, θ, σ0, θ0)

(1− α)Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0) + (α + γ) Φ

(n)
D (n1,n2;σ, θ, σ0, θ0)

.

5.A.5 Proof of Theorem 5.3.3

Notice that applying Lemma 5.A.1 and Theorem 6 in (Camerlenghi et al., 2019b) we have

that

p(D | Ψ(J) = {B1, . . . , BR}) =
n∑

L=D

pr(D0,L = D) pr

(
J∑
j=1

Lr = L

)
.

Then marginalizing out the population partition Ψ(J) we have

p(D) =
∑
B∈ρ(J)

φ
(J)
R (m1, . . . ,mR;α, γ)

n∑
L=D

pr(D0,L = D) pr

(
J∑
j=1

Lr = L

)
.

5.A.6 Proof of Theorem 5.3.4

Let T (n)
d
=
∑R

r=1 Lr ≤ D, representing the number of tables in the franchise. The

conditional independence arising from the hierarchical specification of the model (5.3)

entails that D = D0,T (n) almost surely. Moreover, by the asymptotic of the number

of species in the exchangeable case under a Pitman–Yor prior we have that for each

mr = mr(Ψ
(J)) ∈ {0, . . . , J}:

D0,I

Iσ0
a.s.−→ C0,

Lr
Iσ

a.s.−→ Crm
σ
r ,
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as I → ∞, where C0 and Cr’s are positive and finite random variables. Since T (n) =∑R
r Lr,mrI

T (n)

Iσ
a.s.−→

R∑
r=1

Crm
σ
r = η(Ψ(J)),

where η = η(Ψ(J)) is a positive finite random variable. Thus,

D0,T (n)

D0,ηIσ
=
T (n)σ0

(ηIσ)σ0
D0,T (n)/T (n)σ0

D0,ηIσ/(ηIσ)σ0
a.s.−→ 1.

entailing

Dn

Iσσ0
=
D0,T (n)

D0,ηIσ

D0,ηIσ

(Iσ)σ0
a.s.−→ C0,

as I →∞.
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